1
|
Soundappan K, Cai J, Yu H, Dhamodaran K, Baidouri H, Vranka JA, Xu H, Raghunathan V, Liu Y. Influence of dexamethasone-induced matrices on the TM transcriptome. Exp Eye Res 2024; 248:110069. [PMID: 39233306 PMCID: PMC11531998 DOI: 10.1016/j.exer.2024.110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Pathologic bidirectional interactions between the extracellular matrix (ECM) and cells within the human trabecular meshwork (hTM) contribute to ocular hypertension. An in vitro model is needed to study these cell-matrix interactions and their effect on outflow homeostasis. This study aimed to determine whether pathogenic ECM derived from dexamethasone (DEX)-treated hTM cultures induces clinically relevant glaucoma-like changes in healthy hTM cells at the transcriptional level. Corneoscleral rims from non-glaucoma donors were used to isolate primary hTM cells after validation according to the consensus recommendations for TM culture. Normal hTM cells (n = 5) were plated on a coverslip and treated with 100 nM DEX or ethanol for four weeks. These cultures were then decellularized, plated with primary hTM cells, and allowed to grow for another 72 h. RNA was extracted from these hTM cells for stranded total RNA-Seq. Sequencing libraries prepared using the Zymo-Seq RiboFree Total RNA library kit were pooled and sequenced using Illumina NovaSeq 6000. After quality control, sequence reads were aligned to the human genome build hg19. Differential expression (DE) analyses were performed using paired multi-factorial ANOVA. The expression of several DE genes associated with glaucoma (ANGPTL2, PDE7B, C22orf23, COL4A1, ADAM12, IFT122, SEMA6C) was validated using EvaGreen-based Droplet Digital PCR (ddPCR) assays. Gene ontology analyses of the DE genes were performed using the PANTHER and NDEx IQA databases, and functional analyses were performed with the DAVID Bioinformatics software. Using a cutoff of p-value <0.05 and fold change ≥2.0, our differential analysis identified 267 up- and 135 down-regulated genes in DEX-induced ECM-treated cells compared to the control. These differentially expressed genes were found to play a significant role in pathways such as cytokine and oxidative stress-induced inflammation, integrin signaling, matrix remodeling, and angiogenesis. These findings were further supported by previously performed proteomics studies using the same model. Using ddPCR, we validated the expression of seven genes associated with the risk of primary open-angle glaucoma. These results not only provide support for the pathogenic ECM model of steroid-induced glaucoma, but also demonstrate that the pathologic changes induced by this model are indeed found at the transcriptional level. These findings further demonstrate that matrix changes significantly influence cell expression profiles, which enable further understanding of the molecular mechanisms underlying glaucomatous changes in the TM. However, future studies with a larger and more diverse set of samples and longer time points are needed to confirm the utility of this model for mechanistic studies.
Collapse
Affiliation(s)
- Keerti Soundappan
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Jingwen Cai
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Hongfang Yu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Kamesh Dhamodaran
- College of Optometry, University of Houston, Houston, TX, United States
| | - Hasna Baidouri
- College of Optometry, University of Houston, Houston, TX, United States
| | - Janice A Vranka
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Hongyan Xu
- Department of Biostatistics, Data Science and Epidemiology, Augusta University, Augusta, GA, United States
| | | | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States.
| |
Collapse
|
2
|
Langer F, Binter M, Hu X, Hufendiek K, Meister R, Tode J, Framme C, Fuchs H. In vitro comparison of human and murine trabecular meshwork cells: implications for glaucoma research. Sci Rep 2024; 14:22002. [PMID: 39313534 PMCID: PMC11420201 DOI: 10.1038/s41598-024-73057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
The trabecular meshwork (TM) is crucial for regulating intraocular pressure (IOP), and its dysfunction significantly contributes to glaucoma, a leading cause of vision loss and blindness worldwide. Although rodents are commonly used as animal models in glaucoma research, the applicability of these findings to humans is limited due to the insufficient understanding of murine TM. This study aimed to compare primary human TM (hTM) and murine TM (mTM) cells in vitro to enhance the robustness and translatability of murine glaucoma models. In this in vitro study, we compared primary hTM and mTM cells under simulated physiological and pathological conditions by exposing both cell types to the glucocorticoid dexamethasone (DEX) and Transforming Growth Factor β (TGFB2), both of which are critical in the pathogenesis of several ophthalmological diseases, including glaucoma. Phagocytic properties were assessed using microbeads. Cells were analyzed through immunocytochemistry (ICC) and Western blot (WB) to evaluate the expression of extracellular matrix (ECM) components, such as Fibronectin 1 (FN1) and Collagen IV (COL IV). Filamentous-Actin (F-Act) staining was used to analyze cross-linked actin network (CLAN) formation. Additionally, we evaluated cytoskeletal components, including Vimentin (VIM), Myocilin (MYOC), and Actin-alpha-2 (ACTA2). Our results demonstrated significant similarities between human and murine TM cells in basic morphology, phagocytic properties, and ECM and cytoskeletal component expression under both homeostatic and pathological conditions in vitro. Both human and murine TM cells exhibited epithelial-to-mesenchymal transition (EMT) after exposure to DEX or TGFB2, with comparable CLAN formation observed in both species. However, there were significant differences in FN1 and MYOC induction between human and murine TM cells. Additionally, MYOC expression in hTM cells depended on fibronectin coating. Our study suggests that murine glaucoma models are potentially translatable to human TM. The observed similarities in ECM and cytoskeletal component expression and the comparable EMT response and CLAN formation support the utility of murine models in glaucoma research. The differences in FN1 and MYOC expression between hTM and mTM warrant further investigation due to their potential impact on TM properties. Overall, this study provides valuable insights into the species-specific characteristics of TM and highlights opportunities to refine murine models for better relevance to human glaucoma.
Collapse
Affiliation(s)
- Fridolin Langer
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Maximilian Binter
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Xiaonan Hu
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Karsten Hufendiek
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Roland Meister
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Jan Tode
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Carsten Framme
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany
| | - Heiko Fuchs
- University Eye Hospital, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
3
|
Youn KI, Lee JW, Song Y, Lee SY, Song KH. Development of Cell Culture Platforms for Study of Trabecular Meshwork Cells and Glaucoma Development. Tissue Eng Regen Med 2024; 21:695-710. [PMID: 38642251 PMCID: PMC11187050 DOI: 10.1007/s13770-024-00640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Various cell culture platforms that could display native environmental cue-mimicking stimuli were developed, and effects of environmental cues on cell behaviors were studied with the cell culture platforms. Likewise, various cell culture platforms mimicking native trabecular meshwork (TM) composed of juxtacanalicular, corneoscleral and uveal meshwork located in internal scleral sulcus were used to study effects of environmental cues and/or drug treatments on TM cells and glaucoma development. Glaucoma is a disease that could cause blindness, and cause of glaucoma is not clearly identified yet. It appears that aqueous humor (AH) outflow resistance increased by damages on pathway of AH outflow can elevate intraocular pressure (IOP). These overall possibly contribute to development of glaucoma. METHODS For the study of glaucoma, static and dynamic cell culture platforms were developed. Particularly, the dynamic platforms exploiting AH outflow-mimicking perfusion or increased IOP-mimicking increased pressure were used to study how perfusion or increased pressure could affect TM cells. Overall, potential mechanisms of glaucoma development, TM structures and compositions, TM cell culture platform types and researches on TM cells and glaucoma development with the platforms were described in this review. RESULTS AND CONCLUSION This will be useful to improve researches on TM cells and develop enhanced therapies targeting glaucoma.
Collapse
Affiliation(s)
- Kook In Youn
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Ji Woo Lee
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Youngjun Song
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Sang Yeop Lee
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea.
| | - Kwang Hoon Song
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
- Research Center of Brain-Machine Interface, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| |
Collapse
|
4
|
Li G, van Batenburg‐Sherwood J, Safa BN, Fraticelli Guzmán NS, Wilson A, Bahrani Fard MR, Choy K, de Ieso ML, Cui JS, Feola AJ, Weisz T, Kuhn M, Bowes Rickman C, Farsiu S, Ethier CR, Stamer WD. Aging and intraocular pressure homeostasis in mice. Aging Cell 2024; 23:e14160. [PMID: 38566432 PMCID: PMC11258442 DOI: 10.1111/acel.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Age and elevated intraocular pressure (IOP) are the two primary risk factors for glaucoma, an optic neuropathy that is the leading cause of irreversible blindness. In most people, IOP is tightly regulated over a lifetime by the conventional outflow tissues. However, the mechanistic contributions of age to conventional outflow dysregulation, elevated IOP and glaucoma are unknown. To address this gap in knowledge, we studied how age affects the morphology, biomechanical properties and function of conventional outflow tissues in C57BL/6 mice, which have an outflow system similar to humans. As reported in humans, we observed that IOP in mice was maintained within a tight range over their lifespan. Remarkably, despite a constellation of age-related changes to the conventional outflow tissues that would be expected to hinder aqueous drainage and impair homeostatic function (decreased cellularity, increased pigment accumulation, increased cellular senescence and increased stiffness), outflow facility, a measure of conventional outflow tissue fluid conductivity, was stable with age. We conclude that the murine conventional outflow system has significant functional reserve in healthy eyes. However, these age-related changes, when combined with other underlying factors, such as genetic susceptibility, are expected to increase risk for ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Guorong Li
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Babak N. Safa
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| | - Nina Sara Fraticelli Guzmán
- Department of OphthalmologyEmory UniversityAtlantaGeorgiaUSA
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Andrea Wilson
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | - Mohammad Reza Bahrani Fard
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| | - Kevin Choy
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | | | - J. Serena Cui
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | - Andrew J. Feola
- Department of OphthalmologyEmory UniversityAtlantaGeorgiaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
- Center for Visual and Neurocognitive RehabilitationAtlanta Virginia Medical CenterDecaturGeorgiaUSA
| | - Tara Weisz
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | - Megan Kuhn
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Sina Farsiu
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
- Department of OphthalmologyEmory UniversityAtlantaGeorgiaUSA
| | - W. Daniel Stamer
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
5
|
Liu C, Tang J, Chen Y, Zhang Q, Lin J, Wu S, Han J, Liu Z, Wu C, Zhuo Y, Li Y. Intracellular Zn 2+ promotes extracellular matrix remodeling in dexamethasone-treated trabecular meshwork. Am J Physiol Cell Physiol 2024; 326:C1293-C1307. [PMID: 38525543 DOI: 10.1152/ajpcell.00725.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Given the widespread application of glucocorticoids in ophthalmology, the associated elevation of intraocular pressure (IOP) has long been a vexing concern for clinicians, yet the underlying mechanisms remain inconclusive. Much of the discussion focuses on the extracellular matrix (ECM) of trabecular meshwork (TM). It is widely agreed that glucocorticoids impact the expression of matrix metalloproteinases (MMPs), leading to ECM deposition. Since Zn2+ is vital for MMPs, we explored its role in ECM alterations induced by dexamethasone (DEX). Our study revealed that in human TM cells treated with DEX, the level of intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. This correlated with changes in several Zrt-, Irt-related proteins (ZIPs) and metallothionein. ZIP8 knockdown impaired extracellular Zn2+ uptake, but Zn2+ chelation did not affect ZIP8 expression. Resembling DEX's effects, chelation of Zn2+ decreased MMP2 expression, increased the deposition of ECM proteins, and induced structural disarray of ECM. Conversely, supplementation of exogenous Zn2+ in DEX-treated cells ameliorated these outcomes. Notably, dietary zinc supplementation in mice significantly reduced DEX-induced IOP elevation and collagen content in TM, thereby rescuing the visual function of the mice. These findings underscore zinc's pivotal role in ECM regulation, providing a novel perspective on the pathogenesis of glaucoma.NEW & NOTEWORTHY Our study explores zinc's pivotal role in mitigating extracellular matrix dysregulation in the trabecular meshwork and glucocorticoid-induced ocular hypertension. We found that in human trabecular meshwork cells treated with dexamethasone, intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. Zinc supplementation rescues visual function by modulating extracellular matrix proteins and lowering intraocular pressure, offering a direction for further exploration in glaucoma management.
Collapse
Affiliation(s)
- Canying Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiahui Tang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yuze Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Qi Zhang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jicheng Lin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Siting Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiaxu Han
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Zhe Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Caiqing Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yehong Zhuo
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yiqing Li
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| |
Collapse
|
6
|
Ghosh S, Herberg S. ECM biomaterials for modeling of outflow cell biology in health and disease. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100091. [PMID: 38528909 PMCID: PMC10961487 DOI: 10.1016/j.bbiosy.2024.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
This review highlights the importance of extracellular matrix (ECM) biomaterials in understanding the biology of human trabecular meshwork (TM) and Schlemm's canal (SC) cells under normal and simulated glaucoma-like conditions. We provide an overview of recent progress in the development and application of state-of-the-art 3D ECM biomaterials including cell-derived ECM, ECM scaffolds, Matrigel, and ECM hydrogels for studies of TM and SC cell (patho)biology. Such bioengineered platforms enable accurate and reliable modeling of tissue-like cell-cell and cell-ECM interactions. They bridge the gap between conventional 2D approaches and in vivo/ex vivo models, and have the potential to aid in the identification of the causal mechanism(s) for outflow dysfunction in ocular hypertensive glaucoma. We discuss each model's benefits and limitations, and close with an outlook on future directions.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
7
|
Li G, van Batenburg-Sherwood J, Safa BN, Fraticelli Guzmán NS, Wilson A, Bahrani Fard MR, Choy K, De Ieso ML, Cui JS, Feola AJ, Weisz T, Kuhn M, Rickman CB, Farsiu S, Ethier CR, Stamer WD. Aging and intraocular pressure homeostasis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562768. [PMID: 38106150 PMCID: PMC10723259 DOI: 10.1101/2023.10.17.562768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Age and elevated intraocular pressure (IOP) are the two primary risk factors for glaucoma, an optic neuropathy that is the leading cause of irreversible blindness. In most people, IOP is tightly regulated over a lifetime by the conventional outflow tissues. However, the mechanistic contributions of age to conventional outflow dysregulation, elevated IOP and glaucoma are unknown. To address this gap in knowledge, we studied how age affects the morphology, biomechanical properties and function of conventional outflow tissues in C57BL/6 mice, which have an outflow system similar to humans. As reported in humans, we observed that IOP in mice was maintained within a tight range over their lifespan. Remarkably, despite a constellation of age-related changes to the conventional outflow tissues that would be expected to hinder aqueous drainage and impair homeostatic function (decreased cellularity, increased pigment accumulation, increased cellular senescence and increased stiffness), outflow facility, a measure of conventional outflow tissue fluid conductivity, was stable with age. We conclude that the murine conventional outflow system has significant functional reserve in healthy eyes. However, these age-related changes, when combined with other underlying factors, such as genetic susceptibility, are expected to increase risk for ocular hypertension and glaucoma.
Collapse
|
8
|
Sturdivant J, Williams SS, Ina M, Weksler M, McDougal A, Clancy D, deLong MA, Girouard N, Zaretskaia M, Brennan K, Glendenning A, Foley B, Lin CW, White JC, Kopczynski C, Kelly CR. Discovery and Preclinical Development of Novel Intraocular Pressure-Lowering Rho Kinase Inhibitor: Corticosteroid Conjugates. J Ocul Pharmacol Ther 2023; 39:117-127. [PMID: 36602977 DOI: 10.1089/jop.2022.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose: A new class of ocular steroids designed to mitigate steroid-induced intraocular pressure (IOP) elevation while maintaining anti-inflammatory activity was developed. Herein is described the discovery and preclinical characterization of ROCK'Ster compound 1. Methods: Codrugs consisting of a Rho kinase inhibitor (ROCKi) and a corticosteroid were synthesized. Compounds were initially screened in vitro for ROCKi activity and anti-inflammatory activity against the proinflammatory interleukin 23 and bacterial lipopolysaccharide (LPS) pathways. Selected compounds were then screened for solubility, chemical stability, and ex vivo corneal metabolism. Lead compound 1 was evaluated for IOP lowering in the Dutch Belted rabbit and for anti-inflammatory efficacy in both a postcataract surgery model and an allergic eye disease (AED) mouse model. Results: Several ROCK'Sters were found to be potent inhibitors of ROCK (Kis < 50 nM), have high anti-inflammatory activity in vitro (IC50s < 50 nM), display sufficient stability in topical ophthalmic formulations, and have a moderate rate of corneal metabolism. Compound 1 (0.1% and 0.25%, quater in die [QID]-4 times a day) demonstrated IOP-lowering capability without inducing hyperemia in our rabbit model. When compared with the marketed steroids, Durezol® and Pred Forte®, compound 1 (0.1%, 0.25%) demonstrated noninferiority in clinical scoring in a rabbit model of inflammation after surgery. In addition, anti-inflammatory outcomes were observed with compound 1 (0.1%) relative to Lotemax® or vehicle control in an AED mouse model. Conclusion: ROCK'Ster compound 1 is a novel compound suitable for topical ocular dosing that possesses IOP-lowering capability along with similar anti-inflammatory activity compared with marketed steroids.
Collapse
Affiliation(s)
- Jill Sturdivant
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Stuart S Williams
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Maria Ina
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Meredith Weksler
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Alan McDougal
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Daphne Clancy
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Mitchell A deLong
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Natalie Girouard
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Maria Zaretskaia
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Karen Brennan
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Angela Glendenning
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Briana Foley
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Cheng-Wen Lin
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Jeffrey C White
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Casey Kopczynski
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Curtis R Kelly
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| |
Collapse
|
9
|
Xu L, Zhang X, Zhao Y, Gang X, Zhou T, Han J, Cao Y, Qi B, Song S, Wang X, Liang Y. Metformin protects trabecular meshwork against oxidative injury via activating integrin/ROCK signals. eLife 2023; 12:81198. [PMID: 36598818 PMCID: PMC9812404 DOI: 10.7554/elife.81198] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
This study aimed to investigate the protective effect of metformin on trabecular meshwork (TM) and explore its molecular mechanisms in vivo and in vitro. Ocular hypertension (OHT) mouse models were induced with dexamethasone and further treated with metformin to determine the intraocular pressure (IOP)-lowering effect. Cultured human TM cells (HTMCs) were pre-stimulated with tert-butyl hydroperoxide (tBHP) to induce oxidative damage and then supplemented with metformin for another 24 hr. The expression of fibrotic markers and integrin/Rho-associated kinase (ROCK) signals, including α-smooth muscle actin (α-SMA), transforming growth factor-β (TGF-β), fibronectin, integrin beta 1, ROCK 1/2, AMP-activated protein kinase, myosin light chain 1, and F-actin were determined by western blotting and immunofluorescence. Reactive oxygen species (ROS) content was analysed using flow cytometry. Transmission electron microscopy was performed to observe microfilaments in HTMCs. It showed that metformin administration reduced the elevated IOP and alleviated the fibrotic activity of aqueous humour outflow in OHT models. Additionally, metformin rearranged the disordered cytoskeleton in the TM both in vivo and in vitro and significantly inhibited ROS production and activated integrin/ROCK signalling induced by tBHP in HTMCs. These results indicated that metformin reduced the elevated IOP in steroid-induced OHT mouse models and exerted its protective effects against oxidative injury by regulating cytoskeleton remodelling through the integrin/ROCK pathway. This study provides new insights into metformin use and preclinical evidence for the potential treatment of primary open-angle glaucoma.
Collapse
Affiliation(s)
- Lijuan Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Xinyao Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Yin Zhao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Xiaorui Gang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Tao Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Jialing Han
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Yang Cao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Binyan Qi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Shuning Song
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Xiaojie Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| | - Yuanbo Liang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, WenzhouZhejiangChina
| |
Collapse
|
10
|
Adhikari B, Osmond MJ, Pantcheva MB, Krebs MD. Glycosaminoglycans Influence Extracellular Matrix of Human Trabecular Meshwork Cells Cultured on 3D Scaffolds. ACS Biomater Sci Eng 2022; 8:5221-5232. [PMID: 36384278 DOI: 10.1021/acsbiomaterials.2c00457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glaucoma is a multifactorial progressive optic neuropathy characterized by the loss of retinal ganglion cells leading to irreversible blindness. It is the leading cause of global irreversible blindness and is currently affecting over 70 million people. Elevated intraocular pressure (IOP) is considered the only modifiable risk factor and is a target of numerous treatment modalities. Researchers have assigned this elevation of IOP to accumulation of extracellular matrix (ECM) components in the aqueous humor (AH) outflow pathway. The major drainage structure for AH outflow is the trabecular meshwork (TM). The ECM of the TM is important in regulating IOP in both normal and glaucomatous eyes. In this work, we have studied the role of exogeneous glycosaminoglycans (GAGs), glucocorticoids, and culture conditions on the expression of the ECM gene and proteins by human TM (hTM) cells cultured on biomaterial scaffolds. Gene and protein expression levels of elastin, laminin, and matrix metalloproteinase-2 (MMP-2) were evaluated using quantitative PCR and immunohistochemistry. Pressure gradient changes in cell-laden scaffolds in perfusion cultures were also monitored. Our findings show that GAGs and dexamethasone play an influencing role in hTM ECM turnover at both transcriptional and translational levels by altering expression levels of elastin, laminin, and MMP-2. Understanding the role of exogeneous factors on hTM cell behavior is helpful in gaining insights on glaucoma pathogenesis and ultimately pivotal in development of novel therapeutics against the disease.
Collapse
Affiliation(s)
- Bikram Adhikari
- Quantitative Biosciences and Bioengineering, Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401, United States
| | - Matthew J Osmond
- Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401, United States
| | - Mina B Pantcheva
- Ophthalmology, University of Colorado School of Medicine, 1675 Aurora Ct., Aurora, Colorado 80045, United States
| | - Melissa D Krebs
- Quantitative Biosciences and Bioengineering, Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401, United States.,Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401, United States
| |
Collapse
|
11
|
Enyong EN, Gurley JM, De Ieso ML, Stamer WD, Elliott MH. Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease. Prog Retin Eye Res 2022; 91:101094. [PMID: 35729002 PMCID: PMC9669151 DOI: 10.1016/j.preteyeres.2022.101094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Caveolae, specialized plasma membrane invaginations present in most cell types, play important roles in multiple cellular processes including cell signaling, lipid uptake and metabolism, endocytosis and mechanotransduction. They are found in almost all cell types but most abundant in endothelial cells, adipocytes and fibroblasts. Caveolin-1 (Cav1), the signature structural protein of caveolae was the first protein associated with caveolae, and in association with Cavin1/PTRF is required for caveolae formation. Genetic ablation of either Cav1 or Cavin1/PTRF downregulates expression of the other resulting in loss of caveolae. Studies using Cav1-deficient mouse models have implicated caveolae with human diseases such as cardiomyopathies, lipodystrophies, diabetes and muscular dystrophies. While caveolins and caveolae are extensively studied in extra-ocular settings, their contributions to ocular function and disease pathogenesis are just beginning to be appreciated. Several putative caveolin/caveolae functions are relevant to the eye and Cav1 is highly expressed in retinal vascular and choroidal endothelium, Müller glia, the retinal pigment epithelium (RPE), and the Schlemm's canal endothelium and trabecular meshwork cells. Variants at the CAV1/2 gene locus are associated with risk of primary open angle glaucoma and the high risk HTRA1 variant for age-related macular degeneration is thought to exert its effect through regulation of Cav1 expression. Caveolins also play important roles in modulating retinal neuroinflammation and blood retinal barrier permeability. In this article, we describe the current state of caveolin/caveolae research in the context of ocular function and pathophysiology. Finally, we discuss new evidence showing that retinal Cav1 exists and functions outside caveolae.
Collapse
Affiliation(s)
- Eric N Enyong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jami M Gurley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Michael H Elliott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
12
|
Stepanov YK, Speidel JD, Herrmann C, Schmid N, Behr R, Köhn FM, Stöckl JB, Pickl U, Trottmann M, Fröhlich T, Mayerhofer A, Welter H. Profound Effects of Dexamethasone on the Immunological State, Synthesis and Secretion Capacity of Human Testicular Peritubular Cells. Cells 2022; 11:cells11193164. [PMID: 36231125 PMCID: PMC9562650 DOI: 10.3390/cells11193164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022] Open
Abstract
The functions of human testicular peritubular cells (HTPCs), forming a small compartment located between the seminiferous epithelium and the interstitial areas of the testis, are not fully known but go beyond intratesticular sperm transport and include immunological roles. The expression of the glucocorticoid receptor (GR) indicates that they may be regulated by glucocorticoids (GCs). Herein, we studied the consequences of the GC dexamethasone (Dex) in cultured HTPCs, which serves as a unique window into the human testis. We examined changes in cytokines, mainly by qPCR and ELISA. A holistic mass-spectrometry-based proteome analysis of cellular and secreted proteins was also performed. Dex, used in a therapeutic concentration, decreased the transcript level of proinflammatory cytokines, e.g., IL6, IL8 and MCP1. An siRNA-mediated knockdown of GR reduced the actions on IL6. Changes in IL6 were confirmed by ELISA measurements. Of note, Dex also lowered GR levels. The proteomic results revealed strong responses after 24 h (31 significantly altered cellular proteins) and more pronounced ones after 72 h of Dex exposure (30 less abundant and 42 more abundant cellular proteins). Dex also altered the composition of the secretome (33 proteins decreased, 13 increased) after 72 h. Among the regulated proteins were extracellular matrix (ECM) and basement membrane components (e.g., FBLN2, COL1A2 and COL3A1), as well as PTX3 and StAR. These results pinpoint novel, profound effects of Dex in HTPCs. If transferrable to the human testis, changes specifically in ECM and the immunological state of the testis may occur in men upon treatment with Dex for medical reasons.
Collapse
Affiliation(s)
| | - Jan Dominik Speidel
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Carola Herrmann
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Nina Schmid
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | | | - Jan Bernd Stöckl
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany
| | | | | | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany
| | - Artur Mayerhofer
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
- Correspondence: (A.M.); (H.W.); Tel.: +49-89218075859 (A.M.); +49-89218071882 (H.W.)
| | - Harald Welter
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University Munich, 82152 Planegg-Martinsried, Germany
- Correspondence: (A.M.); (H.W.); Tel.: +49-89218075859 (A.M.); +49-89218071882 (H.W.)
| |
Collapse
|
13
|
Bachman W, Maddala R, Chakraborty A, Eldawy C, Skiba NP, Rao PV. Glucocorticoids Preferentially Influence Expression of Nucleoskeletal Actin Network and Cell Adhesive Proteins in Human Trabecular Meshwork Cells. Front Cell Dev Biol 2022; 10:886754. [PMID: 35557957 PMCID: PMC9087352 DOI: 10.3389/fcell.2022.886754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Clinical use of glucocorticoids is associated with increased intraocular pressure (IOP), a major risk factor for glaucoma. Glucocorticoids have been reported to induce changes in actin cytoskeletal organization, cell adhesion, extracellular matrix, fibrogenic activity, and mechanical properties of trabecular meshwork (TM) tissue, which plays a crucial role in aqueous humor dynamics and IOP homeostasis. However, we have a limited understanding of the molecular underpinnings regulating these myriad processes in TM cells. To understand how proteins, including cytoskeletal and cell adhesion proteins that are recognized to shuttle between the cytosolic and nuclear regions, influence gene expression and other cellular activities, we used proteomic analysis to characterize the nuclear protein fraction of dexamethasone (Dex) treated human TM cells. Treatment of human TM cells with Dex for 1, 5, or 7 days led to consistent increases (by ≥ two-fold) in the levels of various actin cytoskeletal regulatory, cell adhesive, and vesicle trafficking proteins. Increases (≥two-fold) were also observed in levels of Wnt signaling regulator (glypican-4), actin-binding chromatin modulator (BRG1) and nuclear actin filament depolymerizing protein (MICAL2; microtubule-associated monooxygenase, calponin and LIM domain containing), together with a decrease in tissue plasminogen activator. These changes were independently further confirmed by immunoblotting analysis. Interestingly, deficiency of BRG1 expression blunted the Dex-induced increases in the levels of some of these proteins in TM cells. In summary, these findings indicate that the widely recognized changes in actin cytoskeletal and cell adhesive attributes of TM cells by glucocorticoids involve actin regulated BRG1 chromatin remodeling, nuclear MICAL2, and glypican-4 regulated Wnt signaling upstream of the serum response factor/myocardin controlled transcriptional activity.
Collapse
Affiliation(s)
- William Bachman
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Ayon Chakraborty
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Camelia Eldawy
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Ponugoti V. Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
14
|
Dhamodaran K, Baidouri H, Nartey A, Staverosky J, Keller K, Acott T, Vranka J, Raghunathan V. Endogenous expression of Notch pathway molecules in human trabecular meshwork cells. Exp Eye Res 2022; 216:108935. [PMID: 35033558 PMCID: PMC8885976 DOI: 10.1016/j.exer.2022.108935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Cells in the trabecular meshwork sense and respond to a myriad of physical forces through a process known as mechanotransduction. Whilst the effect of substratum stiffness or stretch on TM cells have been investigated in the context of transforming growth factor (TGF-β), Wnt and YAP/TAZ pathways, the role of Notch signaling, an evolutionarily conserved pathway, recently implicated in mechanotransduction, has not been investigated in trabecular meshwork (TM) cells. Here, we compare the endogenous expression of Notch pathway molecules in TM cells from glaucomatous and non-glaucomatous donors, segmental flow regions, and when subjected to cyclical strain, or grown on hydrogels of varying rigidity. METHODS Primary TM from glaucomatous (GTM), non-glaucomatous (NTM) donors, and from segmental flow regions [high flow (HF), low flow (LF)], were utilized between passages 2-6. Cells were (i) plated on tissue culture plastic, (ii) subjected to cyclical strain (6 h and 24 h), or (iii) cultured on 3 kPa and 80 kPa hydrogels. mRNA levels of Notch receptors/ligands/effectors in the TM cells was determined by qRT-PCR. Phagocytosis was determined as a function of substratum stiffness in NTM-HF/LF cells in the presence or absence of 100 nM Dexamethasone treatment. RESULTS Innate expression of Notch pathway genes were significantly overexpressed in GTM cells with no discernible differences observed between HF/LF cells in either NTM or GTM cells cultured on plastic substrates. With 6 h of cyclical strain, a subset of Notch pathway genes presented with altered expression. Expression of Notch receptors/ligands/receptors/inhibitors progressively declined with increasing stiffness and this correlated with phagocytic ability of NTM cells. Dexamethasone treatment decreased phagocytosis regardless of stiffness or cells isolated from segmental outflow regions. CONCLUSIONS We demonstrate here that the Notch expression in cultured TM cells differ intrinsically between GTM vs NTM, and by substratum cues (cyclical strain and stiffness). Of import, the most apparent differences in gene expression were observed as a function of substratum stiffness which closely followed phagocytic ability of cells. Interestingly, on soft substrates (mimicking normal TM stiffness) Notch expression and phagocytosis was highest, while both expression and phagocytosis was significantly lower on stiffer substrates (mimicking glaucomatous stiffness) regardless of DEX treatment. Such context dependent changes suggest Notch pathway may play differing roles in disease vs homeostasis. Studies focused on understanding the mechanistic role of Notch (if any) in outflow homeostasis are thus warranted.
Collapse
Affiliation(s)
- Kamesh Dhamodaran
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Hasna Baidouri
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Andrews Nartey
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Julia Staverosky
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Kate Keller
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Ted Acott
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Janice Vranka
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA,Department of Biomedical Engineering, University of Houston, Houston, TX, USA,Correspondence should be sent to: VijayKrishna Raghunathan, Ph.D., University of Houston, College of Optometry, 4901 Calhoun Rd, Houston, TX, 77204, Phone: (713)-743-8331,
| |
Collapse
|
15
|
Relationships between Intraocular Pressure, Effective Filtration Area, and Morphological Changes in the Trabecular Meshwork of Steroid-Induced Ocular Hypertensive Mouse Eyes. Int J Mol Sci 2022; 23:ijms23020854. [PMID: 35055036 PMCID: PMC8775853 DOI: 10.3390/ijms23020854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
We investigated whether an inverse relationship exists between intraocular pressure (IOP) and effective filtration area (EFA) in the trabecular meshwork (TM) in a steroid-induced ocular hypertensive (SIOH) mouse model and the morphological changes associated with the reduction of EFA. C57BL/6 mice (n = 15 per group) received either 0.1% dexamethasone (DEX) or saline eye drops twice daily for five weeks. IOP was measured weekly. Fluorescent tracers were injected into the anterior chamber to label EFA at the endpoint. Injected eyes were fixed and processed for confocal microscopy. EFA in the TM was analyzed. Light and electron microscopy were performed in high- and low-tracer regions of six eyes per group. The mean IOP was ~4 mm Hg higher in DEX-treated than saline-treated control eyes (p < 0.001) at the endpoint. EFA was reduced in DEX-treated eyes compared to controls (p < 0.01) and negatively correlated with IOP (R2 = 0.38, p = 0.002). Reduced thickness of juxtacanalicular tissue (JCT) and increased abnormal extracellular matrix in the JCT were found to be associated with reduced EFA. Our data confirm the inverse relationship between EFA and IOP, suggesting that morphological changes in the JCT contribute to the reduction of EFA, thus elevating IOP in SIOH mouse eyes.
Collapse
|
16
|
Liu Z, Li S, Qian X, Li L, Zhang H, Liu Z. RhoA/ROCK-YAP/TAZ Axis Regulates the Fibrotic Activity in Dexamethasone-Treated Human Trabecular Meshwork Cells. Front Mol Biosci 2021; 8:728932. [PMID: 34552960 PMCID: PMC8450533 DOI: 10.3389/fmolb.2021.728932] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
High intraocular pressure (IOP) is a major risk factor for glaucoma, a leading cause of irreversible blindness. Abnormal fibrotic activity in the human trabecular meshwork (HTM) cells is considered to be partly responsible for the increased resistance of aqueous humor outflow and IOP. This study aimed to identify the fibrotic pathways using integrated bioinformatics and further elucidate their mechanism of regulating fibrotic activity in dexamethasone (DEX)-treated HTM cells. Microarray datasets from the GEO database were obtained and analyzed by GEO2R. Bioinformatics analyses, including GO and KEGG analyses, were performed to explore biological functions and signaling pathways of differentially expressed genes (DEGs). The fibrotic pathways and targets were determined by western blot, RT-qPCR, or immunofluorescence staining. The cellular elastic modulus was measured using an atomic force microscope. A total of 204 DEGs, partly enriched in fibrotic activity (collagen-containing ECM, fibroblast activation) and Rap1, Ras, TGF-β, and Hippo pathways, were identified. Experimental results showed that DEX induced fibrotic activity and regulated the expression of RhoA/ROCK in HTM cells. Similarly, the constitutively active RhoA (RhoAG14V) also promoted the fibrotic activity of HTM cells. Mechanistically, RhoAG14V induced the expression and nuclear translocation of YAP/TAZ to produce CTGF. Moreover, inhibition of ROCK or YAP decreased the expression of Collagen I and α-SMA proteins induced by DEX or RhoAG14V in HTM cells. In conclusion, these results indicate that RhoA/ROCK-YAP/TAZ axis plays a crucial role in regulating the fibrotic activity of DEX-treated HTM cells.
Collapse
Affiliation(s)
- Zhicheng Liu
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Shanshan Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xiuqing Qian
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Lin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Haixia Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Zhicheng Liu
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Arrigo A, Aragona E, Capone L, Di Biase C, Lattanzio R, Bandello F. Intraocular Pressure Changes Are Predictive of Ocular Hypertension Onset After Fluocinolone Acetonide Implant: Significant Cutoffs and the Role of Previous DEX Implant. Front Med (Lausanne) 2021; 8:725349. [PMID: 34490313 PMCID: PMC8416620 DOI: 10.3389/fmed.2021.725349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Fluocinolone acetonide (FAc) implant represents a long-term strategy for the management of diabetic macular edema (DME). Because of the 3-year duration, the careful monitoring of the intraocular pressure (IOP) is necessary. The main aim of the study was to provide quantitative IOP cutoffs associated with the onset of IOP increases. Methods: The study was retrospectively conducted with 2-year of follow-up. We separately considered eyes with good IOP control (Group 1), eyes requiring IOP-lowering medications (Group 2) and eyes undergoing IOP-lowering surgery (Group 3). The statistical analysis assessed Delta% IOP changes over the 2-year follow-up. ROC analysis was performed to detect significant cutoffs associated with Group 2 and Group 3. IOP changes occurring after a previously administered dexamethasone (DEX) implant were also evaluated. Results: We included 48 eyes (48 patients), stratified as follows: Group 1 (25/48; 52%), Group 2 (19/48; 40%) and Group 3 (4/48; 8%). ROC analysis performed on IOP values detected 2-months later DEX implant showed a mean Delta IOP increase>24% significantly associated with IOP-lowering medications after FAc implant, whereas a mean Delta IOP increase>35% was significantly associated with IOP-lowering surgery after FAc implant. With respect to IOP changes occurred after FAc implant, our ROC analysis showed a mean Delta IOP increase>8% significantly associated with IOP-lowering medications, whereas a mean Delta IOP increase>15% was significantly associated with IOP-lowering surgery. DEX-related IOP changes showed 52% sensitivity and 100% specificity of FAc-related IOP increases. Conclusions: IOP changes provides clinically relevant cutoffs associated with the onset of FAc-related IOP increases.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Arrigo A, Bandello F. Molecular Features of Classic Retinal Drugs, Retinal Therapeutic Targets and Emerging Treatments. Pharmaceutics 2021; 13:pharmaceutics13071102. [PMID: 34371793 PMCID: PMC8309124 DOI: 10.3390/pharmaceutics13071102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
The management of exudative retinal diseases underwent a revolution due to the introduction of intravitreal treatments. There are two main classes of intravitreal drugs, namely anti-vascular endothelial growth factors (anti-VEGF) and corticosteroids molecules. The clinical course and the outcome of retinal diseases radically changed thanks to the efficacy of these molecules in determining the regression of the exudation and the restoration of the macular profile. In this review, we described the molecular features of classic retinal drugs, highlighting the main therapeutic targets, and we provided an overview of new emerging molecules. We performed a systematic review of the current literature available in the MEDLINE library, focusing on current intravitreal molecules and on new emerging therapies. The anti-VEGF molecules include Bevacizumab, Pegaptanib, Ranibizumab, Aflibercept, Conbercept, Brolucizumab, Abicipar-pegol and Faricimab. The corticosteroids approach is mainly based on the employment of triamcinolone acetonide, dexamethasone and fluocinolone acetonide molecules. Many clinical trials and real-life reports demonstrated their efficacy in exudative retinal diseases, highlighting differences in terms of molecular targeting and pharmacologic profiles. Furthermore, several new molecules are currently under investigation. Intravitreal drugs focus their activity on a wide range of therapeutic targets and are safe and efficacy in managing retinal diseases.
Collapse
|
19
|
Sbardella D, Tundo GR, Coletta M, Manni G, Oddone F. Dexamethasone Downregulates Autophagy through Accelerated Turn-Over of the Ulk-1 Complex in a Trabecular Meshwork Cells Strain: Insights on Steroid-Induced Glaucoma Pathogenesis. Int J Mol Sci 2021; 22:ijms22115891. [PMID: 34072647 PMCID: PMC8198647 DOI: 10.3390/ijms22115891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Steroid-induced glaucoma is a severe pathological condition, sustained by a rapidly progressive increase in intraocular pressure (IOP), which is diagnosed in a subset of subjects who adhere to a glucocorticoid (GC)-based therapy. Molecular and clinical studies suggest that either natural or synthetic GCs induce a severe metabolic dysregulation of Trabecular Meshwork Cells (TMCs), an endothelial-derived histotype with phagocytic and secretive functions which lay at the iridocorneal angle in the anterior segment of the eye. Since TMCs physiologically regulate the composition and architecture of trabecular meshwork (TM), which is the main outflow pathway of aqueous humor, a fluid which shapes the eye globe and nourishes the lining cell types, GCs are supposed to trigger a pathological remodeling of the TM, inducing an IOP increase and retina mechanical compression. The metabolic dysregulation of TMCs induced by GCs exposure has never been characterized at the molecular detail. Herein, we report that, upon dexamethasone exposure, a TMCs strain develops a marked inhibition of the autophagosome biogenesis pathway through an enhanced turnover of two members of the Ulk-1 complex, the main platform for autophagy induction, through the Ubiquitin Proteasome System (UPS).
Collapse
Affiliation(s)
- Diego Sbardella
- IRCCS-Fondazione Bietti, 00198 Rome, Italy;
- Correspondence: (D.S.); (F.O.)
| | | | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Tor Vergata, 00133 Rome, Italy; (M.C.); (G.M.)
| | - Gianluca Manni
- Department of Clinical Sciences and Translational Medicine, University of Tor Vergata, 00133 Rome, Italy; (M.C.); (G.M.)
| | - Francesco Oddone
- IRCCS-Fondazione Bietti, 00198 Rome, Italy;
- Correspondence: (D.S.); (F.O.)
| |
Collapse
|