1
|
Oikawa K, Eaton JS, Kiland JA, Torné O, Mathu V, Nickells RW, McLellan GJ. Intravitreal AAV2 gene delivery to feline retinal ganglion cells. Vision Res 2025; 226:108519. [PMID: 39549467 DOI: 10.1016/j.visres.2024.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Effective strategies for the neuroprotection and preservation of retinal ganglion cells (RGCs) remain elusive in the management of glaucoma. A spontaneous genetic model of glaucoma has been identified in cats and extensively characterized as a viable translational model, with eye size and anatomy similar to humans. In this study we sought to establish initial proof of concept for gene delivery to feline RGCs via intravitreal injection of AAV2 in normal cats. Pre-retinal, posterior vitreal injection of AAV2/2-CMV-GFP, was performed overlying the area centralis in 5 adult cats. Immunosuppressive oral prednisolone was administered perioperatively and gradually tapered over 6-10wks post-injection. Ophthalmic examination was performed pre- and post-injection. The GFP reporter expression and morphological effects of viral transduction on the retina were monitored in vivo using confocal scanning laser ophthalmoscopy (cSLO) and optical coherence tomography (OCT), respectively (Spectralis OCT-HRA, Heidelberg), at 1-2wk intervals over 6-10wks. Full-field electroretinograms (ERG) and visual evoked potentials (VEP) were recorded at baseline and post-injection. Retinas were examined by histology and immunolabeling for the RGC marker RBPMS and Müller cell and astrocyte marker SOX9, and GFP expression was examined in the retina, optic nerve (ON), optic tract and lateral geniculate nucleus (LGN). GFP+ retinal cells and RGC axons were visualized by cSLO at 1-2 weeks post-injection. No retinal morphological changes were observed by OCT in vivo but 3/5 eyes exhibited mild retinal inflammation on histology. Retinal and ON function were preserved in injected eyes compared to baseline and untreated eyes. GFP expression was predominantly identified in RBPMS+ RGC cells as well as SOX9+ Müller cells. GFP fluorescence was observed throughout RGC nerve fiber tract in the central visual pathway. Peak transduction in RGCs (up to ∼ 20 %) was observed in the regions with high GFP expression, but < 1 % of RGCs expressed GFP across the whole retina. Our data provide proof of concept that pre-retinal injection of AAV2/2 may represent a feasible platform for gene delivery to feline RGCs in vivo but highlight a need for further refinement to improve RGC transduction efficiency and control low-grade retinal inflammation.
Collapse
Affiliation(s)
- Kazuya Oikawa
- Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States; Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, United States; McPherson Eye Research Institute, Madison, WI, United States
| | - J Seth Eaton
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, United States; McPherson Eye Research Institute, Madison, WI, United States
| | - Julie A Kiland
- Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Odalys Torné
- Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States; Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, United States; McPherson Eye Research Institute, Madison, WI, United States
| | - Virginia Mathu
- Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States; Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, United States; McPherson Eye Research Institute, Madison, WI, United States
| | - Robert W Nickells
- Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States; McPherson Eye Research Institute, Madison, WI, United States
| | - Gillian J McLellan
- Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States; Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, United States; McPherson Eye Research Institute, Madison, WI, United States.
| |
Collapse
|
2
|
Shim J, Kim Y, Bak J, Shin S, Lee K, Hwang YH, Kong HY, Han JS. Preclinical evaluation of NG101, a potential AAV gene therapy for wet age-related macular degeneration. Mol Ther Methods Clin Dev 2024; 32:101366. [PMID: 39634790 PMCID: PMC11615598 DOI: 10.1016/j.omtm.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss in individuals over the age of 55. Approximately 10%-15% of AMD patients develop choroidal neovascularization (CNV), leading to wet AMD (wAMD), which accounts for nearly 90% of AMD-related blindness. Inhibition of vascular endothelial growth factor (VEGF) is the standard treatment for wAMD. However, the frequent administration of the current treatment imposes a significant burden on wAMD patients. Therefore, there is an unmet need for treatments that require less-frequent administration. Here, we present findings on the safety and efficacy of NG101, a recombinant adeno-associated virus (rAAV) vector encoding aflibercept, an anti-VEGF agent, for wAMD therapy. A single subretinal injection of NG101 effectively reduced CNV lesion leakage and size at doses as low as 1 × 106 in mouse and 3 × 109 viral genomes per eye in cynomolgus monkeys. In cynomolgus monkeys, NG101-derived aflibercept expression in ocular tissues persisted for 1 year post-injection, indicating sustained therapeutic potential. Biodistribution analysis revealed that NG101 was primarily localized in ocular tissues. Only mild and transient ocular inflammatory responses were observed. Overall, these findings suggest that NG101, with its efficacy at low doses and sustained expression, is a promising therapeutic candidate for wAMD.
Collapse
Affiliation(s)
- Juwon Shim
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Youyoung Kim
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Jeongyun Bak
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Sunhwa Shin
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Kyungwon Lee
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | | | | | - Joo Seok Han
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Wang JH, Zhan W, Gallagher TL, Gao G. Recombinant adeno-associated virus as a delivery platform for ocular gene therapy: A comprehensive review. Mol Ther 2024; 32:4185-4207. [PMID: 39489915 PMCID: PMC11638839 DOI: 10.1016/j.ymthe.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for in vivo gene therapy, particularly in ocular diseases. AAV-based therapies are characterized by low pathogenicity and broad tissue tropism and have demonstrated clinical success, as exemplified by voretigene neparvovec-rzyl (Luxturna) being the first gene therapy to be approved by the U.S. Food and Drug Administration to treat RPE65-associated Leber congenital amaurosis (LCA). However, several challenges remain in the development of AAV-based gene therapies, including immune responses, limited cargo capacity, and the need for enhanced transduction efficiency, especially for intravitreal delivery to photoreceptors and retinal pigment epithelium cells. This review explores the biology of AAVs in the context of gene therapy, innovations in capsid engineering, and clinical advancements in AAV-based ocular gene therapy. We highlight ongoing clinical trials targeting inherited retinal diseases and acquired conditions, discuss immune-related limitations, and examine novel strategies for enhancing AAV vector performance to address current barriers.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Shih FH, Chang HH, Wang YC. Utilizing adeno-associated virus as a vector in treating genetic disorders or human cancers. IUBMB Life 2024; 76:1000-1010. [PMID: 38970351 DOI: 10.1002/iub.2896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024]
Abstract
Clinical data from over two decades, involving more than 3000 treated patients, demonstrate that adeno-associated virus (AAV) gene therapy is a safe, effective, and well-tolerated therapeutic method. Clinical trials using AAV-mediated gene delivery to accessible tissues have led to successful treatments for numerous monogenic disorders and advancements in tissue engineering. Although the US Food and Drug Administration (FDA) has approved AAV for clinical use, systemic administration remains a significant challenge. In this review, we delve into AAV biology, focusing on current manufacturing technologies and transgene engineering strategies. We examine the use of AAVs in ongoing clinical trials for ocular, neurological, and hematological disorders, as well as cancers. By discussing recent advancements and current challenges in the field, we aim to provide valuable insights for researchers and clinicians navigating the evolving landscape of AAV-based gene therapy.
Collapse
Affiliation(s)
- Fu-Hsuan Shih
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hsiung-Hao Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
5
|
Ford JL, Karatza E, Mody H, Nagaraja Shastri P, Khajeh Pour S, Yang TY, Swanson M, Chao D, Devineni D. Clinical Pharmacology Perspective on Development of Adeno-Associated Virus Vector-Based Retina Gene Therapy. Clin Pharmacol Ther 2024; 115:1212-1232. [PMID: 38450707 DOI: 10.1002/cpt.3230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Adeno-associated virus (AAV) vector-based gene therapy is an innovative modality being increasingly investigated to treat diseases by modifying or replacing defective genes or expressing therapeutic entities. With its unique anatomic and physiological characteristics, the eye constitutes a very attractive target for gene therapy. Specifically, the ocular space is easily accessible and is generally considered "immune-privileged" with a low risk of systemic side effects following local drug administration. As retina cells have limited cellular turnover, a one-time gene delivery has the potential to provide long-term transgene expression. Despite the initial success with voretigene neparvovec (Luxturna), the first approved retina gene therapy, there are still challenges to be overcome for successful clinical development of these products and scientific questions to be answered. The current review paper aims to integrate published experience learned thus far for AAV-based retina gene therapy related to preclinical to clinical translation; first-in-human dose selection; relevant bioanalytical assays and strategies; clinical development considerations including trial design, biodistribution and vector shedding, immunogenicity, transgene expression, and pediatric populations; opportunities for model-informed drug development; and regulatory perspectives. The information presented herein is intended to serve as a guide to inform the clinical development strategy for retina gene therapy with a focus on clinical pharmacology.
Collapse
Affiliation(s)
| | - Eleni Karatza
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Hardik Mody
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | - Sana Khajeh Pour
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Tong-Yuan Yang
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Michael Swanson
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Daniel Chao
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | |
Collapse
|
6
|
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9:78. [PMID: 38565561 PMCID: PMC10987683 DOI: 10.1038/s41392-024-01780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
7
|
Braun M, Lange C, Schatz P, Long B, Stanta J, Gorovits B, Tarcsa E, Jawa V, Yang TY, Lembke W, Miller N, McBlane F, Christodoulou L, Yuill D, Milton M. Preexisting antibody assays for gene therapy: Considerations on patient selection cutoffs and companion diagnostic requirements. Mol Ther Methods Clin Dev 2024; 32:101217. [PMID: 38496304 PMCID: PMC10944107 DOI: 10.1016/j.omtm.2024.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Recombinant adeno-associated virus (AAV) vectors are the leading delivery vehicle used for in vivo gene therapies. Anti-AAV antibodies (AAV Abs) can interact with the viral capsid component of an AAV-based gene therapy (GT). Therefore, patients with preexisting AAV Abs (seropositive patients) are often excluded from GT trials to prevent treatment of patients who are unlikely to benefit1 or may have a higher risk for adverse events outweighing treatment benefits. On the contrary, unnecessary exclusion of patients with high unmet medical need should be avoided. Instead, a risk-benefit assessment that weighs the potential risks due to seropositivity vs. severity of disease and available treatment options, should drive the decision if patient selection is required. Assays for patient selection must be validated according to their intended use following national regulations/standards for diagnostic assays in appropriate laboratories. In this review, we summarize the current process of patient selection, including assay cutoff criteria and related assay validation approaches. We further provide considerations on regulatory requirements for the development of in vitro diagnostic tests supporting market authorization of a corresponding GT.
Collapse
Affiliation(s)
- Manuela Braun
- Bayer AG, Pharmaceuticals R&D, 13342 Berlin, Germany
| | - Claudia Lange
- Bayer AG, Pharmaceuticals R&D, 13342 Berlin, Germany
| | | | - Brian Long
- BioMarin Pharmaceutical Inc, Novato, CA, USA
| | | | - Boris Gorovits
- Sana Biotechnology, 100 Technology Square, Cambridge, MA 02139, USA
| | - Edit Tarcsa
- Abbvie Bioresearch Center, Worcester, MA 01605, USA
| | - Vibha Jawa
- Bristol Myers Squibb, Lawrence Township, NJ 08648, USA
| | | | - Wibke Lembke
- Integrated Biologix GmbH, 4051 Basel, Switzerland
| | - Nicole Miller
- Ultragenyx Pharmaceutical Inc, Novato, CA 94949, USA
| | | | | | - Daisy Yuill
- AstraZeneca, 1 Francis Crick Avenue, CB2 0AA Cambridge, UK
| | - Mark Milton
- Lake Boon Pharmaceutical Consulting, LLC, Hudson, MA 01749, USA
| |
Collapse
|
8
|
Riaz S, Sethna S, Duncan T, Naeem MA, Redmond TM, Riazuddin S, Riazuddin S, Carvalho LS, Ahmed ZM. Dual AAV-based PCDH15 gene therapy achieves sustained rescue of visual function in a mouse model of Usher syndrome 1F. Mol Ther 2023; 31:3490-3501. [PMID: 37864333 PMCID: PMC10727994 DOI: 10.1016/j.ymthe.2023.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023] Open
Abstract
Mutations in the PCDH15 gene, encoding protocadherin-15, are among the leading causes of Usher syndrome type 1 (USH1F), and account for up to 12% USH1 cases worldwide. A founder truncating variant of PCDH15 has a ∼2% carrier frequency in Ashkenazi Jews accounting for nearly 60% of their USH1 cases. Although cochlear implants can restore hearing perception in USH1 patients, presently there are no effective treatments for the vision loss due to retinitis pigmentosa. We established a founder allele-specific Pcdh15 knockin mouse model as a platform to ascertain therapeutic strategies. Using a dual-vector approach to circumvent the size limitation of adeno-associated virus, we observed robust expression of exogenous PCDH15 in the retinae of Pcdh15KI mice, sustained recovery of electroretinogram amplitudes and key retinoid oxime, substantially improved light-dependent translocation of phototransduction proteins, and enhanced levels of retinal pigment epithelium-derived enzymes. Thus, our data raise hope and pave the way for future gene therapy trials in USH1F subjects.
Collapse
Affiliation(s)
- Sehar Riaz
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Saumil Sethna
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muhammad A Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Centre, Allama Iqbal Medical Research, University of Health Sciences, Lahore 54500, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Molecular Biology and Biochemistry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA 6009, Australia; Retinal Genomics and Therapy Group, Lions Eye Institute Ltd, Nedlands, WA 6009, Australia
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Molecular Biology and Biochemistry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
9
|
Gyenes A, István L, Benyó F, Papp A, Resch M, Sándor N, Józsi M, Nagy ZZ, Kovács I, Kiss S. Intraocular neutralizing antibodies against aflibercept in patients with age related macular degeneration. BMC Ophthalmol 2023; 23:14. [PMID: 36627583 PMCID: PMC9830890 DOI: 10.1186/s12886-022-02761-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To detect immunoglobulins in aqueous humour of AMD patients after repeated administration of intravitreal aflibercept. PATIENTS AND METHODS Twenty-one patients (age: 77.85 ± 9.21 years) previously treated with intravitreal aflibercept due to wet type age-related macular degeneration (AMD group) and 18 age-matched control subjects (age: 69.75 ± 12.67 years) were included in this study. Patients in the AMD group received a mean of 5 intravitreal injections (min: 1 max: 17) prior to the cataract surgery. Samples of aqueous humour (50 μl) were obtained by anterior chamber paracentesis as the first step of routine cataract surgery. The IgG content of the samples was analysed by an in-house developed ELISA system. RESULTS A significant increase in nonspecific IgG levels in the AMD group was detected compared to the control group (13.37 ± 6.65 vs. 9.44 ± 6.55 μg/ml; p = 0.03). In 11 patients, intraocular anti-aflibercept immunoglobulins could be detected (0.05 ± 0.01 μg/ml) which was significantly higher than the limit of detection for anti-aflibercept (0.04 μg/ml; p = 0.001). No correlation was found between the number of injections or the type of CNV and the aqueous level of anti-aflibercept (r = 0.02; p = 0.95). CONCLUSION According to our results, penetration of non-specific systemic antibodies through the impaired blood-retinal barrier is higher in patients with neovascular AMD than in subjects with an intact structural barrier. Evaluation of neutralizing antibodies to anti-VEGF agents in the aqueous humour can lead us to understanding tachyphylaxis and changes in intraocular immune mechanisms due to AMD.
Collapse
Affiliation(s)
- Andrea Gyenes
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lilla István
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Fruzsina Benyó
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - András Papp
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Miklós Resch
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Noémi Sándor
- grid.5591.80000 0001 2294 6276Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary ,grid.5018.c0000 0001 2149 4407MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
| | - Mihály Józsi
- grid.5591.80000 0001 2294 6276Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary ,grid.5018.c0000 0001 2149 4407MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
| | - Zoltán Z. Nagy
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Illés Kovács
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary ,grid.5386.8000000041936877XDepartment of Ophthalmology, Weill Cornell Medical College, New York, USA ,grid.11804.3c0000 0001 0942 9821Department of Clinical Ophthalmology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Szilárd Kiss
- grid.5386.8000000041936877XDepartment of Ophthalmology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
10
|
Lewin AS, Smith WC. Gene Therapy for Rhodopsin Mutations. Cold Spring Harb Perspect Med 2022; 12:a041283. [PMID: 35940643 PMCID: PMC9435570 DOI: 10.1101/cshperspect.a041283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in RHO, the gene for rhodopsin, account for a large fraction of autosomal-dominant retinitis pigmentosa (adRP). Patients fall into two clinical classes, those with early onset, pan retinal photoreceptor degeneration, and those who experience slowly progressive disease. The latter class of patients are candidates for photoreceptor-directed gene therapy, while former may be candidates for delivery of light-responsive proteins to interneurons or retinal ganglion cells. Gene therapy for RHO adRP may be targeted to the mutant gene at the DNA or RNA level, while other therapies preserve the viability of photoreceptors without addressing the underlying mutation. Correcting the RHO gene and replacing the mutant RNA show promise in animal models, while sustaining viable photoreceptors has the potential to delay the loss of central vision and may preserve photoreceptors for gene-directed treatments.
Collapse
Affiliation(s)
- Alfred S Lewin
- Departments of Molecular Genetics and Microbiology and Ophthalmology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - W Clay Smith
- Departments of Molecular Genetics and Microbiology and Ophthalmology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
11
|
Bucher K, Rodriguez-Bocanegra E, Fischer MD. Benefits and Shortcomings of Laboratory Model Systems in the Development of Genetic Therapies. Klin Monbl Augenheilkd 2022; 239:263-269. [PMID: 35316853 DOI: 10.1055/a-1757-9879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gene therapeutic approaches promise treatment or even a cure of diseases that were previously untreatable. Retinal gene therapies tested in clinical trials comprise a wide range of different strategies, including gene supplementation therapies, in vivo gene editing, modulation of splicing mechanisms, or the suppression of gene expression. To guarantee efficient transfer of genetic material into the respective target cells while avoiding major adverse effects, the development of genetic therapies requires appropriate in vitro model systems that allow tests of efficacy and safety of the gene therapeutic approach. In this review, we introduce various in vitro models of different levels of complexity used in the development of genetic therapies and discuss their respective benefits and shortcomings using the example of adeno-associated virus-based retinal gene therapy.
Collapse
Affiliation(s)
- Kirsten Bucher
- University Eye Hospital, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany.,Institute for Ophthalmic Research, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany
| | | | - M Dominik Fischer
- University Eye Hospital, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany.,Institute for Ophthalmic Research, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom of Great Britain and Northern Ireland.,Department of Clinical Neurosciences, University of Oxford Nuffield Laboratory of Ophthalmology, Oxford, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
12
|
Rapti K, Grimm D. Adeno-Associated Viruses (AAV) and Host Immunity - A Race Between the Hare and the Hedgehog. Front Immunol 2021; 12:753467. [PMID: 34777364 PMCID: PMC8586419 DOI: 10.3389/fimmu.2021.753467] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) have emerged as the lead vector in clinical trials and form the basis for several approved gene therapies for human diseases, mainly owing to their ability to sustain robust and long-term in vivo transgene expression, their amenability to genetic engineering of cargo and capsid, as well as their moderate toxicity and immunogenicity. Still, recent reports of fatalities in a clinical trial for a neuromuscular disease, although linked to an exceptionally high vector dose, have raised new caution about the safety of recombinant AAVs. Moreover, concerns linger about the presence of pre-existing anti-AAV antibodies in the human population, which precludes a significant percentage of patients from receiving, and benefitting from, AAV gene therapies. These concerns are exacerbated by observations of cellular immune responses and other adverse events, including detrimental off-target transgene expression in dorsal root ganglia. Here, we provide an update on our knowledge of the immunological and molecular race between AAV (the “hedgehog”) and its human host (the “hare”), together with a compendium of state-of-the-art technologies which provide an advantage to AAV and which, thus, promise safer and more broadly applicable AAV gene therapies in the future.
Collapse
Affiliation(s)
- Kleopatra Rapti
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF) and German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Erkrankungen (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Gorovits B, Azadeh M, Buchlis G, Harrison T, Havert M, Jawa V, Long B, McNally J, Milton M, Nelson R, O'Dell M, Richards K, Vettermann C, Wu B. Evaluation of the Humoral Response to Adeno-Associated Virus-Based Gene Therapy Modalities Using Total Antibody Assays. AAPS J 2021; 23:108. [PMID: 34529177 PMCID: PMC8445016 DOI: 10.1208/s12248-021-00628-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
The number of viral vector-based gene therapies (GTx) continues to grow with two products (Zolgensma® and Luxturna®) approved in the USA as of March 2021. To date, the most commonly used vectors are adeno-associated virus-based (AAV). The pre-existing humoral immunity against AAV (anti-AAV antibodies) has been well described and is expected as a consequence of prior AAV exposure. Anti-AAV antibodies may present an immune barrier to successful AAV transduction and hence negatively impact clinical efficacy and may also result in adverse events (AEs) due to the formation of large immune complexes. Patients may be screened for the presence of anti-AAV antibodies, including neutralizing (NAb) and total binding antibodies (TAb) prior to treatment with the GTx. Recommendations for the development and validation of anti-AAV NAb detection methods have been presented elsewhere. This manuscript covers considerations related to anti-AAV TAb-detecting protocols, including the advantages of the use of TAb methods, selection of assay controls and reagents, and parameters critical to monitoring assay performance. This manuscript was authored by a group of scientists involved in GTx development representing eleven organizations. It is our intent to provide recommendations and guidance to industry sponsors, academic laboratories, and regulatory agencies working on AAV-based GTx viral vector modalities with the goal of achieving a more consistent approach to anti-AAV TAb assessment. Graphical abstract ![]()
Collapse
Affiliation(s)
- Boris Gorovits
- Sana Biotechnology, Inc., Cambridge, Massachusetts, USA.
| | | | - George Buchlis
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Vibha Jawa
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Brian Long
- BioMarin Pharmaceutical Inc., Novato, California, USA
| | | | | | | | - Mark O'Dell
- Covance by Labcorp, Indianapolis, Indiana, USA
| | | | | | - Bonnie Wu
- Johnson & Johnson, Spring House, Pennsylvania, USA
| |
Collapse
|
14
|
Català P, Thuret G, Skottman H, Mehta JS, Parekh M, Ní Dhubhghaill S, Collin RWJ, Nuijts RMMA, Ferrari S, LaPointe VLS, Dickman MM. Approaches for corneal endothelium regenerative medicine. Prog Retin Eye Res 2021; 87:100987. [PMID: 34237411 DOI: 10.1016/j.preteyeres.2021.100987] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
The state of the art therapy for treating corneal endothelial disease is transplantation. Advances in the reproducibility and accessibility of surgical techniques are increasing the number of corneal transplants, thereby causing a global deficit of donor corneas and leaving 12.7 million patients with addressable visual impairment. Approaches to regenerate the corneal endothelium offer a solution to the current tissue scarcity and a treatment to those in need. Methods for generating corneal endothelial cells into numbers that could address the current tissue shortage and the possible strategies used to deliver them have now become a therapeutic reality with clinical trials taking place in Japan, Singapore and Mexico. Nevertheless, there is still a long way before such therapies are approved by regulatory bodies and become clinical practice. Moreover, acellular corneal endothelial graft equivalents and certain drugs could provide a treatment option for specific disease conditions without the need of donor tissue or cells. Finally, with the emergence of gene modulation therapies to treat corneal endothelial disease, it would be possible to treat presymptomatic patients or those presenting early symptoms, drastically reducing the need for donor tissue. It is necessary to understand the most recent developments in this rapidly evolving field to know which conditions could be treated with which approach. This article provides an overview of the current and developing regenerative medicine therapies to treat corneal endothelial disease and provides the necessary guidance and understanding towards the treatment of corneal endothelial disease.
Collapse
Affiliation(s)
- Pere Català
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Gilles Thuret
- Laboratory of Biology, Engineering and Imaging of Corneal Graft, BiiGC, Faculty of Medicine, University of Saint Etienne, Saint Etienne, France; Institut Universitaire de France, Paris, France
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-National University Singapore Medical School, Singapore; Singapore National Eye Centre, Singapore
| | - Mohit Parekh
- Institute of Ophthalmology, University College London, London, UK; The Veneto Eye Bank Foundation, Venice, Italy; Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sorcha Ní Dhubhghaill
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Ophthalmology, Visual Optics and Visual Rehabilitation, Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Mor M Dickman
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
15
|
Andrzejewski S, Moyle PM, Stringer BW, Steel JC, Layton CJ. Neutralisation of adeno-associated virus transduction by human vitreous humour. Gene Ther 2021; 28:242-255. [PMID: 32541928 DOI: 10.1038/s41434-020-0162-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 11/08/2022]
Abstract
Neutralising antibodies (NAbs), caused by past adeno-associated virus (AAV) infection, represent a critical challenge for AAV-mediated gene therapy, with even low NAb titres capable of inhibiting gene transfer, however in protein-rich environments such as the vitreous it is expected that other constituents could also interact with the transduction process. Inhibition of AAV2/2, AAV2/5, AAV2/6 and AAV2/8 transduction by human vitreous humour (VH) obtained from 80 post-mortem eye cups was investigated in this report, with clinically relevant vitreous dilutions as low as 1:2. Unexpectedly, the highest prevalence of inhibition of transduction was observed against AAV2/6, with 66% of tested samples displaying neutralisation at a 1:2 VH dilution. Only two samples showed inhibition of AAV2/8, indicating this serotype is an attractive vector for use in non-vitrectomised eyes of unscreened individuals. Levels of anti-AAV NAbs observed in the VH were much lower than previously observed in serum of a similar Australian population. Among ten tested eye cup pairs, we observed only small variation in anti-AAV NAbs levels between the left and right eye cups. Interaction with 1:2 diluted VH had an augmentation effect on AAV2/8 transduction (p = 0.004), a phenomenon which was not due to albumin or transferrin and which, if developed, might benefit the use of AAV2/8 in clinical settings.
Collapse
Affiliation(s)
- Sławomir Andrzejewski
- LVF Ophthalmology Research Centre, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Greenslopes, QLD, 4120, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| | - Brett W Stringer
- LVF Ophthalmology Research Centre, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Greenslopes, QLD, 4120, Australia
| | - Jason C Steel
- School of Health, Medical and Applied Sciences, CQ University, North Rockhampton, QLD, 4702, Australia
| | - Christopher J Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Woolloongabba, QLD, 4102, Australia.
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Greenslopes, QLD, 4120, Australia.
| |
Collapse
|
16
|
Bucher K, Rodríguez-Bocanegra E, Dauletbekov D, Fischer MD. Immune responses to retinal gene therapy using adeno-associated viral vectors - Implications for treatment success and safety. Prog Retin Eye Res 2020; 83:100915. [PMID: 33069860 DOI: 10.1016/j.preteyeres.2020.100915] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Recombinant adeno-associated virus (AAV) is the leading vector for gene therapy in the retina. As non-pathogenic, non-integrating, replication deficient vector, the recombinant virus efficiently transduces all key retinal cell populations. Successful testing of AAV vectors in clinical trials of inherited retinal diseases led to the recent approval of voretigene neparvovec (Luxturna) for the treatment of RPE65 mutation-associated retinal dystrophies. However, studies applying AAV-mediated retinal gene therapy independently reported intraocular inflammation and/or loss of efficacy after initial functional improvements. Both observations might be explained by targeted removal of transduced cells via anti-viral defence mechanisms. AAV has been shown to activate innate pattern recognition receptors (PRRs) such as toll-like receptor (TLR)-2 and TLR-9 resulting in the release of inflammatory cytokines and type I interferons. The vector can also induce capsid-specific and transgene-specific T cell responses and neutralizing anti-AAV antibodies which both limit the therapeutic effect. However, the target organ of retinal gene therapy, the eye, is known as an immune-privileged site. It is characterized by suppression of inflammation and promotion of immune tolerance which might prevent AAV-induced immune responses. This review evaluates AAV-related immune responses, toxicity and inflammation in studies of retinal gene therapy, identifies influencing variables of these responses and discusses potential strategies to modulate immune reactions to AAV vectors to increase the safety and efficacy of ocular gene therapy.
Collapse
Affiliation(s)
- Kirsten Bucher
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Eduardo Rodríguez-Bocanegra
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Daniyar Dauletbekov
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Song H, Zeng Y, Sardar Pasha SPB, Bush RA, Vijayasarathy C, Qian H, Wei L, Wiley HE, Wu Z, Sieving PA. Trans-Ocular Electric Current In Vivo Enhances AAV-Mediated Retinal Transduction in Large Animal Eye After Intravitreal Vector Administration. Transl Vis Sci Technol 2020; 9:28. [PMID: 32844051 PMCID: PMC7416894 DOI: 10.1167/tvst.9.7.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/06/2020] [Indexed: 01/25/2023] Open
Abstract
Purpose Electric micro-current has been shown to enhance penetration and transduction of adeno-associated viral (AAV) vectors in mouse retina after intravitreal administration. We termed this: “electric-current vector mobility (ECVM).” The present study considered whether ECVM could augment retinal transduction efficiency of intravitreal AAV8-CMV-EGFP in normal rabbit and nonhuman primate (NHP) macaque. Potential mechanisms underlying enhanced retinal transduction by ECVM were also studied. Methods We applied an electric micro-current across the intact eye of normal rabbit and monkey in vivo for a brief period immediately after intravitreal injection of AAV8-CMV-EGFP. Retinal GFP expression was evaluated by fundus imaging in vivo. Retinal immunohistochemistry was performed to assess the distribution of retinal cells transduced by the AAV8-EGFP. Basic fibroblast growth factor (bFGF) was analyzed by quantitative RT-polymerase chain reaction (PCR). Müller glial reactivity and inner limiting membrane (ILM) were examined by the glial fibrillary acidic protein (GFAP) and vimentin staining in mouse retina, respectively. Results ECVM significantly increased the efficiency of AAV reaching and transducing the rabbit retina following intravitreal injection, with gene expression in inner nuclear layer, ganglion cells, and Müller cells. Similar trend of improvement was observed in the ECVM-treated monkey eye. The electric micro-current upregulated bFGF expression in Müller cells and vimentin showed ILM structural changes in mouse retina. Conclusions ECVM promotes the transduction efficiency of AAV8-CMV-GFP in normal rabbit and monkey retinas following intravitreal injection. Translational Relevance This work has potential translational relevance to human ocular gene therapy by increasing retinal expression of therapeutic vectors given by intravitreal administration.
Collapse
Affiliation(s)
- Hongman Song
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yong Zeng
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Ronald A Bush
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camasamudram Vijayasarathy
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Wei
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henry E Wiley
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhijian Wu
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul A Sieving
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Ophthalmology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
18
|
Emmanuel SN, Mietzsch M, Tseng YS, Smith JK, Agbandje-McKenna M. Parvovirus Capsid-Antibody Complex Structures Reveal Conservation of Antigenic Epitopes Across the Family. Viral Immunol 2020; 34:3-17. [PMID: 32315582 DOI: 10.1089/vim.2020.0022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The parvoviruses are small nonenveloped single stranded DNA viruses that constitute members that range from apathogenic to pathogenic in humans and animals. The infection with a parvovirus results in the generation of antibodies against the viral capsid by the host immune system to eliminate the virus and to prevent re-infection. For members currently either being developed as delivery vectors for gene therapy applications or as oncolytic biologics for tumor therapy, efforts are aimed at combating the detrimental effects of pre-existing or post-treatment antibodies that can eliminate therapeutic benefits. Therefore, understanding antigenic epitopes of parvoviruses can provide crucial information for the development of vaccination applications and engineering novel capsids able to escape antibody recognition. This review aims to capture the information for the binding regions of ∼30 capsid-antibody complex structures of different parvovirus capsids determined to date by cryo-electron microscopy and three-dimensional image reconstruction. The comparison of all complex structures revealed the conservation of antigenic regions among parvoviruses from different genera despite low sequence identity and indicates that the available data can be used across the family for vaccine development and capsid engineering.
Collapse
Affiliation(s)
- Shanan N Emmanuel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yu Shan Tseng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - James Kennon Smith
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|