1
|
Santiago-Sánchez GS, Fabian KP, Hodge JW. A landscape of checkpoint blockade resistance in cancer: underlying mechanisms and current strategies to overcome resistance. Cancer Biol Ther 2024; 25:2308097. [PMID: 38306161 PMCID: PMC10841019 DOI: 10.1080/15384047.2024.2308097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
The discovery of immune checkpoints and the development of immune checkpoint inhibitors (ICI) have achieved a durable response in advanced-stage cancer patients. However, there is still a high proportion of patients who do not benefit from ICI therapy due to a lack of response when first treated (primary resistance) or detection of disease progression months after objective response is observed (acquired resistance). Here, we review the current FDA-approved ICI for the treatment of certain solid malignancies, evaluate the contrasting responses to checkpoint blockade in different cancer types, explore the known mechanisms associated with checkpoint blockade resistance (CBR), and assess current strategies in the field that seek to overcome these mechanisms. In order to improve current therapies and develop new ones, the immunotherapy field still has an unmet need in identifying other molecules that act as immune checkpoints, and uncovering other mechanisms that promote CBR.
Collapse
Affiliation(s)
- Ginette S. Santiago-Sánchez
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kellsye P. Fabian
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W. Hodge
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Martínez-Pérez A, Granda-Díaz R, Aguilar-García C, Sordo-Bahamonde C, Gonzalez S. Deciphering LAG-3: unveiling molecular mechanisms and clinical advancements. Biomark Res 2024; 12:126. [PMID: 39425148 PMCID: PMC11487938 DOI: 10.1186/s40364-024-00671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Treatment based on immune checkpoint blockade has revolutionized cancer therapy. Despite the remarkable success achieved and the preclinical development of multiple checkpoint inhibitors targeting other checkpoints, only antibodies targeting the PD-1/PD-L1 axis and CTLA-4 have been approved for patient treatment, especially in solid tumors. Currently, with the approval of relatlimab, a LAG-3 blocking antibody, a third player, has been used in the fight against cancer. The endorsement of relatlimab marks a significant milestone in cancer immunotherapy, opening new avenues for combination therapies and enhancing treatment outcomes. However, the complex biology of LAG-3 may hinder its full development as a therapeutic alternative. In this review, we provide in-depth insight into the biology of LAG-3 and its current and future development in cancer treatment.
Collapse
Affiliation(s)
- Alejandra Martínez-Pérez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rocío Granda-Díaz
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Candelaria Aguilar-García
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
3
|
Wei S, Du K, Lan H, Yang Z, Deng Y, Wei Z, Frederick DT, Lee J, Labrie M, Tian T, Moll T, Chen Y, Sullivan RJ, Mills G, Boland GM, Flaherty KT, Liu L, Herlyn M, Zhang G. A Comprehensive Proteogenomic and Spatial Analysis of Innate and Acquired Resistance of Metastatic Melanoma to Immune Checkpoint Blockade Therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612675. [PMID: 39314469 PMCID: PMC11419073 DOI: 10.1101/2024.09.12.612675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
While a subset of patients with metastatic melanoma achieves durable responses to immune checkpoint blockade (ICB) therapies, the majority ultimately exhibit either innate or acquired resistance to these treatments. However, the molecular mechanisms underlying resistance to ICB therapies remain elusive and are warranted to elucidate. Here, we comprehensively investigated the tumor and tumor immune microenvironment (TIME) of paired pre- and post-treatment tumor specimens from metastatic melanoma patients who were primary or secondary resistance to anti-CTLA-4 and/or anti-PD-1/PD-L1 therapies. Differentially expressed gene (DEG) analysis and single-sample gene set enrichment analysis (ssGSEA) with transcriptomic data identified cell cycle and c-MYC signaling as pathway-based resistance signatures. And weighted gene co-expression network analysis (WGCNA) revealed the activation of a cross-resistance meta-program involving key signaling pathways related to tumor progression in ICB resistant melanoma. Moreover, spatially-resolved, image-based immune monitoring analysis by using NanoString's digital spatial profiling (DSP) and Cyclic Immunofluorescence (CyCIF) showed infiltration of suppressive immune cells in the tumor microenvironment of melanoma with resistance to ICB therapies. Our study reveals the molecular mechanisms underlying resistance to ICB therapies in patients with metastatic melanoma by conducting such integrated analyses of multi-dimensional data, and provides rationale for salvage therapies that will potentially overcome resistance to ICB therapies. Statement of translational relevance This study paves the way for the creation of innovative therapeutic strategies, aimed at subverting resistance to immune checkpoint blockade (ICB) therapies in metastatic melanoma patients. By unraveling the specific molecular mechanisms underlying resistance, scientists can design effective alternative treatments that target pathways such as pathways associated with cell cycle dysregulation and c-MYC signaling. Furthermore, through the application of advanced immune monitoring techniques such as NanoString Digital Spatial Profiling (DSP) and Cyclic Immunofluorescence (CyCIF), this study has significantly enriched our understanding of the tumor microenvironment. This enhanced characterization facilitates the discovery of potential biomarkers that may forecast a patient's response to ICB treatment. Ultimately, these advancements could potentially refine patient outcomes and foster the development of more personalized cancer treatments in the future.
Collapse
|
4
|
Kolathur KK, Nag R, Shenoy PV, Malik Y, Varanasi SM, Angom RS, Mukhopadhyay D. Molecular Susceptibility and Treatment Challenges in Melanoma. Cells 2024; 13:1383. [PMID: 39195270 DOI: 10.3390/cells13161383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Melanoma is the most aggressive subtype of cancer, with a higher propensity to spread compared to most solid tumors. The application of OMICS approaches has revolutionized the field of melanoma research by providing comprehensive insights into the molecular alterations and biological processes underlying melanoma development and progression. This review aims to offer an overview of melanoma biology, covering its transition from primary to malignant melanoma, as well as the key genes and pathways involved in the initiation and progression of this disease. Utilizing online databases, we extensively explored the general expression profile of genes, identified the most frequently altered genes and gene mutations, and examined genetic alterations responsible for drug resistance. Additionally, we studied the mechanisms responsible for immune checkpoint inhibitor resistance in melanoma.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Radhakanta Nag
- Department of Microbiology, College of Basic Science & Humanities, Odisha University of Agriculture & Technology (OUAT), Bhubaneswar 751003, Odisha, India
| | - Prathvi V Shenoy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Yagya Malik
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
5
|
Lei PJ, Fraser C, Jones D, Ubellacker JM, Padera TP. Lymphatic system regulation of anti-cancer immunity and metastasis. Front Immunol 2024; 15:1449291. [PMID: 39211044 PMCID: PMC11357954 DOI: 10.3389/fimmu.2024.1449291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer dissemination to lymph nodes (LN) is associated with a worse prognosis, increased incidence of distant metastases and reduced response to therapy. The LN microenvironment puts selective pressure on cancer cells, creating cells that can survive in LN as well as providing survival advantages for distant metastatic spread. Additionally, the presence of cancer cells leads to an immunosuppressive LN microenvironment, favoring the evasion of anti-cancer immune surveillance. However, recent studies have also characterized previously unrecognized roles for tumor-draining lymph nodes (TDLNs) in cancer immunotherapy response, including acting as a reservoir for pre-exhausted CD8+ T cells and stem-like CD8+ T cells. In this review, we will discuss the spread of cancer cells through the lymphatic system, the roles of TDLNs in metastasis and anti-cancer immune responses, and the therapeutic opportunities and challenges in targeting LN metastasis.
Collapse
Affiliation(s)
- Pin-Ji Lei
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Cameron Fraser
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Dennis Jones
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Jessalyn M. Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Timothy P. Padera
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Zhao Y, Tang G, Li J, Bian X, Zhou X, Feng J. Integrative transcriptome analysis reveals the molecular events underlying impaired T-cell responses in EGFR-mutant lung cancer. Sci Rep 2024; 14:18366. [PMID: 39112565 PMCID: PMC11306370 DOI: 10.1038/s41598-024-69020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
EGFR mutations are critical oncogenic drivers in lung adenocarcinoma (LUAD). However, the mechanisms by which they impact the tumor microenvironment (TME) and tumor immunity are unclear. Furthermore, the reasons underlying the poor response of EGFR-mutant (EGFR-MU) LUADs to immunotherapy with PD-1/PD-L1 inhibitors are unknown. Utilizing single-cell RNA (sc-RNA) and bulk RNA sequencing datasets, we conducted high-dimensional weighted gene coexpression network analysis to identify key genes and immune-related pathways contributing to the immunosuppressive TME. EGFR-MU cancer cells downregulated MHC class I genes to evade CD8+ cytotoxic T cells, expressed substantial levels of MHC class II molecules, and engaged with CD4+ regulatory T cells (Tregs). EGFR-MU tumors may recruit Tregs primarily through the CCL17/CCL22/CCR4 axis, leading to a Treg-enriched TME. High levels of MHC class II-positive cancer-associated fibroblasts and tumor endothelial cells were found within EGFR-MU tumors. Owing to the absence of costimulatory factors, they may inhibit rather than activate the tumor antigen-specific CD4+ T-cell response, contributing further to immune suppression. Multiplex immunohistochemistry analyses in a LUAD cohort confirmed increased expression of MHC class II molecules in cancer cells and fibroblasts in EGFR-MU tumors. Our research elucidates the highly immunosuppressive TME in EGFR-MU LUAD and suggests potential targets for effective immunotherapy.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Gu Tang
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jun Li
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xiaonan Bian
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaorong Zhou
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China.
| | - Jian Feng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
7
|
Wang D, Li S, Yang Z, Yu C, Wu P, Yang Y, Zhang R, Li Q, Yang J, Li H, Ji G, Wang Y, Xie K, Liu Y, Wang K, Zhu D, Zhang W, Liu D, Chen B, Li W. Single-cell transcriptome analysis deciphers the CD74-mediated immune evasion and tumour growth in lung squamous cell carcinoma with chronic obstructive pulmonary disease. Clin Transl Med 2024; 14:e1786. [PMID: 39113235 PMCID: PMC11306293 DOI: 10.1002/ctm2.1786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) contributes to the incidence and prognosis of lung cancer. The presence of COPD significantly increases the risk of lung squamous cell carcinoma (LSCC). COPD may promote an immunosuppressive microenvironment in LSCC by regulating the expression of immune-inhibitory factors in T cells, although the mechanisms remain unclear. In this study, we aimed to decipher the tumour microenvironment signature for LSCC with COPD at a single-cell level. METHODS We performed single-cell RNA sequencing on tumour tissues from LSCC with or without COPD, then investigated the features of the immune and tumour cells. We employed multiple techniques, including multispectral imaging, flow cytometry, tissue microarray analysis, survival analysis, co-culture systems and in vitro and in vivo treatment experiments, to validate the findings obtained from single-cell analyses. RESULTS LSCC with COPD showed increased proportions of tumour-associated macrophages (TAMs) and higher levels of CD8+ T cell exhaustion molecules, which contributed to an immunosuppressive microenvironment. Further analysis revealed a critical cluster of CD74+ tumour cells that expressed both epithelial and immune cell signatures, exhibited a stronger capacity for tumorigenesis and predicted worse overall survival. Notably, migration inhibitory factor (MIF) secreted by TAMs from LSCC with COPD may promote the activation of CD74. MIF-CD74 may interact with CD8+ T cells and impair their anti-tumour activity by regulating the PI3K-STAT3-programmed cell death-1 ligand 1 signalling pathway, facilitating tumour proliferation and immune evasion. CONCLUSIONS Our comprehensive picture of the tumour ecosystem in LSCC with COPD provides deeper insights into relevant immune evasion mechanisms and potential targets for immunotherapy. HIGHLIGHT Our results demonstrated higher proportions of tumour-associated macrophages (TAMs) and higher levels of exhaustion molecules in CD8+ T cells in the microenvironment of LSCC with COPD. CD74+tumour cells were associated with poor disease prognosis. Migration inhibitory factor (MIF)-CD74 may interact with CD8+ T cells and impair their anti-tumour activity by regulating the PI3K-STAT3-PD-L1 signalling pathway, facilitating immune evasion.
Collapse
Affiliation(s)
- Denian Wang
- Precision Medicine Research CenterPrecision Medicine Key Laboratory of Sichuan ProvinceState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
- Research Units of West ChinaChinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| | - Sixiang Li
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Respiratory and Critical Care MedicineNational Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhi Yang
- Department of NephrologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chunyan Yu
- Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Omics Technology and BioinformaticsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Pengfei Wu
- Department of Respiratory HealthFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Ying Yang
- Department of Respiratory HealthFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Rui Zhang
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Qingyan Li
- Department of Respiratory HealthFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jian Yang
- Center of GrowthMetabolism, and AgingKey Laboratory of Bio‐Resources and Eco‐EnvironmentCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of DrugsState Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Guiyi Ji
- Health Management CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Wang
- Department of Thoracic SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Kang Xie
- Precision Medicine Research CenterPrecision Medicine Key Laboratory of Sichuan ProvinceState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yanyan Liu
- Lung Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Kaige Wang
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daxing Zhu
- Lung Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Wengeng Zhang
- Precision Medicine Research CenterPrecision Medicine Key Laboratory of Sichuan ProvinceState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduSichuanChina
| | - Dan Liu
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
| | - Bojiang Chen
- Precision Medicine Research CenterPrecision Medicine Key Laboratory of Sichuan ProvinceState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduSichuanChina
| | - Weimin Li
- Precision Medicine Research CenterPrecision Medicine Key Laboratory of Sichuan ProvinceState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduSichuanChina
- Department of Respiratory and Critical Care MedicinePrecision Medicine CenterFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduSichuanChina
- Research Units of West ChinaChinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| |
Collapse
|
8
|
Chocarro L, Blanco E, Fernandez-Rubio L, Garnica M, Zuazo M, Garcia MJ, Bocanegra A, Echaide M, Johnston C, Edwards CJ, Legg J, Pierce AJ, Arasanz H, Fernandez-Hinojal G, Vera R, Ausin K, Santamaria E, Fernandez-Irigoyen J, Kochan G, Escors D. PD-1/LAG-3 co-signaling profiling uncovers CBL ubiquitin ligases as key immunotherapy targets. EMBO Mol Med 2024; 16:1791-1816. [PMID: 39030301 PMCID: PMC11319776 DOI: 10.1038/s44321-024-00098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024] Open
Abstract
Many cancer patients do not benefit from PD-L1/PD-1 blockade immunotherapies. PD-1 and LAG-3 co-upregulation in T-cells is one of the major mechanisms of resistance by establishing a highly dysfunctional state in T-cells. To identify shared features associated to PD-1/LAG-3 dysfunctionality in human cancers and T-cells, multiomic expression profiles were obtained for all TCGA cancers immune infiltrates. A PD-1/LAG-3 dysfunctional signature was found which regulated immune, metabolic, genetic, and epigenetic pathways, but especially a reinforced negative regulation of the TCR signalosome. These results were validated in T-cell lines with constitutively active PD-1, LAG-3 pathways and their combination. A differential analysis of the proteome of PD-1/LAG-3 T-cells showed a specific enrichment in ubiquitin ligases participating in E3 ubiquitination pathways. PD-1/LAG-3 co-blockade inhibited CBL-B expression, while the use of a bispecific drug in clinical development also repressed C-CBL expression, which reverted T-cell dysfunctionality in lung cancer patients resistant to PD-L1/PD-1 blockade. The combination of CBL-B-specific small molecule inhibitors with anti-PD-1/anti-LAG-3 immunotherapies demonstrated notable therapeutic efficacy in models of lung cancer refractory to immunotherapies, overcoming PD-1/LAG-3 mediated resistance.
Collapse
Grants
- FIS PI20/00010 MEC | Instituto de Salud Carlos III (ISCIII)
- FIS PI23/00196 MEC | Instituto de Salud Carlos III (ISCIII)
- COV20/00237 MEC | Instituto de Salud Carlos III (ISCIII)
- FI21/00080 MEC | Instituto de Salud Carlos III (ISCIII)
- TRANSPOCART ICI19/00069 MEC | Instituto de Salud Carlos III (ISCIII)
- PFIS,FI21/00080 MEC | Instituto de Salud Carlos III (ISCIII)
- BMED 050-2019 Departamento de Salud, Gobierno de Navarra (Department of Health, Government of Navarra)
- BMED 51-2021 Departamento de Salud, Gobierno de Navarra (Department of Health, Government of Navarra)
- BMED 036-2023 Departamento de Salud, Gobierno de Navarra (Department of Health, Government of Navarra)
- PROYE16001ESC Fundación Científica Asociación Española Contra el Cáncer (AECC)
- AGATA,0011-1411-2020-000013 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- LINTERNA,0011-1411-2020-000033 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- DESCARTHES,0011-1411-2019-000058 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- ARNMUNE,0011-1411-2023-000101 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- ISOLDA,grant agreement 848166 EC | Horizon 2020 Framework Programme (H2020)
Collapse
Affiliation(s)
- Luisa Chocarro
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain.
| | - Ester Blanco
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Leticia Fernandez-Rubio
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Maider Garnica
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Miren Zuazo
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Maria Jesus Garcia
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Ana Bocanegra
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Miriam Echaide
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Colette Johnston
- Crescendo Biologics Ltd., Meditrina Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Carolyn J Edwards
- Crescendo Biologics Ltd., Meditrina Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - James Legg
- Crescendo Biologics Ltd., Meditrina Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Andrew J Pierce
- Crescendo Biologics Ltd., Meditrina Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Hugo Arasanz
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Oncobiona Unit, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Gonzalo Fernandez-Hinojal
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Ruth Vera
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Karina Ausin
- Proteomics Platform, Proteored-ISCIII, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Enrique Santamaria
- Proteomics Platform, Proteored-ISCIII, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Joaquin Fernandez-Irigoyen
- Proteomics Platform, Proteored-ISCIII, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Grazyna Kochan
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - David Escors
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain.
| |
Collapse
|
9
|
Burdett NL, Willis MO, Pandey A, Twomey L, Alaei S, Bowtell DDL, Christie EL. Timing of whole genome duplication is associated with tumor-specific MHC-II depletion in serous ovarian cancer. Nat Commun 2024; 15:6069. [PMID: 39025846 PMCID: PMC11258338 DOI: 10.1038/s41467-024-50137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Whole genome duplication is frequently observed in cancer, and its prevalence in our prior analysis of end-stage, homologous recombination deficient high grade serous ovarian cancer (almost 80% of samples) supports the notion that whole genome duplication provides a fitness advantage under the selection pressure of therapy. Here, we therefore aim to identify potential therapeutic vulnerabilities in primary high grade serous ovarian cancer with whole genome duplication by assessing differentially expressed genes and pathways in 79 samples. We observe that MHC-II expression is lowest in tumors which have acquired whole genome duplication early in tumor evolution, and further demonstrate that reduced MHC-II expression occurs in subsets of tumor cells rather than in canonical antigen-presenting cells. Early whole genome duplication is also associated with worse patient survival outcomes. Our results suggest an association between the timing of whole genome duplication, MHC-II expression and clinical outcome in high grade serous ovarian cancer that warrants further investigation for therapeutic targeting.
Collapse
Affiliation(s)
- Nikki L Burdett
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Box Hill Hospital, Eastern Health, Box Hill, VIC, 3128, Australia
| | | | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Laura Twomey
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Sara Alaei
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3168, Australia
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
10
|
Jama M, Tabana Y, Barakat KH. Targeting cytotoxic lymphocyte antigen 4 (CTLA-4) in breast cancer. Eur J Med Res 2024; 29:353. [PMID: 38956700 PMCID: PMC11218087 DOI: 10.1186/s40001-024-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Breast cancer (BC) has a high mortality rate and is one of the most common malignancies in the world. Initially, BC was considered non-immunogenic, but a paradigm shift occurred with the discovery of tumor-infiltrating lymphocytes (TILs) and regulatory T cells (Tregs) in the BC tumor microenvironment. CTLA-4 (Cytotoxic T-lymphocyte-associated protein 4) immunotherapy has emerged as a treatment option for BC, but it has limitations, including suboptimal antitumor effects and toxicity. Research has demonstrated that anti-CTLA-4 combination therapies, such as Treg depletion, cancer vaccines, and modulation of the gut microbiome, are significantly more effective than CTLA-4 monoclonal antibody (mAB) monotherapy. Second-generation CTLA-4 antibodies are currently being developed to mitigate immune-related adverse events (irAEs) and augment antitumor efficacy. This review examines anti-CTLA-4 mAB in BC, both as monotherapy and in combination with other treatments, and sheds light on ongoing clinical trials, novel CTLA-4 therapeutic strategies, and potential utility of biomarkers in BC.
Collapse
Affiliation(s)
- Maryam Jama
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Khaled H Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
11
|
Alexandersson A, Venäläinen MS, Heikkilä N, Huang X, Taskinen M, Huttunen P, Elo LL, Koskenvuo M, Kekäläinen E. Proteomics screening after pediatric allogenic hematopoietic stem cell transplantation reveals an association between increased expression of inhibitory receptor FCRL6 on γδ T cells and cytomegalovirus reactivation. Immunol Cell Biol 2024; 102:513-525. [PMID: 38726587 DOI: 10.1111/imcb.12762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 07/11/2024]
Abstract
We studied the associations between inflammation-related proteins in circulation and complications after pediatric allogenic hematopoietic stem cell transplantation (HSCT), to reveal proteomic signatures or individual soluble proteins associated with specific complications after HSCT. We used a proteomics method called Proximity Extension Assay to repeatedly measure 180 different proteins together with clinical variables, cellular immune reconstitution and blood viral copy numbers in 27 children (1-18 years of age) during a 2-year follow-up after allogenic HSCT. Protein profile analysis was performed using unsupervised hierarchical clustering and a regression-based method, while the Bonferroni-corrected Mann-Whitney U-test was used for time point-specific comparison of individual proteins against outcome. At 6 months after allogenic HSCT, we could identify a protein profile pattern associated with occurrence of the complications such as chronic graft-versus-host disease, viral infections, relapse and death. When protein markers were analyzed separately, the plasma concentration of the inhibitory and cytotoxic T-cell surface protein FCRL6 (Fc receptor-like 6) was higher in patients with cytomegalovirus (CMV) viremia [log2-fold change 1.5 (P = 0.00099), 2.5 (P = 0.00035) and 2.2 (P = 0.045) at time points 6, 12 and 24 months]. Flow cytometry confirmed that FCRL6 expression was higher in innate-like γδ T cells, indicating that these cells are involved in controlling CMV reactivation in HSCT recipients. In conclusion, the potentially druggable FCRL6 receptor on cytotoxic T cells appears to have a role in controlling CMV viremia after HSCT. Furthermore, our results suggest that system-level analysis is a useful addition to the studying of single biomarkers in allogenic HSCT.
Collapse
Affiliation(s)
- Adam Alexandersson
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children and Adolescents, Pediatric Research Center, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko S Venäläinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Nelli Heikkilä
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Xiaobo Huang
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mervi Taskinen
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Pasi Huttunen
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Children and Adolescents, Pediatric Research Center, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Minna Koskenvuo
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, Clinical microbiology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
12
|
Guo W, Peng D, Liao Y, Lou L, Guo M, Li C, Yu W, Tian X, Wang G, Lv P, Zuo J, Shen H, Li Y. Upregulation of HLA-II related to LAG-3 +CD4 + T cell infiltration is associated with patient outcome in human glioblastoma. Cancer Sci 2024; 115:1388-1404. [PMID: 38480275 PMCID: PMC11093187 DOI: 10.1111/cas.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/01/2024] [Accepted: 02/17/2024] [Indexed: 05/15/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant diffuse glioma of the brain. Although immunotherapy with immune checkpoint inhibitors (ICIs), such as programmed cell death protein (PD)-1/PD ligand-1 inhibitors, has revolutionized the treatment of several cancers, the clinical benefit in GBM patients has been limited. Lymphocyte-activation gene 3 (LAG-3) binding to human leukocyte antigen-II (HLA-II) plays an essential role in triggering CD4+ T cell exhaustion and could interfere with the efficiency of anti-PD-1 treatment; however, the value of LAG-3-HLA-II interactions in ICI immunotherapy for GBM patients has not yet been analyzed. Therefore, we aimed to investigate the expression and regulation of HLA-II in human GBM samples and the correlation with LAG-3+CD4+ T cell infiltration. Human leukocyte antigen-II was highly expressed in GBM and correlated with increased LAG-3+CD4+ T cell infiltration in the stroma. Additionally, HLA-IIHighLAG-3High was associated with worse patient survival. Increased interleukin-10 (IL-10) expression was observed in GBM, which was correlated with high levels of HLA-II and LAG-3+ T cell infiltration in stroma. HLA-IIHighIL-10High GBM associated with LAG-3+ T cells infiltration synergistically showed shorter overall survival in patients. Combined anti-LAG-3 and anti-IL-10 treatment inhibited tumor growth in a mouse brain GL261 tumor model. In vitro, CD68+ macrophages upregulated HLA-II expression in GBM cells through tumor necrosis factor-α (TNF-α). Blocking TNF-α-dependent inflammation inhibited tumor growth in a mouse GBM model. In summary, T cell-tumor cell interactions, such as LAG-3-HLA-II, could confer an immunosuppressive environment in human GBM, leading to poor prognosis in patients. Therefore, targeting the LAG-3-HLA-II interaction could be beneficial in ICI immunotherapy to improve the clinical outcome of GBM patients.
Collapse
Affiliation(s)
- Wenli Guo
- Department of PathologyThe Second Hospital, Hebei Medical UniversityShijiazhuangChina
- Laboratory of PathologyHebei Medical UniversityShijiazhuangChina
| | - Daijun Peng
- Department of PathologyThe Second Hospital, Hebei Medical UniversityShijiazhuangChina
| | - Yuee Liao
- Department of PathologyThe Second Hospital, Hebei Medical UniversityShijiazhuangChina
| | - Lei Lou
- Department of PathologyThe Second Hospital, Hebei Medical UniversityShijiazhuangChina
| | - Moran Guo
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Chen Li
- Department of NeurosurgerySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Wangyang Yu
- Department of NeurosurgerySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xiaoxi Tian
- Department of PathologyThe Second Hospital, Hebei Medical UniversityShijiazhuangChina
| | - Guohui Wang
- Department of PathologyThe Second Hospital, Hebei Medical UniversityShijiazhuangChina
| | - Ping Lv
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Jing Zuo
- Department of OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Haitao Shen
- Laboratory of PathologyHebei Medical UniversityShijiazhuangChina
- Hebei Collaborative Innovation Center of Tumor Microecological Metabolism RegulationHebei UniversityBaodingChina
| | - Yuehong Li
- Department of PathologyThe Second Hospital, Hebei Medical UniversityShijiazhuangChina
- Laboratory of PathologyHebei Medical UniversityShijiazhuangChina
| |
Collapse
|
13
|
Li YQ, Chen XM, Si GF, Yuan XM. Progress of lymphocyte activation gene 3 and programmed cell death protein 1 antibodies for cancer treatment: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:764-774. [PMID: 38581716 PMCID: PMC11293232 DOI: 10.17305/bb.2024.10339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
The application of immune checkpoint inhibitors has proven to be an effective treatment for cancer. Immune checkpoints such as programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T-cell immunoglobulin-3 (TIM-3), T-cell immunoglobulin and ITIM domain (TIGIT), and lymphocyte activation gene-3 (LAG-3) have received extensive attention, and the efficacy of antibodies or inhibitors against these checkpoints (either alone or in combination) has been evaluated in many tumors. This paper provides a brief overview of the PD-1 and LAG-3 checkpoints, and then shifts focus to the combined use of PD-1 and LAG-3 antibodies in both in vivo and in vitro experiments. In the in vitro experiments, we examined the correlation between the expression and activation of these inhibitors on T cells, and also assessed toxicity in animals in preparation for in vivo experiments. The effects of the combined use of PD-1 and LAG-3 antibodies were then summarized in animal models of melanoma, MC38 carcinoma, and other tumors. In clinical studies, the combined application of these antibodies was assessed in patients with melanoma, colorectal, breast, and renal cell cancers, as well as other solid tumors. In general, the combination of PD-1 and LAG-3 antibodies has shown promising results in both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Yu-Quan Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xue-Mei Chen
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Gui-Fei Si
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | | |
Collapse
|
14
|
Cui JW, Li Y, Yang Y, Yang HK, Dong JM, Xiao ZH, He X, Guo JH, Wang RQ, Dai B, Zhou ZL. Tumor immunotherapy resistance: Revealing the mechanism of PD-1 / PD-L1-mediated tumor immune escape. Biomed Pharmacother 2024; 171:116203. [PMID: 38280330 DOI: 10.1016/j.biopha.2024.116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
Tumor immunotherapy, an innovative anti-cancer therapy, has showcased encouraging outcomes across diverse tumor types. Among these, the PD-1/PD-L1 signaling pathway is a well-known immunological checkpoint, which is significant in the regulation of immune evasion by tumors. Nevertheless, a considerable number of patients develop resistance to anti-PD-1/PD-L1 immunotherapy, rendering it ineffective in the long run. This research focuses on exploring the factors of PD-1/PD-L1-mediated resistance in tumor immunotherapy. Initially, the PD-1/PD-L1 pathway is characterized by its role in facilitating tumor immune evasion, emphasizing its role in autoimmune homeostasis. Next, the primary mechanisms of resistance to PD-1/PD-L1-based immunotherapy are analyzed, including tumor antigen deletion, T cell dysfunction, increased immunosuppressive cells, and alterations in the expression of PD-L1 within tumor cells. The possible ramifications of altered metabolism, microbiota, and DNA methylation on resistance is also described. Finally, possible resolution strategies for dealing with anti-PD-1/PD-L1 immunotherapy resistance are discussed, placing particular emphasis on personalized therapeutic approaches and the exploration of more potent immunotherapy regimens.
Collapse
Affiliation(s)
- Jia-Wen Cui
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Yao Li
- College of Pharmacy, Macau University of Science and Technology (MUST), China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Hai-Kui Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jia-Mei Dong
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Zhi-Hua Xiao
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin He
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jia-Hao Guo
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| | - Bo Dai
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan City 528200, Guangdong Province, China.
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| |
Collapse
|
15
|
Bawden EG, Wagner T, Schröder J, Effern M, Hinze D, Newland L, Attrill GH, Lee AR, Engel S, Freestone D, de Lima Moreira M, Gressier E, McBain N, Bachem A, Haque A, Dong R, Ferguson AL, Edwards JJ, Ferguson PM, Scolyer RA, Wilmott JS, Jewell CM, Brooks AG, Gyorki DE, Palendira U, Bedoui S, Waithman J, Hochheiser K, Hölzel M, Gebhardt T. CD4 + T cell immunity against cutaneous melanoma encompasses multifaceted MHC II-dependent responses. Sci Immunol 2024; 9:eadi9517. [PMID: 38241401 DOI: 10.1126/sciimmunol.adi9517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Whereas CD4+ T cells conventionally mediate antitumor immunity by providing help to CD8+ T cells, recent clinical studies have implied an important role for cytotoxic CD4+ T cells in cancer immunity. Using an orthotopic melanoma model, we provide a detailed account of antitumoral CD4+ T cell responses and their regulation by major histocompatibility complex class II (MHC II) in the skin. Intravital imaging revealed prominent interactions of CD4+ T cells with tumor debris-laden MHC II+ host antigen-presenting cells that accumulated around tumor cell nests, although direct recognition of MHC II+ melanoma cells alone could also promote CD4+ T cell control. CD4+ T cells stably suppressed or eradicated tumors even in the absence of other lymphocytes by using tumor necrosis factor-α and Fas ligand (FasL) but not perforin-mediated cytotoxicity. Interferon-γ was critical for protection, acting both directly on melanoma cells and via induction of nitric oxide synthase in myeloid cells. Our results illustrate multifaceted and context-specific aspects of MHC II-dependent CD4+ T cell immunity against cutaneous melanoma, emphasizing modulation of this axis as a potential avenue for immunotherapies.
Collapse
Affiliation(s)
- Emma G Bawden
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, Bonn 53105, Germany
| | - Teagan Wagner
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jan Schröder
- Computational Sciences Initiative, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Maike Effern
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, Bonn 53105, Germany
| | - Daniel Hinze
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, Bonn 53105, Germany
| | - Lewis Newland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, Bonn 53105, Germany
| | - Grace H Attrill
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Ariane R Lee
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sven Engel
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - David Freestone
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Marcela de Lima Moreira
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Elise Gressier
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Nathan McBain
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Annabell Bachem
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ruining Dong
- Computational Sciences Initiative, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
| | - Angela L Ferguson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Infection, Immunity and Inflammation theme, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Jarem J Edwards
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Tissue Oncology and Diagnostic Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- NSW Health Pathology, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Department of Tissue Oncology and Diagnostic Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- NSW Health Pathology, Sydney, NSW, Australia
| | - James S Wilmott
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - David E Gyorki
- Division of Cancer Surgery, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre Melbourne, Melbourne, VIC, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jason Waithman
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Katharina Hochheiser
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre Melbourne, Melbourne, VIC, Australia
| | - Michael Hölzel
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, Bonn 53105, Germany
| | - Thomas Gebhardt
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Schmassmann P, Roux J, Dettling S, Hogan S, Shekarian T, Martins TA, Ritz MF, Herter S, Bacac M, Hutter G. Single-cell characterization of human GBM reveals regional differences in tumor-infiltrating leukocyte activation. eLife 2023; 12:RP92678. [PMID: 38127790 PMCID: PMC10735226 DOI: 10.7554/elife.92678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Glioblastoma (GBM) harbors a highly immunosuppressive tumor microenvironment (TME) which influences glioma growth. Major efforts have been undertaken to describe the TME on a single-cell level. However, human data on regional differences within the TME remain scarce. Here, we performed high-depth single-cell RNA sequencing (scRNAseq) on paired biopsies from the tumor center, peripheral infiltration zone and blood of five primary GBM patients. Through analysis of >45,000 cells, we revealed a regionally distinct transcription profile of microglia (MG) and monocyte-derived macrophages (MdMs) and an impaired activation signature in the tumor-peripheral cytotoxic-cell compartment. Comparing tumor-infiltrating CD8+ T cells with circulating cells identified CX3CR1high and CX3CR1int CD8+ T cells with effector and memory phenotype, respectively, enriched in blood but absent in the TME. Tumor CD8+ T cells displayed a tissue-resident memory phenotype with dysfunctional features. Our analysis provides a regionally resolved mapping of transcriptional states in GBM-associated leukocytes, serving as an additional asset in the effort towards novel therapeutic strategies to combat this fatal disease.
Collapse
Affiliation(s)
- Philip Schmassmann
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Julien Roux
- Bioinformatics Core Facility, Department of Biomedicine, University of BaselBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Steffen Dettling
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center MunichPenzbergGermany
| | - Sabrina Hogan
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Tala Shekarian
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Tomás A Martins
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Marie-Françoise Ritz
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Sylvia Herter
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center ZürichSchlierenSwitzerland
| | - Marina Bacac
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center ZürichSchlierenSwitzerland
| | - Gregor Hutter
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University of BaselBaselSwitzerland
- Department of Neurosurgery, University Hospital BaselBaselSwitzerland
| |
Collapse
|
17
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
18
|
James JL, Taylor BC, Axelrod ML, Sun X, Guerin LN, Gonzalez-Ericsson PI, Wang Y, Sanchez V, Fahey CC, Sanders ME, Xu Y, Hodges E, Johnson DB, Balko JM. Polycomb repressor complex 2 suppresses interferon-responsive MHC-II expression in melanoma cells and is associated with anti-PD-1 resistance. J Immunother Cancer 2023; 11:e007736. [PMID: 38315170 PMCID: PMC10660662 DOI: 10.1136/jitc-2023-007736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Despite the remarkable success of immunotherapy in treating melanoma, understanding of the underlying mechanisms of resistance remains limited. Emerging evidence suggests that upregulation of tumor-specific major histocompatibility complex-II (tsMHC-II) serves as a predictive marker for the response to anti-programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1) therapy in various cancer types. The genetic and epigenetic pathways modulating tsMHC-II expression remain incompletely characterized. Here, we provide evidence that polycomb repressive complex 2 (PRC2)/EZH2 signaling and resulting H3K27 hypermethylation suppresses tsMHC-II. METHODS RNA sequencing data from tumor biopsies from patients with cutaneous melanoma treated with or without anti-PD-1, targeted inhibition assays, and assays for transposase-accessible chromatin with sequencing were used to observe the relationship between EZH2 inhibition and interferon (IFN)-γ inducibility within the MHC-II pathway. RESULTS We find that increased EZH2 pathway messenger RNA (mRNA) expression correlates with reduced mRNA expression of both presentation and T-cell genes. Notably, targeted inhibition assays revealed that inhibition of EZH2 influences the expression dynamics and inducibility of the MHC-II pathway following IFN-γ stimulation. Additionally, our analysis of patients with metastatic melanoma revealed a significant inverse association between PRC2-related gene expression and response to anti-PD-1 therapy. CONCLUSIONS Collectively, our findings demonstrate that EZH2 inhibition leads to enhanced MHC-II expression potentially resulting from improved chromatin accessibility at CIITA, the master regulator of MHC-II. These insights shed light on the molecular mechanisms involved in tsMHC-II suppression and highlight the potential of targeting EZH2 as a therapeutic strategy to improve immunotherapy efficacy.
Collapse
Affiliation(s)
- Jamaal L James
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brandie C Taylor
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Margaret L Axelrod
- Department of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Xiaopeng Sun
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lindsey N Guerin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Paula I Gonzalez-Ericsson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yu Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Violeta Sanchez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Catherine C Fahey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Melinda E Sanders
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Genetics Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Han X, Sun Q, Xu M, Zhu G, Gao R, Ni B, Li J. Unraveling the Complexities of Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. Semin Liver Dis 2023; 43:383-401. [PMID: 37931901 DOI: 10.1055/s-0043-1776127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have emerged as effective therapeutics for multiple cancers. Nevertheless, as immunotherapeutic approaches are being extensively utilized, substantial hurdles have arisen for clinicians. These include countering ICIs resistance and ensuring precise efficacy assessments of these drugs, especially in the context of hepatocellular carcinoma (HCC). This review attempts to offer a holistic overview of the latest insights into the ICIs resistance mechanisms in HCC, the molecular underpinnings, and immune response. The intent is to inspire the development of efficacious combination strategies. This review also examines the unconventional response patterns, namely pseudoprogression (PsP) and hyperprogression (HPD). The prompt and rigorous evaluation of these treatment efficacies has emerged as a crucial imperative. Multiple clinical, radiological, and biomarker tests have been advanced to meticulously assess tumor response. Despite progress, precise mechanisms of action and predictive biomarkers remain elusive. This necessitates further investigation through prospective cohort studies in the impending future.
Collapse
Affiliation(s)
- Xinpu Han
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qianhui Sun
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Manman Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Guanghui Zhu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ruike Gao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Baoyi Ni
- Department of Oncology, First Hospital of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
20
|
Lau APY, Khavkine Binstock SS, Thu KL. CD47: The Next Frontier in Immune Checkpoint Blockade for Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:5229. [PMID: 37958404 PMCID: PMC10649163 DOI: 10.3390/cancers15215229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The success of PD-1/PD-L1-targeted therapy in lung cancer has resulted in great enthusiasm for additional immunotherapies in development to elicit similar survival benefits, particularly in patients who do not respond to or are ineligible for PD-1 blockade. CD47 is an immunosuppressive molecule that binds SIRPα on antigen-presenting cells to regulate an innate immune checkpoint that blocks phagocytosis and subsequent activation of adaptive tumor immunity. In lung cancer, CD47 expression is associated with poor survival and tumors with EGFR mutations, which do not typically respond to PD-1 blockade. Given its prognostic relevance, its role in facilitating immune escape, and the number of agents currently in clinical development, CD47 blockade represents a promising next-generation immunotherapy for lung cancer. In this review, we briefly summarize how tumors disrupt the cancer immunity cycle to facilitate immune evasion and their exploitation of immune checkpoints like the CD47-SIRPα axis. We also discuss approved immune checkpoint inhibitors and strategies for targeting CD47 that are currently being investigated. Finally, we review the literature supporting CD47 as a promising immunotherapeutic target in lung cancer and offer our perspective on key obstacles that must be overcome to establish CD47 blockade as the next standard of care for lung cancer therapy.
Collapse
Affiliation(s)
- Asa P. Y. Lau
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Sharon S. Khavkine Binstock
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
21
|
Ikeda H, Nagasaki J, Shimizu D, Katsuya Y, Horinouchi H, Hosomi Y, Tanji E, Iwata T, Itami M, Kawazu M, Ohe Y, Suzuki T, Togashi Y. Immunologic Significance of CD80/CD86 or Major Histocompatibility Complex-II Expression in Thymic Epithelial Tumors. JTO Clin Res Rep 2023; 4:100573. [PMID: 37799325 PMCID: PMC10550405 DOI: 10.1016/j.jtocrr.2023.100573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Unresectable or recurrent thymic epithelial tumors (TETs) have a poor prognosis, and treatment options are limited. This study aimed to investigate the immunologic significance of CD80/CD86 or major histocompatibility complex class II (MHC-II) expression in TETs, as potential predictive biomarkers for immune checkpoint inhibitors (ICIs). Methods We analyzed CD80, CD86, MHC class I (MHC-I), and MHC-II expression in TETs using immunohistochemistry and investigated their association with T-cell infiltration or ICI efficacy. In addition, we generated CD80- or MHC-II-expressing mouse tumors, evaluated the effects of ICIs, and analyzed tumor-infiltrating lymphocytes. We also performed tumor-rechallenge experiments in vivo. Results We found that approximately 50% and 30% of TETs had high expression of CD80/CD86 and MHC-II in tumor cells, respectively, and that this expression was related to T-cell infiltration in clinical samples. In mouse models, both CD80 and MHC-II increase the effects of ICIs. In addition, senescent T cells and long-lived memory precursor effector T cells were significantly decreased and increased, respectively, in tumor-infiltrating lymphocytes from CD80-expressing tumors, and rechallenged tumors were completely rejected after the initial eradication of CD80-expressing tumors by programmed cell death protein 1 blockade. Indeed, patients with CD80-high thymic carcinoma had longer progression-free survival with anti-programmed cell death protein 1 monoclonal antibody. Conclusions Half of the TETs had high expression of CD80/CD86 or MHC-II with high T-cell infiltration. These molecules could potentially increase the effects of ICIs, particularly inducing a durable response. CD80/CD86 and MHC-II can be predictive biomarkers of ICIs in TETs, promoting the development of drugs for such TETs.
Collapse
Affiliation(s)
- Hideki Ikeda
- Chiba Cancer Center, Research Institute, Chiba, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Joji Nagasaki
- Chiba Cancer Center, Research Institute, Chiba, Japan
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daiki Shimizu
- Division of Thoracic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Yuki Katsuya
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukio Hosomi
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Etsuko Tanji
- Chiba Cancer Center, Research Institute, Chiba, Japan
| | - Takekazu Iwata
- Division of Thoracic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Makiko Itami
- Department of Surgical Pathology, Chiba Cancer Center, Chiba, Japan
| | | | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yosuke Togashi
- Chiba Cancer Center, Research Institute, Chiba, Japan
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
22
|
Zhang Q, Xu M. EBV-induced T-cell responses in EBV-specific and nonspecific cancers. Front Immunol 2023; 14:1250946. [PMID: 37841280 PMCID: PMC10576448 DOI: 10.3389/fimmu.2023.1250946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human tumor virus associated with various malignancies, including B-lymphoma, NK and T-lymphoma, and epithelial carcinoma. It infects B lymphocytes and epithelial cells within the oropharynx and establishes persistent infection in memory B cells. With a balanced virus-host interaction, most individuals carry EBV asymptomatically because of the lifelong surveillance by T cell immunity against EBV. A stable anti-EBV T cell repertoire is maintained in memory at high frequency in the blood throughout persistent EBV infection. Patients with impaired T cell immunity are more likely to develop life-threatening lymphoproliferative disorders, highlighting the critical role of T cells in achieving the EBV-host balance. Recent studies reveal that the EBV protein, LMP1, triggers robust T-cell responses against multiple tumor-associated antigens (TAAs) in B cells. Additionally, EBV-specific T cells have been identified in EBV-unrelated cancers, raising questions about their role in antitumor immunity. Herein, we summarize T-cell responses in EBV-related cancers, considering latency patterns, host immune status, and factors like human leukocyte antigen (HLA) susceptibility, which may affect immune outcomes. We discuss EBV-induced TAA-specific T cell responses and explore the potential roles of EBV-specific T cell subsets in tumor microenvironments. We also describe T-cell immunotherapy strategies that harness EBV antigens, ranging from EBV-specific T cells to T cell receptor-engineered T cells. Lastly, we discuss the involvement of γδ T-cells in EBV infection and associated diseases, aiming to elucidate the comprehensive interplay between EBV and T-cell immunity.
Collapse
Affiliation(s)
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Kuras M. Exploring the Complex and Multifaceted Interplay between Melanoma Cells and the Tumor Microenvironment. Int J Mol Sci 2023; 24:14403. [PMID: 37762707 PMCID: PMC10531837 DOI: 10.3390/ijms241814403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Malignant melanoma is a very aggressive skin cancer, characterized by a heterogeneous nature and high metastatic potential. The incidence of melanoma is continuously increasing worldwide, and it is one of the most common cancers in young adults. In the past twenty years, our understanding of melanoma biology has increased profoundly, and disease management for patients with disseminated disease has improved due to the emergence of immunotherapy and targeted therapy. However, a significant fraction of patients relapse or do not respond adequately to treatment. This can partly be explained by the complex signaling between the tumor and its microenvironment, giving rise to melanoma phenotypes with different patterns of disease progression. This review focuses on the key aspects and complex relationship between pathogenesis, genetic abnormalities, tumor microenvironment, cellular plasticity, and metabolic reprogramming in melanoma. By acquiring a deeper understanding of the multifaceted features of melanomagenesis, we can reach a point of more individualized and patient-centered disease management and reduced costs of ineffective treatments.
Collapse
Affiliation(s)
- Magdalena Kuras
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden;
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| |
Collapse
|
24
|
Lei PJ, Pereira ER, Andersson P, Amoozgar Z, Van Wijnbergen JW, O’Melia MJ, Zhou H, Chatterjee S, Ho WW, Posada JM, Kumar AS, Morita S, Menzel L, Chung C, Ergin I, Jones D, Huang P, Beyaz S, Padera TP. Cancer cell plasticity and MHC-II-mediated immune tolerance promote breast cancer metastasis to lymph nodes. J Exp Med 2023; 220:e20221847. [PMID: 37341991 PMCID: PMC10286805 DOI: 10.1084/jem.20221847] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/10/2023] [Accepted: 05/25/2023] [Indexed: 06/22/2023] Open
Abstract
Tumor-draining lymph nodes (TDLNs) are important for tumor antigen-specific T cell generation and effective anticancer immune responses. However, TDLNs are often the primary site of metastasis, causing immune suppression and worse outcomes. Through cross-species single-cell RNA-Seq analysis, we identified features defining cancer cell heterogeneity, plasticity, and immune evasion during breast cancer progression and lymph node metastasis (LNM). A subset of cancer cells in the lymph nodes exhibited elevated MHC class II (MHC-II) gene expression in both mice and humans. MHC-II+ cancer cells lacked costimulatory molecule expression, leading to regulatory T cell (Treg) expansion and fewer CD4+ effector T cells in TDLNs. Genetic knockout of MHC-II reduced LNM and Treg expansion, while overexpression of the MHC-II transactivator, Ciita, worsened LNM and caused excessive Treg expansion. These findings demonstrate that cancer cell MHC-II expression promotes metastasis and immune evasion in TDLNs.
Collapse
Affiliation(s)
- Pin-Ji Lei
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ethel R. Pereira
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Patrik Andersson
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zohreh Amoozgar
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jan Willem Van Wijnbergen
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Meghan J. O’Melia
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hengbo Zhou
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sampurna Chatterjee
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - William W. Ho
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica M. Posada
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashwin S. Kumar
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Satoru Morita
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lutz Menzel
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Charlie Chung
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ilgin Ergin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Dennis Jones
- Department of Pathology and Laboratory Medicine, School of Medicine, Boston University, Boston, MA, USA
| | - Peigen Huang
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Timothy P. Padera
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Goodman RS, Jung S, Balko JM, Johnson DB. Biomarkers of immune checkpoint inhibitor response and toxicity: Challenges and opportunities. Immunol Rev 2023; 318:157-166. [PMID: 37470280 PMCID: PMC10528475 DOI: 10.1111/imr.13249] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
Immune checkpoint inhibitors have transformed cancer therapy, but their optimal use is still constrained by lack of response and toxicity. Biomarkers of response may facilitate drug development by allowing appropriate therapy selection and focusing clinical trial enrollment. However, aside from PD-L1 staining in a subset of tumors and rarely mismatch repair deficiency, no biomarkers are routinely used in the clinic. In addition, severe toxicities may cause severe morbidity, therapy discontinuation, and even death. Here, we review the state of the field with a focus on our research in therapeutic biomarkers and toxicities from immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Seungyeon Jung
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Justin M. Balko
- Department of Medicine, Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas B. Johnson
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
26
|
Macy AM, Herrmann LM, Adams AC, Hastings KT. Major histocompatibility complex class II in the tumor microenvironment: functions of nonprofessional antigen-presenting cells. Curr Opin Immunol 2023; 83:102330. [PMID: 37130456 PMCID: PMC10524529 DOI: 10.1016/j.coi.2023.102330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 05/04/2023]
Abstract
Major histocompatibility complex class-II-restricted presentation by nonprofessional antigen-presenting cells in the tumor microenvironment can regulate antitumor T-cell responses. In murine models, tumor cell-specific MHC class II expression decreases in vivo tumor growth, dependent on T cells. Tumor cell-specific MHC class II expression is associated with improved survival and response to immune checkpoint inhibitors in human cancers. Antigen-presenting cancer-associated fibroblasts (apCAF) present MHC class-II-restricted antigens and activate CD4 T cells. The role of MHC class II on apCAFs depends on the cell of origin. MHC class II on tumoral lymphatic endothelial cells leads to expansion of regulatory T cells and increased in vivo tumor growth.
Collapse
Affiliation(s)
- Anne M Macy
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA
| | - Lauren M Herrmann
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA
| | - Anngela C Adams
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA
| | - K Taraszka Hastings
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA; University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724, USA.
| |
Collapse
|
27
|
Yousif LI, Screever EM, Versluis D, Aboumsallem JP, Nierkens S, Manintveld OC, de Boer RA, Meijers WC. Risk Factors for Immune Checkpoint Inhibitor-Mediated Cardiovascular Toxicities. Curr Oncol Rep 2023; 25:753-763. [PMID: 37079251 PMCID: PMC10256640 DOI: 10.1007/s11912-023-01414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitors (ICIs) have improved the field of cancer, especially in patients with advanced malignancies. Nevertheless, cardiovascular immune-related adverse events (irAEs) with high mortality and morbidity have been observed, including myocarditis, pericarditis, and vasculitis. To date, only a few clinical risk factors have been described and are currently being investigated. RECENT FINDINGS In this review, we address the four most prevailing risk factors for cardiovascular irAEs. ICI combination therapy is a predominant risk factor for developing ICI-mediated myocarditis. Additionally, ICI combined with other anti-cancer treatments (e.g., tyrosine kinase inhibitors, radiation, chemotherapy) seems to increase the risk of developing cardiovascular irAEs. Other risk factors include female sex, pre-existing cardiovascular disease, and specific tumors, on which we will further elaborate in this review. An a priori risk strategy to determine who is at risk to develop these cardiovascular irAEs is needed. Insights into the impact of risk factors are therefore warranted to help clinicians improve care and disease management in these patients.
Collapse
Affiliation(s)
- Laura I. Yousif
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, P.O. Box 2040, 3000CA Rotterdam, The Netherlands
| | - Elles M. Screever
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, P.O. Box 2040, 3000CA Rotterdam, The Netherlands
| | - Daniëlle Versluis
- Graduate School of Life Science, Utrecht University, P.O. Box 80125, 3508 TC Utrecht, The Netherlands
| | - Joseph Pierre Aboumsallem
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, P.O. Box 2040, 3000CA Rotterdam, The Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, Utrecht University, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Olivier C. Manintveld
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, P.O. Box 2040, 3000CA Rotterdam, The Netherlands
| | - Rudolf A. de Boer
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, P.O. Box 2040, 3000CA Rotterdam, The Netherlands
| | - Wouter C. Meijers
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, P.O. Box 2040, 3000CA Rotterdam, The Netherlands
| |
Collapse
|
28
|
Bawden E, Gebhardt T. The multifaceted roles of CD4 + T cells and MHC class II in cancer surveillance. Curr Opin Immunol 2023; 83:102345. [PMID: 37245413 DOI: 10.1016/j.coi.2023.102345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/29/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023]
Abstract
CD4+ T cells exhibit diverse functions in cancer surveillance. Concordantly, single-cell transcriptional analyses have revealed several distinct CD4+ T-cell differentiation states in tumours, including cytotoxic and regulatory subsets associated with favourable or unfavourable outcomes, respectively. These transcriptional states are determined and further shaped by dynamic interactions of CD4+ T cells with different types of immune cells, stromal cells and cancer cells. Therefore, we discuss the cellular networks in the tumour microenvironment (TME) that either promote or impede CD4+ T-cell cancer surveillance. We consider antigen/Major histocompatibility complexclass-II (MHC-II)-dependent interactions of CD4+ T cells with both professional antigen-presenting cells and cancer cells, the latter of which can directly express MHC-II, at least in some tumours. Additionally, we examine recent single-cell RNA sequencing studies that have shed light on the phenotype and functions of cancer-specific CD4+ T cells in human tumours.
Collapse
Affiliation(s)
- Emma Bawden
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Thomas Gebhardt
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
29
|
Ziogas DC, Theocharopoulos C, Lialios PP, Foteinou D, Koumprentziotis IA, Xynos G, Gogas H. Beyond CTLA-4 and PD-1 Inhibition: Novel Immune Checkpoint Molecules for Melanoma Treatment. Cancers (Basel) 2023; 15:2718. [PMID: 37345056 PMCID: PMC10216291 DOI: 10.3390/cancers15102718] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
More than ten years after the approval of ipilimumab, immune checkpoint inhibitors (ICIs) against PD-1 and CTLA-4 have been established as the most effective treatment for locally advanced or metastatic melanoma, achieving durable responses either as monotherapies or in combinatorial regimens. However, a considerable proportion of patients do not respond or experience early relapse, due to multiple parameters that contribute to melanoma resistance. The expression of other immune checkpoints beyond the PD-1 and CTLA-4 molecules remains a major mechanism of immune evasion. The recent approval of anti-LAG-3 ICI, relatlimab, in combination with nivolumab for metastatic disease, has capitalized on the extensive research in the field and has highlighted the potential for further improvement of melanoma prognosis by synergistically blocking additional immune targets with new ICI-doublets, antibody-drug conjugates, or other novel modalities. Herein, we provide a comprehensive overview of presently published immune checkpoint molecules, including LAG-3, TIGIT, TIM-3, VISTA, IDO1/IDO2/TDO, CD27/CD70, CD39/73, HVEM/BTLA/CD160 and B7-H3. Beginning from their immunomodulatory properties as co-inhibitory or co-stimulatory receptors, we present all therapeutic modalities targeting these molecules that have been tested in melanoma treatment either in preclinical or clinical settings. Better understanding of the checkpoint-mediated crosstalk between melanoma and immune effector cells is essential for generating more effective strategies with augmented immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Helen Gogas
- First Department of Medicine, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.T.); (P.-P.L.); (D.F.); (I.-A.K.); (G.X.)
| |
Collapse
|
30
|
Villaruz LC, Blumenschein GR, Otterson GA, Leal TA. Emerging therapeutic strategies for enhancing sensitivity and countering resistance to programmed cell death protein 1 or programmed death-ligand 1 inhibitors in non-small cell lung cancer. Cancer 2023; 129:1319-1350. [PMID: 36848319 PMCID: PMC11234508 DOI: 10.1002/cncr.34683] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/27/2022] [Accepted: 12/13/2022] [Indexed: 03/01/2023]
Abstract
The availability of agents targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint has transformed treatment of advanced and/or metastatic non-small cell lung cancer (NSCLC). However, a substantial proportion of patients treated with these agents do not respond or experience only a brief period of clinical benefit. Even among those whose disease responds, many subsequently experience disease progression. Consequently, novel approaches are needed that enhance antitumor immunity and counter resistance to PD-(L)1 inhibitors, thereby improving and/or prolonging responses and patient outcomes, in both PD-(L)1 inhibitor-sensitive and inhibitor-resistant NSCLC. Mechanisms contributing to sensitivity and/or resistance to PD-(L)1 inhibitors in NSCLC include upregulation of other immune checkpoints and/or the presence of an immunosuppressive tumor microenvironment, which represent potential targets for new therapies. This review explores novel therapeutic regimens under investigation for enhancing responses to PD-(L)1 inhibitors and countering resistance, and summarizes the latest clinical evidence in NSCLC.
Collapse
Affiliation(s)
- Liza C Villaruz
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - George R Blumenschein
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gregory A Otterson
- The Ohio State University-James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ticiana A Leal
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
31
|
Ruggieri L, Moretti A, Berardi R, Cona MS, Dalu D, Villa C, Chizzoniti D, Piva S, Gambaro A, La Verde N. Host-Related Factors in the Interplay among Inflammation, Immunity and Dormancy in Breast Cancer Recurrence and Prognosis: An Overview for Clinicians. Int J Mol Sci 2023; 24:ijms24054974. [PMID: 36902406 PMCID: PMC10002538 DOI: 10.3390/ijms24054974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
A significant proportion of patients treated for early breast cancer develop medium-term and late distant recurrence. The delayed manifestation of metastatic disease is defined as "dormancy". This model describes the aspects of the clinical latency of isolated metastatic cancer cells. Dormancy is regulated by extremely complex interactions between disseminated cancer cells and the microenvironment where they reside, the latter in turn influenced directly by the host. Among these entangled mechanisms, inflammation and immunity may play leading roles. This review is divided into two parts: the first describes the biological underpinnings of cancer dormancy and the role of the immune response, in particular, for breast cancer; the second provides an overview of the host-related factors that may influence systemic inflammation and immune response, subsequently impacting the dynamics of breast cancer dormancy. The aim of this review is to provide physicians and medical oncologists a useful tool to understand the clinical implications of this relevant topic.
Collapse
Affiliation(s)
- Lorenzo Ruggieri
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Anna Moretti
- Medical Oncology Unit, S. Carlo Hospital, ASST Santi Paolo e Carlo, 20153 Milan, Italy
| | - Rossana Berardi
- Department of Oncology, Università Politecnica delle Marche—AOU delle Marche, 60121 Ancona, Italy
| | - Maria Silvia Cona
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Davide Dalu
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Cecilia Villa
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Davide Chizzoniti
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Sheila Piva
- Medical Oncology Unit, Fatebenefratelli Hospital, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
| | - Anna Gambaro
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Nicla La Verde
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
- Correspondence: ; Tel.: +39-02-3904-2492
| |
Collapse
|
32
|
Liu HJ, Du H, Khabibullin D, Zarei M, Wei K, Freeman GJ, Kwiatkowski DJ, Henske EP. mTORC1 upregulates B7-H3/CD276 to inhibit antitumor T cells and drive tumor immune evasion. Nat Commun 2023; 14:1214. [PMID: 36869048 PMCID: PMC9984496 DOI: 10.1038/s41467-023-36881-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Identifying the mechanisms underlying the regulation of immune checkpoint molecules and the therapeutic impact of targeting them in cancer is critical. Here we show that high expression of the immune checkpoint B7-H3 (CD276) and high mTORC1 activity correlate with immunosuppressive phenotypes and worse clinical outcomes in 11,060 TCGA human tumors. We find that mTORC1 upregulates B7-H3 expression via direct phosphorylation of the transcription factor YY2 by p70 S6 kinase. Inhibition of B7-H3 suppresses mTORC1-hyperactive tumor growth via an immune-mediated mechanism involving increased T-cell activity and IFN-γ responses coupled with increased tumor cell expression of MHC-II. CITE-seq reveals strikingly increased cytotoxic CD38+CD39+CD4+ T cells in B7-H3-deficient tumors. In pan-human cancers, a high cytotoxic CD38+CD39+CD4+ T-cell gene signature correlates with better clinical prognosis. These results show that mTORC1-hyperactivity, present in many human tumors including tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM), drives B7-H3 expression leading to suppression of cytotoxic CD4+ T cells.
Collapse
Affiliation(s)
- Heng-Jia Liu
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA.
| | - Heng Du
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Damir Khabibullin
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Mahsa Zarei
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, 77843, TX, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - David J Kwiatkowski
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA.
| |
Collapse
|
33
|
TRUONG NC, HUYNH NT, PHAM KD, PHAM PV. Roles of cancer stem cells in cancer immune surveillance. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
34
|
Evidence for Extensive Duplication and Subfunctionalization of FCRL6 in Armadillo ( Dasypus novemcinctus). Int J Mol Sci 2023; 24:ijms24054531. [PMID: 36901962 PMCID: PMC10003336 DOI: 10.3390/ijms24054531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
The control of infections by the vertebrate adaptive immune system requires careful modulation to optimize defense and minimize harm to the host. The Fc receptor-like (FCRL) genes encode immunoregulatory molecules homologous to the receptors for the Fc portion of immunoglobulin (FCR). To date, nine different genes (FCRL1-6, FCRLA, FCRLB and FCRLS) have been identified in mammalian organisms. FCRL6 is located at a separate chromosomal position from the FCRL1-5 locus, has conserved synteny in mammals and is situated between the SLAMF8 and DUSP23 genes. Here, we show that this three gene block underwent repeated duplication in Dasypus novemcinctus (nine-banded armadillo) resulting in six FCRL6 copies, of which five appear functional. Among 21 mammalian genomes analyzed, this expansion was unique to D. novemcinctus. Ig-like domains that derive from the five clustered FCRL6 functional gene copies show high structural conservation and sequence identity. However, the presence of multiple non-synonymous amino acid changes that would diversify individual receptor function has led to the hypothesis that FCRL6 endured subfunctionalization during evolution in D. novemcinctus. Interestingly, D. novemcinctus is noteworthy for its natural resistance to the Mycobacterium leprae pathogen that causes leprosy. Because FCRL6 is chiefly expressed by cytotoxic T and NK cells, which are important in cellular defense responses against M. leprae, we speculate that FCRL6 subfunctionalization could be relevant for the adaptation of D. novemcinctus to leprosy. These findings highlight the species-specific diversification of FCRL family members and the genetic complexity underlying evolving multigene families critical for modulating adaptive immune protection.
Collapse
|
35
|
Yang K, Zhao Y, Sun G, Zhang X, Cao J, Shao M, Liang X, Wang L. Clinical application and prospect of immune checkpoint inhibitors for CAR-NK cell in tumor immunotherapy. Front Immunol 2023; 13:1081546. [PMID: 36741400 PMCID: PMC9892943 DOI: 10.3389/fimmu.2022.1081546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells is an attractive research field in tumor immunotherapy. While CAR is genetically engineered to express certain molecules, it retains the intrinsic ability to recognize tumor cells through its own receptors. Additionally, NK cells do not depend on T cell receptors for cytotoxic killing. CAR-NK cells exhibit some differences to CAR-T cells in terms of more precise killing, numerous cell sources, and increased effectiveness in solid tumors. However, some problems still exist with CAR-NK cell therapy, such as cytotoxicity, low transfection efficiency, and storage issues. Immune checkpoints inhibit immune cells from performing their normal killing function, and the clinical application of immune checkpoint inhibitors for cancer treatment has become a key therapeutic strategy. The application of CAR-T cells and immune checkpoint inhibitors is being evaluated in numerous ongoing basic research and clinical studies. Immune checkpoints may affect the function of CAR-NK cell therapy. In this review, we describe the combination of existing CAR-NK cell technology with immune checkpoint therapy and discuss the research of CAR-NK cell technology and future clinical treatments. We also summarize the progress of clinical trials of CAR-NK cells and immune checkpoint therapy.
Collapse
Affiliation(s)
- Kangdi Yang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuze Zhao
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Guanqun Sun
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Xu Zhang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinjin Cao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Mingcong Shao
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xijun Liang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China,*Correspondence: Xijun Liang, ; Lina Wang,
| | - Lina Wang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Xijun Liang, ; Lina Wang,
| |
Collapse
|
36
|
Shoushtari AN, Olszanski AJ, Nyakas M, Hornyak TJ, Wolchok JD, Levitsky V, Kuryk L, Hansen TB, Jäderberg M. Pilot Study of ONCOS-102 and Pembrolizumab: Remodeling of the Tumor Microenvironment and Clinical Outcomes in Anti-PD-1-Resistant Advanced Melanoma. Clin Cancer Res 2023; 29:100-109. [PMID: 36112545 PMCID: PMC9811163 DOI: 10.1158/1078-0432.ccr-22-2046] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Intratumoral oncolytic virotherapy may overcome anti-PD(L)-1 resistance by triggering pro-inflammatory remodeling of the tumor microenvironment. This pilot study investigated ONCOS-102 (oncolytic adenovirus expressing GM-CSF) plus anti-programmed cell death protein 1 (PD)-1 therapy in anti-PD-1-resistant melanoma. PATIENTS AND METHODS Patients with advanced melanoma progressing after prior PD-1 blockade received intratumoral ONCOS-102 either as priming with 3 doses (3 × 1011 viral particles) during Week 1 [Part 1 (sequential treatment)] or as 4-dose priming and 8 booster doses every 3 weeks [Part 2 (combination treatment)]. From Week 3, all patients received pembrolizumab every 3 weeks (≤8 doses). The primary endpoint was safety. Objective response rate (ORR), progression-free survival, and immunologic activation in repeat biopsies were also investigated. RESULTS In 21 patients (Part 1, n = 9; Part 2, n = 12) ONCOS-102 plus pembrolizumab was well tolerated: most adverse events (AE) were mild/moderate in severity. Pyrexia (43%), chills (43%), and nausea (28%) were the most common ONCOS-102-related AEs. There were no dose-limiting toxicities. ORR was 35% [response evaluation in solid tumors (RECIST) 1.1, irRECIST]. Reduction in size of ≥1 non-injected lesions observed in 53% patients indicated a systemic effect. In injected tumors, persistent immune-related gene expression and T-cell infiltration were associated with clinical benefit. Viral persistence and efficacy in injected and non-injected lesions without additional toxicity supported Part 2 dosing regimen in future studies. CONCLUSIONS ONCOS-102 plus pembrolizumab was well tolerated and led to objective responses in patients with anti-PD-1-resistant advanced melanoma. ONCOS-102 promoted T-cell infiltration, particularly cytotoxic CD8+ T cells, which persisted at Week 9, driving clinical benefit. Further investigation of ONCOS-102 plus PD-1 blockade is warranted. See related commentary by Levi and Boland, p. 3.
Collapse
Affiliation(s)
- Alexander N. Shoushtari
- Department of Medicine (Melanoma Service), Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medicine, New York, New York.,Corresponding Author: Alexander N. Shoushtari, Department of Medicine (Melanoma Service), Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY 10065. Phone: 646-888-4161; E-mail:
| | | | - Marta Nyakas
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Thomas J. Hornyak
- Department of Dermatology and University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jedd D. Wolchok
- Department of Medicine (Melanoma Service), Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medicine, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | | | - Lukasz Kuryk
- Research and Development, Targovax ASA, Oslo, Norway
| | | | | |
Collapse
|
37
|
Zhang C, Wang L, Xu C, Xu H, Wu Y. Resistance mechanisms of immune checkpoint inhibition in lymphoma: Focusing on the tumor microenvironment. Front Pharmacol 2023; 14:1079924. [PMID: 36959853 PMCID: PMC10027765 DOI: 10.3389/fphar.2023.1079924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the therapeutic strategies of multiple types of malignancies including lymphoma. However, efficiency of ICIs varies dramatically among different lymphoma subtypes, and durable response can only be achieved in a minority of patients, thus requiring unveiling the underlying mechanisms of ICI resistance to optimize the individualized regimens and improve the treatment outcomes. Recently, accumulating evidence has identified potential prognostic factors for ICI therapy, including tumor mutation burden and tumor microenvironment (TME). Given the distinction between solid tumors and hematological malignancies in terms of TME, we here review the clinical updates of ICIs for lymphoma, and focus on the underlying mechanisms for resistance induced by TME, which play important roles in lymphoma and remarkably influence its sensitivity to ICIs. Particularly, we highlight the value of multiple cell populations (e.g., tumor infiltrating lymphocytes, M2 tumor-associated macrophages, and myeloid-derived suppressor cells) and metabolites (e.g., indoleamine 2, 3-dioxygenase and adenosine) in the TME as prognostic biomarkers for ICI response, and also underline additional potential targets in immunotherapy, such as EZH2, LAG-3, TIM-3, adenosine, and PI3Kδ/γ.
Collapse
Affiliation(s)
- Chunlan Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Leiming Wang
- Shenzhen Bay Laboratory, Center for transnational medicine, Shenzhen, China
| | - Caigang Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Yu Wu,
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Yu Wu,
| |
Collapse
|
38
|
Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010104. [PMID: 36612100 PMCID: PMC9817764 DOI: 10.3390/cancers15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a high rate of systemic metastasis, insensitivity to conventional treatment and susceptibility to drug resistance, resulting in a poor patient prognosis. The immune checkpoint inhibitors (ICIs) represented by antibodies of programmed death receptor 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have provided new therapeutic options for TNBC. However, the efficacy of PD-1/PD-L1 blockade monotherapy is suboptimal immune response, which may be caused by reduced antigen presentation, immunosuppressive tumor microenvironment, interplay with other immune checkpoints and aberrant activation of oncological signaling in tumor cells. Therefore, to improve the sensitivity of TNBC to ICIs, suitable patients are selected based on reliable predictive markers and treated with a combination of ICIs with other therapies such as chemotherapy, radiotherapy, targeted therapy, oncologic virus and neoantigen-based therapies. This review discusses the current mechanisms underlying the resistance of TNBC to PD-1/PD-L1 inhibitors, the potential biomarkers for predicting the efficacy of anti-PD-1/PD-L1 immunotherapy and recent advances in the combination therapies to increase response rates, the depth of remission and the durability of the benefit of TNBC to ICIs.
Collapse
|
39
|
Isomoto K, Haratani K, Tsujikawa T, Makutani Y, Kawakami H, Takeda M, Yonesaka K, Tanaka K, Iwasa T, Hayashi H, Ito A, Nishio K, Nakagawa K. Mechanisms of primary and acquired resistance to immune checkpoint inhibitors in advanced non-small cell lung cancer: A multiplex immunohistochemistry-based single-cell analysis. Lung Cancer 2022; 174:71-82. [PMID: 36347190 DOI: 10.1016/j.lungcan.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Immune checkpoint inhibitors (ICIs) have become a key therapeutic modality for advanced non-small cell lung cancer (NSCLC), but most patients experience primary or acquired resistance to these drugs. We here explored the mechanisms underlying both types of ICI resistance by analysis of the tumor immune microenvironment (TME). MATERIALS AND METHODS Four patients who experienced a long-term response to ICI treatment (progression-free survival [PFS] of ≥12 months) followed by disease progression, after which a rebiopsy was immediately performed (cohort-A), as well as four patients who experienced early tumor progression during ICI treatment (PFS of <9 weeks, cohort-B) were enrolled in this retrospective study. The pretreatment TME was evaluated by 16- or 17-color multiplex immunohistochemistry (mIHC)-based spatial profiling at the single-cell level for both cohorts. In cohort-A, changes in the TME after disease progression during ICI treatment were also investigated by mIHC analysis and transcriptomic analysis. RESULTS Pretreatment tumor tissue from cohort-B manifested poor infiltration of tumor-reactive CD8+ T cells characterized by CD39 and CD103 expression or by programmed cell death-1 expression, implicating insufficient recognition of tumor cells by CD8+ T cells as a mechanism of primary ICI resistance. Analysis of the paired tumor specimens from cohort-A revealed various changes in the TME associated with acquired ICI resistance, including substantial infiltration of myeloid-derived suppressor cells and M2-type tumor-associated macrophages without a marked decline in the number of tumor-reactive CD8+ T cells; a decrease in the number of tumor-reactive CD8+ T cells; and an apparent decrease in neoantigen presentation by tumor cells. CONCLUSION The presence of intratumoral tumor-reactive CD8+ T cells may be a prerequisite for a long-term response to ICI treatment in advanced NSCLC, but it is not sufficient for cancer cell eradication. Various TME profiles are associated with acquired ICI resistance, suggesting that patient-specific strategies to overcome such resistance may be necessary.
Collapse
Affiliation(s)
- Kohsuke Isomoto
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Koji Haratani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.
| | - Takahiro Tsujikawa
- Department of Otolaryngology-Head & Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Makutani
- Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Hisato Kawakami
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kimio Yonesaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kaoru Tanaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tsutomu Iwasa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
40
|
Immune checkpoint blockade in melanoma: Advantages, shortcomings and emerging roles of the nanoparticles. Int Immunopharmacol 2022; 113:109300. [DOI: 10.1016/j.intimp.2022.109300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
41
|
Zhang J, Han H, Wang L, Wang W, Yang M, Qin Y. Overcoming the therapeutic resistance of hepatomas by targeting the tumor microenvironment. Front Oncol 2022; 12:988956. [DOI: 10.3389/fonc.2022.988956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers and is the third leading cause of cancer-related mortality worldwide. Multifactorial drug resistance is regarded as the major cause of treatment failure in HCC. Accumulating evidence shows that the constituents of the tumor microenvironment (TME), including cancer-associated fibroblasts, tumor vasculature, immune cells, physical factors, cytokines, and exosomes may explain the therapeutic resistance mechanisms in HCC. In recent years, anti-angiogenic drugs and immune checkpoint inhibitors have shown satisfactory results in HCC patients. However, due to enhanced communication between the tumor and TME, the effect of heterogeneity of the microenvironment on therapeutic resistance is particularly complicated, which suggests a more challenging research direction. In addition, it has been reported that the three-dimensional (3D) organoid model derived from patient biopsies is more intuitive to fully understand the role of the TME in acquired resistance. Therefore, in this review, we have focused not only on the mechanisms and targets of therapeutic resistance related to the contents of the TME in HCC but also provide a comprehensive description of 3D models and how they contribute to the exploration of HCC therapies.
Collapse
|
42
|
Regulation of Metastatic Tumor Dormancy and Emerging Opportunities for Therapeutic Intervention. Int J Mol Sci 2022; 23:ijms232213931. [PMID: 36430404 PMCID: PMC9698240 DOI: 10.3390/ijms232213931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer recurrence and metastasis, following successful treatment, constitutes a critical threat in clinical oncology and are the leading causes of death amongst cancer patients. This phenomenon is largely attributed to metastatic tumor dormancy, a rate-limiting stage during cancer progression, in which disseminated cancer cells remain in a viable, yet not proliferating state for a prolonged period. Dormant cancer cells are characterized by their entry into cell cycle arrest and survival in a quiescence state to adapt to their new microenvironment through the acquisition of mutations and epigenetic modifications, rendering them resistant to anti-cancer treatment and immune surveillance. Under favorable conditions, disseminated dormant tumor cells 're-awake', resume their proliferation and thus colonize distant sites. Due to their rarity, detection of dormant cells using current diagnostic tools is challenging and, thus, therapeutic targets are hard to be identified. Therefore, unraveling the underlying mechanisms required for keeping disseminating tumor cells dormant, along with signals that stimulate their "re-awakening" are crucial for the discovery of novel pharmacological treatments. In this review, we shed light into the main mechanisms that control dormancy induction and escape as well as emerging therapeutic strategies for the eradication of metastatic dormant cells, including dormancy maintenance, direct targeting of dormant cells and re-awakening dormant cells. Studies on the ability of the metastatic cancer cells to cease proliferation and survive in a quiescent state before re-initiating proliferation and colonization years after successful treatment, will pave the way toward developing innovative therapeutic strategies against dormancy-mediated metastatic outgrowth.
Collapse
|
43
|
Axelrod ML, Meijers WC, Screever EM, Qin J, Carroll MG, Sun X, Tannous E, Zhang Y, Sugiura A, Taylor BC, Hanna A, Zhang S, Amancherla K, Tai W, Wright JJ, Wei SC, Opalenik SR, Toren AL, Rathmell JC, Ferrell PB, Phillips EJ, Mallal S, Johnson DB, Allison JP, Moslehi JJ, Balko JM. T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature 2022; 611:818-826. [PMID: 36385524 PMCID: PMC9930174 DOI: 10.1038/s41586-022-05432-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022]
Abstract
Immune-related adverse events, particularly severe toxicities such as myocarditis, are major challenges to the utility of immune checkpoint inhibitors (ICIs) in anticancer therapy1. The pathogenesis of ICI-associated myocarditis (ICI-MC) is poorly understood. Pdcd1-/-Ctla4+/- mice recapitulate clinicopathological features of ICI-MC, including myocardial T cell infiltration2. Here, using single-cell RNA and T cell receptor (TCR) sequencing of cardiac immune infiltrates from Pdcd1-/-Ctla4+/- mice, we identify clonal effector CD8+ T cells as the dominant cell population. Treatment with anti-CD8-depleting, but not anti-CD4-depleting, antibodies improved the survival of Pdcd1-/-Ctla4+/- mice. Adoptive transfer of immune cells from mice with myocarditis induced fatal myocarditis in recipients, which required CD8+ T cells. The cardiac-specific protein α-myosin, which is absent from the thymus3,4, was identified as the cognate antigen source for three major histocompatibility complex class I-restricted TCRs derived from mice with fulminant myocarditis. Peripheral blood T cells from three patients with ICI-MC were expanded by α-myosin peptides. Moreover, these α-myosin-expanded T cells shared TCR clonotypes with diseased heart and skeletal muscle, which indicates that α-myosin may be a clinically important autoantigen in ICI-MC. These studies underscore the crucial role for cytotoxic CD8+ T cells, identify a candidate autoantigen in ICI-MC and yield new insights into the pathogenesis of ICI toxicity.
Collapse
Affiliation(s)
- Margaret L Axelrod
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wouter C Meijers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Elles M Screever
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Juan Qin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Mary Grace Carroll
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaopeng Sun
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elie Tannous
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yueli Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ayaka Sugiura
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brandie C Taylor
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shaoyi Zhang
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Kaushik Amancherla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Warren Tai
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Jordan J Wright
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Spencer C Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan R Opalenik
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abigail L Toren
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Mallal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Javid J Moslehi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
44
|
Hu B, Sajid M, Lv R, Liu L, Sun C. A review of spatial profiling technologies for characterizing the tumor microenvironment in immuno-oncology. Front Immunol 2022; 13:996721. [PMID: 36389765 PMCID: PMC9659855 DOI: 10.3389/fimmu.2022.996721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
Interpreting the mechanisms and principles that govern gene activity and how these genes work according to -their cellular distribution in organisms has profound implications for cancer research. The latest technological advancements, such as imaging-based approaches and next-generation single-cell sequencing technologies, have established a platform for spatial transcriptomics to systematically quantify the expression of all or most genes in the entire tumor microenvironment and explore an array of disease milieus, particularly in tumors. Spatial profiling technologies permit the study of transcriptional activity at the spatial or single-cell level. This multidimensional classification of the transcriptomic and proteomic signatures of tumors, especially the associated immune and stromal cells, facilitates evaluation of tumor heterogeneity, details of the evolutionary trajectory of each tumor, and multifaceted interactions between each tumor cell and its microenvironment. Therefore, spatial profiling technologies may provide abundant and high-resolution information required for the description of clinical-related features in immuno-oncology. From this perspective, the present review will highlight the importance of spatial transcriptomic and spatial proteomics analysis along with the joint use of other sequencing technologies and their implications in cancers and immune-oncology. In the near future, advances in spatial profiling technologies will undoubtedly expand our understanding of tumor biology and highlight possible precision therapeutic targets for cancer patients.
Collapse
Affiliation(s)
- Bian Hu
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Muhammad Sajid
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rong Lv
- Blood Transfusion Laboratory, Anhui Blood Center, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cheng Sun
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
45
|
Massa D, Tosi A, Rosato A, Guarneri V, Dieci MV. Multiplexed In Situ Spatial Protein Profiling in the Pursuit of Precision Immuno-Oncology for Patients with Breast Cancer. Cancers (Basel) 2022; 14:4885. [PMID: 36230808 PMCID: PMC9562913 DOI: 10.3390/cancers14194885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many solid tumors. In breast cancer (BC), immunotherapy is currently approved in combination with chemotherapy, albeit only in triple-negative breast cancer. Unfortunately, most patients only derive limited benefit from ICIs, progressing either upfront or after an initial response. Therapeutics must engage with a heterogeneous network of complex stromal-cancer interactions that can fail at imposing cancer immune control in multiple domains, such as in the genomic, epigenomic, transcriptomic, proteomic, and metabolomic domains. To overcome these types of heterogeneous resistance phenotypes, several combinatorial strategies are underway. Still, they can be predicted to be effective only in the subgroups of patients in which those specific resistance mechanisms are effectively in place. As single biomarker predictive performances are necessarily suboptimal at capturing the complexity of this articulate network, precision immune-oncology calls for multi-omics tumor microenvironment profiling in order to identify unique predictive patterns and to proactively tailor combinatorial treatments. Multiplexed single-cell spatially resolved tissue analysis, through precise epitope colocalization, allows one to infer cellular functional states in view of their spatial organization. In this review, we discuss-through the lens of the cancer-immunity cycle-selected, established, and emerging markers that may be evaluated in multiplexed spatial protein panels to help identify prognostic and predictive patterns in BC.
Collapse
Affiliation(s)
- Davide Massa
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Anna Tosi
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| |
Collapse
|
46
|
Inoue A, Watanabe M, Kondo T, Hirano S, Hatakeyama S. TRIM22 negatively regulates MHC-II expression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119318. [PMID: 35777501 DOI: 10.1016/j.bbamcr.2022.119318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The development of cancer treatment has recently achieved a remarkable breakthrough, and checkpoint blockade immunotherapy has received much attention. To enhance the therapeutic efficacy of checkpoint blockade immunotherapy, recent studies have revealed the importance of activation of CD4+ T cells via an increase in major histocompatibility complex (MHC) class II molecules in cancer cells. Here, we demonstrate that tripartite motif-containing (TRIM) 22, negatively regulates MHC-II expression. Gene knockout of TRIM22 using Cas9-sgRNAs led to an increase of MHC-II proteins, while TRIM22 overexpression remarkably decreased MHC-II proteins. mRNA levels of MHC-II and class II transactivator (CIITA), which plays an essential role in the regulation of MHC-II transcription, were not affected by TRIM22. Furthermore, TRIM22 knockout did not suppress the degradation of MHC-II protein but rather promoted it. These results suggest that TRIM22 decreases MHC-II protein levels through a combination of multiple mechanisms other than transcription or degradation. We showed that inhibition of TRIM22 can increase the amount of MHC-II expression in cancer cells, suggesting a possibility of providing the biological basis for a possible therapeutic target to potentiate checkpoint blockade immunotherapy.
Collapse
Affiliation(s)
- Ayano Inoue
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan; Department of Gastroenterological Surgery II, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Masashi Watanabe
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
47
|
Hendricks SA, King JL, Duncan CL, Vickers W, Hohenlohe PA, Davis BW. Genomic Assessment of Cancer Susceptibility in the Threatened Catalina Island Fox ( Urocyon littoralis catalinae). Genes (Basel) 2022; 13:1496. [PMID: 36011407 PMCID: PMC9408614 DOI: 10.3390/genes13081496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 12/12/2022] Open
Abstract
Small effective population sizes raise the probability of extinction by increasing the frequency of potentially deleterious alleles and reducing fitness. However, the extent to which cancers play a role in the fitness reduction of genetically depauperate wildlife populations is unknown. Santa Catalina island foxes (Urocyon littoralis catalinae) sampled in 2007-2008 have a high prevalence of ceruminous gland tumors, which was not detected in the population prior to a recent bottleneck caused by a canine distemper epidemic. The disease appears to be associated with inflammation from chronic ear mite (Otodectes) infections and secondary elevated levels of Staphyloccus pseudointermedius bacterial infections. However, no other environmental factors to date have been found to be associated with elevated cancer risk in this population. Here, we used whole genome sequencing of the case and control individuals from two islands to identify candidate loci associated with cancer based on genetic divergence, nucleotide diversity, allele frequency spectrum, and runs of homozygosity. We identified several candidate loci based on genomic signatures and putative gene functions, suggesting that cancer susceptibility in this population may be polygenic. Due to the efforts of a recovery program and weak fitness effects of late-onset disease, the population size has increased, which may allow selection to be more effective in removing these presumably slightly deleterious alleles. Long-term monitoring of the disease alleles, as well as overall genetic diversity, will provide crucial information for the long-term persistence of this threatened population.
Collapse
Affiliation(s)
- Sarah A. Hendricks
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Julie L. King
- Catalina Island Conservancy, P.O. Box 2739, Avalon, CA 90704, USA
| | - Calvin L. Duncan
- Catalina Island Conservancy, P.O. Box 2739, Avalon, CA 90704, USA
| | - Winston Vickers
- Institute for Wildlife Studies, Arcata, CA 95521, USA
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Paul A. Hohenlohe
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX 77840, USA
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX 77840, USA
| |
Collapse
|
48
|
Lamberti MJ, Montico B, Ravo M, Nigro A, Giurato G, Iorio R, Tarallo R, Weisz A, Stellato C, Steffan A, Dolcetti R, Casolaro V, Faè DA, Dal Col J. Integration of miRNA:mRNA Co-Expression Revealed Crucial Mechanisms Modulated in Immunogenic Cancer Cell Death. Biomedicines 2022; 10:biomedicines10081896. [PMID: 36009442 PMCID: PMC9405340 DOI: 10.3390/biomedicines10081896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
Immunogenic cell death (ICD) in cancer represents a functionally unique therapeutic response that can induce tumor-targeting immune responses. ICD is characterized by the exposure and release of numerous damage-associated molecular patterns (DAMPs), which confer adjuvanticity to dying cancer cells. The spatiotemporally defined emission of DAMPs during ICD has been well described, whereas the epigenetic mechanisms that regulate ICD hallmarks have not yet been deeply elucidated. Here, we aimed to examine the involvement of miRNAs and their putative targets using well-established in vitro models of ICD. To this end, B cell lymphoma (Mino) and breast cancer (MDA-MB-231) cell lines were exposed to two different ICD inducers, the combination of retinoic acid (RA) and interferon-alpha (IFN-α) and doxorubicin, and to non ICD inducers such as gamma irradiation. Then, miRNA and mRNA profiles were studied by next generation sequencing. Co-expression analysis identified 16 miRNAs differentially modulated in cells undergoing ICD. Integrated miRNA-mRNA functional analysis revealed candidate miRNAs, mRNAs, and modulated pathways associated with Immune System Process (GO Term). Specifically, ICD induced a distinctive transcriptional signature hallmarked by regulation of antigen presentation, a crucial step for proper activation of immune system antitumor response. Interestingly, the major histocompatibility complex class I (MHC-I) pathway was upregulated whereas class II (MHC-II) was downregulated. Analysis of MHC-II associated transcripts and HLA-DR surface expression confirmed inhibition of this pathway by ICD on lymphoma cells. miR-4284 and miR-212-3p were the strongest miRNAs upregulated by ICD associated with this event and miR-212-3p overexpression was able to downregulate surface expression of HLA-DR. It is well known that MHC-II expression on tumor cells facilitates the recruitment of CD4+ T cells. However, the interaction between tumor MHC-II and inhibitory coreceptors on tumor-associated lymphocytes could provide an immunosuppressive signal that directly represses effector cytotoxic activity. In this context, MHC-II downregulation by ICD could enhance antitumor immunity. Overall, we found that the miRNA profile was significantly altered during ICD. Several miRNAs are predicted to be involved in the regulation of MHC-I and II pathways, whose implication in ICD is demonstrated herein for the first time, which could eventually modulate tumor recognition and attack by the immune system.
Collapse
Affiliation(s)
- María Julia Lamberti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
- INBIAS, CONICET-UNRC, Río Cuarto, Córdoba 5800, Argentina
- Correspondence: (M.J.L.); (J.D.C.); Tel.: +54-358-4676437 (M.J.L.); +39-089-965210 (J.D.C.)
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, PN, Italy
| | - Maria Ravo
- Genomix Life Srl, 84081 Baronissi, SA, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | | | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, PN, Italy
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Damiana Antonia Faè
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, PN, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
- Correspondence: (M.J.L.); (J.D.C.); Tel.: +54-358-4676437 (M.J.L.); +39-089-965210 (J.D.C.)
| |
Collapse
|
49
|
Yao L, Jia G, Lu L, Ma W. Breast Cancer Patients: Who Would Benefit from Neoadjuvant Chemotherapies? Curr Oncol 2022; 29:4902-4913. [PMID: 35877249 PMCID: PMC9320700 DOI: 10.3390/curroncol29070389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
Neoadjuvant chemotherapy (NACT) was developed with the aims of shrinking tumors or stopping cancer cells from spreading before surgery. Unfortunately, not all breast cancer patients will benefit from NACT, and thus, patients must weigh the risks and benefits of treatment prior to the initiation of therapy. Currently, the data for predicting the efficacy of NACT is limited. Molecular testing, such as Oncotype DX, MammaPrint, and Curebest 95GC, have been developed to assist which breast cancer patients will benefit from the treatment. Patients with an increased level of Human Leukocyte Antigen-DR isotype, tumor-infiltrating lymphocytes, Fizzy-related protein homolog, and a decreased level of tumor-associated macrophages appear to benefit most from NACT.
Collapse
Affiliation(s)
- Liqin Yao
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Huzhou University, Huzhou 313000, China;
| | - Gang Jia
- Department of Medical Oncology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China;
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, School of Medicine, Yale School of Public Health, New Haven, CT 06520, USA;
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT 06520, USA
- Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
| | - Wenxue Ma
- Sanford Stem Cell Clinical Center, Moores Cancer Center, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
50
|
Primary and Acquired Resistance against Immune Check Inhibitors in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14143294. [PMID: 35884355 PMCID: PMC9316464 DOI: 10.3390/cancers14143294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary NSCLC accounts for approximately 84% of lung malignancies and the clinical application of ICIs provides a novel and promising strategy. However, approximately 80% of NSCLC patients do not benefit from ICIs due to drug resistance complicated by disciplines and diverse mechanisms. Through this review, we provide a whole map of current understanding of primary and acquired resistance mechanisms in NSCLC. In the first part, resistance mechanisms of 6 FDA-approved ICIs-related primary resistance are collected and arranged into 7 steps of the well-known cancer-immunity cycle. Acquired resistance induced by ICIs are summarized in the second part. In the third part, we discuss the future direction, including the deeper understanding of tumor microenvironment and the combinational treatment. Through this review, clinicians can get clear and direct clues to find the underlying mechanisms in patients and translational researchers can acquire several directions to overcome resistance and apply new combinational treatment. Abstract Immune checkpoint inhibitors have emerged as the treatment landscape of advanced non-small cell lung cancer (NSCLC) in recent years. However, approximately 80% of NSCLC patients do not benefit from ICIs due to primary resistance (no initial response) or acquired resistance (tumor relapse after an initial response). In this review, we highlight the mechanisms of primary and secondary resistance. Furthermore, we provide a future direction of the potential predictive biomarkers and the tumor microenvironmental landscape and suggest treatment strategies to overcome these mechanisms.
Collapse
|