1
|
Hari Gopal S, Alenghat T, Pammi M. Early life epigenetics and childhood outcomes: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03585-7. [PMID: 39289593 DOI: 10.1038/s41390-024-03585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Epigenetics is the study of changes in gene expression, without a change in the DNA sequence that are potentially heritable. Epigenetic mechanisms such as DNA methylation, histone modifications, and small non-coding RNA (sncRNA) changes have been studied in various childhood disorders. Causal links to maternal health and toxin exposures can introduce epigenetic modifications to the fetal DNA, which can be detected in the cord blood. Cord blood epigenetic modifications provide evidence of in-utero stressors and immediate postnatal changes, which can impact both short and long-term outcomes in children. The mechanisms of these epigenetic changes can be leveraged for prevention, early detection, and intervention, and to discover novel therapeutic modalities in childhood diseases. We report a scoping review of early life epigenetics, the influence of maternal health, maternal toxin, and drug exposures on the fetus, and its impact on perinatal, neonatal, and childhood outcomes. IMPACT STATEMENT: Epigenetic changes such as DNA methylation, histone modification, and non-coding RNA have been implicated in the pathophysiology of various disease processes. The fundamental changes to an offspring's epigenome can begin in utero, impacting the immediate postnatal period, childhood, adolescence, and adulthood. This scoping review summarizes current literature on the impact of early life epigenetics, especially DNA methylation on childhood health outcomes.
Collapse
Affiliation(s)
- Srirupa Hari Gopal
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mohan Pammi
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
2
|
Li X, Owen LA, Taylor KD, Ostmo S, Chen YDI, Coyner AS, Sonmez K, Hartnett ME, Guo X, Ipp E, Roll K, Genter P, Chan RVP, DeAngelis MM, Chiang MF, Campbell JP, Rotter JI. Genome-wide association identifies novel ROP risk loci in a multiethnic cohort. Commun Biol 2024; 7:107. [PMID: 38233474 PMCID: PMC10794688 DOI: 10.1038/s42003-023-05743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024] Open
Abstract
We conducted a genome-wide association study (GWAS) in a multiethnic cohort of 920 at-risk infants for retinopathy of prematurity (ROP), a major cause of childhood blindness, identifying 1 locus at genome-wide significance level (p < 5×10-8) and 9 with significance of p < 5×10-6 for ROP ≥ stage 3. The most significant locus, rs2058019, reached genome-wide significance within the full multiethnic cohort (p = 4.96×10-9); Hispanic and European Ancestry infants driving the association. The lead single nucleotide polymorphism (SNP) falls in an intronic region within the Glioma-associated oncogene family zinc finger 3 (GLI3) gene. Relevance for GLI3 and other top-associated genes to human ocular disease was substantiated through in-silico extension analyses, genetic risk score analysis and expression profiling in human donor eye tissues. Thus, we identify a novel locus at GLI3 with relevance to retinal biology, supporting genetic susceptibilities for ROP risk with possible variability by race and ethnicity.
Collapse
Affiliation(s)
- Xiaohui Li
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Leah A Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA.
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA.
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA.
- Department of Ophthalmology, University at Buffalo the State University of New York, Buffalo, NY, USA.
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Susan Ostmo
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Aaron S Coyner
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kemal Sonmez
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | | | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Eli Ipp
- Division of Endocrinology and Metabolism, Department of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kathryn Roll
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Pauline Genter
- Division of Endocrinology and Metabolism, Department of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - R V Paul Chan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Margaret M DeAngelis
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Ophthalmology, University at Buffalo the State University of New York, Buffalo, NY, USA
- Department of Biochemistry; Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/State University of New York (SUNY), Buffalo, NY, USA
- Department of Neuroscience; Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/State University of New York (SUNY), Buffalo, NY, USA
- Department of Genetics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/State University of New York (SUNY), Buffalo, NY, USA
| | - Michael F Chiang
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - J Peter Campbell
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA.
| |
Collapse
|
3
|
Owen LA, Zhang C, Shirer K, Carroll L, Wood B, Szczotka K, Cornia C, Stubben C, Fung C, Yost CC, Katikaneni LD, DeAngelis MM, Comstock J. Placental Inflammation Significantly Correlates with Reduced Risk for Retinopathy of Prematurity. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1776-1788. [PMID: 36822266 PMCID: PMC10616712 DOI: 10.1016/j.ajpath.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Retinopathy of prematurity (ROP), a blinding condition affecting preterm infants, is an interruption of retinal vascular maturation that is incomplete when born preterm. Although ROP demonstrates delayed onset following preterm birth, representing a window for therapeutic intervention, there are no curative or preventative measures available for this condition. The in utero environment, including placental function, is increasingly recognized for contributions to preterm infant disease risk. The current study identified a protective association between acute placental inflammation and preterm infant ROP development using logistic regression, with the most significant association found for infants without gestational exposure to maternal preeclampsia and those with earlier preterm birth. Expression analysis of proteins with described ROP risk associations demonstrated significantly decreased placental high temperature requirement A serine peptidase-1 (HTRA-1) and fatty acid binding protein 4 protein expression in infants with acute placental inflammation compared with those without. Within the postnatal peripheral circulation, HTRA-1 and vascular endothelial growth factor-A demonstrated inverse longitudinal trends for infants born in the presence of, compared with absence of, acute placental inflammation. An agnostic approach, including whole transcriptome and differential methylation placental analysis, further identify novel mediators and pathways that may underly protection. Taken together, these data build on emerging literature showing a protective association between acute placental inflammation and ROP development and identify novel mechanisms that may inform postnatal risk associations in preterm infants.
Collapse
Affiliation(s)
- Leah A Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah; Department of Population Health Sciences, University of Utah, Salt Lake City, Utah; Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah; Department of Ophthalmology, University at Buffalo/State University of New York, Buffalo, New York.
| | - Charles Zhang
- Department of Ophthalmology, University at Buffalo/State University of New York, Buffalo, New York
| | - Kinsey Shirer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina
| | - Lara Carroll
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Blair Wood
- Retina Associates of Utah, Salt Lake City, Utah
| | - Kathryn Szczotka
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Colette Cornia
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah
| | - Christopher Stubben
- Department of Bioinformatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Camille Fung
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Christian C Yost
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Lakshmi D Katikaneni
- Division of Neonatology, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Margaret M DeAngelis
- Department of Ophthalmology, University at Buffalo/State University of New York, Buffalo, New York; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/State University of New York, Buffalo, New York; Department of Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/State University of New York, Buffalo, New York; Department of Genetics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/State University of New York, Buffalo, New York; Bioinformatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/State University of New York, Buffalo, New York.
| | - Jessica Comstock
- Department of Pathology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
4
|
Vinekar A, Nair AP, Sinha S, Vaidya T, Shetty R, Ghosh A, Sethu S. Early detection and correlation of tear fluid inflammatory factors that influence angiogenesis in premature infants with and without retinopathy of prematurity. Indian J Ophthalmol 2023; 71:3465-3472. [PMID: 37870008 PMCID: PMC10752326 DOI: 10.4103/ijo.ijo_3407_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose To measure the levels of inflammatory factors in tear fluid of pre-term infants with and without retinopathy of prematurity (ROP). Methods The cross-sectional pilot study included 29 pre-term infants undergoing routine ROP screening. Pre-term infants were grouped as those without ROP (no ROP; n = 14) and with ROP (ROP; n = 15). Sterile Schirmer's strips were used to collect the tear fluid from pre-term infants. Inflammatory factors such as interleukin (IL)-6, IL-8, MCP1 (Monocyte Chemoattractant Protein 1; CCL2), RANTES (Regulated on Activation, Normal T Cell Expressed and Secreted; CCL5), and soluble L-selectin (sL-selectin) were measured by cytometric bead array using a flow cytometer. Results Birth weight (BW) and gestation age (GA) were significantly (P < 0.05) lower in pre-term infants with ROP compared with those without ROP. Higher levels of RANTES (P < 0.05) and IL-8 (P = 0.09) were observed in the tear fluid of pre-term infants with ROP compared with those without ROP. Lower levels of tear fluid IL-6 (P = 0.14) and sL-selectin (P = 0.18) were measured in pre-term infants with ROP compared with those without ROP. IL-8 and RANTES were significantly (P < 0.05) higher in the tear fluid of pre-term infants with stage 3 ROP compared with those without ROP. Tear fluid RANTES level was observed to be inversely associated with GA and BW of pre-term infants with ROP and not in those without ROP. Furthermore, the area under the curve and odds ratio analysis demonstrated the relevance of RANTES/BW (AUC = 0.798; OR-7.2) and RANTES/MCP1 (AUC = 0.824; OR-6.8) ratios in ROP. Conclusions Distinct changes were observed in the levels of tear inflammatory factors in ROP infants. The status of RANTES in ROP suggests its possible role in pathobiology and warrants further mechanistic studies to harness it in ROP screening and management.
Collapse
Affiliation(s)
- Anand Vinekar
- Department of Pediatric Retina, Narayana Nethralaya Eye Institute, Bangaluru, Karnataka, India
| | | | - Shivani Sinha
- Department of Pediatric Retina, Narayana Nethralaya Eye Institute, Bangaluru, Karnataka, India
| | - Tanuja Vaidya
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, Karnataka, India
| | - Rohit Shetty
- Division of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, Bengaluru, Karnataka, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, Karnataka, India
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Liu G, Geng J, Jin R, Zhang N, Mei L. THE CLINICAL SIGNIFICANCE OF COMPLETE BLOOD COUNT, NEUTROPHIL-TO-LYMPHOCYTE RATIO, AND MONOCYTE-TO-LYMPHOCYTE RATIO IN GESTATIONAL DIABETES MELLITUS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2023; 19:441-446. [PMID: 38933244 PMCID: PMC11197831 DOI: 10.4183/aeb.2023.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Background To investigate the association between inflammatory factors, such as complete blood count (CBC) components, neutrophil/lymphocyte ratio (NLR), monocyte/lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), and gestational diabetes mellitus (GDM). Methods A total of 635 pregnant women with GDM and 296 with normal pregnancies at 7-13 weeks of gestation who underwent prenatal examinations in the obstetrics department were enrolled (June 2020-December 2020). CBC parameters, including WBC, neutrophil, lymphocyte (LYM), monocyte (MON), red blood cell (RBC), hemoglobin (HGB), mean corpuscular volume (MCV), platelet (PLT), platelet accumulation (PCT), mean platelet volume (MPV), NLR, MLR, PLR, alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl transferase (GGT), and other parameters were assessed. The receiver operating characteristic (ROC) curve was used to analyze the screening effects of the variables on the development of GDM. Results There were significant differences in the blood levels of WBC, NEU, LYM, MON, RBC, HGB, PCT, ALT, AST, GGT, NLR, and MLR between the GDM and control groups (P<0.05). The diagnostic level of MON was the highest among all factors. Conclusion Inflammatory factors (WBC, NEU, LYM, MON, NLR, and MLR counts) were correlated with GDM.
Collapse
Affiliation(s)
- G. Liu
- Obstetrical Department, Fu Yang People's Hospital Affiliated to Anhui Medical University, Anhui FuYang, China
| | - J. Geng
- Obstetrical Department, Fu Yang People's Hospital Affiliated to Anhui Medical University, Anhui FuYang, China
| | - R. Jin
- Obstetrical Department, Fu Yang People's Hospital Affiliated to Anhui Medical University, Anhui FuYang, China
| | - N. Zhang
- Obstetrical Department, Fu Yang People's Hospital Affiliated to Anhui Medical University, Anhui FuYang, China
| | - L. Mei
- Obstetrical Department, Fu Yang People's Hospital Affiliated to Anhui Medical University, Anhui FuYang, China
| |
Collapse
|
6
|
Santos HP, Enggasser AE, Clark J, Roell K, Zhabotynsky V, Gower WA, Yanni D, Yang NG, Washburn L, Gogcu S, Marsit CJ, Kuban K, O'Shea TM, Fry RC. Sexually dimorphic methylation patterns characterize the placenta and blood from extremely preterm newborns. BMC Biol 2023; 21:173. [PMID: 37608375 PMCID: PMC10464100 DOI: 10.1186/s12915-023-01662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Health outcomes among children born prematurely are known to be sexually dimorphic, with male infants often more affected, yet the mechanism behind this observation is not clear. CpG methylation levels in the placenta and blood also differ by sex and are associated with adverse health outcomes. We contrasted CpG methylation levels in the placenta and neonatal blood (n = 358) from the Extremely Low Gestational Age Newborn (ELGAN) cohort based on the EPIC array, which assays over 850,000 CpG sites across the epigenome. Sex-specific epigenome-wide association analyses were conducted for the placenta and neonatal blood samples independently, and the results were compared to determine tissue-specific differences between the methylation patterns in males and females. All models were adjusted for cell type heterogeneity. Enrichment pathway analysis was performed to identify the biological functions of genes related to the sexually dimorphic CpG sites. RESULTS Approximately 11,500 CpG sites were differentially methylated in relation to sex. Of these, 5949 were placenta-specific and 5361 were blood-specific, with only 233 CpG sites overlapping in both tissues. For placenta-specific CpG sites, 90% were hypermethylated in males. For blood-specific CpG sites, 95% were hypermethylated in females. In the placenta, keratinocyte differentiation biological pathways were enriched among the differentially methylated genes. No enrichment pathways were observed for blood. CONCLUSIONS Distinct methylation patterns were observed between male and female children born extremely premature, and keratinocyte differentiation pathways were enriched in the placenta. These findings provide new insights into the epigenetic mechanisms underlying sexually dimorphic health outcomes among extremely premature infants.
Collapse
Affiliation(s)
- Hudson P Santos
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, USA.
| | - Adam E Enggasser
- Gillings School of Global Public Health, Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeliyah Clark
- Gillings School of Global Public Health, Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kyle Roell
- Gillings School of Global Public Health, Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vasyl Zhabotynsky
- Gillings School of Global Public Health, Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Adam Gower
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Diana Yanni
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nou Gao Yang
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lisa Washburn
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Semsa Gogcu
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karl Kuban
- Division of Pediatric Neurology, Department of Pediatrics, School of Medicine, Boston. University, Boston, MA, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Gillings School of Global Public Health, Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
O'Shea TM, McGrath M, Aschner JL, Lester B, Santos HP, Marsit C, Stroustrup A, Emmanuel C, Hudak M, McGowan E, Patel S, Fry RC. Environmental influences on child health outcomes: cohorts of individuals born very preterm. Pediatr Res 2023; 93:1161-1176. [PMID: 35948605 PMCID: PMC9363858 DOI: 10.1038/s41390-022-02230-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022]
Abstract
The National Institutes of Health's Environmental influences on Child Health Outcomes (ECHO) Program was designed to address solution-oriented research questions about the links between children's early life environment and their risks of pre-, peri-, and post-natal complications, asthma, obesity, neurodevelopmental disorders, and positive health. Children born very preterm are at increased risk for many of the outcomes on which ECHO focuses, but the contributions of environmental factors to this risk are not well characterized. Three ECHO cohorts consist almost exclusively of individuals born very preterm. Data provided to ECHO from cohorts can be used to address hypotheses about (1) differential risks of chronic health and developmental conditions between individuals born very preterm and those born at term; (2) health disparities across social determinants of health; and (3) mechanisms linking early-life exposures and later-life outcomes among individuals born very preterm. IMPACT: The National Institutes of Health's Environmental Influences on Child Health Outcomes Program is conducting solution-oriented research on the links between children's environment and health. Three ECHO cohorts comprise study participants born very preterm; these cohorts have enrolled, to date, 1751 individuals born in 14 states in the U.S. in between April 2002 and March 2020. Extensive data are available on early-life environmental exposures and child outcomes related to neurodevelopment, asthma, obesity, and positive health. Data from ECHO preterm cohorts can be used to address questions about the combined effects of preterm birth and environmental exposures on child health outcomes.
Collapse
Affiliation(s)
- T Michael O'Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| | - Monica McGrath
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Judy L Aschner
- Department of Pediatrics, Joseph M. Sanzari Children's Hospital at Hackensack University Medical Center, Hackensack, NJ, USA
- Department of Pediatrics, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barry Lester
- Department of Pediatrics, Women & Infants Hospital, Brown University, Providence, RI, USA
- Brown Center for the Study of Children at Risk, Warren Alpert Medical School of Brown University, Women & Infants Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hudson P Santos
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Annemarie Stroustrup
- Departments of Pediatrics and Occupational Medicine, Epidemiology and Prevention, Zucker School of Medicine at Hofstra, Northwell Health, Cohen Children's Medical Center, New Hyde Park, NY, USA
| | - Crisma Emmanuel
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina, Chapel Hill, NC, USA
| | - Mark Hudak
- Department of Pediatrics, University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA
| | - Elisabeth McGowan
- Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Simran Patel
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Exploration of Hub Genes in Retinopathy of Prematurity Based on Bioinformatics Analysis of the Oxygen-Induced Retinopathy Model. J Ophthalmol 2022; 2022:9835524. [PMID: 36124139 PMCID: PMC9482502 DOI: 10.1155/2022/9835524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a major blindness-causing disease that is characterized by an arrest of normal vascular development and neovascularization of the retina. Previous studies have shown that genetic factors may be associated with the development and severity of ROP. However, the genes and mechanisms underlying ROP remain unclear. We aimed to identify hub genes in ROP and drugs related to these genes by integrative analysis. The expression profiles of GSE158799 and GSE135844 were acquired from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were identified. Then, an integrative analysis was performed including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), protein-protein interaction (PPI) network, transcription factor (TF)-gene, and miRNA-gene networks analysis. Moreover, we verified hub genes and identified potential drugs. 225 common DEGs were identified. Biological function analysis indicated that angiogenesis, cell surface, cell adhesion, extracellular matrix, and focal adhesion genes were enriched among DEGs. The PI3K/Akt signalingpathway, focal adhesion, and extracellular matrix (ECM)-receptor interaction were markedly enriched in the KEGG pathway analysis. Finally, 5 hub genes related to the nosogenesis of ROP were identified and found to be targeted by VEGFA inhibitors, TLR4 antagonists, and sunitinib. The present study showed that VEGFA, ACTA2, MKI67, CD68, and TLR4 are potential hub genes involved in the pathogenesis of ROP. Moreover, TLR4 antagonists and sunitinib may be new candidate drugs for ROP therapy, in addition to VEGFA inhibitors.
Collapse
|
9
|
Strube YNJ, Wright KW. Pathophysiology of retinopathy of prematurity. Saudi J Ophthalmol 2022; 36:239-242. [PMID: 36276256 PMCID: PMC9583358 DOI: 10.4103/sjopt.sjopt_18_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/05/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disease occurring in premature infants that affects the blood vessels of the developing retina. ROP results in the development of vascular shunts, neovascularization, and in its most severe form tractional retinal detachment. The development of retinal vascular shunts and neovascularization in ROP is related to local ischemia in the immature and incompletely vascularized retina. Understanding the pathophysiology of ROP helps physicians both in the prevention and treatment of ROP and will be discussed in this review article. The role of oxygen in the pathophysiology of ROP will be reviewed with recent studies discussed.
Collapse
Affiliation(s)
- Yi Ning J. Strube
- Department of Ophthalmology, Queen's University / Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Kenneth W. Wright
- Department of Ophthalmology, Queen's University / Kingston Health Sciences Centre, Kingston, ON, Canada
- Wright Foundation for Pediatric Ophthalmology and Strabismus, Los Angeles, CA, USA
| |
Collapse
|
10
|
Barnstable CJ. Epigenetics and Degenerative Retinal Diseases: Prospects for New Therapeutic Approaches. Asia Pac J Ophthalmol (Phila) 2022; 11:328-334. [PMID: 36041147 DOI: 10.1097/apo.0000000000000520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 12/26/2022] Open
Abstract
ABSTRACT There is growing evidence that retinal degenerative diseases are accompanied by epigenetic changes in both deoxyribonucleic acid methylation and histone modification. Even in the monogenic disease retinitis pigmentosa, there is a cascade of changes in gene expression that correlate with epigenetic changes, suggesting that many of the symptoms, and degenerative changes, may be a result of epigenetic changes downstream from the genetic mutation. This is supported by data from studies of diabetic retinopathy and macular degeneration, 2 diseases where it has been difficult to define a single causative change. Initial studies with modifiers of deoxyribonucleic acid methylation suggest that they can provide therapeutic benefit. A number of drugs are available to inhibit specific epigenetic histone modifier enzymes, and these offer the possibility of new therapeutic approaches to retinal disease. Systemic treatment with inhibitors of histone demethylases and histone deacetylases have arrested rod degeneration in rodent models of retinitis pigmentosa. Some evidence has suggested that similar treatments may provide benefits for patients with diabetic retinopathy. Because differentiation of retinal stem cells is regulated in part by epigenetic mechanisms, it may also be possible to direct stem cell differentiation pathways through the use of selective epigenetic modifiers. This is predicted to provide a valuable avenue to accelerate the introduction of regenerative approaches to retinal disease. Epigenetic modifiers are poised to become a powerful new approach to treat retinal degenerative diseases.
Collapse
Affiliation(s)
- Colin J Barnstable
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, PA, US
| |
Collapse
|
11
|
Bhattacharya A, Freedman AN, Avula V, Harris R, Liu W, Pan C, Lusis AJ, Joseph RM, Smeester L, Hartwell HJ, Kuban KCK, Marsit CJ, Li Y, O'Shea TM, Fry RC, Santos HP. Placental genomics mediates genetic associations with complex health traits and disease. Nat Commun 2022; 13:706. [PMID: 35121757 PMCID: PMC8817049 DOI: 10.1038/s41467-022-28365-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
As the master regulator in utero, the placenta is core to the Developmental Origins of Health and Disease (DOHaD) hypothesis but is historically understudied. To identify placental gene-trait associations (GTAs) across the life course, we perform distal mediator-enriched transcriptome-wide association studies (TWAS) for 40 traits, integrating placental multi-omics from the Extremely Low Gestational Age Newborn Study. At [Formula: see text], we detect 248 GTAs, mostly for neonatal and metabolic traits, across 176 genes, enriched for cell growth and immunological pathways. In aggregate, genetic effects mediated by placental expression significantly explain 4 early-life traits but no later-in-life traits. 89 GTAs show significant mediation through distal genetic variants, identifying hypotheses for distal regulation of GTAs. Investigation of one hypothesis in human placenta-derived choriocarcinoma cells reveal that knockdown of mediator gene EPS15 upregulates predicted targets SPATA13 and FAM214A, both associated with waist-hip ratio in TWAS, and multiple genes involved in metabolic pathways. These results suggest profound health impacts of placental genomic regulation in developmental programming across the life course.
Collapse
Affiliation(s)
- Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Anastasia N Freedman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Vennela Avula
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Rebeca Harris
- Biobehavioral Laboratory, School of Nursing, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Weifang Liu
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Calvin Pan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27514, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27514, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Hadley J Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Karl C K Kuban
- Department of Pediatrics, Division of Pediatric Neurology, Boston University Medical Center, Boston, MA, 02118, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health Emory University, Atlanta, GA, 30322, USA
| | - Yun Li
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27514, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27514, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27514, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27514, USA.
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, 27514, USA.
| | - Hudson P Santos
- Biobehavioral Laboratory, School of Nursing, University of North Carolina, Chapel Hill, NC, 27514, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
12
|
Zeng Y, Ge G, Lei C, Zhang M. Beyond Fetal Immunity: A Systematic Review and Meta-Analysis of the Association Between Antenatal Corticosteroids and Retinopathy of Prematurity. Front Pharmacol 2022; 13:759742. [PMID: 35153772 PMCID: PMC8832004 DOI: 10.3389/fphar.2022.759742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Retinopathy of prematurity (ROP) is a major cause of childhood blindness. Antenatal corticosteroids (ACS) exposure is known to ameliorate the risk of and mortality of neonatal morbidities. However, the effect of ACS on ROP development is currently unknown. We conducted a meta-analysis with up-to-date evidence to assess the association between ACS exposure and the development of ROP in at-risk preterm infants.Methods: PubMed, EMBASE, Scopus, Web of Science, and the Cochrane Library were systematically searched from inception to May 2021, supplemented with manual search from reference lists. Studies with a control group reporting ROP rate in ACS-exposed infants were included. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated utilizing a random-effects model. The Newcastle-Ottawa Scale was used for assessment of risk of bias in the included studies. Meta-regressions were performed to explore the predictive role of confounders for between-study variance.Results: A total of 63 studies, involving 196,264 infants, were included. Meta-analysis showed ACS exposure was not associated with ROP occurrence (uOR 0.92, 95% CI 0.80–1.07; aOR 0.87, 95% CI 0.7–1.08). Results from extremely immature subgroups revealed significant reduced risks of ROP occurrence in ACS-exposed infants. ACS exposure was associated with significantly lower odds of ROP progression in adjusted analysis (aOR 0.48, 95% CI 0.26–0.89) instead of unadjusted analysis (uOR 0.86, 95% CI 0.68–1.08). Meta-regression showed birth weight and patent ductus arteriosus of the cohort were associated with ROP occurrence, sample size and study design strongly associated with ROP progression in ACS-exposed infants.Conclusion: ACS treatment may decrease, but not prevent, the severity of ROP. Findings from severe ROP should be interpreted with caution owing to limited studies and the possibility of false-positive results. Considering the particular benefits in extremely immature infants, we recommend routine usage of ACS in mothers with threatened delivery to this particular birth cohort to prevent ROP occurrence. Future studies adjusting for major confounders are warranted to mitigate risk of bias in such observational evidence.
Collapse
Affiliation(s)
- Yue Zeng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Ge
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyan Lei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Meixia Zhang,
| |
Collapse
|
13
|
Dammann O, Rivera JC, Chemtob S. The prenatal phase of retinopathy of prematurity. Acta Paediatr 2021; 110:2521-2528. [PMID: 34028096 DOI: 10.1111/apa.15945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022]
Abstract
AIM To explore the current literature on prenatal inflammation-associated risk factors for retinopathy of prematurity (ROP). METHODS Subjective summary of selected experimental and epidemiological publications that support the authors' central hypothesis that the aetiology of ROP begins before birth. RESULTS Based on current evidence we suggest that, contrary to current aetiological models, the process of ROP development begins with a prephase in utero. This beginning is likely initiated by inflammatory responses that are associated with intrauterine infection. CONCLUSION We propose a novel aetio-pathogenetic model of ROP and suggest that the effects of postnatal exposure to inflammatory stressors (resulting from infection or hyperoxia or both) as well as those of other pre- and postnatal contributors to the complex pathogenesis of ROP might be modified by the prenatal phase of the disease.
Collapse
Affiliation(s)
- Olaf Dammann
- Deptartments of Public Health & Community Medicine, Pediatrics, and Ophthalmology Tufts University School of Medicine Boston USA
- Department of Gynecology and Obstetrics Hannover Medical School Hannover Germany
- Department of Neuromedicine and Movement Science NTNU Norwegian University of Science and Technology Trondheim Norway
| | - José Carlos Rivera
- Departments of Pediatrics, Ophthalmology, and Pharmacology Hôpital Maisonneuve‐Rosemont Research Center Montreal QC Canada
- CHU Sainte Justine Research Centre Montreal QC Canada
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology, and Pharmacology Hôpital Maisonneuve‐Rosemont Research Center Montreal QC Canada
- CHU Sainte Justine Research Centre Montreal QC Canada
- Department of Pharmacology and Therapeutics McGill University Montreal QC Canada
| |
Collapse
|
14
|
Li G, Raffield L, Logue M, Miller MW, Santos HP, O'Shea TM, Fry RC, Li Y. CUE: CpG impUtation ensemble for DNA methylation levels across the human methylation450 (HM450) and EPIC (HM850) BeadChip platforms. Epigenetics 2021; 16:851-861. [PMID: 33016200 PMCID: PMC8330997 DOI: 10.1080/15592294.2020.1827716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022] Open
Abstract
DNA methylation at CpG dinucleotides is one of the most extensively studied epigenetic marks. With technological advancements, geneticists can profile DNA methylation with multiple reliable approaches. However, profiling platforms can differ substantially in the CpGs they assess, consequently hindering integrated analysis across platforms. Here, we present CpG impUtation Ensemble (CUE), which leverages multiple classical statistical and modern machine learning methods, to impute from the Illumina HumanMethylation450 (HM450) BeadChip to the Illumina HumanMethylationEPIC (HM850) BeadChip. Data were analysed from two population cohorts with methylation measured both by HM450 and HM850: the Extremely Low Gestational Age Newborns (ELGAN) study (n = 127, placenta) and the VA Boston Posttraumatic Stress Disorder (PTSD) genetics repository (n = 144, whole blood). Cross-validation results show that CUE achieves the lowest predicted root-mean-square error (RMSE) (0.026 in PTSD) and the highest accuracy (99.97% in PTSD) compared with five individual methods tested, including k-nearest-neighbours, logistic regression, penalized functional regression, random forest, and XGBoost. Finally, among all 339,033 HM850-only CpG sites shared between ELGAN and PTSD, CUE successfully imputed 289,604 (85.4%) sites, where success was defined as RMSE < 0.05 and accuracy >95% in PTSD. In summary, CUE is a valuable tool for imputing CpG methylation from the HM450 to HM850 platform.
Collapse
Affiliation(s)
- Gang Li
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Mark Logue
- National Center for PTSD: Behavioral Sciences Division at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Mark W Miller
- National Center for PTSD: Behavioral Sciences Division at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Hudson P Santos
- School of Nursing, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Santos HP, Bhattacharya A, Joseph RM, Smeester L, Kuban KCK, Marsit CJ, O'Shea TM, Fry RC. Evidence for the placenta-brain axis: multi-omic kernel aggregation predicts intellectual and social impairment in children born extremely preterm. Mol Autism 2020; 11:97. [PMID: 33308293 PMCID: PMC7730750 DOI: 10.1186/s13229-020-00402-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Children born extremely preterm are at heightened risk for intellectual and social impairment, including Autism Spectrum Disorder (ASD). There is increasing evidence for a key role of the placenta in prenatal developmental programming, suggesting that the placenta may, in part, contribute to origins of neurodevelopmental outcomes. METHODS We examined associations between placental transcriptomic and epigenomic profiles and assessed their ability to predict intellectual and social impairment at age 10 years in 379 children from the Extremely Low Gestational Age Newborn (ELGAN) cohort. Assessment of intellectual ability (IQ) and social function was completed with the Differential Ability Scales-II and Social Responsiveness Scale (SRS), respectively. Examining IQ and SRS allows for studying ASD risk beyond the diagnostic criteria, as IQ and SRS are continuous measures strongly correlated with ASD. Genome-wide mRNA, CpG methylation and miRNA were assayeds with the Illumina Hiseq 2500, HTG EdgeSeq miRNA Whole Transcriptome Assay, and Illumina EPIC/850 K array, respectively. We conducted genome-wide differential analyses of placental mRNA, miRNA, and CpG methylation data. These molecular features were then integrated for a predictive analysis of IQ and SRS outcomes using kernel aggregation regression. We lastly examined associations between ASD and the multi-omic-predicted component of IQ and SRS. RESULTS Genes with important roles in neurodevelopment and placental tissue organization were associated with intellectual and social impairment. Kernel aggregations of placental multi-omics strongly predicted intellectual and social function, explaining approximately 8% and 12% of variance in SRS and IQ scores via cross-validation, respectively. Predicted in-sample SRS and IQ showed significant positive and negative associations with ASD case-control status. LIMITATIONS The ELGAN cohort comprises children born pre-term, and generalization may be affected by unmeasured confounders associated with low gestational age. We conducted external validation of predictive models, though the sample size (N = 49) and the scope of the available out-sample placental dataset are limited. Further validation of the models is merited. CONCLUSIONS Aggregating information from biomarkers within and among molecular data types improves prediction of complex traits like social and intellectual ability in children born extremely preterm, suggesting that traits within the placenta-brain axis may be omnigenic.
Collapse
Affiliation(s)
- Hudson P Santos
- Biobehavioral Laboratory, School of Nursing, University of North Carolina, 544 Carrington Hall, Campus Box 7460, Chapel Hill, NC, 27599-7460, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Lisa Smeester
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Karl C K Kuban
- Department of Pediatrics, Division of Pediatric Neurology, Boston University Medical Center, Boston, MA, USA
| | - Carmen J Marsit
- Department of Environmental Health, Emory University, Atlanta, GA, 30322, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Markasz L, Olsson KW, Holmström G, Sindelar R. Cluster Analysis of Early Postnatal Biochemical Markers May Predict Development of Retinopathy of Prematurity. Transl Vis Sci Technol 2020; 9:14. [PMID: 33344058 PMCID: PMC7726592 DOI: 10.1167/tvst.9.13.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Growth factors and inflammatory and angiogenetic proteins are involved in the development of retinopathy of prematurity (ROP). However, no early biochemical markers are in clinical use to predict ROP. By performing cluster analysis of multiple biomarkers, we aimed to determine patient groups with high and low risk for developing ROP. Methods In total, 202 protein markers in plasma were quantified by proximity extension assay from 35 extremely preterm infants on day 2 of life. Infants were sorted in groups by automated two-dimensional hierarchical clustering of all biomarkers. ROP was classified as stages I to III with or without surgical treatment. Predictive biomarkers were evaluated by analysis of variance and detected differences by two-sided paired t-test with Bonferroni corrections for multiple comparisons. Results Differences in 39 biochemical markers divided infants without ROP into two control groups (control 1, n = 7; control 2, n = 5; P < 0.05). Sixty-six biochemical markers defined differences between the control groups (n = 13) and all ROP infants (n = 23; P < 0.05). PARK7, VIM, MPO, CD69, and NEMO were markedly increased in control 1 compared to all ROP infants (P < 0.001). Lower TNFRSF4 and higher HER2 and GAL appeared in infants with ROP as compared to control 1 and/or 2 (P < 0.05, respectively). Conclusions Our data suggest that early elevated levels of PARK7, VIM, MPO, CD69, and NEMO may be associated with lower risk of developing ROP. Lower levels of TNFRSF4 with higher levels of HER2 and GAL may predict ROP development. Translational Relevance Cluster analysis of early postnatal biomarkers may help to identify infants with low or high risk of developing ROP.
Collapse
Affiliation(s)
- Laszlo Markasz
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Karl-Wilhelm Olsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Gerd Holmström
- Department of Neuroscience/Ophthalmology, Uppsala University, Uppsala, Sweden
| | - Richard Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Wang J, Zhu QW, Cheng XY, Sha CX, Cui YB. Clinical significance of neutrophil-lymphocyte ratio and monocyte-lymphocyte ratio in women with hyperglycemia. Postgrad Med 2020; 132:702-708. [PMID: 32425090 DOI: 10.1080/00325481.2020.1764235] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective: Abnormal pro-inflammatory regulation of the immune system might contribute to the pathogenesis of hyperglycemia during pregnancy. We examined the correlations of neutrophil-lymphocyte ratio (NLR) and monocyte-lymphocyte ratio (MLR) with disease severity and assessed their predictive values. Methods: This retrospective case-control study included 311 cases of hyperglycemia first detected during pregnancy (HFDP) [153 with gestational diabetes mellitus (GDM) and 158 with diabetes in pregnancy (DIP)] and, as a control group, 172 pregnant women with normal glucose tolerance. The NLRs and MLRs were calculated from the blood test data. Results: The absolute leukocyte, neutrophil, monocyte, and lymphocyte counts as well as the NLR and MLR values of HFDP patients significantly differed from control values, but no significant differences were detected in the leukocyte, neutrophil, and monocyte counts of the GDM and DIP groups. Significantly different metrics were selected, binary analysis performed, and odds ratios calculated to identify risk factors. Age, BMI, NLR, and MLR were found to be risk factors for HFDP, and high systolic blood pressure (SBP) at triage and MLR related to the occurrence of DIP. Receiver operating characteristics curve analysis showed that NLR and MLR had better diagnostic accuracy in distinguishing HFDP from controls [NLR area under the curve (AUC) = 0.78; MLR AUC = 0.72] than age and BMI. Values for NLR > 4.394 or MLR > 0.309 correlated with the severity of maternal clinical symptoms and perinatal infant outcomes. MLR was the best predictor of DIP (AUC = 0.72) and MLR values > 0.299 could identify patients at risk for developing DIP and having poor fetal outcomes. Conclusion: Metrics derived from peripheral blood neutrophil, monocyte, and lymphocyte counts are thought to reflect systemic immune-inflammation. Elevated MLR and NLR may be unfavorable prognostic factors for clinical outcomes in patients with hyperglycemia during pregnancy.
Collapse
Affiliation(s)
- Jing Wang
- Department of Clinical Laboratory, Nantong Women and Children Health Care Hospital , Nantong, Jiangsu, China
| | - Qing-Wen Zhu
- Department of Clinical Laboratory, Nantong Women and Children Health Care Hospital , Nantong, Jiangsu, China
| | - Xiao-Yan Cheng
- Department of Obstetrics, Nantong Women and Children Health Care Hospital , Nantong, Jiangsu, China
| | - Chun-Xiu Sha
- Department of Clinical Laboratory, Nantong Women and Children Health Care Hospital , Nantong, Jiangsu, China
| | - Yu-Bao Cui
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University , Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Carroll L, Owen LA. Current evidence and outcomes for retinopathy of prematurity prevention: insight into novel maternal and placental contributions. EXPLORATION OF MEDICINE 2020; 1:4-26. [PMID: 32342063 PMCID: PMC7185238 DOI: 10.37349/emed.2020.00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a blinding morbidity of preterm infants, which represents a significant clinical problem, accounting for up to 40% of all childhood blindness. ROP displays a range of severity, though even mild disease may result in life-long visual impairment. This is complicated by the fact that our current treatments have significant ocular and potentially systemic effects. Therefore, disease prevention is desperately needed to mitigate the life-long deleterious effects of ROP for preterm infants. Although ROP demonstrates a delayed onset of retinal disease following preterm birth, representing a potential window for prevention, we have been unable to sufficiently alter the natural disease course and meaningfully prevent ROP. Prevention therapeutics requires knowledge of early ROP molecular changes and risk, occurring prior to clinical retinal disease. While we still have an incomplete understanding of these disease mechanisms, emerging data integrating contributions of maternal/placental pathobiology with ROP are poised to inform novel approaches to prevention. Herein, we review the molecular basis for current prevention strategies and the clinical outcomes of these interventions. We also discuss how insights into early ROP pathophysiology may be gained by a better understanding of maternal and placental factors playing a role in preterm birth.
Collapse
Affiliation(s)
- Lara Carroll
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 4132, USA
| | - Leah A. Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 4132, USA
| |
Collapse
|
19
|
Kerr K, McAneney H, Smyth L, Flanagan C, Silvestri J, Nesbitt MA, Wooster C, McKnight AJ. Systematic review of differential methylation in rare ophthalmic diseases. BMJ Open Ophthalmol 2019; 4:e000342. [PMID: 31799411 PMCID: PMC6861117 DOI: 10.1136/bmjophth-2019-000342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/11/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Rare ophthalmic diseases have a devastating impact on a patient's vision and consequently negatively affect their independence, ability to work and overall quality of life. Methylation is an important emerging biomarker of disease and may improve understanding of rare ophthalmic disorders. This systematic review sought to identify and evaluate literature on methylation and rare ophthalmic disease. MEDLINE, EMBASE, PubMed, Cochrane Database of Systematic Reviews and grey literature resources were searched for publications prior to 20 August 2019. Articles written in English which featured key terms such as 'methylation' and rare ophthalmic diseases were included. Titles, abstracts, keywords and full texts of publications were screened, as well as reference lists for reverse citations and Web of Science 'cited reference search' for forward citation searching. Study characteristics were extracted, and methodological rigour appraised using a standardised template. Fourteen articles were selected for full inclusion. Rare ophthalmic conditions include congenital fibrosis of extraocular muscles, retinitis pigmentosa, Fuchs endothelial corneal dystrophy, granular corneal dystrophy, choroideraemia, brittle cornea syndrome, retinopathy of prematurity, keratoconus and congenital cataracts. Outcomes include identification of methylation as contributor to disease and identification of potential novel therapeutic targets. The studies included were heterogeneous with no scope for meta-analysis following review; a narrative synthesis was undertaken. Differential methylation has been identified in a small number of rare ophthalmic diseases and few studies have been performed to date. Further multiomic research will improve understanding of rare eye diseases and hopefully lead to improved provision of diagnostic/prognostic biomarkers, and help identify novel therapeutic targets.
Collapse
Affiliation(s)
- Katie Kerr
- Centre for Public Health, Institute of Clinical Sciences B, Royal Victoria Hospital, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Helen McAneney
- Centre for Public Health, Institute of Clinical Sciences B, Royal Victoria Hospital, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Laura Smyth
- Centre for Public Health, Institute of Clinical Sciences B, Royal Victoria Hospital, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Cheryl Flanagan
- The 100,000 Genomes Project Team, Belfast Health and Social Care Trust, Belfast, UK
| | - Julie Silvestri
- Department of Ophthalmology, Belfast Health and Social Care Trust, Belfast, UK
| | - Micheal Andrew Nesbitt
- School of Biomedical Sciences, Biomedical Sciences Research Institute, Ulster University, Belfast, UK
| | - Christopher Wooster
- Centre for Public Health, Institute of Clinical Sciences B, Royal Victoria Hospital, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Institute of Clinical Sciences B, Royal Victoria Hospital, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| |
Collapse
|