1
|
Li H, Ju B, Luo J, Zhu L, Zhang J, Hu N, Mo L, Wang Y, Tian J, Li Q, Du X, Liu X, He L. Type I interferon-stimulated genes predict clinical response to belimumab in systemic lupus erythematosus. Eur J Pharmacol 2025; 987:177204. [PMID: 39672224 DOI: 10.1016/j.ejphar.2024.177204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The type I interferon (IFN-I) response is crucial in systemic lupus erythematosus (SLE). The mRNA level of interferon-stimulated genes (ISGs) is widely used for evaluating the activity of IFN in SLE. However, the character of ISGs in belimumab-treated SLE patients has not be reported. In this study, we enrolled 53 SLE patients undergoing belimumab treatment and assessed their clinical responses at 3, 6, and 12 months. The expression levels of 25 ISGs in Peripheral blood mononuclear cells (PBMCs) were quantified at baseline and at 3 months using quantitative real-time PCR. Using Least absolute shrinkage and selection operator (LASSO)-logistic regression, five genes (CXCL10, EPSTI1, HECR6, IFI27, IFIH1) were identified to predict belimumab efficacy. The IFN signature score, a multivariate logistic regression model based on the change rates of these genes, positively predicted the SLE responder index (SRI) at 12 months, with an area under curve of 0.940 in receiver operating characteristic and favorable outcomes in decision curve analysis. Patients with an IFN signature score ≥0 had higher SRI response rates, better clinical markers (including SLE disease activity index 2000 scores, anti-dsDNA, IgG levels, daily doses of prednisone, and higher complement C3 and C4 levels), and faster B cell decline than those with scores <0. In conclusion, after 3 months of belimumab treatment, the expression levels of IFN-I-inducible genes varied, and the IFN signature score reliably forecasted the SRI response at 6 and 12 months.
Collapse
Affiliation(s)
- Hanchao Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Bomiao Ju
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jing Luo
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Li Zhu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jing Zhang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nan Hu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Lingfei Mo
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yanhua Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Juan Tian
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Qian Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xinru Du
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xinyi Liu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Lan He
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China.
| |
Collapse
|
2
|
La Gualana F, Olivieri G, Petriti B, Picciariello L, Natalucci F, Sciannamea M, Gragnani L, Basile U, Casato M, Spinelli FR, Stefanini L, Basili S, Visentini M, Ceccarelli F, Conti F. Early decrease of T-bet + B cells during subcutaneous belimumab predicts response to therapy in systemic lupus erythematosus patients. Immunol Lett 2024; 272:106962. [PMID: 39643119 DOI: 10.1016/j.imlet.2024.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Systemic lupus erythematosus (SLE) is characterized by B cell dysregulation and expansion of atypical B cells that may correlate with disease manifestations and activity. This study investigated the impact of subcutaneous (sc) Belimumab (BLM) on the peripheral B cell compartment and on the functional properties of CD21low, T-bet+ and CD11c+ atypical B cells, in 21 active SLE patients over a 12-month period. At baseline, active SLE patients displayed reduced unswitched IgM memory B cells and expansion of atypical B cells, compared to healthy donors and to SLE patients in remission. sc BLM therapy promptly restored B cell homeostasis with a reduction of T-bet+ B cells, observed early in patients responsive to therapy. These findings highlight the pathogenic role of T-bet+ B cells in SLE disease and suggest their potential utility as biomarker of clinical response.
Collapse
Affiliation(s)
- Francesca La Gualana
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Giulio Olivieri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Begi Petriti
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Licia Picciariello
- Lupus Clinic, Rheumatology, Dipartimento di Scienze Cliniche Internistiche Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Viale del Policlinico 155 00161 Rome, Italy
| | - Francesco Natalucci
- Lupus Clinic, Rheumatology, Dipartimento di Scienze Cliniche Internistiche Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Viale del Policlinico 155 00161 Rome, Italy
| | - Maddalena Sciannamea
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Laura Gragnani
- Department of Translational Research and New Technologies in Medicine and Surgery, Medical School, University of Pisa, Pisa, Italy
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti HospitalAUSL Latina, Latina, Italy
| | - Milvia Casato
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Francesca Romana Spinelli
- Lupus Clinic, Rheumatology, Dipartimento di Scienze Cliniche Internistiche Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Viale del Policlinico 155 00161 Rome, Italy
| | - Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Marcella Visentini
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy.
| | - Fulvia Ceccarelli
- Lupus Clinic, Rheumatology, Dipartimento di Scienze Cliniche Internistiche Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Viale del Policlinico 155 00161 Rome, Italy
| | - Fabrizio Conti
- Lupus Clinic, Rheumatology, Dipartimento di Scienze Cliniche Internistiche Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Viale del Policlinico 155 00161 Rome, Italy
| |
Collapse
|
3
|
Qian S, Long Y, Tan G, Li X, Xiang B, Tao Y, Xie Z, Zhang X. Programmed cell death: molecular mechanisms, biological functions, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e70024. [PMID: 39619229 PMCID: PMC11604731 DOI: 10.1002/mco2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
Programmed cell death represents a precisely regulated and active cellular demise, governed by a complex network of specific genes and proteins. The identification of multiple forms of programmed cell death has significantly advanced the understanding of its intricate mechanisms, as demonstrated in recent studies. A thorough grasp of these processes is essential across various biological disciplines and in the study of diseases. Nonetheless, despite notable progress, the exploration of the relationship between programmed cell death and disease, as well as its clinical application, are still in a nascent stage. Therefore, further exploration of programmed cell death and the development of corresponding therapeutic methods and strategies holds substantial potential. Our review provides a detailed examination of the primary mechanisms behind apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Following this, the discussion delves into biological functions and diseases associated dysregulated programmed cell death. Finally, we highlight existing and potential therapeutic targets and strategies focused on cancers and neurodegenerative diseases. This review aims to summarize the latest insights on programmed cell death from mechanisms to diseases and provides a more reliable approach for clinical transformation.
Collapse
Affiliation(s)
- Shen'er Qian
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yao Long
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Guolin Tan
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Xiaoguang Li
- Department of Otolaryngology Head and Neck SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of Medicine, Shanghai Key LabShanghaiChina
| | - Bo Xiang
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
- Furong LaboratoryCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Zuozhong Xie
- Department of Otolaryngology Head and Neck SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaowei Zhang
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
4
|
Kardani AK, Fitri LE, Samsu N, Subandiyah K. Forging the Future: B Cell Activating Factor's Impact on Nephrotic Syndrome. Malays J Med Sci 2024; 31:57-64. [PMID: 39830109 PMCID: PMC11740809 DOI: 10.21315/mjms2024.31.6.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 01/22/2025] Open
Abstract
Nephrotic syndrome is the most common glomerular disease in children. While the exact pathogenesis of nephrotic syndrome is not fully understood, recent research has shed light on some of the underlying mechanisms involved in it. Improvement by B cell depletion therapy using antiCD20 in nephrotic syndrome has led to a paradigm shift from immunoinflammatory disease influenced by T cell dysregulation to B cell involvement in the pathogenesis of nephrotic syndrome. The expression of the B cell activating factor (BAFF), an essential cytokine for the maturation and differentiation of B lymphocytes, in the podocytes of paediatric patients with nephrotic syndrome is known to be associated with worse renal outcomes. The pro-inflammatory cytokines and pathogenic antibodies produced by B cells allegedly cause podocyte injury leading to proteinuria due to effacement of foot processes. Considering the role of the BAFF in B cell proliferation and antibody production, BAFF signalling is a potential target for development as targeted therapy in nephrotic syndrome. Nevertheless, there is limited research regarding the role of BAFF in nephrotic syndrome, and the exact mechanism of BAFF involvement in the pathogenesis of nephrotic syndrome is still unknown. This review discusses the role of the BAFF in the pathogenesis of nephrotic syndrome and highlights the gap of knowledge for future research.
Collapse
Affiliation(s)
- Astrid Kristina Kardani
- Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Nephrology Division, Department of Paediatric, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Loeki Enggar Fitri
- Department of Clinical Parasitology, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Nur Samsu
- Nephrology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Krisni Subandiyah
- Nephrology Division, Department of Paediatric, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, Indonesia
| |
Collapse
|
5
|
Martin J, Cheng Q, Laurent SA, Thaler FS, Beenken AE, Meinl E, Krönke G, Hiepe F, Alexander T. B-Cell Maturation Antigen (BCMA) as a Biomarker and Potential Treatment Target in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:10845. [PMID: 39409173 PMCID: PMC11476889 DOI: 10.3390/ijms251910845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The BAFF-APRIL system is crucial for the pathogenesis of systemic lupus erythematosus (SLE) by promoting B cell survival, differentiation and the maintenance of humoral autoimmunity. Here, we investigated the relationship of BCMA expression on B cell subsets with its ligands BAFF and APRIL, together with soluble BCMA, and with clinical and serologic variables in a cohort of 100 SLE patients (86 under conventional and 14 under belimumab therapy) and 30 healthy controls (HCs) using multicolor flow cytometry and ELISA. We found that BCMA expression in SLE patients was significantly increased on all B cell subsets compared to HCs, with all examined components of the BAFF-APRIL system being upregulated. BCMA expression was significantly increased on switched and unswitched memory B cells compared to naïve B cells, both in HCs and SLE. BCMA expression on B cells correlated with plasmablast frequencies, serum anti-dsDNA antibodies and complement consumption, while soluble BCMA correlated with plasmablast frequency, highlighting its potential as a clinical biomarker. Belimumab treatment significantly reduced BCMA expression on most B cell subsets and soluble TACI and contributed to the inhibition of almost the entire BAFF-APRIL system and restoration of B cell homeostasis. These results provide insights into the complex dysregulation of the BAFF-APRIL system in SLE and highlight the therapeutic potential of targeting its components, particularly BCMA, in addition to its use as a biomarker for disease activity.
Collapse
MESH Headings
- Humans
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/blood
- B-Cell Maturation Antigen/metabolism
- B-Cell Maturation Antigen/immunology
- Biomarkers/blood
- Female
- Adult
- Male
- B-Cell Activating Factor/blood
- B-Cell Activating Factor/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 13/blood
- Middle Aged
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Antinuclear/blood
- Antibodies, Antinuclear/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocyte Subsets/metabolism
- B-Lymphocyte Subsets/immunology
- Case-Control Studies
Collapse
Affiliation(s)
- Jonas Martin
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Qingyu Cheng
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Sarah A. Laurent
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany (F.S.T.); (E.M.)
| | - Franziska S. Thaler
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany (F.S.T.); (E.M.)
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Anne Elisabeth Beenken
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany (F.S.T.); (E.M.)
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Gerhard Krönke
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Falk Hiepe
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| |
Collapse
|
6
|
Bang SY, Suh-Yun Joh C, Itamiya T, Jeong S, Lee JH, Kwon H, Jin H, Jung J, Chung H, Lee BH, Gong JR, Ishigaki K, Fujio K, Bae SC, Je Kim H, Lee HS. Unveiling the dynamics of B lymphocytes in systemic lupus erythematosus patients treated with belimumab through longitudinal single-cell RNA sequencing. Rheumatology (Oxford) 2024:keae364. [PMID: 39037931 DOI: 10.1093/rheumatology/keae364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
OBJECTIVES Unraveling the mechanisms underlying treatment response for targeted therapeutics in systemic lupus erythematosus (SLE) patients is challenging due to the limited understanding of diverse responses of circulating immune cells, particularly B cells. We investigated B lymphocyte dynamics during anti-BAFF treatment, utilizing longitudinal single-cell transcriptome data. METHODS We conducted single-cell RNA sequencing on PBMCs in four Korean SLE patients before and after belimumab treatment at the following time points: 2 weeks, 1, 3, 6, and 12 months. RESULTS Analyzing over 73 000 PBMCs, we identified 8 distinct subsets of B cells and plasmablasts and analyzed dynamic changes within these cell subsets: initial declines in naive and transitional B cells followed by an increase at three months, contrasted by an initial increase and subsequent decrease in memory B cells by the third month. Meanwhile, plasmablasts exhibited a consistent decline throughout treatment. B cell activation pathways, specifically in naive and memory B cells, were downregulated during the third and sixth months. These findings were validated at the protein level throughout the first four weeks of treatment using flow cytometry. Comparative analysis with bulk transcriptome data from 22 Japanese SLE patients showed increased NR4A1 expression six months post-belimumab treatment, indicating its role in restricting self-reactive B cells, thereby contributing to the biological responses of anti-BAFF treatment. CONCLUSION The observed B cell dynamics provided insights into the immunological mechanisms underlying the therapeutic effects of anti-BAFF in SLE patients. Furthermore, it underscores the need for research in predicting drug responses based on immune profiling.
Collapse
Affiliation(s)
- So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases and Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| | - Christine Suh-Yun Joh
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Takahiro Itamiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, University of Tokyo, Japan
| | - Soyoung Jeong
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Jung-Ho Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Haeyoon Kwon
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunjin Jin
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jaewon Jung
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Hyeyeon Chung
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Brian H Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Jeong-Ryul Gong
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kazuyoshi Ishigaki
- RIKEN Center for Integrative Medical Sciences, Laboratory for Human Immunogenetics, Yokohama, Kanagawa, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases and Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| | - Hyun Je Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Genomic Medicine Institute, Seoul National University, Seoul, South Korea
- Seoul National University, South KoreaHospital, Seoul
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases and Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| |
Collapse
|
7
|
Armstrong D, Chang CY, Hong MJ, Green L, Hudson W, Shen Y, Song LZ, Jammi S, Casal B, Creighton CJ, Carisey A, Zhang XHF, McKenna NJ, Kang SW, Lee HS, Corry DB, Kheradmand F. MAGE-A4-Responsive Plasma Cells Promote Non-Small Cell Lung Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602985. [PMID: 39071307 PMCID: PMC11275715 DOI: 10.1101/2024.07.10.602985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Adaptive immunity is critical to eliminate malignant cells, while multiple tumor-intrinsic factors can alter this protective function. Melanoma antigen-A4 (MAGE-A4), a cancer-testis antigen, is expressed in several solid tumors and correlates with poor survival in non-small cell lung cancer (NSCLC), but its role in altering antitumor immunity remains unclear. We found that expression of MAGE-A4 was highly associated with the loss of PTEN , a tumor suppressor, in human NSCLC. Here we show that constitutive expression of human MAGE-A4 combined with the loss of Pten in mouse airway epithelial cells results in metastatic adenocarcinoma enriched in CD138 + CXCR4 + plasma cells, predominantly expressing IgA. Consistently, human NSCLC expressing MAGE-A4 showed increased CD138 + IgA + plasma cell density surrounding tumors. The abrogation of MAGE-A4-responsive plasma cells (MARPs) decreased tumor burden, increased T cell infiltration and activation, and reduced CD163 + CD206 + macrophages in mouse lungs. These findings suggest MAGE-A4 promotes NSCLC tumorigenesis, in part, through the recruitment and retention of IgA + MARPs in the lungs.
Collapse
|
8
|
Chavan SV, Desikan S, Roman CAJ, Huan C. PKCδ Protects against Lupus Autoimmunity. Biomedicines 2024; 12:1364. [PMID: 38927570 PMCID: PMC11202175 DOI: 10.3390/biomedicines12061364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Protein kinase C delta (PKCδ) has emerged as a key protective molecule against systemic lupus erythematosus (SLE or lupus), an autoimmune disease characterized by anti-double stranded (ds) DNA IgGs. Although PKCδ-deficient mice and lupus patients with mutated PRKCD genes clearly demonstrate the requirement for PKCδ in preventing lupus autoimmunity, this critical tolerance mechanism remains poorly understood. We recently reported that PKCδ acts as a key regulator of B cell tolerance by selectively deleting anti-dsDNA B cells in the germinal center (GC). PKCδ's tolerance function is activated by sphingomyelin synthase 2 (SMS2), a lipid enzyme whose expression is generally reduced in B cells from lupus patients. Moreover, pharmacologic strengthening of the SMS2/PKCδ tolerance pathway alleviated lupus pathogenesis in mice. Here, we review relevant publications in order to provide mechanistic insights into PKCδ's tolerance activity and discuss the potential significance of therapeutically targeting PKCδ's tolerance activity in the GC for selectively inhibiting lupus autoimmunity.
Collapse
Affiliation(s)
- Sailee Vijay Chavan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.V.C.); (S.D.)
| | - Shreya Desikan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.V.C.); (S.D.)
| | - Christopher A J Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Chongmin Huan
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| |
Collapse
|
9
|
Möckel T, Boegel S, Schwarting A. Transcriptome Analysis of BAFF/BAFF-R System in Murine Nephrotoxic Serum Nephritis. Int J Mol Sci 2024; 25:5415. [PMID: 38791453 PMCID: PMC11121395 DOI: 10.3390/ijms25105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is an emerging cause for morbidity and mortality worldwide. Acute kidney injury (AKI) can transition to CKD and finally to end-stage renal disease (ESRD). Targeted treatment is still unavailable. NF-κB signaling is associated with CKD and activated by B cell activating factor (BAFF) via BAFF-R binding. In turn, renal tubular epithelial cells (TECs) are critical for the progression of fibrosis and producing BAFF. Therefore, the direct involvement of the BAFF/BAFF-R system to the pathogenesis of CKD is conceivable. We performed non-accelerated nephrotoxic serum nephritis (NTN) as the CKD model in BAFF KO (B6.129S2-Tnfsf13btm1Msc/J), BAFF-R KO (B6(Cg)-Tnfrsf13ctm1Mass/J) and wildtype (C57BL/6J) mice to analyze the BAFF/BAFF-R system in anti-glomerular basement membrane (GBM) disease using high throughput RNA sequencing. We found that BAFF signaling is directly involved in the upregulation of collagen III as BAFF ko mice showed a reduced expression. However, these effects were not mediated via BAFF-R. We identified several upregulated genes that could explain the effects of BAFF in chronic kidney injury such as Txnip, Gpx3, Igfbp7, Ccn2, Kap, Umod and Ren1. Thus, we conclude that targeted treatment with anti-BAFF drugs such as belimumab may reduce chronic kidney damage. Furthermore, upregulated genes may be useful prognostic CKD biomarkers.
Collapse
Affiliation(s)
- Tamara Möckel
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.M.); (S.B.)
| | - Sebastian Boegel
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.M.); (S.B.)
| | - Andreas Schwarting
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.M.); (S.B.)
- Center for Rheumatic Disease Rhineland-Palatinate GmbH, 55543 Bad Kreuznach, Germany
| |
Collapse
|
10
|
Marder G, Quach T, Chadha P, Nandkumar P, Tsang J, Levine T, Schiopu E, Furie R, Davidson A, Narain S. Belimumab treatment of adult idiopathic inflammatory myopathy. Rheumatology (Oxford) 2024; 63:742-750. [PMID: 37326854 PMCID: PMC10907809 DOI: 10.1093/rheumatology/kead281] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE To evaluate belimumab addition to the standard of care in patents with refractory idiopathic inflammatory myopathy (IIM). METHODS We conducted a 40-week multicentre, randomized, double-blind, placebo-controlled trial with 1:1 IV belimumab 10 mg/kg or placebo randomization and a 24-week open-label extension. Clinical responses were measured by the definition of improvement (DOI) and total improvement score (TIS). Flow cytometry analyses were performed on available samples before randomization, at 24 and 60-64 weeks. Descriptive statistics, t-test, Fisher's exact test and analysis of variance tests were used. RESULTS A total of 17 patients were randomized, 15 received five or more doses of belimumab or placebo and were included in the intention-to-treat analysis. More belimumab patients vs placebo attained a TIS ≥40 [55.5% vs 33.3%; P = non-significant (NS)] and achieved the DOI (33.3% vs 16.7%; P = NS) at weeks 40 and 64; the mean TIS was similar among groups. Two patients achieved major responses (TIS = 72.5) after week 40 in the belimumab arm and none in the placebo arm. No improvement in the placebo arm after switching to the open-label phase was observed. There was no steroid-sparing effect. No new safety signals were detected. Although total B cells were not reduced, belimumab induced naïve B cell depletion while enhancing the number and frequency memory B cells. CONCLUSION The study did not meet the primary endpoint and no statistically significant differences were observed in clinical responses between arms. More patients achieved sustained TIS ≥40 and reached the DOI. Most patients who received belimumab for >40 weeks had clinical improvement. Phenotypic changes in B cell populations were not associated with clinical responses. CLINICAL TRIAL REGISTRATION NUMBER Clinicaltrials.gov (https://clinicaltrials.gov/), NCT02347891.
Collapse
Affiliation(s)
- Galina Marder
- Division of Rheumatology, Northwell Health, Donald and Barbara Zucker School of Medicine, Great Neck, NY, USA
| | - Tam Quach
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Priyal Chadha
- Division of Rheumatology, Northwell Health, Donald and Barbara Zucker School of Medicine, Great Neck, NY, USA
| | - Preeya Nandkumar
- Division of Rheumatology, Northwell Health, Donald and Barbara Zucker School of Medicine, Great Neck, NY, USA
| | - Jimmy Tsang
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Todd Levine
- Phoenix Neurological Associates, Phoenix, AZ, USA
| | - Elena Schiopu
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| | - Richard Furie
- Division of Rheumatology, Northwell Health, Donald and Barbara Zucker School of Medicine, Great Neck, NY, USA
| | - Anne Davidson
- Division of Rheumatology, Northwell Health, Donald and Barbara Zucker School of Medicine, Great Neck, NY, USA
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sonali Narain
- Division of Rheumatology, Northwell Health, Donald and Barbara Zucker School of Medicine, Great Neck, NY, USA
| |
Collapse
|
11
|
Ullah MA, Garcillán B, Whitlock E, Figgett WA, Infantino S, Eslami M, Yang S, Rahman MA, Sheng YH, Weber N, Schneider P, Tam CS, Mackay F. An unappreciated cell survival-independent role for BAFF initiating chronic lymphocytic leukemia. Front Immunol 2024; 15:1345515. [PMID: 38469292 PMCID: PMC10927009 DOI: 10.3389/fimmu.2024.1345515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Background Chronic Lymphocytic Leukemia (CLL) is characterized by the expansion of CD19+ CD5+ B cells but its origin remains debated. Mutated CLL may originate from post-germinal center B cells and unmutated CLL from CD5+ mature B cell precursors. Irrespective of precursor types, events initiating CLL remain unknown. The cytokines BAFF and APRIL each play a significant role in CLL cell survival and accumulation, but their involvement in disease initiation remains unclear. Methods We generated novel CLL models lacking BAFF or APRIL. In vivo experiments were conducted to explore the impact of BAFF or APRIL loss on leukemia initiation, progression, and dissemination. Additionally, RNA-seq and quantitative real-time PCR were performed to unveil the transcriptomic signature influenced by BAFF in CLL. The direct role of BAFF in controlling the expression of tumor-promoting genes was further assessed in patient-derived primary CLL cells ex-vivo. Results Our findings demonstrate a crucial role for BAFF, but not APRIL, in the initiation and dissemination of CLL cells. In the absence of BAFF or its receptor BAFF-R, the TCL1 transgene only increases CLL cell numbers in the peritoneal cavity, without dissemination into the periphery. While BAFF binding to BAFF-R is dispensable for peritoneal CLL cell survival, it is necessary to activate a tumor-promoting gene program, potentially linked to CLL initiation and progression. This direct role of BAFF in controlling the expression of tumor-promoting genes was confirmed in patient-derived primary CLL cells ex-vivo. Conclusions Our study, involving both mouse and human CLL cells, suggests that BAFF might initiate CLL through mechanisms independent of cell survival. Combining current CLL therapies with BAFF inhibition could offer a dual benefit by reducing peripheral tumor burden and suppressing transformed CLL cell output.
Collapse
Affiliation(s)
- Md Ashik Ullah
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - Beatriz Garcillán
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Eden Whitlock
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - William A. Figgett
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Garvan Institute of Medical Research, Kinghorn Centre for Clinical Genomics, Darlinghurst, NSW, Australia
| | - Simona Infantino
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Mahya Eslami
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland
| | - SiLing Yang
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - M. Arifur Rahman
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - Yong H. Sheng
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - Nicholas Weber
- Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
| | - Pascal Schneider
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Constantine S. Tam
- Department of Haematology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Haematology, Monash University, Melbourne, VIC, Australia
| | - Fabienne Mackay
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Department of Immunology and Pathology, Monash University, VIC, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Lin YC, Gau TS, Jiang ZH, Chen KY, Tsai YT, Lin KY, Tung HN, Chang FC. Targeted therapy in glomerular diseases. J Formos Med Assoc 2024; 123:149-158. [PMID: 37442744 DOI: 10.1016/j.jfma.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/14/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Targeted therapy has emerged as a more precise approach to treat glomerular diseases, focusing on specific molecular or cellular processes that contribute to disease development or progression. This approach complements or replaces traditional immunosuppressive therapy, optimizes supportive care, and provides a more personalized treatment strategy. In this review, we summarize the evolving understanding of pathogenic mechanisms in immune-mediated glomerular diseases and the developing targeted therapies based on these mechanisms. We begin by discussing pan-B-cell depletion, anti-CD20 rituximab, and targeting B-cell survival signaling through the BAFF/APRIL pathway. We also exam specific plasma cell depletion with anti-CD38 antibody. We then shift our focus to complement activation in glomerular diseases, which is involved in antibody-mediated glomerular diseases, such as IgA nephropathy, membranous nephropathy, ANCA-associated vasculitis, and lupus nephritis. Non-antibody-mediated complement activation occurs in glomerular diseases, including C3 glomerulopathy, complement-mediated atypical hemolytic uremic syndrome, and focal segmental glomerulosclerosis. We discuss specific inhibition of terminal, lectin, and alternative pathways in different glomerular diseases. Finally, we summarize current clinical trials targeting the final pathways of various glomerular diseases, including kidney fibrosis. We conclude that targeted therapy based on individualized pathogenesis should be the future of treating glomerular diseases.
Collapse
Affiliation(s)
- Yi-Chan Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tyng-Shiuan Gau
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Zheng-Hong Jiang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuan-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ting Tsai
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuan-Yu Lin
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hung-Ning Tung
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fan-Chi Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
13
|
Wang Q, Feng D, Jia S, Lu Q, Zhao M. B-Cell Receptor Repertoire: Recent Advances in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:76-98. [PMID: 38459209 DOI: 10.1007/s12016-024-08984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
In the field of contemporary medicine, autoimmune diseases (AIDs) are a prevalent and debilitating group of illnesses. However, they present extensive and profound challenges in terms of etiology, pathogenesis, and treatment. A major reason for this is the elusive pathophysiological mechanisms driving disease onset. Increasing evidence suggests the indispensable role of B cells in the pathogenesis of autoimmune diseases. Interestingly, B-cell receptor (BCR) repertoires in autoimmune diseases display a distinct skewing that can provide insights into disease pathogenesis. Over the past few years, advances in high-throughput sequencing have provided powerful tools for analyzing B-cell repertoire to understand the mechanisms during the period of B-cell immune response. In this paper, we have provided an overview of the mechanisms and analytical methods for generating BCR repertoire diversity and summarize the latest research progress on BCR repertoire in autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren's syndrome (pSS), multiple sclerosis (MS), and type 1 diabetes (T1D). Overall, B-cell repertoire analysis is a potent tool to understand the involvement of B cells in autoimmune diseases, facilitating the creation of innovative therapeutic strategies targeting specific B-cell clones or subsets.
Collapse
Affiliation(s)
- Qian Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Delong Feng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
14
|
Yuuki H, Itamiya T, Nagafuchi Y, Ota M, Fujio K. B cell receptor repertoire abnormalities in autoimmune disease. Front Immunol 2024; 15:1326823. [PMID: 38361948 PMCID: PMC10867955 DOI: 10.3389/fimmu.2024.1326823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
B cells play a crucial role in the immune response and contribute to various autoimmune diseases. Recent studies have revealed abnormalities in the B cell receptor (BCR) repertoire of patients with autoimmune diseases, with distinct features observed among different diseases and B cell subsets. Classically, BCR repertoire was used as an identifier of distinct antigen-specific clonotypes, but the recent advancement of analyzing large-scale repertoire has enabled us to use it as a tool for characterizing cellular biology. In this review, we provide an overview of the BCR repertoire in autoimmune diseases incorporating insights from our latest research findings. In systemic lupus erythematosus (SLE), we observed a significant skew in the usage of VDJ genes, particularly in CD27+IgD+ unswitched memory B cells and plasmablasts. Notably, autoreactive clones within unswitched memory B cells were found to be increased and strongly associated with disease activity, underscoring the clinical significance of this subset. Similarly, various abnormalities in the BCR repertoire have been reported in other autoimmune diseases such as rheumatoid arthritis. Thus, BCR repertoire analysis holds potential for enhancing our understanding of the underlying mechanisms involved in autoimmune diseases. Moreover, it has the potential to predict treatment effects and identify therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Hayato Yuuki
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Itamiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Huang T, Pi C, Xu X, Feng Y, Zhang J, Gu H, Fang J. Effect of BAFF blockade on the B cell receptor repertoire and transcriptome in a mouse model of systemic lupus erythematosus. Front Immunol 2024; 14:1307392. [PMID: 38264661 PMCID: PMC10803406 DOI: 10.3389/fimmu.2023.1307392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. Anti-B-cell-activating factor (BAFF) therapy effectively depletes B cells and reduces SLE disease activity. This research aimed to evaluate the effect of BAFF blockade on B cell receptor (BCR) repertoire and gene expression. Methods Through next-generation sequencing, we analyzed gene expression and BCR repertoire in MRL/lpr mice that received long-term anti-BAFF therapy. Based on gene expression profiles, we predicted the relative proportion of immune cells using ImmuCellAI-mouse, validating our predictions via flow cytometry and FluoroSpot. Results The loss of BCR repertoire diversity and richness, along with increased clonality and differential frequency distribution of the immunoglobulin heavy chain variable (IGHV) segment gene usage, were observed in BAFF-blockade mice. Meanwhile, the distribution of complementarity-determining region 3 (CDR3) length and CDR3 amino acid usage remained unaffected. BAFF blockade resulted in extensive changes in gene expression, particularly that of genes related to B cells and immunoglobulins. Besides, the tumor necrosis factor (TNF)-α responses and interferon (IFN)-α/γ were downregulated, consistent with the decrease in IFN-γ and TNF-α serum levels following anti-BAFF therapy. In addition, BAFF blockade significantly reduced B cell subpopulations and plasmacytoid dendritic cells, and caused the depletion of antibody-secreting cells. Discussion Our comparative BCR repertoire and transcriptome analyses of MRL/lpr mice subjected to BAFF blockade provide innovative insights into the molecular pathophysiology of SLE.
Collapse
Affiliation(s)
- Tao Huang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chenyu Pi
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoqing Xu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yan Feng
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jingming Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hua Gu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianmin Fang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
- Biomedical Research Center, Tongji University Suzhou Institute, Suzhou, Jiangsu, China
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Rubinstein A, Kudryavtsev I, Malkova A, Mammedova J, Isakov D, Isakova-Sivak I, Kudlay D, Starshinova A. Sarcoidosis-related autoimmune inflammation in COVID-19 convalescent patients. Front Med (Lausanne) 2023; 10:1271198. [PMID: 38179278 PMCID: PMC10765615 DOI: 10.3389/fmed.2023.1271198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Currently, there are a large number of reports about the development of autoimmune conditions after COVID-19. Also, there have been cases of sarcoid-like granulomas in convalescents as a part of the post-COVID-19 syndrome. Since one of the etiological theories of sarcoidosis considers it to be an autoimmune disease, we decided to study changes in the adaptive humoral immune response in sarcoidosis and SARS-CoV-2 infection and to find out whether COVID-19 can provoke the development of sarcoidosis. This review discusses histological changes in lymphoid organs in sarcoidosis and COVID-19, changes in B cell subpopulations, T-follicular helper cells (Tfh), and T-follicular regulatory cells (Tfr), and analyzes various autoantibodies detected in these pathologies. Based on the data studied, we concluded that SARS-CoV-2 infection may cause the development of autoimmune pathologies, in particular contributing to the onset of sarcoidosis in convalescents.
Collapse
Affiliation(s)
- Artem Rubinstein
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Annа Malkova
- Ariel University Faculty of Natural Sciences, Ariel, Israel
| | | | - Dmitry Isakov
- First Saint Petersburg State I. Pavlov Medical University, Saint Petersburg, Russia
| | | | - Dmitry Kudlay
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- NRC Institute of Immunology, Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Moscow, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
17
|
Ray ME, Rothstein TL. Human VH4-34 antibodies derived from B1 cells are more frequently autoreactive than VH4-34 antibodies derived from memory cells. Front Immunol 2023; 14:1259827. [PMID: 38162664 PMCID: PMC10754998 DOI: 10.3389/fimmu.2023.1259827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Human B1 cells produce natural antibodies characterized by overutilization of heavy chain variable region VH4-34 in comparison to other B cell populations. VH4-34-containing antibodies have been reported to be autoreactive and to be associated with lupus and other autoimmune dyscrasias. However, it has been unclear to what extent VH4-34 antibodies manifest autoreactivity in B1 cells or other B cell populations-in other words, are VH4-34 containing antibodies autoreactive wherever found, or mainly within the B1 cell population? To address this issue we sort purified single human B1 and memory B cells and then amplified, sequenced, cloned and expressed VH4-34-containing antibodies from 76 individual B cells. Each of these antibodies was tested for autoreactivity by HEp-2 IFA and autoantigen ELISA. Antibodies were scored as autoreactive if positive by either assay. We found VH4-34 antibodies rescued from B1 cells were much more frequently autoreactive (14/48) than VH4-34 antibodies rescued from memory B cells (2/28). Among B1 cell antibodies, 4 were HEp-2+, 6 were dsDNA+ and 4 were positive for both. Considering only HEp-2+ antibodies, again these were found more frequently among B1 cell VH4-34 antibodies (8/48) than memory B cell VH4-34 antibodies (1/28). We found autoreactivity was associated with greater CDR3 length, as expected; however, we found no association between autoreactivity and a previously described FR1 "hydrophobic patch". Our results indicate that autoreactive VH4-34-containing antibodies tend to reside within the human B1 cell population.
Collapse
Affiliation(s)
| | - Thomas L. Rothstein
- Center for Immunobiology and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
18
|
Ota M, Nakano M, Nagafuchi Y, Kobayashi S, Hatano H, Yoshida R, Akutsu Y, Itamiya T, Ban N, Tsuchida Y, Shoda H, Yamamoto K, Ishigaki K, Okamura T, Fujio K. Multimodal repertoire analysis unveils B cell biology in immune-mediated diseases. Ann Rheum Dis 2023; 82:1455-1463. [PMID: 37468219 DOI: 10.1136/ard-2023-224421] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVES Despite the involvement of B cells in the pathogenesis of immune-mediated diseases (IMDs), biological mechanisms underlying their function are scarcely understood. To overcome this gap, here we constructed and investigated a large-scale repertoire catalogue of five B cell subsets of patients with IMDs. METHODS We mapped B cell receptor regions from RNA sequencing data of sorted B cell subsets. Our dataset consisted of 595 donors under IMDs and health. We characterised the repertoire features from various aspects, including their association with immune cell transcriptomes and clinical features and their response to belimumab treatment. RESULTS Heavy-chain complementarity-determining region 3 (CDR-H3) length among naïve B cells was shortened among autoimmune diseases. Strong negative correlation between interferon signature strength and CDR-H3 length was observed in naïve B cells and suggested the role for interferon in premature B cell development. VDJ gene usage was skewed especially in plasmablasts and unswitched-memory B cells of patients with systemic lupus erythematosus (SLE). We developed a scoring system to quantify this skewing, and it positively correlated with peripheral helper T cell transcriptomic signatures and negatively correlated with the amount of somatic hyper mutations in plasmablasts, suggesting the association of extrafollicular pathway. Further, this skewing led to high usage of IGHV4-34 gene with 9G4 idiotypes in unswitched-memory B cells, which showed a prominent positive correlation with disease activity in SLE. Gene usage skewing in unswitched-memory B cells was ameliorated after belimumab treatment. CONCLUSIONS Our multimodal repertoire analysis enabled us the system-level understanding of B cell abnormality in diseases.
Collapse
Affiliation(s)
- Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Masahiro Nakano
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Satomi Kobayashi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ryochi Yoshida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Yuko Akutsu
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Takahiro Itamiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Nobuhiro Ban
- Research Division, Chugai Pharmaceutical Co Ltd, Yokohama, Japan
| | - Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
19
|
Li F, Cui W, Huang G, Tian Y, Zhang X, He W, Sun Q, Zhao X, Zhao Y, Li D, Liu X, Liu X. Efficacy and safety of novel biologics in the treatment of lupus nephritis based on registered clinical trials: a systematic review and network meta-analysis. Clin Exp Med 2023; 23:3011-3018. [PMID: 37462818 DOI: 10.1007/s10238-023-01132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 11/02/2023]
Abstract
To compare the clinical effectiveness and safety of novel biologics for the treatment of lupus nephritis based on a reticulated meta-analysis approach. Registered clinical trials in 4 major databases (PubMed, Embase, Web of Science, The Cochrane Register of Clinical Trials) and ClinicalTrials.gov were systematically searched with a search time frame of build to June 2022. And we screened registered randomized controlled clinical trials of biologics for the treatment of lupus nephritis according to the protocol's nadir criteria. Trials were evaluated for quality using the Cochrane Risk of Bias Assessment Tool, and data were statistically analyzed using Stata 16.0 and Review Manager 5.3 software to compare and rank differences in effectiveness and safety between the biologics. A total of 10 registered randomized controlled clinical trials involving 2148 subjects were included in this study. The interventions were ranked from best to worst in terms of the primary outcome indicator of effectiveness, renal complete remission: belimumab > anifrolumab (900 + 300) mg > obinutuzumab > ocrelizumab 400 mg > abatacept 30/10 mg/kg > belimumab + rituximab > abatacept 10/10 mg/kg > abatacept (30/10 + 10/10) mg/kg > placeo > ocrelizumab 1000 mg > rituximab > anifrolumab 300 mg, belimumab was superior to placebo [OR = 1.75, 95% CI (1.13, 2.70)] and anifrolumab 300 mg [OR = 3.27, 95% CI (1.05, 10.14)], anifrolumab (900 + 300) mg was superior to anifrolumab 300 mg [OR = 3.56, 95% CI (1.30, 9.76)], and all were statistically significant. The ranking of each intervention in terms of overall renal remission for secondary outcome indicators from best to worst was: obinutuzumab > belimumab + rituximab > anifrolumab (900 + 300) mg > ocrelizumab 1000 mg > ocrelizumab 400 mg > belimumab > rituximab 1000 mg > abatacept 30/10 mg/kg > abatacept (30/10 + 10/10) mg/kg > placeo > abatacept 10/10 mg/kg > anifrolumab 300 mg, obinutuzumab was superior to placebo [OR = 2.27, 95% CI (1.11, 4.67)] and belimumab was also superior to placebo [OR = 1.56, 95% CI (1.07, 2.27)], and all were statistically significant. In terms of safety, with a focus on serious adverse events and serious infections, the results were: Serious adverse events at 1 year of monitoring occurred better with ocrelizumab 1000 mg than ocrelizumab 400 mg [OR = 0.51, 95% CI (0.29, 0.89)] and were statistically different; serious adverse events at 2 years of monitoring infection adverse events occurred better with obinutuzumab than with abatacept (30/10 + 10/10) mg/kg [OR = 0.24, 95% CI (0.07, 0.81)] and were statistically different. The safety of the new biologics in combination with conventional standard therapies is generally good, but it is belimumab and obinutuzumab that are most effective in achieving complete and overall remission in the kidney. This study protocol has been registered with PROSPERO, with a registration number of CRD42021262498.
Collapse
Affiliation(s)
- Feigao Li
- The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, People's Republic of China
| | - Wenyan Cui
- The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, People's Republic of China
| | - Guangliang Huang
- The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, People's Republic of China
| | - Yunfei Tian
- The University of Hong Kong, Hong Kong, China
| | - Xinhui Zhang
- The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, People's Republic of China
| | - Wenjuan He
- The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, People's Republic of China
| | - Qian Sun
- The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, People's Republic of China
| | - Xiaojuan Zhao
- The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, People's Republic of China
| | - Yonghong Zhao
- The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, People's Republic of China
| | - Dan Li
- The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, People's Republic of China
| | - Xizhe Liu
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, China
| | - Xiuju Liu
- The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, People's Republic of China.
| |
Collapse
|
20
|
Roeser A, Lazarus AH, Mahévas M. B cells and antibodies in refractory immune thrombocytopenia. Br J Haematol 2023; 203:43-53. [PMID: 37002711 DOI: 10.1111/bjh.18773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
Immune thrombocytopenia (ITP) is an acquired bleeding disorder mediated by pathogenic autoantibodies secreted by plasma cells (PCs) in many patients. In refractory ITP patients, the persistence of splenic and bone marrow autoreactive long-lived PCs (LLPCs) may explain primary failure of rituximab and splenectomy respectively. The reactivation of autoreactive memory B cells generating new autoreactive PCs contributes to relapses after initial response to rituximab. Emerging strategies targeting B cells and PCs aim to prevent the settlement of splenic LLPCs with the combination of anti-BAFF and rituximab, to deplete autoreactive PCs with anti-CD38 antibodies, and to induce deeper B-cell depletion in tissues with novel anti-CD20 monoclonal antibodies and anti-CD19 therapies. Alternative strategies, focused on controlling autoantibody mediated effects, have also been developed, including SYK and BTK inhibitors, complement inhibitors, FcRn blockers and inhibitors of platelet desialylation.
Collapse
Affiliation(s)
- Anaïs Roeser
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, ATIP-Avenir TeamAI2B, Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Alan H Lazarus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Matthieu Mahévas
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, ATIP-Avenir TeamAI2B, Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| |
Collapse
|
21
|
Maeda S, Hashimoto H, Maeda T, Tamechika SY, Isogai S, Naniwa T, Niimi A. High-dimensional analysis of T-cell profiling variations following belimumab treatment in systemic lupus erythematosus. Lupus Sci Med 2023; 10:e000976. [PMID: 37802602 PMCID: PMC10565340 DOI: 10.1136/lupus-2023-000976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE This study sought to elucidate the molecular impacts of belimumab (BEL) treatment on T-cell immune profiling in SLE. METHODS We used mass cytometry with 25 marker panels for T-cell immune profiling in peripheral blood T cells (CD3+) from 22 patients with BEL-treated SLE and 20 controls with non-BEL-treated SLE. An unsupervised machine-learning clustering, FlowSOM, was used to identify 39 T-cell clusters (TCLs; TCL01-TCL39). TCLs (% of CD3+) showing significant (p<0.05) associations with BEL treatment (BEL-TCL) were selected by a linear mixed-effects model for comparing groups of time-series data. Furthermore, we analysed the association between BEL treatment and variations in regulatory T-cell (Treg) phenotypes, and the ratio of other T-cell subsets to Treg as secondary analysis. RESULTS Clinical outcomes: BEL treatment was associated with a decrease in daily prednisolone use (coef=-0.1769, p=0.00074), and an increase in serum CH50 (coef=0.4653, p=0.003), C3 (coef=1.1047, p=0.00001) and C4 (coef=0.2990, p=0.00157) levels. Molecular effects: five distinct BEL-TCLs (TCL 04, 07, 11, 12 and 27) were identified. Among these, BEL-treated patients exhibited increased proportions in the Treg-like cluster TCL11 (coef=0.404, p=0.037) and two naïve TCLs (TCL04 and TCL07). TCL27 showed increased levels (coef=0.222, p=0.037) inversely correlating with baseline C3 levels. Secondary analyses revealed associations between BEL treatment and an increase in Tregs (coef=1.749, p=0.0044), elevated proportions of the fraction of Tregs with inhibitory function (fTregs, coef=0.7294, p=0.0178) and changes in peripheral helper T cells/fTreg (coef=-4.475, p=0.0319) and T helper 17/fTreg ratios (coef=-6.7868, p=0.0327). Additionally, BEL was linked to variations in T-cell immunoglobulin and mucin domain-containing protein-3 expression (coef=0.2422, p=0.039). CONCLUSIONS The study suggests an association between BEL treatment and variations in T cells, particularly Tregs, in SLE pathologies involving various immune cells.
Collapse
Affiliation(s)
- Shinji Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Hiroya Hashimoto
- Clinical Research Management Center, Nagoya City University Hospital, Nagoya, Japan
| | - Tomoyo Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shin-Ya Tamechika
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shuntaro Isogai
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Taio Naniwa
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| |
Collapse
|
22
|
Ng M, Mackay M, Gautam-Goyal P, Goyal S, Vikraman PK. Hidden consequences: Uncovering belimumab's role in the development of Pneumocystis jirovecii pneumonia in a lupus patient. Lupus 2023; 32:1227-1230. [PMID: 37497619 DOI: 10.1177/09612033231192334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Pneumocystis jirovecii is an opportunistic fungal organism that can cause fatal pneumonia in immunocompromised individuals. It is a disease associated with CD4+ T cell depletion or high-dose steroids. However, there is increasing evidence that B cell dysfunction may also play a role in this illness. CASE REPORT A 33-year-old female with SLE, who was maintained on belimumab and low-dose prednisone (2.5 mg daily), presented with progressive cough and shortness of breath. She had been on monthly belimumab and prednisone 2.5 mg daily for 19 months, and her CD4 count was >200/uL, but her CD19+ B cell was <1% due to the belimumab. She developed a persistent cough and progressive dyspnea that did not respond to empiric antibiotic therapy for pneumonia. She went to the hospital for acute worsening of her dyspnea and cough. An extensive workup was performed, including a VATS procedure and surgical biopsy, which gave a definitive diagnosis of PJP. The patient was treated and discharged on trimethoprim-sulfamethoxazole. She made a complete recovery. DISCUSSION Our report demonstrates the first confirmed case of pneumocystis jirovecii pneumonia in a patient with B cell depletion due to chronic maintenance therapy with belimumab. Our patient's diagnosis of PJP was unexpected, given her normal CD4+ count and the use of such a low dose of prednisone. We attribute her susceptibility to PJP infection to her profound B cell depletion in response to her belimumab therapy, supporting previous research indicating the importance of CD4+ T cells and B cells in the protective immune response against PJP. This case may help shape future clinical guidelines concerning PJP prophylaxis, particularly in SLE patients with deficient B lymphocytic activity and B cell depletion.
Collapse
Affiliation(s)
- Maria Ng
- Division of Infectious Disease, North Shore University Hospital, New Hyde Park, NY, USA
| | - Meggan Mackay
- Hofstra Northwell School of Medicine, Uniondale, NY, USA
- Division of Rheumatology, North Shore University Hospital, New Hyde Park, NY, USA
| | - Pranisha Gautam-Goyal
- Division of Infectious Disease, North Shore University Hospital, New Hyde Park, NY, USA
- Hofstra Northwell School of Medicine, Uniondale, NY, USA
| | - Sameer Goyal
- Hofstra Northwell School of Medicine, Uniondale, NY, USA
- Department of Radiology, North Shore University Hospital, New Hyde Park, NY, USA
| | | |
Collapse
|
23
|
Faliti CE, Anam FA, Cheedarla N, Woodruff MC, Usman SY, Runnstrom MC, Van TT, Kyu S, Ahmed H, Morrison-Porter A, Quehl H, Haddad NS, Chen W, Cheedarla S, Neish AS, Roback JD, Antia R, Khosroshahi A, Lee FEH, Sanz I. Poor immunogenicity upon SARS-CoV-2 mRNA vaccinations in autoimmune SLE patients is associated with pronounced EF-mediated responses and anti-BAFF/Belimumab treatment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.08.23291159. [PMID: 37398319 PMCID: PMC10312827 DOI: 10.1101/2023.06.08.23291159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Novel mRNA vaccines have resulted in a reduced number of SARS-CoV-2 infections and hospitalizations. Yet, there is a paucity of studies regarding their effectiveness on immunocompromised autoimmune subjects. In this study, we enrolled subjects naïve to SARS-CoV-2 infections from two cohorts of healthy donors (HD, n=56) and systemic lupus erythematosus (SLE, n=69). Serological assessments of their circulating antibodies revealed a significant reduction of potency and breadth of neutralization in the SLE group, only partially rescued by a 3rd booster dose. Immunological memory responses in the SLE cohort were characterized by a reduced magnitude of spike-reactive B and T cell responses that were strongly associated with poor seroconversion. Vaccinated SLE subjects were defined by a distinct expansion and persistence of a DN2 spike-reactive memory B cell pool and a contraction of spike-specific memory cTfh cells, contrasting with the sustained germinal center (GC)-driven activity mediated by mRNA vaccination in the healthy population. Among the SLE-associated factors that dampened the vaccine responses, treatment with the monoclonal antibody anti-BAFF/Belimumab (a lupus FDA-approved B cell targeting agent) profoundly affected the vaccine responsiveness by restricting the de novo B cell responses and promoting stronger extra-follicular (EF)-mediated responses that were associated with poor immunogenicity and impaired immunological memory. In summary, this study interrogates antigen-specific responses and characterized the immune cell landscape associated with mRNA vaccination in SLE. The identification of factors associated with reduced vaccine efficacy illustrates the impact of SLE B cell biology on mRNA vaccine responses and provides guidance for the management of boosters and recall vaccinations in SLE patients according to their disease endotype and modality of treatment.
Collapse
Affiliation(s)
- Caterina E. Faliti
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Fabliha A. Anam
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Matthew C. Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Sabeena Y. Usman
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Martin C. Runnstrom
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Trinh T.P. Van
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Shuya Kyu
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Andrea Morrison-Porter
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hannah Quehl
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Natalie S. Haddad
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- MicroB-plex, Atlanta, GA, USA
| | | | - Suneethamma Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew S. Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Arezou Khosroshahi
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - F. Eun-Hyung Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| |
Collapse
|
24
|
Clarke T, Du P, Kumar S, Okitsu SL, Schuette M, An Q, Zhang J, Tzvetkov E, Jensen MA, Niewold TB, Ferre EMN, Nardone J, Lionakis MS, Vlach J, DeMartino J, Bender AT. Autoantibody repertoire characterization provides insight into the pathogenesis of monogenic and polygenic autoimmune diseases. Front Immunol 2023; 14:1106537. [PMID: 36845162 PMCID: PMC9955420 DOI: 10.3389/fimmu.2023.1106537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Autoimmune diseases vary in the magnitude and diversity of autoantibody profiles, and these differences may be a consequence of different types of breaks in tolerance. Here, we compared the disparate autoimmune diseases autoimmune polyendocrinopathy-candidiasis-ecto-dermal dystrophy (APECED), systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS) to gain insight into the etiology of breaks in tolerance triggering autoimmunity. APECED was chosen as a prototypical monogenic disease with organ-specific pathology while SjS and SLE represent polygenic autoimmunity with focal or systemic disease. Using protein microarrays for autoantibody profiling, we found that APECED patients develop a focused but highly reactive set of shared mostly anti-cytokine antibodies, while SLE patients develop broad and less expanded autoantibody repertoires against mostly intracellular autoantigens. SjS patients had few autoantibody specificities with the highest shared reactivities observed against Ro-52 and La. RNA-seq B-cell receptor analysis revealed that APECED samples have fewer, but highly expanded, clonotypes compared with SLE samples containing a diverse, but less clonally expanded, B-cell receptor repertoire. Based on these data, we propose a model whereby the presence of autoreactive T-cells in APECED allows T-dependent B-cell responses against autoantigens, while SLE is driven by breaks in peripheral B-cell tolerance and extrafollicular B-cell activation. These results highlight differences in the autoimmunity observed in several monogenic and polygenic disorders and may be generalizable to other autoimmune diseases.
Collapse
Affiliation(s)
- Thomas Clarke
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | - Pan Du
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | | | | | - Mark Schuette
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Qi An
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | - Jinyang Zhang
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | | | - Mark A. Jensen
- Department of Immunology, Division of Rheumatology, Mayo Clinic, Rochester, MN, United States
| | - Timothy B. Niewold
- Department of Immunology, Division of Rheumatology, Mayo Clinic, Rochester, MN, United States
| | - Elise M. N. Ferre
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Julie Nardone
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Jaromir Vlach
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | | | | |
Collapse
|
25
|
Velounias RL, Tull TJ. Human B-cell subset identification and changes in inflammatory diseases. Clin Exp Immunol 2022; 210:201-216. [PMID: 36617261 PMCID: PMC9985170 DOI: 10.1093/cei/uxac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 01/09/2023] Open
Abstract
Our understanding of the B-cell subsets found in human blood and their functional significance has advanced greatly in the past decade. This has been aided by the evolution of high dimensional phenotypic tools such as mass cytometry and single-cell RNA sequencing which have revealed heterogeneity in populations that were previously considered homogenous. Despite this, there is still uncertainty and variation between studies as to how B-cell subsets are identified and named. This review will focus on the most commonly encountered subsets of B cells in human blood and will describe gating strategies for their identification by flow and mass cytometry. Important changes to population frequencies and function in common inflammatory and autoimmune diseases will also be described.
Collapse
Affiliation(s)
- Rebekah L Velounias
- Department of Immunobiology, King’s College London, Guy’s Hospital Campus, London, UK
| | - Thomas J Tull
- St John’s Institute of Dermatology, King’s College London, Guy’s Hospital Campus, London, UK
| |
Collapse
|
26
|
Plüß M, Piantoni S, Tampe B, Kim AHJ, Korsten P. Belimumab for systemic lupus erythematosus - Focus on lupus nephritis. Hum Vaccin Immunother 2022; 18:2072143. [PMID: 35588699 PMCID: PMC9359396 DOI: 10.1080/21645515.2022.2072143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022] Open
Abstract
In recent years, advances in the treatment and management of patients with systemic lupus erythematosus (SLE) have improved their life expectancy and quality of life. However, lupus nephritis (LN) still represents a major life-threatening complication of the disease. Belimumab (BEL), a fully human monoclonal IgG1λ antibody neutralizing soluble B cell activating factor, was approved more than ten years ago as add-on therapy in adults and pediatric patients with a highly active, autoantibody-positive disease despite standard of care (SoC). Recently, the superiority of the addition of BEL to SoC was also demonstrated in LN. In this review, we provide a comprehensive overview of the study landscape, available therapeutic options for SLE (focusing on BEL in renal and non-renal SLE), and new perspectives in the treatment field of this disease. A personalized treatment approach will likely become available with the advent of novel therapeutic agents for SLE and LN.
Collapse
Affiliation(s)
- Marlene Plüß
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Silvia Piantoni
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Alfred H. J. Kim
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Andrew M. and Jane M. Bursky Center of Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peter Korsten
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
27
|
B Cell Kinetics upon Therapy Commencement for Active Extrarenal Systemic Lupus Erythematosus in Relation to Development of Renal Flares: Results from Three Phase III Clinical Trials of Belimumab. Int J Mol Sci 2022; 23:ijms232213941. [PMID: 36430417 PMCID: PMC9698874 DOI: 10.3390/ijms232213941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Renal flares constitute major determinants of poor prognosis in people living with systemic lupus erythematosus (SLE). The aim of the present study was to investigate changes in B cell subsets in relation to renal flares upon initiation of standard therapy (ST) plus belimumab or placebo in patients with SLE. Using data from the BLISS-76, BLISS-SC, and BLISS Northeast Asia trials, we investigated associations of relative to baseline rapid (through week 8) and early (through week 24) percentage changes in circulating CD19+ B cell subsets characterised through flow cytometry, anti-dsDNA antibodies, and complement levels with the occurrence of renal flares over one year. Patients who developed renal flares showed more prominent rapid decreases in CD19+CD20+CD138+ short-lived plasma cells (-50.4% vs. -16.7%; p = 0.019) and CD19+CD20-CD27bright plasmablasts (-50.0% vs. -29.9%; p = 0.020) compared to non-flaring patients, followed by a subsequent return. Less prominent rapid reductions in CD19+CD27-CD24brightCD38bright transitional B cells (-42.9% vs. -75.0%; p = 0.038) and CD19+CD20-CD138+ peripheral long-lived plasma cells (-11.3% vs. -29.2%; p = 0.019) were seen in belimumab-treated-but not placebo-treated-patients who developed renal flares compared to belimumab-treated patients who did not. Rapid and early changes in anti-dsDNA or complement levels showed no clear association with renal flares. In summary, a rapid drop followed by a subsequent return in circulating short-lived plasma cells and plasmablasts upon treatment for active extra-renal SLE portended renal flares, indicating a need for therapeutic adjustments in patients showing such B cell patterns. Rapid decreases in transitional B cells and peripheral long-lived plasma cells upon belimumab therapy commencement may signify a greater protection against renal flares. B cell kinetics may prove useful in early drug evaluation.
Collapse
|
28
|
Gao M, Liu S, Chatham WW, Mountz JD, Hsu HC. IL-4-Induced Quiescence of Resting Naive B Cells Is Disrupted in Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1513-1522. [PMID: 36165181 PMCID: PMC9741951 DOI: 10.4049/jimmunol.2200409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022]
Abstract
Activated naive (aNAV) B cells have been shown to be the precursor of the CD11c+T-bet+ IgD-CD27- double-negative (DN)2 or atypical memory (aMEM) B cells in systemic lupus erythematosus (SLE). To determine factors that maintain resting naive (rNAV) B cells, the transcriptomic program in naive (IGHD+IGHM +) B cells in human healthy control subjects (HC) and subjects with SLE was analyzed by single-cell RNA-sequencing analysis. In HC, naive B cells expressed IL-4 pathway genes, whereas in SLE, naive B cells expressed type I IFN-stimulated genes (ISGs). In HC, aNAV B cells exhibited upregulation of the gene signature of germinal center and classical memory (cMEM) B cells. In contrast, in SLE, aNAV B cells expressed signature genes of aMEM. In vitro exposure of SLE B cells to IL-4 promoted B cell development into CD27+CD38+ plasmablasts/plasma and IgD-CD27+ cMEM B cells. The same treatment blocked the development of CD11c+Tbet+ aNAV and DN2 B cells and preserved DN B cells as CD11c-Tbet- DN1 B cells. Lower expression of IL-4R and increased intracellular IFN-β in naive B cells was correlated with the accumulation of CD21-IgD- B cells and the development of anti-Smith and anti-DNA autoantibodies in patients with SLE (n = 47). Our results show that IL-4R and type I IFN signaling in naive B cells induce the development of distinct lineages of cMEM versus aMEM B cells, respectively. Furthermore, diminished IL-4R signaling shifted activated B cell development from the DN1 to the DN2 trajectory in patients with SLE. Therapies that enhance IL-4R signaling may be beneficial for ISGhi SLE patients.
Collapse
Affiliation(s)
- Min Gao
- University of Alabama at Birmingham, Birmingham, AL; and
| | - Shanrun Liu
- University of Alabama at Birmingham, Birmingham, AL; and
| | - W Winn Chatham
- University of Alabama at Birmingham, Birmingham, AL; and
| | - John D Mountz
- University of Alabama at Birmingham, Birmingham, AL; and
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
| | - Hui-Chen Hsu
- University of Alabama at Birmingham, Birmingham, AL; and
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
| |
Collapse
|
29
|
Itotagawa E, Tomofuji Y, Kato Y, Konaka H, Tsujimoto K, Park J, Nagira D, Hirayama T, Jo T, Hirano T, Morita T, Nishide M, Nishida S, Shima Y, Narazaki M, Okada Y, Takamatsu H, Kumanogoh A. SLE stratification based on BAFF and IFN-I bioactivity for biologics and implications of BAFF produced by glomeruli in lupus nephritis. Rheumatology (Oxford) 2022; 62:1988-1997. [PMID: 36094336 PMCID: PMC10152287 DOI: 10.1093/rheumatology/keac528] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE B-cell activating factor (BAFF) is implicated in systemic lupus erythematosus (SLE) pathogenesis. Blocking BAFF signaling has contributed to reducing glucocorticoid dosage and preventing organ damage. However, clinical characteristics of patients who may benefit from this therapy are not yet fully elucidated. Therefore, we identified patients with high BAFF-bioactivity to investigate their clinical characteristics and BAFF-producing cells. METHODS We established the reporter cell for BAFF and investigated the clinical characteristics of SLE patients with high BAFF-bioactivity. We identified BAFF-expressing kidney cells using publicly available scRNA-seq data and immunohistological analysis. SLE patients were stratified based on the bioactivity of BAFF and type-I interferon (IFN-I) to identify associated characteristic clinical manifestations. RESULTS SLE patients, especially patients with lupus nephritis (LN), had significantly higher serum BAFF-bioactivity than healthy controls (HC) and non-LN patients. Additionally, single-cell-RNA-seq data and immunohistological analysis of kidney samples from LN patients revealed that BAFF is expressed in glomerular macrophages and mesangial cells. Notably, BAFF bioactivity was elevated in the urine of LN patients compared to that of non-LN patients, while no IFN-I bioactivity was detected in the urine. Furthermore, SLE stratification based on bioactivities of serum BAFF and IFN-I revealed the clinical characteristics of patients: high BAFF represented patients with LN and high IFN-I represented patients with blood and skin manifestations. CONCLUSIONS Monitoring urinary BAFF-bioactivity may be valuable in diagnosing LN. Furthermore, stratification based on serum BAFF and IFN-I bioactivities may allow the identification of appropriate patients for biologics targeting BAFF and IFN-I.
Collapse
Affiliation(s)
- Eri Itotagawa
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiko Tomofuji
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hachiro Konaka
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of internal medicine, Nippon life Hospital, 2-1-54 Enokojima, Nishi-ku, Osaka, Osaka 550-0006, Japan
| | - Kohei Tsujimoto
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - JeongHoon Park
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of internal medicine, Daini Osaka Police Hospital, Osaka, 543-8922, Japan
| | - Daiki Nagira
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takehiro Hirayama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsunori Jo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toru Hirano
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Rheumatology, Nishinomiya municipal central hospital, 8-24 Hayashida-cho, Nishinomiya, Hyogo, 663-8014, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihito Shima
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Division of Thermo-Therapeutics for Vascular Dysfunction, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan.,Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi 230-0045, Japan.,Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita 565-0871, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita 565-0871, Japan
| |
Collapse
|
30
|
Dysregulated naïve B cells and de novo autoreactivity in severe COVID-19. Nature 2022; 611:139-147. [PMID: 36044993 PMCID: PMC9630115 DOI: 10.1038/s41586-022-05273-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Severe SARS-CoV-2 infection1 has been associated with highly inflammatory immune activation since the earliest days of the COVID-19 pandemic2–5. More recently, these responses have been associated with the emergence of self-reactive antibodies with pathologic potential6–10, although their origins and resolution have remained unclear11. Previously, we and others have identified extrafollicular B cell activation, a pathway associated with the formation of new autoreactive antibodies in chronic autoimmunity12,13, as a dominant feature of severe and critical COVID-19 (refs. 14–18). Here, using single-cell B cell repertoire analysis of patients with mild and severe disease, we identify the expansion of a naive-derived, low-mutation IgG1 population of antibody-secreting cells (ASCs) reflecting features of low selective pressure. These features correlate with progressive, broad, clinically relevant autoreactivity, particularly directed against nuclear antigens and carbamylated proteins, emerging 10–15 days after the onset of symptoms. Detailed analysis of the low-selection compartment shows a high frequency of clonotypes specific for both SARS-CoV-2 and autoantigens, including pathogenic autoantibodies against the glomerular basement membrane. We further identify the contraction of this pathway on recovery, re-establishment of tolerance standards and concomitant loss of acute-derived ASCs irrespective of antigen specificity. However, serological autoreactivity persists in a subset of patients with postacute sequelae, raising important questions as to the contribution of emerging autoreactivity to continuing symptomology on recovery. In summary, this study demonstrates the origins, breadth and resolution of autoreactivity in severe COVID-19, with implications for early intervention and the treatment of patients with post-COVID sequelae. Single-cell B cell repertoire analysis identifies the expansion of a naive-derived population of antibody-secreting cells contributing to de novo autoreactivity in patients with severe COVID-19 and those with post-COVID symptoms.
Collapse
|
31
|
Vivarelli M, Colucci M, Gargiulo A, Bettini C, Lo Russo A, Emma F. Belimumab for the treatment of children with frequently relapsing nephrotic syndrome: the BELNEPH study. Pediatr Nephrol 2022; 37:377-383. [PMID: 34383126 DOI: 10.1007/s00467-021-05175-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Effectiveness of rituximab in pediatric idiopathic nephrotic syndrome suggests that B cells play a pathogenic role. We tested safety and efficacy of the B-cell-modulating agent belimumab in frequently relapsing nephrotic syndrome (FRNS). METHODS An open-label, prospective, single-arm pilot study (EUDRACT 2017-003839-11) was designed to treat 10 children with FRNS with i.v. belimumab for 12 months. Prednisone was tapered/stopped. Safety, number of relapses, cumulative prednisone dose and B-cell subset "levels" are referred to both B cell subset and immunoglobulin. RESULTS Five patients were enrolled, and four reached the primary 6-month endpoint. Of these, two completed the 12-month endpoint. Three patients experienced ≥2 relapses while on belimumab, requiring additional immunosuppression. Compared to the 6 months before belimumab treatment, the mean number of relapses (1.4 vs. 2, p=0.21) and the mean cumulative prednisone dose (1.86 vs. 2.62 g/m2, p=0.17) were not significantly reduced during the 6 months on belimumab. This study was terminated by the steering committee after the interim evaluation because belimumab failed to show clear benefits to counterbalance the inconvenience of monthly i.v. infusion. During follow-up, total and mature-naïve B cells decreased, while no change in memory B-cells was observed. Serum immunoglobulins remained stable. No infusion reaction was observed. CONCLUSIONS Short-term treatment with belimumab in pediatric FRNS was well tolerated. The number of patients was too small to draw conclusions on efficacy. Nonetheless, we did not observe clear improvements. The burden of monthly in-hospital i.v. infusions outweighed potential benefits. Persistence of circulating memory B cells supports their pathogenic role in the disease. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Marina Vivarelli
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo 15, 00146, Rome, Italy
| | - Manuela Colucci
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo 15, 00146, Rome, Italy.
| | - Antonio Gargiulo
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Bettini
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Lo Russo
- Core Facilities, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Emma
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo 15, 00146, Rome, Italy
| |
Collapse
|
32
|
Georgakis S, Gkirtzimanaki K, Papadaki G, Gakiopoulou H, Drakos E, Eloranta ML, Makridakis M, Kontostathi G, Zoidakis J, Baira E, Rönnblom L, Boumpas DT, Sidiropoulos P, Verginis P, Bertsias G. NETs decorated with bioactive IL-33 infiltrate inflamed tissues and induce IFN-α production in patients with SLE. JCI Insight 2021; 6:147671. [PMID: 34554930 PMCID: PMC8663547 DOI: 10.1172/jci.insight.147671] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
IL-33, a nuclear alarmin released during cell death, exerts context-specific effects on adaptive and innate immune cells, eliciting potent inflammatory responses. We screened blood, skin, and kidney tissues from patients with systemic lupus erythematosus (SLE), a systemic autoimmune disease driven by unabated type I IFN production, and found increased amounts of extracellular IL-33 complexed with neutrophil extracellular traps (NETs), correlating with severe, active disease. Using a combination of molecular, imaging, and proteomic approaches, we show that SLE neutrophils, activated by disease immunocomplexes, release IL-33–decorated NETs that stimulate robust IFN-α synthesis by plasmacytoid DCs in a manner dependent on the IL-33 receptor ST2L. IL33-silenced neutrophil-like cells cultured under lupus-inducing conditions generated NETs with diminished interferogenic effect. Importantly, NETs derived from patients with SLE are enriched in mature bioactive isoforms of IL-33 processed by the neutrophil proteases elastase and cathepsin G. Pharmacological inhibition of these proteases neutralized IL-33–dependent IFN-α production elicited by NETs. We believe these data demonstrate a novel role for cleaved IL-33 alarmin decorating NETs in human SLE, linking neutrophil activation, type I IFN production, and end-organ inflammation, with skin pathology mirroring that observed in the kidneys.
Collapse
Affiliation(s)
- Spiros Georgakis
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Katerina Gkirtzimanaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Garyfalia Papadaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Hariklia Gakiopoulou
- 1st Department of Pathology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Elias Drakos
- Department of Pathology, University of Crete, Medical School, Iraklio, Greece
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Georgia Kontostathi
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jerome Zoidakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eirini Baira
- Laboratory of Toxicological Assessment of Pesticides, Scientific Directorate of Pesticides Assessment and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dimitrios T Boumpas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,Joint Rheumatology Program and 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Prodromos Sidiropoulos
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Panayotis Verginis
- Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece.,Laboratory of Immune Regulation and Tolerance, University of Crete, Medical School, Iraklio, Greece
| | - George Bertsias
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| |
Collapse
|
33
|
Gallucci S, Meka S, Gamero AM. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine 2021; 146:155633. [PMID: 34340046 PMCID: PMC8475157 DOI: 10.1016/j.cyto.2021.155633] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Type I interferons (IFNs), mostly IFNα and IFNβ, and the type I IFN Signature are important in the pathogenesis of Systemic Lupus Erythematosus (SLE), an autoimmune chronic condition linked to inflammation. Both IFNα and IFNβ trigger a signaling cascade that, through the activation of JAK1, TYK2, STAT1 and STAT2, initiates gene transcription of IFN stimulated genes (ISGs). Noteworthy, other STAT family members and IFN Responsive Factors (IRFs) can also contribute to the activation of the IFN response. Aberrant type I IFN signaling, therefore, can exacerbate SLE by deregulated homeostasis leading to unnecessary persistence of the biological effects of type I IFNs. The etiopathogenesis of SLE is partially known and considered multifactorial. Family-based and genome wide association studies (GWAS) have identified genetic and transcriptional abnormalities in key molecules directly involved in the type I IFN signaling pathway, namely TYK2, STAT1 and STAT4, and IRF5. Gain-of-function mutations that heighten IFNα/β production, which in turn maintains type I IFN signaling, are found in other pathologies like the interferonopathies. However, the distinctive characteristics have yet to be determined. Signaling molecules activated in response to type I IFNs are upregulated in immune cell subsets and affected tissues of SLE patients. Moreover, Type I IFNs induce chromatin remodeling leading to a state permissive to transcription, and SLE patients have increased global and gene-specific epigenetic modifications, such as hypomethylation of DNA and histone acetylation. Epigenome wide association studies (EWAS) highlight important differences between SLE patients and healthy controls in Interferon Stimulated Genes (ISGs). The combination of environmental and genetic factors may stimulate type I IFN signaling transiently and produce long-lasting detrimental effects through epigenetic alterations. Substantial evidence for the pathogenic role of type I IFNs in SLE advocates the clinical use of neutralizing anti-type I IFN receptor antibodies as a therapeutic strategy, with clinical studies already showing promising results. Current and future clinical trials will determine whether drugs targeting molecules of the type I IFN signaling pathway, like non-selective JAK inhibitors or specific TYK2 inhibitors, may benefit people living with lupus.
Collapse
Affiliation(s)
- Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| | - Sowmya Meka
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
34
|
Ou P, Stanek A, Huan Z, Roman CAJ, Huan C. SMS2 deficiency impairs PKCδ-regulated B cell tolerance in the germinal center. Cell Rep 2021; 36:109624. [PMID: 34469734 DOI: 10.1016/j.celrep.2021.109624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
B cell tolerance prevents autoimmunity by deleting or deactivating autoreactive B cells that otherwise may cause autoantibody-driven disorders, including systemic lupus erythematosus (lupus). Lupus is characterized by immunoglobulin Gs carrying a double-stranded (ds)-DNA autospecificity derived mainly from somatic hypermutation in the germinal center (GC), pointing to a checkpoint breach of GC B cell tolerance that leads to lupus. However, tolerance mechanisms in the GC remain poorly understood. Here, we show that upregulated sphingomyelin synthase 2 (SMS2) in anti-dsDNA GC B cells induces apoptosis by directly activating protein kinase C δ (PKCδ)'s pro-apoptotic activity. This tolerance mechanism prevents lupus autoimmunity in C57/BL6 mice and can be stimulated pharmacologically to inhibit lupus pathogenesis in lupus-prone NZBWF1 mice. Patients with lupus consistently have substantially reduced SMS2 expression in B cells and to an even greater extent in autoimmune-prone, age-associated B cells, suggesting that patients with lupus have insufficient SMS2-regulated B cell tolerance.
Collapse
Affiliation(s)
- Peiqi Ou
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Albert Stanek
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Zack Huan
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher A J Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| | - Chongmin Huan
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| |
Collapse
|
35
|
Schweighoffer E, Tybulewicz VL. BAFF signaling in health and disease. Curr Opin Immunol 2021; 71:124-131. [PMID: 34352467 DOI: 10.1016/j.coi.2021.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Abstract
BAFF is a critical cytokine supporting the survival of mature naïve B cells, acting through the BAFFR receptor. Recent studies show that BAFF and BAFFR are also required for the survival of memory B cells, autoimmune B cells as well as malignant chronic lymphocytic leukaemia (CLL) cells. BAFFR cooperates with other receptors, notably the B cell antigen receptor (BCR), a process which is critical for the expansion of autoimmune and CLL cells. This crosstalk may be mediated by TRAF3 which interacts with BAFFR and with CD79A, a signalling subunit of the BCR and the downstream SYK kinase, inhibiting its activity. BAFF binding to BAFFR leads to degradation of TRAF3 which may relieve inhibition of SYK activity transducing signals to pathways required for B cell survival. BAFFR activates both canonical and non-canonical NF-κB signalling and both pathways play important roles in the survival of B cells and CLL cells.
Collapse
Affiliation(s)
| | - Victor Lj Tybulewicz
- The Francis Crick Institute, London NW1 1AT, UK; Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
36
|
Lower BAFF Levels in Myasthenic Patients Treated with Glucocorticoids. Arch Immunol Ther Exp (Warsz) 2021; 69:22. [PMID: 34338918 PMCID: PMC8328853 DOI: 10.1007/s00005-021-00626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/06/2021] [Indexed: 10/26/2022]
Abstract
B-cell activating factor (BAFF), a member of tumor necrosis factor family, activates B cells, promotes their survival and proliferation. BAFF is considered to have an influence on development of autoimmune diseases including myasthenia gravis (MG). We aimed to evaluate BAFF serum levels in MG patients, their potential connection with therapy and course of MG. Cross-sectional study. Two hundred eighteen adult patients with MG (67% women, age: 18-89 years, 82.6% AChR antibody seropositive (AChRAb(+)). Serum BAFF levels, their relationship with severity of clinical symptoms, therapy conducted, clinical and demographic features and other factors were analyzed. Patients with AChRAb(+) MG demonstrated significantly higher BAFF levels than MuSK-MG patients (831.2 ± 285.4 pg/ml vs. 745.6 ± 633.4 pg/ml, respectively; p = 0.030). Serum BAFF levels in women were significantly higher than in men (855.9 ± 302.5 vs. 756.6 ± 289.4, respectively; p = 0.017). Mean serum BAFF level was significantly decreased in patients who were ever treated with corticosteroids (CS) (770.4 ± 327.8 pg/ml vs. 891.3 ± 246.1 pg/ml, respectively; p = 0.001). Thymoma-MG patients demonstrated significantly lower BAFF levels (671.2 ± 244.9 vs. 833.5 ± 302.4, respectively; p = 0.044). Thymectomized patients did not differ in BAFF levels from the MG patients who had not undergone thymectomy. In multiple linear regression model, recent CS therapy and male sex were found to be independent predictors of lower BAFF levels. Serum BAFF level is decreased in patients treated with CS, which may suggest inhibiting influence of CS on BAFF-a potential mechanism contributing to the effectiveness of such therapy.
Collapse
|
37
|
Dörner T, Szelinski F, Lino AC, Lipsky PE. Therapeutic implications of the anergic/postactivated status of B cells in systemic lupus erythematosus. RMD Open 2021; 6:rmdopen-2020-001258. [PMID: 32675278 PMCID: PMC7425190 DOI: 10.1136/rmdopen-2020-001258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterised by numerous abnormalities in B lineage cells, including increased CD27++ plasmablasts/plasma cells, atypical CD27-IgD- B cells with increased CD95, spleen tyrosine kinase (Syk)++, CXCR5- and CXCR5+ subsets and anergic CD11c+Tbet+ age-associated B cells. Most findings, together with preclinical lupus models, support the concept of B cell hyperactivity in SLE. However, it remains largely unknown whether these specific B cell subsets have pathogenic consequences and whether they provide relevant therapeutic targets. Recent findings indicate a global distortion of B cell functional capability, in which the entire repertoire of naïve and memory B cells in SLE exhibits an anergic or postactivated (APA) functional phenotype. The APA status of SLE B cells has some similarities to the functional derangement of lupus T cells. APA B cells are characterised by reduced global cytokine production, diminished B cell receptor (BCR) signalling with decreased Syk and Bruton's tyrosine kinase phosphorylation related to repeated in vivo BCR stimulation as well as hyporesponsiveness to toll-like receptor 9 engagement, but intact CD40 signalling. This APA status was related to constitutive co-localisation of CD22 linked to phosphatase SHP-1 and increased overall protein phosphatase activities. Notably, CD40 co-stimulation could revert this APA status and restore BCR signalling, downregulate protein tyrosine phosphatase transcription and promote B cell proliferation and differentiation. The APA status and their potential rescue by bystander help conveyed through CD40 stimulation not only provides insights into possible mechanisms of escape of autoreactive clones from negative selection but also into novel ways to target B cells therapeutically.
Collapse
Affiliation(s)
| | | | - Andreia C Lino
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Peter E Lipsky
- RILITE Research Institute, Charlottesville, Virginia, USA
| |
Collapse
|
38
|
BAFF promotes heightened BCR responsiveness and manifestations of chronic GVHD after allogeneic stem cell transplantation. Blood 2021; 137:2544-2557. [PMID: 33534893 PMCID: PMC8109011 DOI: 10.1182/blood.2020008040] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
Patients with chronic graft-versus-host disease (cGVHD) have increased B cell-activating factor (BAFF) levels, but whether BAFF promotes disease after allogeneic bone marrow transplantation (allo-BMT) remains unknown. In a major histocompatibility complex-mismatched model with cGVHD-like manifestations, we first examined B-lymphopenic μMT allo-BMT recipients and found that increased BAFF levels in cGVHD mice were not merely a reflection of B-cell number. Mice that later developed cGVHD had significantly increased numbers of recipient fibroblastic reticular cells with higher BAFF transcript levels. Increased BAFF production by donor cells also likely contributed to cGVHD, because BAFF transcript in CD4+ T cells from diseased mice and patients was increased. cGVHD manifestations in mice were associated with high BAFF/B-cell ratios and persistence of B-cell receptor (BCR)-activated B cells in peripheral blood and lesional tissue. By employing BAFF transgenic (Tg) mice donor cells, we addressed whether high BAFF contributed to BCR activation in cGVHD. BAFF increased NOTCH2 expression on B cells, augmenting BCR responsiveness to surrogate antigen and NOTCH ligand. BAFF Tg B cells had significantly increased protein levels of the proximal BCR signaling molecule SYK, and high SYK protein was maintained by BAFF after in vitro BCR activation or when alloantigen was present in vivo. Using T cell-depleted (BM only) BAFF Tg donors, we found that BAFF promoted cGVHD manifestations, circulating GL7+ B cells, and alloantibody production. We demonstrate that pathologic production of BAFF promotes an altered B-cell compartment and augments BCR responsiveness. Our findings compel studies of therapeutic targeting of BAFF and BCR pathways in patients with cGVHD.
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with multiple manifestations, with a majority of SLE patients having cutaneous involvement. Despite ongoing research, the relationship between SLE and cutaneous lupus erythematosus (CLE) pathogeneses remains unknown. This review will compare advances in understanding the cause and pathogenesis of SLE and CLE. RECENT FINDINGS Recently, mechanisms by which immune cell populations contribute to the pathogenesis of SLE and CLE have been queried. Studies have pointed to transitional B cells and B-cell activating factor (BAFF) signaling as potential drivers of SLE and CLE, with belimumab clinical data supporting these hypotheses. Ustekinumab trials and an exciting regulatory T cell (Treg) adoptive transfer in an SLE patient with cutaneous disease have suggested a role for T-cell-targeted therapies. The theory that neutrophil extracellular traps may be a source of autoantigens in SLE remains controversial, while neutrophils have been suggested as early drivers of cutaneous disease. Finally, plasmacytoid dendritic cells (pDCs) have been studied as a potential therapeutic target in SLE, and anti-blood DC antigen (anti-BDCA) antibody clinical trials have shown promise in treating cutaneous disease. SUMMARY Although recent findings have contributed to understanding SLE and CLE pathogenesis, the mechanistic link between these diseases remains an area requiring further research.
Collapse
|
40
|
Atisha-Fregoso Y, Malkiel S, Harris KM, Byron M, Ding L, Kanaparthi S, Barry WT, Gao W, Ryker K, Tosta P, Askanase AD, Boackle SA, Chatham WW, Kamen DL, Karp DR, Kirou KA, Sam Lim S, Marder B, McMahon M, Parikh SV, Pendergraft WF, Podoll AS, Saxena A, Wofsy D, Diamond B, Smilek DE, Aranow C, Dall'Era M. Phase II Randomized Trial of Rituximab Plus Cyclophosphamide Followed by Belimumab for the Treatment of Lupus Nephritis. Arthritis Rheumatol 2020; 73:121-131. [PMID: 32755035 PMCID: PMC7839443 DOI: 10.1002/art.41466] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/22/2020] [Indexed: 12/28/2022]
Abstract
Objective To assess the safety, mechanism of action, and preliminary efficacy of rituximab followed by belimumab in the treatment of refractory lupus nephritis (LN). Methods In a multicenter, randomized, open‐label clinical trial, 43 patients with recurrent or refractory LN were treated with rituximab, cyclophosphamide (CYC), and glucocorticoids followed by weekly belimumab infusions until week 48 (RCB group), or treated with rituximab and CYC but no belimumab infusions (RC group). Patients were followed up until week 96. Percentages of total and autoreactive B cell subsets in the patients’ peripheral blood were analyzed by flow cytometry. Results Treatment with belimumab did not increase the incidence of adverse events in patients with refractory LN. At week 48, a complete or partial renal response occurred in 11 (52%) of 21 patients receiving belimumab, compared to 9 (41%) of 22 patients in the RC group who did not receive belimumab (P = 0.452). Lack of improvement in or worsening of LN was the major reason for treatment failure. B cell depletion occurred in both groups, but the percentage of B cells remained lower in those receiving belimumab (geometric mean number of B cells at week 60, 53 cells/μl in the RCB group versus 11 cells/μl in the RC group; P = 0.0012). Percentages of total and autoreactive transitional B cells increased from baseline to week 48 in both groups. However, percentages of total and autoreactive naive B cells decreased from baseline to week 48 in the belimumab group compared to the no belimumab RC group (P = 0.0349), a finding that is consistent with the observed impaired maturation of naive B cells and enhanced censoring of autoreactive B cells. Conclusion The addition of belimumab to a treatment regimen with rituximab and CYC was safe in patients with refractory LN. This regimen diminished maturation of transitional to naive B cells during B cell reconstitution, and enhanced the negative selection of autoreactive B cells. Clinical efficacy was not improved with rituximab and CYC in combination with belimumab when compared to a therapeutic strategy of B cell depletion alone in patients with LN.
Collapse
Affiliation(s)
| | - Susan Malkiel
- Feinstein Institute for Medical Research, Manhasset, New York
| | | | | | - Linna Ding
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | | | - Wendy Gao
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Patti Tosta
- Immune Tolerance Network, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | - Samir V Parikh
- Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | | | | | | | - Betty Diamond
- Feinstein Institute for Medical Research, Manhasset, New York
| | | | - Cynthia Aranow
- Feinstein Institute for Medical Research, Manhasset, New York
| | | |
Collapse
|
41
|
Sachinidis A, Xanthopoulos K, Garyfallos A. Age-Associated B Cells (ABCs) in the Prognosis, Diagnosis and Therapy of Systemic Lupus Erythematosus (SLE). Mediterr J Rheumatol 2020; 31:311-318. [PMID: 33163863 PMCID: PMC7641025 DOI: 10.31138/mjr.31.3.311] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
The term “age-associated B cells” (ABCs) refers to a heterogeneous B cell subset (CD19+,CD21−, CD11c+,T-bet+) which is expanded in the elderly, but also accumulates prematurely in patients with autoimmune disorders and/or infectious diseases. In healthy individuals, ABCs represent a low prevalence population that positively impacts immunosenescence. In autoimmunity and infections though, ABCs expand dramatically and produce high titers of antibodies, thus playing a role in the regulation of humoral responses. Despite the fact that these observations were made on both mice and humans, the functional features of ABCs and their exact role in human health and disease are still elusive. This review focuses on ABC and ABC-like sub-populations found in Systemic Lupus Erythematosus (SLE) patients (such as the double negative 2;DN2 population: CD19+,IgD−,CD27−, CXCR5−,T-bet+) and broaches the subject of their potential use as prognostic and/or diagnostic markers. The identification of novel biomarkers, via correlating the cell populations with the clinical profile of the patients, should enable better patient stratification and monitoring. Moreover, the necessity and importance of elucidating the role of transcription factor T-bet (TBX21) in the pathogenesis of human autoimmunity are addressed. T-bet, whose expression is upregulated in both mouse and human ABCs, is considered to play a major role in various aspects of autoimmunity, such as the production of autoreactive IgG, the enhanced antigen presentation to T cells and also the formation of spontaneous germinal centres (GC). Shedding light to its role in human disease, in conjunction with the characterisation of genes and pathways associated with the transcription factor itself, may lead to the discovery of novel druggable targets.
Collapse
Affiliation(s)
- Athanasios Sachinidis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Xanthopoulos
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Garyfallos
- 4 Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
42
|
Henning S, Lambers WM, Doornbos-van der Meer B, Abdulahad WH, Kroese FGM, Bootsma H, Westra J, de Leeuw K. Proportions of B-cell subsets are altered in incomplete systemic lupus erythematosus and correlate with interferon score and IgG levels. Rheumatology (Oxford) 2020; 59:2616-2624. [PMID: 32259240 PMCID: PMC7449809 DOI: 10.1093/rheumatology/keaa114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/11/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Incomplete SLE (iSLE) patients display symptoms typical for SLE but have insufficient criteria to fulfil the diagnosis. Biomarkers are needed to identify iSLE patients that will progress to SLE. IFN type I activation, B-cell-activating factor (BAFF) and B-cell subset distortions play an important role in the pathogenesis of SLE. The aim of this cross-sectional study was to investigate whether B-cell subsets are altered in iSLE patients, and whether these alterations correlate with IFN scores and BAFF levels. METHODS iSLE patients (n = 34), SLE patients (n = 41) with quiescent disease (SLEDAI ≤4) and healthy controls (n = 22) were included. Proportions of B-cell subsets were measured with flow cytometry, IFN scores with RT-PCR and BAFF levels with ELISA. RESULTS Proportions of age-associated B-cells were elevated in iSLE patients compared with healthy controls and correlated with IgG levels. In iSLE patients, IFN scores and BAFF levels were significantly increased compared with healthy controls. Also, IFN scores correlated with proportions of switched memory B-cells, plasma cells and IgG levels, and correlated negatively with complement levels in iSLE patients. CONCLUSION In this cross-sectional study, distortions in B-cell subsets were observed in iSLE patients and were correlated with IFN scores and IgG levels. Since these factors play an important role in the pathogenesis of SLE, iSLE patients with these distortions, high IFN scores, and high levels of IgG and BAFF may be at risk for progression to SLE.
Collapse
Affiliation(s)
- Svenja Henning
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Wietske M Lambers
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
43
|
Moore E, Putterman C. Are lupus animal models useful for understanding and developing new therapies for human SLE? J Autoimmun 2020; 112:102490. [PMID: 32535128 PMCID: PMC7384952 DOI: 10.1016/j.jaut.2020.102490] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023]
Abstract
Systemic lupus erythematosus is a systemic autoimmune disease driven by a complex combination of genetic, environmental, and other immunoregulatory factors. The development of targeted therapies is complicated by heterogeneous clinical manifestations, varying organ involvement, and toxicity. Despite advances in understanding the mechanisms contributing to SLE, only one biologic drug, belimumab, is FDA-approved. The identification and development of potential therapies have largely been driven by studies in lupus animal models. Therefore, direct comparison of both the therapeutic and immunological findings in human and murine SLE studies is critical and can reveal important insights into indeed how useful and relevant are murine studies in SLE drug development. Studies involving belimumab, mycophenolate mofetil, abatacept, rituximab, and anti-interferon strategies generally demonstrated analogous findings in the attenuation of SLE manifestations and modulation of select immune cell populations in human and murine SLE. While further basic and translational studies are needed to identify SLE patient subsets likely to respond to particular therapeutic modalities and in dissecting complex mechanisms, we believe that despite some inherent weaknesses SLE mouse models will continue to be integral in developing targeted SLE therapies.
Collapse
Affiliation(s)
- Erica Moore
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA; Bar-Ilan University Azrieli Faculty of Medicine, Safed, Israel; Research Institute, Galilee Medical Center, Nahariya, Israel.
| |
Collapse
|
44
|
Anti-CD20–mediated B-cell depletion in autoimmune diseases: successes, failures and future perspectives. Kidney Int 2020; 97:885-893. [DOI: 10.1016/j.kint.2019.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
|
45
|
Peripheral B Cell Subsets in Autoimmune Diseases: Clinical Implications and Effects of B Cell-Targeted Therapies. J Immunol Res 2020; 2020:9518137. [PMID: 32280720 PMCID: PMC7125470 DOI: 10.1155/2020/9518137] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Antibody-secreting cells (ASCs) play a fundamental role in humoral immunity. The aberrant function of ASCs is related to a number of disease states, including autoimmune diseases and cancer. Recent insights into activated B cell subsets, including naïve B cell to ASC stages and their resultant cellular disturbances, suggest that aberrant ASC differentiation occurs during autoimmune diseases and is closely related to disease severity. However, the mechanisms underlying highly active ASC differentiation and the B cell subsets in autoimmune patients remain undefined. Here, we first review the processes of ASC generation. From the perspective of novel therapeutic target discovery, prediction of disease progression, and current clinical challenges, we further summarize the aberrant activity of B cell subsets including specialized memory CD11chiT-bet+ B cells that participate in the maintenance of autoreactive ASC populations. An improved understanding of subgroups may also enhance the knowledge of antigen-specific B cell differentiation. We further discuss the influence of current B cell therapies on B cell subsets, specifically focusing on systemic lupus erythematosus, rheumatoid arthritis, and myasthenia gravis.
Collapse
|
46
|
Ramwadhdoebe TH, van Baarsen LGM, Boumans MJH, Bruijnen STG, Safy M, Berger FH, Semmelink JF, van der Laken CJ, Gerlag DM, Thurlings RM, Tak PP. Effect of rituximab treatment on T and B cell subsets in lymph node biopsies of patients with rheumatoid arthritis. Rheumatology (Oxford) 2020; 58:1075-1085. [PMID: 30649469 PMCID: PMC6532448 DOI: 10.1093/rheumatology/key428] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/21/2018] [Indexed: 11/25/2022] Open
Abstract
Objectives The exact underlying mechanism of rituximab treatment in patients with RA is poorly defined and knowledge about the effect of B cell depletion on immune cells in secondary lymphoid organs is lacking. We analysed lymphoid tissue responses to rituximab in RA patients. Methods Fourteen RA patients received 2 × 1000 mg rituximab intravenously, and lymph node (LN) biopsies were obtained before and 4 weeks after the first infusion. Tissues were examined by flow cytometry, immunohistochemistry and quantitative PCR. LN biopsies from five healthy individuals (HC) served as controls. Results LN biopsies of RA patients showed increased frequencies of CD21+CD23+IgDhighIgMvariable follicular B cells and CD3+CD25+CD69+ early activated, tissue resident T cells when compared with HCs. After treatment, there was incomplete depletion of LN B cells. There was a significant decrease in CD27−IgD+ naïve B cells, and CD27+IgD+ unswitched memory B cells including the CD27+IgD+IgM+ subset and follicular B cells. Strikingly, CD27+IgD− switched memory B cells persisted in LN biopsies after rituximab treatment. In the T cell compartment, a significant decrease was observed in the frequency of early activated, tissue resident T cells after rituximab treatment, but late activated T cells persisted. B cell proliferation inducing cytokine IL-21 was higher expressed in LN biopsies of RA patients compared with HC and expression was not affected by rituximab treatment. Conclusion Rituximab does not cure RA, possibly due to persistence of switched memory B cells in lymphoid tissues suggesting that factors promoting B cell survival and differentiation need to be additionally targeted.
Collapse
Affiliation(s)
- Tamara H Ramwadhdoebe
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center (ARC), Netherlands.,Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Netherlands
| | - Lisa G M van Baarsen
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center (ARC), Netherlands.,Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Netherlands
| | - Maria J H Boumans
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center (ARC), Netherlands
| | - Stefan T G Bruijnen
- Department of Rheumatology and Clinical Immunology, ARC, Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands
| | - Mary Safy
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center (ARC), Netherlands
| | - Ferco H Berger
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Johanna F Semmelink
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center (ARC), Netherlands.,Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Netherlands
| | - Conny J van der Laken
- Department of Rheumatology and Clinical Immunology, ARC, Amsterdam UMC, Vrije Universiteit Amsterdam, Netherlands
| | - Danielle M Gerlag
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center (ARC), Netherlands.,Clinical Unit Cambridge, GlaxoSmithKline, UK
| | - Rogier M Thurlings
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center (ARC), Netherlands
| | - Paul P Tak
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center (ARC), Netherlands.,University of Cambridge, Cambridge, UK.,Ghent University, Ghent, Belgium
| |
Collapse
|
47
|
Baker D, Pryce G, James LK, Schmierer K, Giovannoni G. Failed B cell survival factor trials support the importance of memory B cells in multiple sclerosis. Eur J Neurol 2019; 27:221-228. [DOI: 10.1111/ene.14105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Affiliation(s)
- D. Baker
- Blizard Institute Queen Mary University of London LondonUK
| | - G. Pryce
- Blizard Institute Queen Mary University of London LondonUK
| | - L. K. James
- Blizard Institute Queen Mary University of London LondonUK
| | - K. Schmierer
- Blizard Institute Queen Mary University of London LondonUK
- Clinical Board: Medicine [Neuroscience] Barts Health NHS Trust London UK
| | - G. Giovannoni
- Blizard Institute Queen Mary University of London LondonUK
- Clinical Board: Medicine [Neuroscience] Barts Health NHS Trust London UK
| |
Collapse
|
48
|
Jackson SW, Davidson A. BAFF inhibition in SLE-Is tolerance restored? Immunol Rev 2019; 292:102-119. [PMID: 31562657 PMCID: PMC6935406 DOI: 10.1111/imr.12810] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
The B cell activating factor (BAFF) inhibitor, belimumab, is the first biologic drug approved for the treatment of SLE, and exhibits modest, but durable, efficacy in decreasing disease flares and organ damage. BAFF and its homolog APRIL are TNF-like cytokines that support the survival and differentiation of B cells at distinct developmental stages. BAFF is a crucial survival factor for transitional and mature B cells that acts as rheostat for the maturation of low-affinity autoreactive cells. In addition, BAFF augments innate B cell responses via complex interactions with the B cell receptor (BCR) and Toll like receptor (TLR) pathways. In this manner, BAFF impacts autoreactive B cell activation via extrafollicular pathways and fine tunes affinity selection within germinal centers (GC). Finally, BAFF and APRIL support plasma cell survival, with differential impacts on IgM- and IgG-producing populations. Therapeutically, BAFF and combined BAFF/APRIL inhibition delays disease onset in diverse murine lupus strains, although responsiveness to BAFF inhibition is model dependent, in keeping with heterogeneity in clinical responses to belimumab treatment in humans. In this review, we discuss the mechanisms whereby BAFF/APRIL signals promote autoreactive B cell activation, discuss whether altered selection accounts for therapeutic benefits of BAFF inhibition, and address whether new insights into BAFF/APRIL family complexity can be exploited to improve human lupus treatments.
Collapse
Affiliation(s)
- Shaun W Jackson
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Anne Davidson
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
49
|
Hamilton JA, Hsu HC, Mountz JD. Autoreactive B cells in SLE, villains or innocent bystanders? Immunol Rev 2019; 292:120-138. [PMID: 31631359 PMCID: PMC6935412 DOI: 10.1111/imr.12815] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
The current concepts for development of autoreactive B cells in SLE (systemic lupus erythematosus) focus on extrinsic stimuli and factors that provoke B cells into tolerance loss. Traditionally, major tolerance loss pathways are thought to be regulated by factors outside the B cell including autoantigen engagement of the B-cell receptor (BCR) with simultaneous type I interferon (IFN) produced by dendritic cells, especially plasmacytoid dendritic cells (pDCs). Later, in autoreactive follicles, B-cells encounter T-follicular helper cells (Tfh) that produce interleukin (IL)-21, IL-4 and pathogenic cytokines, IL-17 and IFN gamma (IFNɣ). This review discusses these mechanisms and also highlights recent advances pointing to the peripheral transitional B-cell stage as a major juncture where transient autocrine IFNβ expression by developing B-cells imprints a heightened susceptibility to external factors favoring differentiation into autoantibody-producing plasmablasts. Recent studies highlight transitional B-cell heterogeneity as a determinant of intrinsic resistance or susceptibility to tolerance loss through the shaping of B-cell responsiveness to cytokines and other environment factors.
Collapse
Affiliation(s)
| | - Hui-Chen Hsu
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Mountz
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
50
|
Cavazzana I, Kumar R, Pozzari C, Ottaviani R, Fredi M, Piantoni S, Andreoli L, Tincani A, Franceschini F. Autoantibodies' titre modulation by anti-BlyS treatment in systemic lupus erythematosus. Lupus 2019; 28:1074-1081. [PMID: 31296140 DOI: 10.1177/0961203319860191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of this study was to analyse autoantibodies' titres modulation during belimumab treatment in 50 patients with systemic lupus erythematosus (SLE). METHODS Sera were collected at belimumab start (T0) and every six months until the 24th month. Disease activity index (SLEDAI-2K) was analysed at every timepoint. High avidity anti-dsDNA was detected by radioimmunological method, anti-ENA, anti-cardiolipin antibodies (aCL), anti-β2 glycoprotein I (anti-β2GPI) were analysed by ELISA. RESULTS Fifty patients with SLE (mean SLEDAI-2K: 7.18 ± :3), mean age of 39 ± 11 years and mean follow-up of 13 ± 7.8 years were enrolled. A significant decrease of anti-dsDNA and anti-β2GPI IgM titres was observed at all timepoints. IgG aCL titre showed significant decrease only at T18. Anti-dsDNA negativization was detected in 21%, anti-β2GPI IgG in 33% and aCL IgG in 30% of sera, mostly at T6. Anti-ribosomal showed a significant titre decrease at T6 and T12, with negative seroconversion at T18. Anti-Sm titre significantly dropped down at T6, then remained stable during the time. Significant correlations were found between anti-dsDNA and anti-ribosomal titre and between SLEDAI ratio (SLEDAI value/SLEDAI T0) and anti-ribosomal titre ratio (value/value T0). CONCLUSIONS Belimumab treatment induced a significant reduction of SLE-specific autoantibodies titre and IgM anti-β2GPI. Anti-ribosomal titre decrease correlates with anti-dsDNA titre and disease activity improvement.
Collapse
Affiliation(s)
- I Cavazzana
- 1 Rheumatology and Clinical Immunology Unit, ASST Spedali Civili, Brescia, Italy
| | - R Kumar
- 2 Rheumatology Chair, Clinical and Experimental Science Department, University of Brescia, Italy
| | - C Pozzari
- 1 Rheumatology and Clinical Immunology Unit, ASST Spedali Civili, Brescia, Italy
| | - R Ottaviani
- 2 Rheumatology Chair, Clinical and Experimental Science Department, University of Brescia, Italy
| | - M Fredi
- 1 Rheumatology and Clinical Immunology Unit, ASST Spedali Civili, Brescia, Italy.,2 Rheumatology Chair, Clinical and Experimental Science Department, University of Brescia, Italy
| | - S Piantoni
- 1 Rheumatology and Clinical Immunology Unit, ASST Spedali Civili, Brescia, Italy.,2 Rheumatology Chair, Clinical and Experimental Science Department, University of Brescia, Italy
| | - L Andreoli
- 1 Rheumatology and Clinical Immunology Unit, ASST Spedali Civili, Brescia, Italy.,2 Rheumatology Chair, Clinical and Experimental Science Department, University of Brescia, Italy
| | - A Tincani
- 1 Rheumatology and Clinical Immunology Unit, ASST Spedali Civili, Brescia, Italy.,2 Rheumatology Chair, Clinical and Experimental Science Department, University of Brescia, Italy
| | - F Franceschini
- 1 Rheumatology and Clinical Immunology Unit, ASST Spedali Civili, Brescia, Italy.,2 Rheumatology Chair, Clinical and Experimental Science Department, University of Brescia, Italy
| |
Collapse
|