1
|
Liu J, Zhang Y, Xu X, Dong X, Pan Y, Sun X, Luo Y. Ginsenoside Ro prevents endothelial injury via promoting Epac1/AMPK- mediated mitochondria protection in early diabetic retinopathy. Pharmacol Res 2025; 211:107562. [PMID: 39732351 DOI: 10.1016/j.phrs.2024.107562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Diabetic retinopathy (DR) is a blinding complication of microangiopathy. First-line therapeutic drugs are all focused on late-stage DR and have several side effects, which could not meet clinical needs. The plant-derived ginsenoside Ro (Ro) has a variety of effective anti-inflammatory, immune-regulating, and cardiovascular protective effects, but its microvascular protective effects are rarely studied. This study aimed to explore the protective effect and mechanism of Ro on retinal microvascular endothelial cells in early stage of DR. We demonstrated that Ro exerted endothelial cell protection by regulating mitochondrial oxidative stress and autophagy in AGEs-injured endothelial cells. Moreover, Ro alleviated DR progress through improving retinal thickness and pathological changes in STZ-induced diabetic mice. Mechanically, Ro promotes the activation of Epac1-mediated AMPK signaling. On the contrary, the protective effects of Ro were abolished by Epac1 inhibitor in vitro or Epac1 knock down in vivo. Our results revealed the important role of Ro on the treatment of DR and suggested that targeting Epac1 may be a promising approach to prevent and treat DR.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China; Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Department of Pharmacy, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 201619, China
| | - Yunqi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
| | - Xiaoyu Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yunfeng Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China; Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Yun Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.
| |
Collapse
|
2
|
Belmadani S, Matrougui K. Role of High Mobility Group Box 1 in Cardiovascular Diseases. Inflammation 2022; 45:1864-1874. [PMID: 35386038 PMCID: PMC11145736 DOI: 10.1007/s10753-022-01668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 11/05/2022]
Abstract
High Mobility Group Box 1 (HMGB1) is a ubiquitous, highly conserved nuclear and cytosolic protein that has diverse biological roles depending on its cellular location and posttranslational modifications. The HMGB1 is localized in the nucleus but can be translocated to the cytoplasm to modulate the intracellular signaling and eventually secreted outside the cells. It is widely established that HMGB1 plays a key role in inflammation; however, the role of HMGB1 in the cardiovascular diseases is not well understood. In this review, we will discuss the latest reports on the pathophysiological link between HMGB1 and cardiovascular complications, with special emphasis on the inflammation. Thus, the understanding of the role of HMGB1 may provide new insights into developing new HMGB1-based therapies.
Collapse
Affiliation(s)
- Souad Belmadani
- Department of Physiological Sciences, EVMS, Norfolk, Virginia, 23501, USA
| | - Khalid Matrougui
- Department of Physiological Sciences, EVMS, Norfolk, Virginia, 23501, USA.
| |
Collapse
|
3
|
Pan Y, Liu J, Ren J, Luo Y, Sun X. Epac: A Promising Therapeutic Target for Vascular Diseases: A Review. Front Pharmacol 2022; 13:929152. [PMID: 35910387 PMCID: PMC9330031 DOI: 10.3389/fphar.2022.929152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular diseases affect the circulatory system and comprise most human diseases. They cause severe symptoms and affect the quality of life of patients. Recently, since their identification, exchange proteins directly activated by cAMP (Epac) have attracted increasing scientific interest, because of their role in cyclic adenosine monophosphate (cAMP) signaling, a well-known signal transduction pathway. The role of Epac in cardiovascular disease and cancer is extensively studied, whereas their role in kidney disease has not been comprehensively explored yet. In this study, we aimed to review recent studies on the regulatory effects of Epac on various vascular diseases, such as cardiovascular disease, cerebrovascular disease, and cancer. Accumulating evidence has shown that both Epac1 and Epac2 play important roles in vascular diseases under both physiological and pathological conditions. Additionally, there has been an increasing focus on Epac pharmacological modulators. Therefore, we speculated that Epac could serve as a novel therapeutic target for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yunfeng Pan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jia Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiahui Ren
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Liu L, Jiang Y, Steinle JJ. TNFAIP3 is anti-inflammatory in the retinal vasculature. Mol Vis 2022; 28:124-129. [PMID: 36034737 PMCID: PMC9352365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/28/2022] [Indexed: 11/08/2022] Open
Abstract
Purpose To determine whether tumor necrosis factor alpha-induced protein 3 (TNFAIP3) regulates inflammatory and permeability proteins in the retinal vasculature. Methods We used retinal lysates from type 1 diabetic mice and endothelial cell-specific exchange protein for cAMP 1 (Epac1) knockout mice to determine the protein levels of TNFAIP3. We also treated retinal endothelial cells (RECs) in normal (5 mM) and high (25 mM) glucose with an Epac1 agonist or with TNFAIP3 siRNA. We performed western blotting for TNFAIP3 and inflammatory and permeability proteins after treatment. TNFAIP3 siRNA was used only in cells grown in high glucose. Immunostaining was performed for localization of ZO-1 and tight junction protein 1. Results TNFAIP3 was reduced in the diabetic retinas and the retinas of the Epac1 conditional knockout mice. The Epac1 agonist increased TNFAIP3 levels in RECs grown in high glucose. Reduction of TNFAIP3 with siRNA led to increased levels of tumor necrosis factor alpha (TNFα) and phosphorylation of nuclear factor kappa beta (NF-kB), while decreasing occludin and zonula occludens 1 (ZO-1) protein levels and inhibitory kappa beta kinase (IkB) phosphorylation. Tumor receptor-associated factor 6 (TRAF6) levels were increased above high glucose levels. Conclusions TNFAIP3 serves as an anti-inflammatory factor in the retinal vasculature. Epac1 regulates TNFAIP3. TNFAIP3 may offer a new mechanism for regulating inflammation and permeability in the retinal vasculature.
Collapse
|
5
|
Liu L, Jiang Y, Steinle JJ. Prohibitin 1 Regulates Inflammatory Mediators and Reactive Oxygen Species in Retinal Endothelial Cells. J Clin Med 2022; 11:jcm11071915. [PMID: 35407523 PMCID: PMC9000038 DOI: 10.3390/jcm11071915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic retinopathy is associated with increased inflammatory mediator levels. In these studies, we focused on prohibitin 1. We performed western blotting for retinal lysates from diabetic mice and Epac1 floxed and cdh5Cre-Epac1 mice. We also grew primary retinal endothelial cells (REC) in normal (5 mM) and high (25 mM) glucose, and treated some cells with an Epac 1 agonist or prohibitin 1 siRNA. Western blotting was done to confirm knockdown of prohibitin 1 and Epac 1 agonism. We measured the tumor necrosis factor alpha (TNFα), interleukin-1-beta (IL-1β), phosphorylated prohibitin 1, phosphorylated nuclear factor kappa beta (NFkB), high mobility group box 1 (HMGB1) and reactive oxygen species (ROS) levels in REC after transfection with prohibitin 1 siRNA. Results showed that high glucose increased the inflammatory mediators, as well as HMGB1 and ROS. The levels of ROS, HMGB1, and inflammatory pathways were all reduced after cells were transfected with prohibitin 1 siRNA. Epac1 reduced prohibitin 1 phosphorylation. In conclusion, decreased prohibitin 1 significantly reduced the inflammatory mediator and ROS levels in REC. Epac1 regulates the prohibitin 1 levels in REC.
Collapse
|
6
|
Emerging Role of cAMP/AMPK Signaling. Cells 2022; 11:cells11020308. [PMID: 35053423 PMCID: PMC8774420 DOI: 10.3390/cells11020308] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
The 5′-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochondrial biogenesis, autophagy, and glucose and lipid metabolism. Thus, understanding the pathways regulating AMPK activity is crucial for developing strategies to treat metabolic disorders. Mounting evidence suggests the presence of a link between cyclic AMP (cAMP) and AMPK signaling. cAMP signaling is known to be activated in circumstances of physiological and metabolic stress due to the release of stress hormones, such as adrenaline and glucagon, which is followed by activation of membrane-bound adenylyl cyclase and elevation of cellular cAMP. Because the majority of physiological stresses are associated with elevated energy consumption, it is not surprising that activation of cAMP signaling may promote AMPK activity. Aside from the physiological role of the cAMP/AMPK axis, numerous reports have suggested its role in several pathologies, including inflammation, ischemia, diabetes, obesity, and aging. Furthermore, novel reports have provided more mechanistic insight into the regulation of the cAMP/AMPK axis. In particular, the role of distinct cAMP microdomains generated by soluble adenylyl cyclase in regulating basal and induced AMPK activity has recently been demonstrated. In the present review, we discuss current advances in the understanding of the regulation of the cAMP/AMPK axis and its role in cellular homeostasis and explore some translational aspects.
Collapse
|
7
|
Yang Y, Yue W, Wang N, Wang Z, Li B, Zeng J, Yoshida S, Ding C, Zhou Y. Altered Expressions of Transfer RNA-Derived Small RNAs and microRNAs in the Vitreous Humor of Proliferative Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:913370. [PMID: 35903272 PMCID: PMC9315217 DOI: 10.3389/fendo.2022.913370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE We sought to reveal the expression profiles of transfer RNA-derived small RNAs (tsRNAs) and microRNAs (miRNAs) in the vitreous humor of patients with proliferative diabetic retinopathy (PDR). METHODS Vitreous humor samples were obtained from PDR patients and a control group for this study. Sequencing of small RNAs was conducted to assess the expression profiles of tsRNAs and miRNAs in both groups, which was followed by validation using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Bioinformatics analyses were conducted to predict the target genes and their potential biological functions and signaling pathways. RESULTS A total of 37 tsRNAs and 70 miRNAs with significant differences were screened out from the vitreous humor samples of PDR patients compared to controls. Following validation by RT-qPCR, the target genes of the validated tsRNAs and miRNAs were predicted, and Gene Ontology analysis indicated that the target genes of the tsRNAs were most enriched in the cellular macromolecule metabolic process, cytoplasm, and ion-binding, while those of the miRNAs were most abundant in the regulation of major metabolic process, cytoplasm, and protein-binding. In addition, Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the target genes of said tsRNAs and miRNAs were most enriched in the adenosine monophosphate-activated protein kinase signaling pathway and Th17 cell differentiation, respectively. CONCLUSIONS The present study identified altered tsRNAs and miRNAs in vitreous humor samples of PDR patients, which may play important roles in the pathogenesis of PDR and could be considered potential therapeutic targets in the treatment of PDR.
Collapse
Affiliation(s)
- Yan Yang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Wenyun Yue
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Nan Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jun Zeng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Chun Ding
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
- *Correspondence: Yedi Zhou, ; Chun Ding,
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
- *Correspondence: Yedi Zhou, ; Chun Ding,
| |
Collapse
|
8
|
Liu L, Jiang Y, Steinle J. Epac1 regulates TLR4 signaling in the diabetic retinal vasculature. Cytokine 2021; 144:155576. [PMID: 34020266 DOI: 10.1016/j.cyto.2021.155576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
Toll-like receptor 4 (TLR4) polymorphisms occur in diabetic patients. Previous work showed that TLR4 is in the retina of diabetic mice, as well as in retinal endothelial cells (REC) and Müller cells. Since we have shown that exchange protein activated by cAMP 1 (Epac1) can reduce inflammatory mediators, we hypothesized that Epac1 would inhibit TLR4 signaling. We also hypothesized that direct TLR4 inhibition would protect the diabetic retina. Human REC in normal and high glucose were treated with an Epac1 agonist to explore the actions of Epac1 on TLR4 signaling in vitro. Subsequently, 2-month diabetic endothelial cell specific knockout mice for Epac1 (Cdh5Cre-Epac1) and Epac1 floxed mice retinas were used for Western blotting for TLR4 signaling pathways. We also used direct inhibition of TLR4 via Tak242 to investigate diabetes-induced changes in retinal permeability and neuronal loss in the mice. The Epac1 agonist reduced TLR4 signaling in REC grown in high glucose. TLR4 levels and both MyD88-dependent and -independent signaling pathways are increased in Cdh5Cre-Epac1 mice compared to Epac1 floxed mice. Tak242 reduced TLR4 signaling in diabetic mice and reduced diabetes-induced increases in permeability and cell loss in the ganglion cell layer in the Epac1 floxed and Cdh5Cre-Epac1 mice. In conclusion, Epac1 reduced TLR4 signaling in the retina and in REC. Direct inhibition of TLR4 was able to protect the retina against diabetes-induced changes in permeability and cell numbers in the ganglion cell layer.
Collapse
Affiliation(s)
- Li Liu
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Youde Jiang
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Jena Steinle
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| |
Collapse
|