1
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
2
|
Song Q, Wang X, Cao Z, Xin C, Zhang J, Li S. The Apelin/APJ System: A Potential Therapeutic Target for Sepsis. J Inflamm Res 2024; 17:313-330. [PMID: 38250143 PMCID: PMC10800090 DOI: 10.2147/jir.s436169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
Apelin is the native ligand for the G protein-coupled receptor APJ. Numerous studies have demonstrated that the Apelin/APJ system has positive inotropic, anti-inflammatory, and anti-apoptotic effects and regulates fluid homeostasis. The Apelin/APJ system has been demonstrated to play a protective role in sepsis and may serve as a promising therapeutic target for the treatment of sepsis. Better understanding of the mechanisms of the effects of the Apelin/APJ system will aid in the development of novel drugs for the treatment of sepsis. In this review, we provide a brief overview of the physiological role of the Apelin/APJ system and its role in sepsis.
Collapse
Affiliation(s)
- Qing Song
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Xi Wang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Zhenhuan Cao
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Chun Xin
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Jingyuan Zhang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Suwei Li
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| |
Collapse
|
3
|
Monastero R, Magro D, Venezia M, Pisano C, Balistreri CR. A promising therapeutic peptide and preventive/diagnostic biomarker for age-related diseases: The Elabela/Apela/Toddler peptide. Ageing Res Rev 2023; 91:102076. [PMID: 37776977 DOI: 10.1016/j.arr.2023.102076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Elabela (ELA), Apela or Toddler peptide is a hormone peptide belonging to the adipokine group and a component of apelinergic system, discovered in 2013-2014. Given its high homology with apelin, the first ligand of APJ receptor, ELA likely mediates similar effects. Increasing evidence shows that ELA has a critical function not only in embryonic development, but also in adulthood, contributing to physiological and pathological conditions, such as the onset of age-related diseases (ARD). However, still little is known about the mechanisms and molecular pathways of ELA, as well as its precise functions in ARD pathophysiology. Here, we report the mechanisms by which ELA/APJ signaling acts in a very complex network of pathways for the maintenance of physiological functions of human tissue and organs, as well as in the onset of some ARD, where it appears to play a central role. Therefore, we describe the possibility to use the ELA/APJ pathway, as novel biomarker (predictive and diagnostic) and target for personalized treatments of ARD. Its potentiality as an optimal peptide candidate for therapeutic ARD treatments is largely described, also detailing potential current limitations.
Collapse
Affiliation(s)
- Roberto Monastero
- Section of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Daniele Magro
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134, Palermo, Italy
| | - Marika Venezia
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134, Palermo, Italy
| | - Calogera Pisano
- Department of Cardiac Surgery, Tor Vergata University Rome, 00133 Rome, Italy
| | - Carmela Rita Balistreri
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134, Palermo, Italy.
| |
Collapse
|
4
|
Winkle P, Goldsmith S, Koren MJ, Lepage S, Hellawell J, Trivedi A, Tsirtsonis K, Abbasi SA, Kaufman A, Troughton R, Voors A, Hulot JS, Donal E, Kazemi N, Neutel J. A First-in-Human Study of AMG 986, a Novel Apelin Receptor Agonist, in Healthy Subjects and Heart Failure Patients. Cardiovasc Drugs Ther 2023; 37:743-755. [PMID: 35460392 DOI: 10.1007/s10557-022-07328-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE AMG 986 is a novel apelin receptor (APJ) agonist that improves cardiac contractility in animal models without adversely impacting hemodynamics. This phase 1b study evaluated the safety/tolerability, pharmacokinetics, and pharmacodynamics of AMG 986 in healthy subjects and patients with heart failure (HF). METHODS Healthy adults (Parts A/B) and HF patients (Part C) aged 18-85 years were randomized 3:1 to single-dose oral/IV AMG 986 or placebo (Part A); multiple-dose oral/IV AMG 986 or placebo (Part B); or escalating-dose oral AMG 986 or placebo (Part C). PRIMARY ENDPOINT treatment-emergent adverse events, laboratory values/vital signs/ECGs; others included AMG 986 pharmacokinetics, left ventricular (LV) function. RESULTS Overall, 182 subjects were randomized (AMG 986/healthy: n = 116, placebo, n = 38; AMG 986/HF: n = 20, placebo, n = 8). AMG 986 had acceptable safety profile; no clinically significant dose-related impact on safety parameters up to 650 mg/day was observed. AMG 986 exposures increased nonlinearly with increasing doses; minimal accumulation was observed. In HF with reduced ejection fraction patients, there were numerical increases in percent changes from baseline in LV ejection fraction and stroke volume by volumetric assessment with AMG 986 vs placebo (stroke volume increase not recapitulated by Doppler). CONCLUSIONS In healthy subjects and HF patients, short-term AMG 986 treatment was well tolerated. Consistent with this observation, clinically meaningful pharmacodynamic effects in HF patients were not observed. Changes in ejection fraction and stroke volume in HF patients suggest additional studies may be needed to better define the clinical utility and optimal dosing for this molecule. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT03276728. DATE OF REGISTRATION September 8, 2017.
Collapse
Affiliation(s)
- Peter Winkle
- Anaheim Clinical Trials, 2441 W La Palma Ave, Anaheim, CA, 92801, USA
| | - Steven Goldsmith
- Hennepin Healthcare and the University of Minnesota, 715 S 8 St, Minneapolis, MN, 55415, USA
| | - Michael J Koren
- Jacksonville Center for Clinical Research, 4085 University Blvd S #1, Jacksonville, FL, 32216, USA
| | - Serge Lepage
- Department of Medicine, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | | | - Ashit Trivedi
- Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Kate Tsirtsonis
- Amgen Limited, 1 Uxbridge Business Park, Sanderson Rd, Uxbridge, UB8 1DH, UK
| | | | - Allegra Kaufman
- Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Richard Troughton
- Department of Medicine, Christchurch Heart Institute, University of Otago, PO Box 4345, Christchurch, 8140, New Zealand
| | - Adriaan Voors
- Department of Cardiology (AB31), University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jean-Sebastien Hulot
- Université de Paris, INSERM, PARCC, F-75006, Paris, France
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, F-75015, Paris, France
| | - Erwan Donal
- Universitaire Rennes, Centre Hospitalier Universitaire de Rennes, INSERM, LTSI - UMR 1099, 2 rue Henri Le Guilloux 35033, 35000, Rennes, France
| | - Navid Kazemi
- Palm Research Center, Inc., 9280 W Sunset Rd, Suite 306, Las Vegas, NV, 89148, USA
| | - Joel Neutel
- Orange County Research Center, 14351 Myford Rd, Suite B, Tustin, CA, 92780, USA
| |
Collapse
|
5
|
Louis B, Nail V, Nachar O, Bouhlel A, Moyon A, Balasse L, Simoncini S, Chabert A, Fernandez S, Brige P, Hache G, Tintaru A, Morgat C, Dignat-George F, Garrigue P, Guillet B. Design and preclinical evaluation of a novel apelin-based PET radiotracer targeting APJ receptor for molecular imaging of angiogenesis. Angiogenesis 2023; 26:463-475. [PMID: 36973482 PMCID: PMC10328853 DOI: 10.1007/s10456-023-09875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
APJ has been extensively described in the pathophysiology of angiogenesis and cell proliferation. The prognostic value of APJ overexpression in many diseases is now established. This study aimed to design a PET radiotracer that specifically binds to APJ. Apelin-F13A-NODAGA (AP747) was synthesized and radiolabeled with gallium-68 ([68Ga]Ga-AP747). Radiolabeling purity was excellent (> 95%) and stable up to 2 h. Affinity constant of [67Ga]Ga-AP747 was measured on APJ-overexpressing colon adenocarcinoma cells and was in nanomolar range. Specificity of [68Ga]Ga-AP747 for APJ was evaluated in vitro by autoradiography and in vivo by small animal PET/CT in both colon adenocarcinoma mouse model and Matrigel plug mouse model. Dynamic of [68Ga]Ga-AP747 PET/CT biodistributions was realized on healthy mice and pigs for two hours, and quantification of signal in organs showed a suitable pharmacokinetic profile for PET imaging, largely excreted by urinary route. Matrigel mice and hindlimb ischemic mice were submitted to a 21-day longitudinal follow-up with [68Ga]Ga-AP747 and [68Ga]Ga-RGD2 small animal PET/CT. [68Ga]Ga-AP747 PET signal in Matrigel was significantly more intense than that of [68Ga]Ga-RGD2. Revascularization of the ischemic hind limb was followed by LASER Doppler. In the hindlimb, [68Ga]Ga-AP747 PET signal was more than twice higher than that of [68Ga]Ga-RGD2 on day 7, and significantly superior over the 21-day follow-up. A significant, positive correlation was found between the [68Ga]Ga-AP747 PET signal on day 7 and late hindlimb perfusion on day 21. We developed a new PET radiotracer that specifically binds to APJ, [68Ga]Ga-AP747 that showed more efficient imaging properties than the most clinically advanced tracer of angiogenesis, [68Ga]Ga-RGD2.
Collapse
Affiliation(s)
- Béatrice Louis
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
| | - Vincent Nail
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Pôle Pharmacie, Radiopharmacie, Marseille, France
| | - Oriane Nachar
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Pôle Pharmacie, Radiopharmacie, Marseille, France
| | - Ahlem Bouhlel
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
| | - Anaïs Moyon
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Pôle Pharmacie, Radiopharmacie, Marseille, France
| | - Laure Balasse
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
| | | | | | | | - Pauline Brige
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- Aix Marseille Univ, LIIE, Marseille, France
| | - Guillaume Hache
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
| | - Aura Tintaru
- Aix Marseille Univ, CNRS, CINaM, Marseille, France
| | - Clément Morgat
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, 33000, Bordeaux, France
- Nuclear Medicine Department, University Hospital of Bordeaux, 33000, Bordeaux, France
| | | | - Philippe Garrigue
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France.
- Assistance Publique - Hôpitaux de Marseille, Pôle Pharmacie, Radiopharmacie, Marseille, France.
| | - Benjamin Guillet
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Pôle Pharmacie, Radiopharmacie, Marseille, France
| |
Collapse
|
6
|
Pang B, Jiang YR, Xu JY, Shao DX, Hao LY. Apelin/ELABELA-APJ system in cardiac hypertrophy: Regulatory mechanisms and therapeutic potential. Eur J Pharmacol 2023; 949:175727. [PMID: 37062502 DOI: 10.1016/j.ejphar.2023.175727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/18/2023]
Abstract
Heart failure is one of the most significant public health problems faced by millions of medical researchers worldwide. And pathological cardiac hypertrophy is considered one of the possible factors of increasing the risk of heart failure. Here, we introduce apelin/ELABELA-APJ system as a novel therapeutic target for cardiac hypertrophy, bringing about new directions in clinical treatment. Apelin has been proven to regulate cardiac hypertrophy through various pathways. And an increasing number of studies on ELABELA, the newly discovered endogenous ligand, suggest it can alleviate cardiac hypertrophy through mechanisms similar or different to apelin. In this review, we elaborate on the role that apelin/ELABELA-APJ system plays in cardiac hypertrophy and the intricate mechanisms that apelin/ELABELA-APJ affect cardiac hypertrophy. We also illuminate and make comparisons of the newly designed peptides and small molecules as agonists and antagonists for APJ, updating the breakthroughs in this field.
Collapse
Affiliation(s)
- Bo Pang
- China Medical University-The Queen's University of Belfast Joint College, Queen's University Belfast, Belfast Northern Ireland, BT9 7BL, United Kingdom.
| | - Yin-Ru Jiang
- China Medical University-The Queen's University of Belfast Joint College, Queen's University Belfast, Belfast Northern Ireland, BT9 7BL, United Kingdom.
| | - Jia-Yao Xu
- China Medical University-The Queen's University of Belfast Joint College, Queen's University Belfast, Belfast Northern Ireland, BT9 7BL, United Kingdom.
| | - Dong-Xue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Li-Ying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
7
|
Théroux L, Van Den Hauwe R, Trân K, Fournier J, Desgagné M, Meneboo N, Lavallée A, Fröhlich U, Côté J, Hollanders C, Longpré JM, Murza A, Marsault E, Sarret P, Boudreault PL, Ballet S. Signaling Modulation via Minimal C-Terminal Modifications of Apelin-13. ACS Pharmacol Transl Sci 2023; 6:290-305. [PMID: 36798478 PMCID: PMC9926529 DOI: 10.1021/acsptsci.2c00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 01/27/2023]
Abstract
Apelin is an endogenous peptide that is involved in many diseases such as cardiovascular diseases, obesity, and cancer, which has made it an attractive target for drug discovery. Herein, we explore the penultimate and final sequence positions of [Pyr1]-apelin-13 (Ape13) via C-terminal N α-alkylated amide bonds and the introduction of positive charges, potentially targeting the allosteric sodium pocket, by assessing the binding affinity and signaling profiles at the apelin receptor (APJ). Synthetic analogues modified within this segment of Ape13 showed high affinity (K i 0.12-0.17 nM vs Ape13 K i 0.7 nM), potent Gαi1 activation (EC50 Gαi1 0.4-0.9 nM vs Ape13 EC50 1.1 nM), partial agonist behavior disfavoring β-arrestin 2 recruitment for positively charged ligands (e.g., 49 (SBL-AP-058), EC50 β-arr2 275 nM, E max 54%) and high plasma stability for N-alkyl ligands (t 1/2 > 7 h vs Ape13 t 1/2 0.5 h). Combining the benefits of the N α-alkylated amide bond with the guanidino substitution in a constrained ligand led to 63 (SBL-AP-049), which displayed increased plasma stability (t 1/2 5.3 h) and strong reduction of β-arrestin 2 signaling with partial maximal efficacy (EC50 β-arr 864 nM, E max 48%), significantly reducing the hypotensive effect in vivo.
Collapse
Affiliation(s)
- Léa Théroux
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Robin Van Den Hauwe
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Kien Trân
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Justin Fournier
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Michael Desgagné
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Nathan Meneboo
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Alexis Lavallée
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Ulrike Fröhlich
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jérôme Côté
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Charlie Hollanders
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jean-Michel Longpré
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Alexandre Murza
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Eric Marsault
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Philippe Sarret
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Steven Ballet
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
8
|
Janssens P, Decuypere JP, Bammens B, Llorens-Cortes C, Vennekens R, Mekahli D. The emerging role of the apelinergic system in kidney physiology and disease. Nephrol Dial Transplant 2022; 37:2314-2326. [PMID: 33744967 DOI: 10.1093/ndt/gfab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
The apelinergic system (AS) is a novel pleiotropic system with an essential role in renal and cardiovascular physiology and disease, including water homeostasis and blood pressure regulation. It consists of two highly conserved peptide ligands, apelin and apela, and a G-protein-coupled apelin receptor. The two ligands have many isoforms and a short half-life and exert both similar and divergent effects. Vasopressin, apelin and their receptors colocalize in hypothalamic regions essential for body fluid homeostasis and interact at the central and renal levels to regulate water homeostasis and diuresis in inverse directions. In addition, the AS and renin-angiotensin system interact both systemically and in the kidney, with implications for the cardiovascular system. A role for the AS in diverse pathological states, including disorders of sodium and water balance, hypertension, heart failure, pre-eclampsia, acute kidney injury, sepsis and diabetic nephropathy, has recently been reported. Furthermore, several metabolically stable apelin analogues have been developed, with potential applications in diverse diseases. We review here what is currently known about the physiological functions of the AS, focusing on renal, cardiovascular and metabolic homeostasis, and the role of the AS in associated diseases. We also describe several hurdles and research opportunities worthy of the attention of the nephrology community.
Collapse
Affiliation(s)
- Peter Janssens
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussell), Department of Nephrology, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Jean-Paul Decuypere
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Bert Bammens
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.,Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR 7241, Paris, France
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB-KU Leuven Center for Brain and Disease, KU Leuven, Leuven, Belgium and
| | - Djalila Mekahli
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Pediatric Nephrology and Organ Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Narayanan S, Dai D, Vyas Devambatla RK, Albert V, Bruneau-Latour N, Vasukuttan V, Ciblat S, Rehder K, Runyon SP, Maitra R. Synthesis and characterization of an orally bioavailable small molecule agonist of the apelin receptor. Bioorg Med Chem 2022; 66:116789. [PMID: 35594649 DOI: 10.1016/j.bmc.2022.116789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
The apelin receptor (APJ) is a target for cardiovascular indications. Previously, we had identified a novel pyrazole-based agonist 1 ((S)-N-(1-(cyclobutylamino)-1-oxo-5-(piperidin-1-yl)pentan-3-yl)-1-cyclopentyl-5-(2,6-dimethoxyphenyl)-1H-pyrazole-3-carboxamide hydrochloride) of this GPCR. Systematic modification of 1 was performed to produce compounds with improved potency and ADME properties. Orally bioavailable compound 47 with favorable agonist potency (Ca2+EC50 = 24 nM, cAMPi EC50 = 6.5 nM) and pharmacokinetic properties (clearance ∼20 mL/min/kg in rats) was identified. This compound has vastly reduced brain penetration and is devoid of significant off-target liability. In summary, a potent and selective APJ agonist suitable for in vivo studies of APJ in peripheral tissues after oral administration has been identified.
Collapse
Affiliation(s)
- Sanju Narayanan
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA
| | - Donghua Dai
- Sterling Pharma Solutions Limited, Sheldon Drive, Cary, NC 27513, USA
| | | | - Vincent Albert
- Paraza Pharma Inc, 7171 Frederick-Banting Montréal, QC H4S 1Z9, Canada
| | | | - Vineetha Vasukuttan
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA
| | - Stephane Ciblat
- Paraza Pharma Inc, 7171 Frederick-Banting Montréal, QC H4S 1Z9, Canada
| | - Kenneth Rehder
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA
| | - Scott P Runyon
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA.
| | - Rangan Maitra
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
10
|
Design and preparation of N-linked hydroxypyridine-based APJ agonists. Bioorg Med Chem Lett 2022; 73:128882. [PMID: 35817293 DOI: 10.1016/j.bmcl.2022.128882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Agonism of the apelin receptor (APJ) has demonstrated beneficial effects in models of heart failure. We have previously disclosed compounds such as 4, which showed good APJ agonist activity but were metabolized to the mono-demethylated, non-interconverting atropisomer metabolites. Herein, we detail the design and optimization of a novel series of N-linked APJ agonists with good potency, metabolic stability, and rat pharmacokinetic profile, which are unable to undergo the same metabolic mono-demethylation cleavage.
Collapse
|
11
|
Yue Y, Liu L, Wu LJ, Wu Y, Wang L, Li F, Liu J, Han GW, Chen B, Lin X, Brouillette RL, Breault É, Longpré JM, Shi S, Lei H, Sarret P, Stevens RC, Hanson MA, Xu F. Structural insight into apelin receptor-G protein stoichiometry. Nat Struct Mol Biol 2022; 29:688-697. [PMID: 35817871 DOI: 10.1038/s41594-022-00797-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
The technique of cryogenic-electron microscopy (cryo-EM) has revolutionized the field of membrane protein structure and function with a focus on the dominantly observed molecular species. This report describes the structural characterization of a fully active human apelin receptor (APJR) complexed with heterotrimeric G protein observed in both 2:1 and 1:1 stoichiometric ratios. We use cryo-EM single-particle analysis to determine the structural details of both species from the same sample preparation. Protein preparations, in the presence of the endogenous peptide ligand ELA or a synthetic small molecule, both demonstrate these mixed stoichiometric states. Structural differences in G protein engagement between dimeric and monomeric APJR suggest a role for the stoichiometry of G protein-coupled receptor- (GPCR-)G protein coupling on downstream signaling and receptor pharmacology. Furthermore, a small, hydrophobic dimer interface provides a starting framework for additional class A GPCR dimerization studies. Together, these findings uncover a mechanism of versatile regulation through oligomerization by which GPCRs can modulate their signaling.
Collapse
Affiliation(s)
- Yang Yue
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lier Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Jie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Ling Wang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Fei Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Gye-Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Bo Chen
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Xi Lin
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Rebecca L Brouillette
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institute of Pharmacology at Sherbrooke, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Émile Breault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institute of Pharmacology at Sherbrooke, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institute of Pharmacology at Sherbrooke, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Songting Shi
- Structure Therapeutics, South San Francisco, CA, USA
| | - Hui Lei
- Structure Therapeutics, South San Francisco, CA, USA
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institute of Pharmacology at Sherbrooke, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Structure Therapeutics, South San Francisco, CA, USA
| | | | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Liu Q, Zhou S, Wang X, Gu C, Guo Q, Li X, Zhang C, Zhang N, Zhang L, Huang F. Apelin alleviated neuroinflammation and promoted endogenous neural stem cell proliferation and differentiation after spinal cord injury in rats. J Neuroinflammation 2022; 19:160. [PMID: 35725619 PMCID: PMC9208139 DOI: 10.1186/s12974-022-02518-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Background Spinal cord injury (SCI) causes devastating neurological damage, including secondary injuries dominated by neuroinflammation. The role of Apelin, an endogenous ligand that binds the G protein-coupled receptor angiotensin-like receptor 1, in SCI remains unclear. Thus, our aim was to investigate the effects of Apelin in inflammatory responses and activation of endogenous neural stem cells (NSCs) after SCI. Methods Apelin expression was detected in normal and injured rats, and roles of Apelin in primary NSCs were examined. In addition, we used induced pluripotent stem cells (iPSCs) as a carrier to prolong the effective duration of Apelin and evaluate its effects in a rat model of SCI. Results Co-immunofluorescence staining suggested that Apelin was expressed in both astrocytes, neurons and microglia. Following SCI, Apelin expression decreased from 1 to 14 d and re-upregulated at 28 d. In vitro, Apelin promoted NSCs proliferation and differentiation into neurons. In vivo, lentiviral-transfected iPSCs were used as a carrier to prolong the effective duration of Apelin. Transplantation of transfected iPSCs in situ immediately after SCI reduced polarization of M1 microglia and A1 astrocytes, facilitated recovery of motor function, and promoted the proliferation and differentiation of endogenous NSCs in rats. Conclusion Apelin alleviated neuroinflammation and promoted the proliferation and differentiation of endogenous NSCs after SCI, suggesting that it might be a promising target for treatment of SCI.
Collapse
Affiliation(s)
- Qing Liu
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Shuai Zhou
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Xiao Wang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Chengxu Gu
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Qixuan Guo
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Xikai Li
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Chunlei Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Naili Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Luping Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China.
| | - Fei Huang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China. .,School of Health and Life Sciences, University of Health and Rehabilitation Sciences, 17 Shandong Road, Qingdao, 266071, China.
| |
Collapse
|
13
|
A Phase I, Open-label, Single-Dose Study to Evaluate the Pharmacokinetics, Safety, and Tolerability of AMG 986 in Healthy Japanese Subjects. Drugs R D 2022; 22:141-146. [PMID: 35279815 PMCID: PMC9167390 DOI: 10.1007/s40268-022-00386-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background and Objective AMG 986 is a first-in-class, novel apelin receptor small molecule agonist initially developed as a treatment for patients with heart failure (HF). Previously, a first-in-human study of AMG 986 was conducted in healthy and HF subjects; however, AMG 986 was not evaluated in Japanese subjects. Methods This was a phase I, open-label, single-dose, single-center study conducted to evaluate the safety and pharmacokinetics (PK) of AMG 986 200 mg and 400 mg in 12 healthy Japanese subjects. Six subjects received AMG 986 200 mg and six subjects received AMG 986 400 mg. Results Following oral administration, median time to maximum observed plasma concentration (tmax) was 1.0 h for both the AMG 986 200 mg and 400 mg groups, and mean terminal half-life (t½) was 15.1 h and 17.6 h, respectively. When comparing the AMG 986 200 mg and 400 mg groups, 1.33-fold and 1.18-fold higher maximum observed plasma concentration (Cmax) and AUC∞, respectively, were observed for the 2-fold increase in dose. AMG 986 exhibited an acceptable safety and tolerability profile; all adverse events were mild in severity. Conclusion AMG 986 exposure increased with increasing dose, and the increase was less than dose proportional in healthy Japanese subjects. The results of this study could facilitate the subsequent clinical development of AMG 986 for the treatment of Japanese patients with HF. Supplementary Information The online version contains supplementary material available at 10.1007/s40268-022-00386-3.
Collapse
|
14
|
Trivedi A, Kiang YH, Saw RE, Cheng GC, Mather O, Vega S, Hellawell J, Lee E. Evaluation of the Pharmacokinetics and Safety of AMG 986 Tablet and Capsule Formulations in Healthy Adult Subjects: A Phase I, Open-Label, Randomized Study. Drugs R D 2022; 22:147-154. [PMID: 35412220 PMCID: PMC9167409 DOI: 10.1007/s40268-022-00388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND OBJECTIVE AMG 986 is a first-in-class, novel apelin receptor small molecule agonist initially developed for the treatment of heart failure. The current phase I study was conducted to evaluate the pharmacokinetics and safety of a single-dose 200-mg capsule formulation of AMG 986 relative to the tablet formulation in 12 healthy subjects. METHODS In a two-period, two-way crossover design, eligible subjects were randomized 1:1 to tablet/capsule or capsule/tablet treatment sequences; each treatment sequence lasted for approximately 6 days and comprised six subjects. RESULTS Following a single oral dose of AMG 986, the geometric mean maximum observed concentration (Cmax) values were 9670 ng/mL and 6920 ng/mL and the geometric mean area under the curve from time zero to 120 h (AUC0-120h) values were 68,000 ng*h/mL and 59,900 ng*h/mL for the tablet and capsule, respectively. The geometric least squares means (90% confidence interval [90% CI]) for the ratios of capsule/tablet were 0.88 (90% CI 0.81-0.96) and 0.72 (90% CI 0.57-0.91) for AUC0-120h and Cmax, respectively. AMG 986 had an acceptable safety profile; all adverse events were grade 1 or 2 in severity. CONCLUSION There was a modest 12% decrease in AUC0-120h and a 28% decrease in Cmax with the AMG 986 capsule versus the tablet. These differences are not considered to be clinically relevant, suggesting the capsule formulation can be used in subsequent clinical studies of AMG 986.
Collapse
Affiliation(s)
| | - Y-H Kiang
- Amgen Inc., Thousand Oaks, CA, 91320, USA
| | | | - Guilong Charles Cheng
- Amgen Inc., Thousand Oaks, CA, 91320, USA
- Foghorn Therapeutics Inc., Cambridge, MA, USA
| | | | | | | | - Edward Lee
- Amgen Inc., Thousand Oaks, CA, 91320, USA
| |
Collapse
|
15
|
Trivedi A, Mather O, Vega S, Hutton S, Hellawell J, Lee E. A Phase 1, Open-Label Study to Evaluate the Effect of Food and Concomitant Itraconazole Administration on the Pharmacokinetics of AMG 986 in Healthy Subjects. Clin Pharmacol Drug Dev 2022; 11:849-856. [PMID: 35247290 DOI: 10.1002/cpdd.1074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022]
Abstract
This phase 1, open-label study evaluated the effect of food and administration of the cytochrome P450 3A4 and P-glycoprotein inhibitor itraconazole (ITZ) on the pharmacokinetics of AMG 986. In cohort 1, 12 healthy subjects received a single oral dose of AMG 986 200 mg ± food on days 1 and 10. In cohort 2, 15 healthy subjects received oral ITZ 200 mg once daily on days 8 to 15 and a single oral dose of AMG 986 10 mg on days 1 and 11. The geometric least squares mean ratios of fed/fasted for AMG 986 maximum observed concentration (Cmax ) and area under the plasma concentration-time curve from time 0 to infinity (AUCinf ) were 0.76 (90%CI, 0.61-0.95) and 1.07 (90%CI, 0.94-1.22), respectively. The geometric least squares mean ratios of AMG 986 10 mg plus ITZ 200 mg/AMG 986 10 mg alone for AMG 986 Cmax and AUCinf were 1.36 (90%CI, 1.25-1.48) and 5.13 (90%CI, 4.71-5.59), respectively. Overall, 3 subjects experienced mild treatment-related adverse events; there were no serious or fatal adverse events. In conclusion, food had no apparent effect on the exposure of AMG 986 200 mg; therefore, food restrictions are not required. Potent cytochrome P450 3A4 and/or P-glycoprotein inhibitors may warrant AMG 986 dose reduction and should be coadministered with caution in patients with heart failure treated with AMG 986.
Collapse
Affiliation(s)
| | | | | | | | | | - Edward Lee
- Amgen Inc, Thousand Oaks, California, USA
| |
Collapse
|
16
|
Effect of Severe Renal Impairment on the Safety, Tolerability, and Pharmacokinetics of AMG 986. Drugs R D 2022; 22:89-94. [PMID: 35092583 PMCID: PMC8885944 DOI: 10.1007/s40268-021-00380-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 01/07/2023] Open
Abstract
Introduction AMG 986 is a first-in-class, novel apelin receptor small molecule agonist initially developed for the treatment of heart failure (HF). The safety and pharmacokinetics (PK) of AMG 986 in participants with renal impairment (RI) remains unknown. Methods This phase 1 study compared the safety and PK of AMG 986 200 mg in six participants with severe RI (estimated glomerular filtration rate [eGFR] 15–29 mL/min/1.73 m2) versus six participants with normal renal function (eGFR ≥ 90 mL/min/1.73 m2). Results Following a single oral dose of AMG 986 200 mg on day 1, the maximum observed concentration increased 1.41-fold (90% confidence interval [CI] 0.88–2.27) and the area under the curve from time zero to infinity increased 1.23-fold (90% CI 0.73–2.06) in participants with severe RI versus normal renal function. AMG 986 had an acceptable safety profile; all adverse events were mild in severity. Conclusions The results of this study support the enrollment of HF patients with RI to clinical trials of AMG 986 without the need for dose adjustments. Trial Registration Number NCT03318809 (registered: October 24, 2017).
Collapse
|
17
|
Xu F, Wu M, Lu X, Zhang H, Shi L, Xi Y, Zhou H, Wang J, Miao L, Gong DW, Cui W. Effect of Fc-Elabela-21 on renal ischemia/reperfusion injury in mice: Mediation of anti-apoptotic effect via Akt phosphorylation. Peptides 2022; 147:170682. [PMID: 34742787 DOI: 10.1016/j.peptides.2021.170682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Renal ischemia/reperfusion injury (IRI) is the most common cause of acute kidney injury (AKI), and patients with AKI have a high rate of mortality. Apelin is a therapeutic candidate for treatment of IRI and Elabela (ELA) is a recently discovered hormone that also activates the apelin receptor (APJ). We examined the use of ELA as a preventive treatment for IRI using in vitro and in vivo models. METHODS Male mice were subjected to renal IRI, with or without administration of a stabilized form of ELA (Fc-ELA-21) for 4 days. Renal tubular lesions were measured using H&E staining, reactive oxygen species (ROS) were measured using a dihydroethidium stain assay, and renal cell apoptosis was measured using the TUNEL assay and flow cytometry. Immortalized human proximal tubular epithelial (HK-2) cells were pretreated with or without LY294002 and/or ELA-32, maintained at normoxic or hypoxic conditions, and then returned to normal culture conditions to mimic IRI. Cell apoptosis was determined using the TUNEL assay and cell proliferation was determined using the MTT assay. The levels of Akt, p-Akt, ERK1/2, p- ERK1/2, Bcl-2, Bax, caspase-3 and cleaved caspase-3 were measured using western blotting. RESULTS Fc-ELA-21 administration reduced renal tissue damage, ROS production, and apoptosis in mice that had renal IRI. ELA-32 reduced HK-2 cell apoptosis and restored the proliferation of cells subjected to IRI. Akt phosphorylation had a role in the anti-apoptotic effect of ELA. CONCLUSION This study of in vitro and in vivo models of IRI indicated that the preventive and anti-apoptotic effects of ELA were mediated via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Feng Xu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China; Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Man Wu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Xuehong Lu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Hong Zhang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Lin Shi
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Yue Xi
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Huifen Zhou
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Junhong Wang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Lining Miao
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Da-Wei Gong
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| |
Collapse
|
18
|
Gaddam RR, Kim Y, Jacobs JS, Yoon J, Li Q, Cai A, Shankaiahgari H, London B, Irani K, Vikram A. The microRNA-204-5p inhibits APJ signalling and confers resistance to cardiac hypertrophy and dysfunction. Clin Transl Med 2022; 12:e693. [PMID: 35060347 PMCID: PMC8777385 DOI: 10.1002/ctm2.693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MicroRNAs regulate cardiac hypertrophy development, which precedes and predicts the risk of heart failure. microRNA-204-5p (miR-204) is well expressed in cardiomyocytes, but its role in developing cardiac hypertrophy and cardiac dysfunction (CH/CD) remains poorly understood. METHODS We performed RNA-sequencing, echocardiographic, and molecular/morphometric analysis of the heart of mice lacking or overexpressing miR-204 five weeks after trans-aortic constriction (TAC). The neonatal rat cardiomyocytes, H9C2, and HEK293 cells were used to determine the mechanistic role of miR-204. RESULTS The stretch induces miR-204 expression, and miR-204 inhibits the stretch-induced hypertrophic response of H9C2 cells. The mice lacking miR-204 displayed a higher susceptibility to CH/CD during pressure overload, which was reversed by the adeno-associated virus serotype-9-mediated cardioselective miR-204 overexpression. Bioinformatic analysis of the cardiac transcriptomics of miR-204 knockout mice following pressure overload suggested deregulation of apelin-receptor (APJ) signalling. We found that the stretch-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation and hypertrophy-related genes expression depend on the APJ, and both of these effects are subject to miR-204 levels. The dynamin inhibitor dynasore inhibited both stretch-induced APJ endocytosis and ERK1/2 activation. In contrast, the miR-204-induced APJ endocytosis was neither inhibited by dynamin inhibitors (dynasore and dyngo) nor associated with ERK1/2 activation. We find that the miR-204 increases the expression of ras-associated binding proteins (e.g., Rab5a, Rab7) that regulate cellular endocytosis. CONCLUSIONS Our results show that miR-204 regulates trafficking of APJ and confers resistance to pressure overload-induced CH/CD, and boosting miR-204 can inhibit the development of CH/CD.
Collapse
Affiliation(s)
- Ravinder Reddy Gaddam
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Young‐Rae Kim
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Julia S. Jacobs
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Jin‐Young Yoon
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Qiuxia Li
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Angela Cai
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Hamsitha Shankaiahgari
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Barry London
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Kaikobad Irani
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Ajit Vikram
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| |
Collapse
|
19
|
de Oliveira AA, Vergara A, Wang X, Vederas JC, Oudit GY. Apelin pathway in cardiovascular, kidney, and metabolic diseases: Therapeutic role of apelin analogs and apelin receptor agonists. Peptides 2022; 147:170697. [PMID: 34801627 DOI: 10.1016/j.peptides.2021.170697] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
The apelin/apelin receptor (ApelinR) signal transduction pathway exerts essential biological roles, particularly in the cardiovascular system. Disturbances in the apelin/ApelinR axis are linked to vascular, heart, kidney, and metabolic disorders. Therefore, the apelinergic system has surfaced as a critical therapeutic strategy for cardiovascular diseases (including pulmonary arterial hypertension), kidney disease, insulin resistance, hyponatremia, preeclampsia, and erectile dysfunction. However, apelin peptides are susceptible to rapid degradation through endogenous peptidases, limiting their use as therapeutic tools and translational potential. These proteases include angiotensin converting enzyme 2, neutral endopeptidase, and kallikrein thereby linking the apelin pathway with other peptide systems. In this context, apelin analogs with enhanced proteolytic stability and synthetic ApelinR agonists emerged as promising pharmacological alternatives. In this review, we focus on discussing the putative roles of the apelin pathway in various physiological systems from function to dysfunction, and emphasizing the therapeutic potential of newly generated metabolically stable apelin analogs and non-peptide ApelinR agonists.
Collapse
Affiliation(s)
- Amanda A de Oliveira
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ander Vergara
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaopu Wang
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
20
|
Meng W, Pi Z, Brigance R, Rossi KA, Schumacher WA, Bostwick JS, Gargalovic PS, Onorato JM, Luk CE, Generaux CN, Wang T, Wexler RR, Finlay HJ. Identification of a Hydroxypyrimidinone Compound ( 21) as a Potent APJ Receptor Agonist for the Potential Treatment of Heart Failure. J Med Chem 2021; 64:18102-18113. [PMID: 34855405 DOI: 10.1021/acs.jmedchem.1c01504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper describes our continued efforts in the area of small-molecule apelin receptor agonists. Recently disclosed compound 2 showed an acceptable metabolic stability but demonstrated monodemethylation of the dimethoxyphenyl group to generate atropisomer metabolites in vitro. In this article, we extended the structure-activity relationship at the C2 position that led to the identification of potent pyrazole analogues with excellent metabolic stability. Due to the increased polarity at C2, the permeability for these compounds decreased. Further adjustment of the polarity by replacing the N1 2,6-dimethoxyphenyl group with a 2,6-diethylphenyl group and reoptimization for the potency of the C5 pyrroloamides resulted in potent compounds with improved permeability. Compound 21 displayed excellent pharmacokinetic profiles in rat, monkey, and dog models and robust pharmacodynamic efficacy in the rodent heart failure model. Compound 21 also showed an acceptable safety profile in preclinical toxicology studies and was selected as a backup development candidate for the program.
Collapse
Affiliation(s)
- Wei Meng
- Departments of Discovery Chemistry, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Zulan Pi
- Departments of Discovery Chemistry, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Robert Brigance
- Departments of Discovery Chemistry, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Karen A Rossi
- Computer-Assisted Drug Design, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - William A Schumacher
- Cardiovascular Drug Discovery Biology, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Jeffrey S Bostwick
- Cardiovascular Drug Discovery Biology, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Peter S Gargalovic
- Cardiovascular Drug Discovery Biology, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Joelle M Onorato
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Chiuwa E Luk
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Claudia N Generaux
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Tao Wang
- Leads Discovery and Optimization, Research and Development, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Ruth R Wexler
- Departments of Discovery Chemistry, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Heather J Finlay
- Departments of Discovery Chemistry, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| |
Collapse
|
21
|
Chapman FA, Nyimanu D, Maguire JJ, Davenport AP, Newby DE, Dhaun N. The therapeutic potential of apelin in kidney disease. Nat Rev Nephrol 2021; 17:840-853. [PMID: 34389827 PMCID: PMC8361827 DOI: 10.1038/s41581-021-00461-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a leading cause of global morbidity and mortality and is independently associated with cardiovascular disease. The mainstay of treatment for CKD is blockade of the renin-angiotensin-aldosterone system (RAAS), which reduces blood pressure and proteinuria and slows kidney function decline. Despite this treatment, many patients progress to kidney failure, which requires dialysis or kidney transplantation, and/or die as a result of cardiovascular disease. The apelin system is an endogenous physiological regulator that is emerging as a potential therapeutic target for many diseases. This system comprises the apelin receptor and its two families of endogenous ligands, apelin and elabela/toddler. Preclinical and clinical studies show that apelin receptor ligands are endothelium-dependent vasodilators and potent inotropes, and the apelin system has a reciprocal relationship with the RAAS. In preclinical studies, apelin regulates glomerular haemodynamics and acts on the tubule to promote aquaresis. In addition, apelin is protective in several kidney injury models. Although the apelin system has not yet been studied in patients with CKD, the available data suggest that apelin is a promising potential therapeutic target for kidney disease.
Collapse
Affiliation(s)
- Fiona A Chapman
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Duuamene Nyimanu
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - Anthony P Davenport
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK
| | - Neeraj Dhaun
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK.
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
22
|
Pi Z, Johnson JA, Meng W, Phillips M, Schumacher WA, Bostwick JS, Gargalovic PS, Onorato JM, Generaux CN, Wang T, He Y, Gordon DA, Wexler RR, Finlay HJ. Identification of 6-Hydroxypyrimidin-4(1 H)-one-3-carboxamides as Potent and Orally Active APJ Receptor Agonists. ACS Med Chem Lett 2021; 12:1766-1772. [PMID: 34795866 DOI: 10.1021/acsmedchemlett.1c00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Abstract
The apelin receptor (APJ) is a significant regulator of cardiovascular function and is involved in heart failure and other cardiovascular diseases. (Pyr1)apelin-13 is one of the endogenous agonists of the APJ receptor. Administration of (Pyr1)apelin-13 increases cardiac output in preclinical models and humans. Recently we disclosed clinical lead BMS-986224 (1), a C3 oxadiazole pyridinone APJ receptor agonist with robust pharmacodynamic effects similar to (Pyr1)apelin-13 in an acute rat pressure-volume loop model. Herein we describe the structure-activity relationship of the carboxamides as oxadiazole bioisosteres at C3 of the pyridinone core and C5 of the respective pyrimidinone core. This study led to the identification of structurally differentiated 6-hydroxypyrimidin-4(1H)-one-3-carboxamide 14a with pharmacodynamic effects comparable to those of compound 1.
Collapse
Affiliation(s)
- Zulan Pi
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - James A. Johnson
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Wei Meng
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Monique Phillips
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - William A. Schumacher
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Jeffrey S. Bostwick
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Peter S. Gargalovic
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Joelle M. Onorato
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Claudia N. Generaux
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Tao Wang
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Yan He
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - David A. Gordon
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Ruth R. Wexler
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Heather J. Finlay
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| |
Collapse
|
23
|
Tora G, Jiang J, Bostwick JS, Gargalovic PS, Onorato JM, Luk CE, Generaux C, Xu C, Galella MA, Wang T, He Y, Wexler RR, Finlay HJ. Identification of 6-hydroxy-5-phenyl sulfonylpyrimidin-4(1H)-one APJ receptor agonists. Bioorg Med Chem Lett 2021; 50:128325. [PMID: 34403724 DOI: 10.1016/j.bmcl.2021.128325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) treatment remains a critical unmet medical need. Studies in normal healthy volunteers and HF patients have shown that [Pyr1]apelin-13, the endogenous ligand for the APJ receptor, improves cardiac function. However, the short half-life of [Pyr1]apelin-13 and the need for intravenous administration have limited the therapeutic potential for chronic use. We sought to identify potent, small-molecule APJ agonists with improved pharmaceutical properties to enable oral dosing in clinical studies. In this manuscript, we describe the identification of a series of pyrimidinone sulfones as a structurally differentiated series to the clinical lead (compound 1). Optimization of the sulfone series for potency, metabolic stability and oral bioavailability led to the identification of compound 22, which showed comparable APJ potency to [Pyr1]apelin-13 and exhibited an acceptable pharmacokinetic profile to advance to the acute hemodynamic rat model.
Collapse
Affiliation(s)
- George Tora
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Ji Jiang
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States.
| | - Jeffrey S Bostwick
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Peter S Gargalovic
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Joelle M Onorato
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Chiuwa E Luk
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Claudia Generaux
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Carrie Xu
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Michael A Galella
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Tao Wang
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Yan He
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Ruth R Wexler
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Heather J Finlay
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| |
Collapse
|
24
|
Johnson JA, Kim SH, Jiang J, Phillips M, Schumacher WA, Bostwick JS, Gargalovic PS, Onorato JM, Luk CE, Generaux C, He Y, Chen XQ, Xu C, Galella MA, Wang T, Gordon DA, Wexler RR, Finlay HJ. Discovery of a Hydroxypyridinone APJ Receptor Agonist as a Clinical Candidate. J Med Chem 2021; 64:3086-3099. [PMID: 33689340 DOI: 10.1021/acs.jmedchem.0c01878] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apelin-13 is an endogenous peptidic agonist of the apelin receptor (APJ) receptor with the potential for improving cardiac function in heart failure patients. However, the low plasma stability of apelin-13 necessitates continuous intravenous infusion for therapeutic use. There are several approaches to increase the stability of apelin-13 including attachment of pharmacokinetic enhancing groups, stabilized peptides, and Fc-fusion approaches. We sought a small-molecule APJ receptor agonist approach to target a compound with a pharmacokinetic profile amenable for chronic oral administration. This manuscript describes sequential optimization of the pyrimidinone series, leading to pyridinone 14, with in vitro potency equivalent to the endogenous ligand apelin-13 and with an excellent oral bioavailability and PK profile in multiple preclinical species. Compound 14 exhibited robust pharmacodynamic effects similar to apelin-13 in an acute rat pressure-volume loop model and was advanced as a clinical candidate.
Collapse
Affiliation(s)
- James A Johnson
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Soong-Hoon Kim
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Ji Jiang
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Monique Phillips
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - William A Schumacher
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Jeffrey S Bostwick
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Peter S Gargalovic
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Joelle M Onorato
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Chiuwa E Luk
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Claudia Generaux
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Yan He
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Xue-Qing Chen
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Carrie Xu
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Michael A Galella
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Tao Wang
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - David A Gordon
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Ruth R Wexler
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Heather J Finlay
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| |
Collapse
|
25
|
Gargalovic P, Wong P, Onorato J, Finlay H, Wang T, Yan M, Crain E, St-Onge S, Héroux M, Bouvier M, Xu C, Chen XQ, Generaux C, Lawrence M, Wexler R, Gordon D. In Vitro and In Vivo Evaluation of a Small-Molecule APJ (Apelin Receptor) Agonist, BMS-986224, as a Potential Treatment for Heart Failure. Circ Heart Fail 2021; 14:e007351. [PMID: 33663236 PMCID: PMC7982131 DOI: 10.1161/circheartfailure.120.007351] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. New heart failure therapies that safely augment cardiac contractility and output are needed. Previous apelin peptide studies have highlighted the potential for APJ (apelin receptor) agonism to enhance cardiac function in heart failure. However, apelin’s short half-life limits its therapeutic utility. Here, we describe the preclinical characterization of a novel, orally bioavailable APJ agonist, BMS-986224.
Collapse
Affiliation(s)
- Peter Gargalovic
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Pancras Wong
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Joelle Onorato
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Heather Finlay
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Tao Wang
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Mujing Yan
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Earl Crain
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Stéphane St-Onge
- Universite de Montreal, Drug Discovery Unit at Institute for Research in Immunology and Cancer (S.S.-O., M.H., M.B.)
| | - Madeleine Héroux
- Universite de Montreal, Drug Discovery Unit at Institute for Research in Immunology and Cancer (S.S.-O., M.H., M.B.)
| | - Michel Bouvier
- Universite de Montreal, Drug Discovery Unit at Institute for Research in Immunology and Cancer (S.S.-O., M.H., M.B.).,Department of Biochemistry and Molecular Medicine, Université de Montréal, QC, Canada (M.B.)
| | - Carrie Xu
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Xue-Qing Chen
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Claudia Generaux
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Michael Lawrence
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Ruth Wexler
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - David Gordon
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| |
Collapse
|
26
|
Loss of APJ mediated β-arrestin signalling improves high-fat diet induced metabolic dysfunction but does not alter cardiac function in mice. Biochem J 2021; 477:3313-3327. [PMID: 32779693 DOI: 10.1042/bcj20200343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 01/21/2023]
Abstract
Apelin receptor (APJ) is a G protein-coupled receptor that contributes to many physiological processes and is emerging as a therapeutic target to treat a variety of diseases. For most disease indications the role of G protein vs β-arrestin signalling in mitigating disease pathophysiology remains poorly understood. This hinders the development of G protein biased APJ agonists, which have been proposed to have several advantages over balanced APJ signalling agonists. To elucidate the contribution of APJ β-arrestin signalling, we generated a transgenic mouse harbouring a point mutation (APJ I107A) that maintains full G protein activity but fails to recruit β-arrestin following receptor activation. APJ I107A mutant mice did not alter cardiac function at rest, following exercise challenge or in response to pressure overload induced cardiac hypertrophy. Additionally, APJ I107A mice have comparable body weights, plasma glucose and lipid levels relative to WT mice when fed a chow diet. However, APJ I107A mice showed significantly lower body weight, blood insulin levels, improved glucose tolerance and greater insulin sensitivity when fed a high-fat diet. Furthermore, loss of APJ β-arrestin signalling also affected fat composition and the expression of lipid metabolism related genes in adipose tissue from high-fat fed mice. Taken together, our results suggest that G protein biased APJ activation may be more effective for certain disease indications given that loss of APJ mediated β-arrestin signalling appears to mitigate several aspects of diet induced metabolic dysfunction.
Collapse
|
27
|
Girault-Sotias PE, Gerbier R, Flahault A, de Mota N, Llorens-Cortes C. Apelin and Vasopressin: The Yin and Yang of Water Balance. Front Endocrinol (Lausanne) 2021; 12:735515. [PMID: 34880830 PMCID: PMC8645901 DOI: 10.3389/fendo.2021.735515] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Apelin, a (neuro)vasoactive peptide, plays a prominent role in controlling body fluid homeostasis and cardiovascular functions. Experimental data performed in rodents have shown that apelin has an aquaretic effect via its central and renal actions. In the brain, apelin inhibits the phasic electrical activity of vasopressinergic neurons and the release of vasopressin from the posterior pituitary into the bloodstream and in the kidney, apelin regulates renal microcirculation and counteracts in the collecting duct, the antidiuretic effect of vasopressin occurring via the vasopressin receptor type 2. In humans and rodents, if plasma osmolality is increased by hypertonic saline infusion/water deprivation or decreased by water loading, plasma vasopressin and apelin are conversely regulated to maintain body fluid homeostasis. In patients with the syndrome of inappropriate antidiuresis, in which vasopressin hypersecretion leads to hyponatremia, the balance between apelin and vasopressin is significantly altered. In order to re-establish the correct balance, a metabolically stable apelin-17 analog, LIT01-196, was developed, to overcome the problem of the very short half-life (in the minute range) of apelin in vivo. In a rat experimental model of vasopressin-induced hyponatremia, subcutaneously (s.c.) administered LIT01-196 blocks the antidiuretic effect of vasopressin and the vasopressin-induced increase in urinary osmolality, and induces a progressive improvement in hyponatremia, suggesting that apelin receptor activation constitutes an original approach for hyponatremia treatment.
Collapse
|