1
|
Galor A, Gallar J, Acosta MC, Meseguer V, Benítez-Del-Castillo JM, Stachs O, Szentmáry N, Versura P, Müller-Lierheim WGK, Belmonte C, Pujol-Martí J. CORONIS symposium 2023: Scientific and clinical frontiers in ocular surface innervation. Acta Ophthalmol 2025. [PMID: 39891368 DOI: 10.1111/aos.17450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
The 5th CORONIS Symposium, held during the 2023 Congress of the European Association for Vision and Eye Research (EVER), highlighted the growing importance of ocular surface innervation in eye surface disorders. This article summarises the insights and perspectives shared during the symposium, which focused on the clinical relevance of ocular surface innervation, as well as on the development of innovative diagnostic and therapeutic approaches for ocular surface pathologies linked to disturbed sensory innervation. Through robust interdisciplinary collaborations, these developments hold great potential to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Anat Galor
- Department of Ophthalmology, Miami Veterans Affairs Medical Center, Miami, Florida, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - M Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Víctor Meseguer
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | | | - Oliver Stachs
- Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Rostock, Germany
- Interdisziplinäre Fakultät Leben, Licht & Materie, Universität Rostock, Rostock, Germany
| | - Nóra Szentmáry
- Dr Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Germany
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Piera Versura
- Ophthalmology Unit, Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Alma Mater Studiorum Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Carlos Belmonte
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Jesús Pujol-Martí
- i.com medical GmbH, Munich, Germany
- CORONIS FOUNDATION, Munich, Germany
| |
Collapse
|
2
|
Velasco E, Zaforas M, Acosta MC, Gallar J, Aguilar J. Ocular surface information seen from the somatosensory thalamus and cortex. J Physiol 2024; 602:1405-1426. [PMID: 38457332 DOI: 10.1113/jp285008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Ocular Surface (OS) somatosensory innervation detects external stimuli producing perceptions, such as pain or dryness, the most relevant symptoms in many OS pathologies. Nevertheless, little is known about the central nervous system circuits involved in these perceptions, and how they integrate multimodal inputs in general. Here, we aim to describe the thalamic and cortical activity in response to OS stimulation of different modalities. Electrophysiological extracellular recordings in anaesthetized rats were used to record neural activity, while saline drops at different temperatures were applied to stimulate the OS. Neurons were recorded in the ophthalmic branch of the trigeminal ganglion (TG, 49 units), the thalamic VPM-POm nuclei representing the face (Th, 69 units) and the primary somatosensory cortex (S1, 101 units). The precise locations for Th and S1 neurons receiving OS information are reported here for the first time. Interestingly, all recorded nuclei encode modality both at the single neuron and population levels, with noxious stimulation producing a qualitatively different activity profile from other modalities. Moreover, neurons responding to new combinations of stimulus modalities not present in the peripheral TG subsequently appear in Th and S1, being organized in space through the formation of clusters. Besides, neurons that present higher multimodality display higher spontaneous activity. These results constitute the first anatomical and functional characterization of the thalamocortical representation of the OS. Furthermore, they provide insight into how information from different modalities gets integrated from the peripheral nervous system into the complex cortical networks of the brain. KEY POINTS: Anatomical location of thalamic and cortical ocular surface representation. Thalamic and cortical neuronal responses to multimodal stimulation of the ocular surface. Increasing functional complexity along trigeminal neuroaxis. Proposal of a new perspective on how peripheral activity shapes central nervous system function.
Collapse
Affiliation(s)
- Enrique Velasco
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Neuroscience in Physiotherapy (NiP), Independent Research Group, Elche, Spain
- The European University of Brain and Technology, San Juan de Alicante, Spain
| | - Marta Zaforas
- Laboratorio de Neurofisiología Experimental, Unidad de Investigación, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - M Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- The European University of Brain and Technology, San Juan de Alicante, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- The European University of Brain and Technology, San Juan de Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, San Juan de Alicante, Spain
| | - Juan Aguilar
- Laboratorio de Neurofisiología Experimental, Unidad de Investigación, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
- Grupo de Investigación Multidisciplinar en Cuidados, Facultad de Fisioterapia y Enfermería, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
3
|
Asiedu K. Neurophysiology of corneal neuropathic pain and emerging pharmacotherapeutics. J Neurosci Res 2024; 102:e25285. [PMID: 38284865 DOI: 10.1002/jnr.25285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 01/30/2024]
Abstract
The altered activity generated by corneal neuronal injury can result in morphological and physiological changes in the architecture of synaptic connections in the nervous system. These changes can alter the sensitivity of neurons (both second-order and higher-order projection) projecting pain signals. A complex process involving different cell types, molecules, nerves, dendritic cells, neurokines, neuropeptides, and axon guidance molecules causes a high level of sensory rearrangement, which is germane to all the phases in the pathomechanism of corneal neuropathic pain. Immune cells migrating to the region of nerve injury assist in pain generation by secreting neurokines that ensure nerve depolarization. Furthermore, excitability in the central pain pathway is perpetuated by local activation of microglia in the trigeminal ganglion and alterations of the descending inhibitory modulation for corneal pain arriving from central nervous system. Corneal neuropathic pain may be facilitated by dysfunctional structures in the central somatosensory nervous system due to a lesion, altered synaptogenesis, or genetic abnormality. Understanding these important pathways will provide novel therapeutic insight.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Pastor-Zaplana JÁ, Gallar J, Acosta MC. Functional Changes of the Ocular Surface Sensory Nerves Due to Contact Lens Use in Young Symptomatic and Asymptomatic Users. Invest Ophthalmol Vis Sci 2023; 64:12. [PMID: 37938935 PMCID: PMC10637199 DOI: 10.1167/iovs.64.14.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Purpose The purpose of this study was to analyze the differences in corneal sensory nerve functionality in young asymptomatic (CL-A) and symptomatic (CL-S) contact lens (CL) users. Methods CL wearers (23.8 ± 1.0 years, n = 31) were classified as CL-S with an Ocular Surface Disease Index (OSDI) ≥ 13 (n = 14) or CL-A. Users of eye glasses (EG; 24.5 ± 0.8 years, n = 29) with OSDI < 13 participated as controls. The sensations evoked by mechanical, chemical (gas esthesiometer), and cold (4°C saline drops) stimuli were measured using the Visual Analogue Scales (VASs). Moreover, tear volume, tear break up time (TBUT), blinking frequency (BF), and ocular surface temperature (OST; IR thermography) were also measured. Results Mechanical and chemical stimuli produced similar scores in the CL-A and EG participants, although the CL-A subjects referred to stronger irritation (p < 0.05). Likewise, the VAS intensity in response to cold stimuli did not differ between CL-A and EG subjects, while the ability to detect cold was significantly worse in CL-S users (p < 0.05). CL-A users had a similar tear volume, a higher BF (p < 0.01) and shorter TBUT (p < 0.001) to EG wearers, and blinking and TBUT were also altered significantly in CL-S users (p < 0.01). Interestingly, the OST was significantly lower in CL-A users (p < 0.05) than in EG wearers, but not in CL-S users. Conclusions Using CLs modifies corneal sensitivity, blinking and tearing in young volunteers. Even if they have yet to develop clinical signs of inflammation, they display changes in corneal sensitivity consistent with the sensitization of corneal nociceptors and the inhibition cold thermoreceptors, phenomena that occur under inflammatory conditions. The differences in corneal sensitivity and OST between CL-A and CL-S users could reflect the extent of nerve damage and inflammation at the ocular surface.
Collapse
Affiliation(s)
- José Ángel Pastor-Zaplana
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
- Departamento de Patología y Cirugía, Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
- Instituto de Investigación Biomédica y Sanitaria de Alicante, Alicante, Spain
| | - M. Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| |
Collapse
|
5
|
Sonkodi B, Marsovszky L, Csorba A, Balog A, Kopper B, Keller-Pintér A, Nagy ZZ, Resch MD. Disrupted Neural Regeneration in Dry Eye Secondary to Ankylosing Spondylitis-With a Theoretical Link between Piezo2 Channelopathy and Gateway Reflex, WDR Neurons, and Flare-Ups. Int J Mol Sci 2023; 24:15455. [PMID: 37895134 PMCID: PMC10607705 DOI: 10.3390/ijms242015455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed at analyzing the corneal neural regeneration in ankylosing spondylitis patients using in vivo corneal confocal microscopy in correlation with Langerhans cell density, morphology, and dry eye parameters. Approximately 24 ankylosing spondylitis subjects and 35 age- and gender-matched control subjects were enrolled. Data analysis showed that all corneal nerve-fiber descriptives were lower in the ankylosing spondylitis group, implicating disrupted neural regeneration. Peripheral Langerhans cell density showed a negative correlation with nerve fiber descriptions. A negative correlation between tear film break-up time and corneal nerve fiber total branch density was detected. The potential role of somatosensory terminal Piezo2 channelopathy in the pathogenesis of dry eye disease and ankylosing spondylitis is highlighted in our study, exposing the neuroimmunological link between these diseases. We hypothesized earlier that spinal neuroimmune-induced sensitization due to this somatosensory terminal primary damage could lead to Langerhans cell activation in the cornea, in association with downregulated Piezo1 channels on these cells. This activation could lead to a Th17/Treg imbalance in dry eye secondary to ankylosing spondylitis. Hence, the corneal Piezo2 channelopathy-induced impaired Piezo2-Piezo1 crosstalk could explain the disrupted neural regeneration. Moreover, the translation of our findings highlights the link between Piezo2 channelopathy-induced gateway to pathophysiology and the gateway reflex, not to mention the potential role of spinal wide dynamic range neurons in the evolution of neuropathic pain and the flare-ups in ankylosing spondylitis and dry eye disease.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - László Marsovszky
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary; (L.M.)
| | - Anita Csorba
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary; (L.M.)
| | - Attila Balog
- Department of Rheumatology and Immunology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Bence Kopper
- Faculty of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Anikó Keller-Pintér
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary; (L.M.)
| | - Miklós D. Resch
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary; (L.M.)
| |
Collapse
|
6
|
Safonova TN, Medvedeva ES, Medvedeva SL. [Neuropathic pain in dry eye syndrome. Part 1. Pathophysiological mechanisms of pain formation]. Vestn Oftalmol 2023; 139:93-99. [PMID: 37638578 DOI: 10.17116/oftalma202313904193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The review details the features and mechanisms of the formation of various types of pain. The emphasis is placed on the occurrence of pain syndrome in various ophthalmological diseases, particularly in dry eye syndrome. The article also presents literature data on the role of cytokines in the formation of a neuroinflammatory cascade affecting damage to corneal nerve fibers and the development of pain syndrome, which is a characteristic feature of a subtype of dry eye disease - burning eye syndrome.
Collapse
Affiliation(s)
- T N Safonova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - E S Medvedeva
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | | |
Collapse
|
7
|
Asiedu K. Role of ocular surface neurobiology in neuronal-mediated inflammation in dry eye disease. Neuropeptides 2022; 95:102266. [PMID: 35728484 DOI: 10.1016/j.npep.2022.102266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/18/2023]
Abstract
Inflammation is the consequence of dry eye disease regardless of its etiology. Several injurious or harmless processes to the ocular surface neurons promote ocular surface neurogenic inflammation, leading to the vicious cycle of dry eye disease. These processes include the regular release of neuromediators during the conduction of ocular surface sensations, hyperosmolarity-induced ocular surface neuronal damage, neuro-regenerative activities, and neuronal-mediated dendritic cell activities. Neurogenic inflammation appears to be the main culprit, instigating the self-perpetuating inflammation observed in patients with dry eye disease.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
8
|
Patel S, Mittal R, Sarantopoulos KD, Galor A. Neuropathic ocular surface pain: Emerging drug targets and therapeutic implications. Expert Opin Ther Targets 2022; 26:681-695. [PMID: 36069761 PMCID: PMC9613591 DOI: 10.1080/14728222.2022.2122438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Dysfunction at various levels of the somatosensory system can lead to ocular surface pain with a neuropathic component. Compared to nociceptive pain (due to noxious stimuli at the ocular surface), neuropathic pain tends to be chronic and refractory to therapies, making it an important source of morbidity in the population. An understanding of the options available for neuropathic ocular surface pain, including new and emerging therapies, is thus an important topic. AREAS COVERED This review will examine studies focusing on ocular surface pain, emphasizing those examining patients with a neuropathic component. Attention will be placed toward recent (after 2017) studies that have examined new and emerging therapies for neuropathic ocular surface pain. EXPERT OPINION Several therapies have been studied thus far, and continued research is needed to identify which individuals would benefit from specific therapies. Gaps in our understanding exist, especially with availability of in-clinic diagnostics for neuropathic pain. A focus on improving diagnostic capabilities and researching gene-modulating therapies could help us to provide more specific mechanism-based therapies for patients. In the meantime, continuing to uncover new modalities and examining which are likely to work depending on pain phenotype remains an important short-term goal.
Collapse
Affiliation(s)
- Sneh Patel
- University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rhiya Mittal
- University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Konstantinos D. Sarantopoulos
- Department of Anesthesiology, Perioperative Medicine, and Pain Management, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Anat Galor
- University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Surgical services, Miami Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
9
|
Corneal nerves and their role in dry eye pathophysiology. Exp Eye Res 2022; 222:109191. [PMID: 35850173 DOI: 10.1016/j.exer.2022.109191] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
As the cornea is densely innervated, its nerves are integral not only to its structure but also to its pathophysiology. Corneal integrity depends on a protective tear film that is maintained by corneal sensation and the reflex arcs that control tearing and blinking. Furthermore, corneal nerves promote epithelial growth and local immunoregulation. Thus, corneal nerves constitute pillars of ocular surface homeostasis. Conversely, the abnormal tear film in dry eye favors corneal epithelial and nerve damage. The ensuing corneal nerve dysfunction contributes to dry eye progression, ocular pain and discomfort, and other neuropathic symptoms. Recent evidence from clinical studies and animal models highlight the significant but often overlooked neural dimension of dry eye pathophysiology. Herein, we review the anatomy and physiology of corneal nerves before exploring their role in the mechanisms of dry eye disease.
Collapse
|
10
|
Frutos-Rincón L, Gómez-Sánchez JA, Íñigo-Portugués A, Acosta MC, Gallar J. An Experimental Model of Neuro-Immune Interactions in the Eye: Corneal Sensory Nerves and Resident Dendritic Cells. Int J Mol Sci 2022; 23:ijms23062997. [PMID: 35328417 PMCID: PMC8951464 DOI: 10.3390/ijms23062997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
The cornea is an avascular connective tissue that is crucial, not only as the primary barrier of the eye but also as a proper transparent refractive structure. Corneal transparency is necessary for vision and is the result of several factors, including its highly organized structure, the physiology of its few cellular components, the lack of myelinated nerves (although it is extremely innervated), the tightly controlled hydration state, and the absence of blood and lymphatic vessels in healthy conditions, among others. The avascular, immune-privileged tissue of the cornea is an ideal model to study the interactions between its well-characterized and dense sensory nerves (easily accessible for both focal electrophysiological recording and morphological studies) and the low number of resident immune cell types, distinguished from those cells migrating from blood vessels. This paper presents an overview of the corneal structure and innervation, the resident dendritic cell (DC) subpopulations present in the cornea, their distribution in relation to corneal nerves, and their role in ocular inflammatory diseases. A mouse model in which sensory axons are constitutively labeled with tdTomato and DCs with green fluorescent protein (GFP) allows further analysis of the neuro-immune crosstalk under inflammatory and steady-state conditions of the eye.
Collapse
Affiliation(s)
- Laura Frutos-Rincón
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- The European University of Brain and Technology-NeurotechEU, 03550 San Juan de Alicante, Spain
| | - José Antonio Gómez-Sánchez
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- Correspondence: ; Tel.: +34-965-91-9594
| | - Almudena Íñigo-Portugués
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
| | - M. Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- The European University of Brain and Technology-NeurotechEU, 03550 San Juan de Alicante, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- The European University of Brain and Technology-NeurotechEU, 03550 San Juan de Alicante, Spain
- Instituto de Investigación Biomédica y Sanitaria de Alicante, 03010 Alicante, Spain
| |
Collapse
|
11
|
Puja G, Sonkodi B, Bardoni R. Mechanisms of Peripheral and Central Pain Sensitization: Focus on Ocular Pain. Front Pharmacol 2021; 12:764396. [PMID: 34916942 PMCID: PMC8669969 DOI: 10.3389/fphar.2021.764396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent ocular pain caused by corneal inflammation and/or nerve injury is accompanied by significant alterations along the pain axis. Both primary sensory neurons in the trigeminal nerves and secondary neurons in the spinal trigeminal nucleus are subjected to profound morphological and functional changes, leading to peripheral and central pain sensitization. Several studies using animal models of inflammatory and neuropathic ocular pain have provided insight about the mechanisms involved in these maladaptive changes. Recently, the advent of new techniques such as optogenetics or genetic neuronal labelling has allowed the investigation of identified circuits involved in nociception, both at the spinal and trigeminal level. In this review, we will describe some of the mechanisms that contribute to the perception of ocular pain at the periphery and at the spinal trigeminal nucleus. Recent advances in the discovery of molecular and cellular mechanisms contributing to peripheral and central pain sensitization of the trigeminal pathways will be also presented.
Collapse
Affiliation(s)
- Giulia Puja
- Department of Life Sciences, University of Modena and Reggio Emilia, Emilia-Romagna, Italy
| | - Balazs Sonkodi
- Department of Health Sciences and Sport Medicine, University of Physical Education, Budapest, Hungary
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Emilia-Romagna, Italy
| |
Collapse
|
12
|
Luna C, Quirce S, Aracil-Marco A, Belmonte C, Gallar J, Acosta MC. Unilateral Corneal Insult Also Alters Sensory Nerve Activity in the Contralateral Eye. Front Med (Lausanne) 2021; 8:767967. [PMID: 34869482 PMCID: PMC8634144 DOI: 10.3389/fmed.2021.767967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023] Open
Abstract
After the unilateral inflammation or nerve lesion of the ocular surface, the ipsilateral corneal sensory nerve activity is activated and sensitized, evoking ocular discomfort, irritation, and pain referred to the affected eye. Nonetheless, some patients with unilateral ocular inflammation, infection, or surgery also reported discomfort and pain in the contralateral eye. We explored the possibility that such altered sensations in the non-affected eye are due to the changes in their corneal sensory nerve activity in the contralateral, not directly affected eye. To test that hypothesis, we recorded the impulse activity of the corneal mechano- and polymodal nociceptor and cold thermoreceptor nerve terminals in both eyes of guinea pigs, subjected unilaterally to three different experimental conditions (UV-induced photokeratitis, microkeratome corneal surgery, and chronic tear deficiency caused by removal of the main lacrimal gland), and in eyes of naïve animals ex vivo. Overall, after unilateral eye damage, the corneal sensory nerve activity appeared to be also altered in the contralateral eye. Compared with the naïve guinea pigs, animals with unilateral UV-induced mild corneal inflammation, showed on both eyes an inhibition of the spontaneous and stimulus-evoked activity of cold thermoreceptors, and increased activity in nociceptors affecting both the ipsilateral and the contralateral eye. Unilateral microkeratome surgery affected the activity of nociceptors mostly, inducing sensitization in both eyes. The removal of the main lacrimal gland reduced tear volume and increased the cold thermoreceptor activity in both eyes. This is the first direct demonstration that unilateral corneal nerve lesion, especially ocular surface inflammation, functionally affects the activity of the different types of corneal sensory nerves in both the ipsilateral and contralateral eyes. The mechanisms underlying the contralateral affectation of sensory nerves remain to be determined, although available data support the involvement of neuroimmune interactions. The parallel alteration of nerve activity in contralateral eyes has two main implications: a) in the experimental design of both preclinical and clinical studies, where the contralateral eyes cannot be considered as a control; and, b) in the clinical practice, where clinicians must consider the convenience of treating both eyes of patients with unilateral ocular conditions to avoid pain and secondary undesirable effects in the fellow eye.
Collapse
Affiliation(s)
- Carolina Luna
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Susana Quirce
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Adolfo Aracil-Marco
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Carlos Belmonte
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, San Juan de Alicante, Spain
| | - M Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| |
Collapse
|
13
|
Williams A, Villamor L, Fussell J, Loveless R, Smeyne D, Philp J, Shaikh A, Sittaramane V. Discovery of Quinoline-Derived Trifluoromethyl Alcohols as Antiepileptic and Analgesic Agents That Block Sodium Channels. ChemMedChem 2021; 17:e202100547. [PMID: 34632703 DOI: 10.1002/cmdc.202100547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Indexed: 11/08/2022]
Abstract
The discovery of novel analgesic agents with high potency, low toxicity and low addictive properties remain a priority. This study aims to identify the analgesic potential of quinoline derived α-trifluoromethylated alcohols (QTA) and their mechanism of action. We synthesized and characterized several compounds of QTAs and screened them for antiepileptic and analgesic activity using zebrafish larvae in high thorough-put behavior analyses system. Toxicity and behavioral screening of 9 compounds (C1-C9) identified four candidates (C2, C3, C7 and C9) with antiepileptic properties that induces specific and reversible reduction in photomotor activity. Importantly, compounds C2 and C3 relieved the thermal pain response in zebrafish larvae indicating analgesic property. Further, using novel in vivo CoroNa green assay, we show that compounds C2 and C3 block sodium channels and reduce inflammatory sodium signals released by peripheral nerve and tissue damage. Thus, we have identified novel QTA compounds with antiepileptic and analgesic properties which could alleviate neuropathic pain.
Collapse
Affiliation(s)
- Ashley Williams
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Laurie Villamor
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Jake Fussell
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Reid Loveless
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Dylan Smeyne
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA30460, USA
| | - Jack Philp
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Abid Shaikh
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA30460, USA
| | - Vinoth Sittaramane
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| |
Collapse
|