1
|
Cao J, Li Y, Xue F, Sheng Z, Liu L, Zhang Y, Wang L, Zeng L, Jiang Y, Fan D, Li F, An J. Case study: May human norovirus infection be associated with premature delivery? Virol Sin 2024:S1995-820X(24)00169-X. [PMID: 39490793 DOI: 10.1016/j.virs.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Human norovirus (HuNoV) is the leading cause of acute gastroenteritis. The varying severity of chronic infection in patients with underlying immune deficiencies poses additional burdens on public health. However, the potential effects of HuNoV infection during pregnancy, a specific immune perturbed state, have been rarely reported. Recently, four cases of HuNoV-infected patients in the late stages of pregnancy were admitted to the Guangzhou Women and Children's Medical Center, and premature rupture of membranes as primary adverse outcome was observed in these cases. Samples of fetal accessory tissue were collected from two of these cases at delivery to explore the potential pathogenesis. Pathological analysis showed placental malperfusion in both maternal and fetal vascular, while a decrease in vessels was not observed in villi of placenta. There was obvious pathological change in the chorion of fetal membrane, accompanied by a tendency of Th-1 immune bias. Notably, aggregation of M2 macrophages was observed in the chorion of the fetal membrane, potentially recruited for tissue repair. Next-generation sequencing showed minimal changes in immune pathways within placenta tissue. A gene panel associated with immunosuppression was identified in the fetal membrane of HuNoV-infected women compared to those of normal parturient. Taken together, this study provides clues for the association between the HuNoV and premature delivery, which requires the attention of the clinicians.
Collapse
Affiliation(s)
- Jiaying Cao
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Department of Clinical Laboratory, The Fifth People's Hospital of Jinan, Jinan, 250022, China
| | - Yuetong Li
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Feiyang Xue
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ziyang Sheng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Libo Liu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yingying Zhang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Lele Wang
- Department of Obstetrics & Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510180, China
| | - Liang Zeng
- Department of Pathology, Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yanmin Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Dongying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Fang Li
- Department of Obstetrics & Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Degnes MHL, Westerberg AC, Andresen IJ, Henriksen T, Roland MCP, Zucknick M, Michelsen TM. Protein biomarker signatures of preeclampsia - a longitudinal 5000-multiplex proteomics study. Sci Rep 2024; 14:23654. [PMID: 39390022 PMCID: PMC11467422 DOI: 10.1038/s41598-024-73796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
We aimed to explore novel biomarker candidates and biomarker signatures of late-onset preeclampsia (LOPE) by profiling samples collected in a longitudinal discovery cohort with a high-throughput proteomics platform. Using the Somalogic 5000-plex platform, we analyzed proteins in plasma samples collected at three visits (gestational weeks (GW) 12-19, 20-26 and 28-34 in 35 women with LOPE (birth ≥ 34 GW) and 70 healthy pregnant women). To identify biomarker signatures, we combined Elastic Net with Stability Selection for stable variable selection and validated their predictive performance in a validation cohort. The biomarker signature with the highest predictive performance (AUC 0.88 (95% CI 0.85-0.97)) was identified in the last trimester of pregnancy (GW 28-34) and included the Fatty acid amid hydrolase 2 (FAAH2), HtrA serine peptidase 1 (HTRA1) and Interleukin-17 receptor C (IL17RC) together with sFLT1 and maternal age, BMI and nulliparity. Our biomarker signature showed increased or similar predictive performance to the sFLT1/PGF-ratio within our data set, and we were able to validate the biomarker signature in a validation cohort (AUC ≥ 0.90). Further validation of these candidates should be performed using another protein quantification platform in an independent cohort where the negative and positive predictive values can be validly calculated.
Collapse
Affiliation(s)
- Maren-Helene Langeland Degnes
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway.
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway.
| | - Ane Cecilie Westerberg
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Ina Jungersen Andresen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Tore Henriksen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Marie Cecilie Paasche Roland
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Manuela Zucknick
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Trond Melbye Michelsen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Feyaerts D, Marić I, Arck PC, Prins JR, Gomez-Lopez N, Gaudillière B, Stelzer IA. Predicting Spontaneous Preterm Birth Using the Immunome. Clin Perinatol 2024; 51:441-459. [PMID: 38705651 DOI: 10.1016/j.clp.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Throughout pregnancy, the maternal peripheral circulation contains valuable information reflecting pregnancy progression, detectable as tightly regulated immune dynamics. Local immune processes at the maternal-fetal interface and other reproductive and non-reproductive tissues are likely to be the pacemakers for this peripheral immune "clock." This cellular immune status of pregnancy can be leveraged for the early risk assessment and prediction of spontaneous preterm birth (sPTB). Systems immunology approaches to sPTB subtypes and cross-tissue (local and peripheral) interactions, as well as integration of multiple biological data modalities promise to improve our understanding of preterm birth pathobiology and identify potential clinically actionable biomarkers.
Collapse
Affiliation(s)
- Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ivana Marić
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA 94304, USA
| | - Petra C Arck
- Department of Obstetrics and Fetal Medicine and Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
| | - Jelmer R Prins
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Postbus 30.001, 9700RB, Groningen, The Netherlands
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA; Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Palo Alto, CA 94304, USA
| | - Ina A Stelzer
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Ribeiro TA, Breznik JA, Kennedy KM, Yeo E, Kennelly BKE, Jazwiec PA, Patterson VS, Bellissimo CJ, Anhê FF, Schertzer JD, Bowdish DME, Sloboda DM. Intestinal permeability and peripheral immune cell composition are altered by pregnancy and adiposity at mid- and late-gestation in the mouse. PLoS One 2023; 18:e0284972. [PMID: 37549142 PMCID: PMC10406227 DOI: 10.1371/journal.pone.0284972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/13/2023] [Indexed: 08/09/2023] Open
Abstract
It is clear that the gastrointestinal tract influences metabolism and immune function. Most studies to date have used male test subjects, with a focus on effects of obesity and dietary challenges. Despite significant physiological maternal adaptations that occur across gestation, relatively few studies have examined pregnancy-related gut function. Moreover, it remains unknown how pregnancy and diet can interact to alter intestinal barrier function. In this study, we investigated the impacts of pregnancy and adiposity on maternal intestinal epithelium morphology, in vivo intestinal permeability, and peripheral blood immunophenotype, using control (CTL) and high-fat (HF) fed non-pregnant female mice and pregnant mice at mid- (embryonic day (E)14.5) and late (E18.5) gestation. We found that small intestine length increased between non-pregnant mice and dams at late-gestation, but ileum villus length, and ileum and colon crypt depths and goblet cell numbers remained similar. Compared to CTL-fed mice, HF-fed mice had reduced small intestine length, ileum crypt depth and villus length. Goblet cell numbers were only consistently reduced in HF-fed non-pregnant mice. Pregnancy increased in vivo gut permeability, with a greater effect at mid- versus late-gestation. Non-pregnant HF-fed mice had greater gut permeability, and permeability was also increased in HF-fed pregnant dams at mid but not late-gestation. The impaired maternal gut barrier in HF-fed dams at mid-gestation coincided with changes in maternal blood and bone marrow immune cell composition, including an expansion of circulating inflammatory Ly6Chigh monocytes. In summary, pregnancy has temporal effects on maternal intestinal structure and barrier function, and on peripheral immunophenotype, which are further modified by HF diet-induced maternal adiposity. Maternal adaptations in pregnancy are thus vulnerable to excess maternal adiposity, which may both affect maternal and child health.
Collapse
Affiliation(s)
- Tatiane A. Ribeiro
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
| | - Jessica A. Breznik
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M. Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Erica Yeo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Brianna K. E. Kennelly
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Patrycja A. Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Violet S. Patterson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Christian J. Bellissimo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Fernando F. Anhê
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Dawn M. E. Bowdish
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Deborah M. Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Kyathanahalli C, Snedden M, Singh L, Regalia C, Keenan-Devlin L, Borders AE, Hirsch E. Maternal plasma and salivary anelloviruses in pregnancy and preterm birth. Front Med (Lausanne) 2023; 10:1191938. [PMID: 37396897 PMCID: PMC10309558 DOI: 10.3389/fmed.2023.1191938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Human anelloviruses, including torque teno virus (TTV) and torque teno mini virus (TTMV), are ubiquitous in the general population and have no known pathogenicity. We investigated the prevalence and viral load of TTV and TTMV in plasma and saliva over pregnancy, and assessed their association with spontaneous or medically indicated preterm birth. Methods This is a secondary analysis of the Measurement of Maternal Stress (MOMS) study, which recruited 744 individuals with singleton pregnancies from 4 US sites (Chicago, Pittsburgh, San Antonio, and rural Pennsylvania). Baseline outpatient visits took place in the second trimester (between 12'0 and 20'6/7 weeks' gestation), and follow-up visits in the third trimester (between 32'0 and 35'6/7 weeks' gestation). In a case-control study design, participants who delivered preterm (<37 weeks) resulting from spontaneous labor and/or preterm premature rupture of membranes ("sPTB") were compared with participants experiencing medically indicated preterm birth ("iPTB"), or delivery at term ("controls"). Plasma and saliva samples obtained during the second and third trimesters were tested for the presence and quantity of TTV and TTMV using real-time PCR. Demographic data were obtained via self-report, and clinical data via medical record review by trained research personnel. Results TTV was detected in plasma from 81% (second trimester) and 77% (third trimester) of participants, and in saliva from 64 and 60%. Corresponding detection rates for TTMV were 59 and 41% in plasma, and 35 and 24% in saliva. TTV and TTMV concentrations were similar between matched plasma and saliva samples. TTV prevalence and concentrations were not significantly different between groups (sPTB, iPTB, and controls). However, plasma TTMV in the third trimester was associated with sPTB and earlier gestational age at delivery. The iPTB group was not different from either the sPTB or the control group. In saliva, concentrations of TTV and TTMV were similar among the three groups. Both TTV and TTMV were more prevalent with increasing parity and were more common in Black and Hispanic participants compared to non-Hispanic White participants. Conclusion Anellovirus presence (specifically, TTMV) in the third trimester may be associated with preterm birth. Whether this association is causative remains to be determined.
Collapse
Affiliation(s)
- Chandrashekara Kyathanahalli
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, United States
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Madeline Snedden
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Lavisha Singh
- Department of Statistics, NorthShore University HealthSystem, Evanston, IL, United States
| | - Camilla Regalia
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Lauren Keenan-Devlin
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, United States
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Ann E. Borders
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, United States
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
- Center for Healthcare Studies, Institute for Public Health and Medicine, University of Chicago Pritzker School of Medicine, Northwestern University, Evanston, IL, United States
| | - Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, United States
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Fu J, Zhu F, Xu CJ, Li Y. Metabolomics meets systems immunology. EMBO Rep 2023; 24:e55747. [PMID: 36916532 PMCID: PMC10074123 DOI: 10.15252/embr.202255747] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/24/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Metabolic processes play a critical role in immune regulation. Metabolomics is the systematic analysis of small molecules (metabolites) in organisms or biological samples, providing an opportunity to comprehensively study interactions between metabolism and immunity in physiology and disease. Integrating metabolomics into systems immunology allows the exploration of the interactions of multilayered features in the biological system and the molecular regulatory mechanism of these features. Here, we provide an overview on recent technological developments of metabolomic applications in immunological research. To begin, two widely used metabolomics approaches are compared: targeted and untargeted metabolomics. Then, we provide a comprehensive overview of the analysis workflow and the computational tools available, including sample preparation, raw spectra data preprocessing, data processing, statistical analysis, and interpretation. Third, we describe how to integrate metabolomics with other omics approaches in immunological studies using available tools. Finally, we discuss new developments in metabolomics and its prospects for immunology research. This review provides guidance to researchers using metabolomics and multiomics in immunity research, thus facilitating the application of systems immunology to disease research.
Collapse
Affiliation(s)
- Jianbo Fu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
McCartney SA, Kolarova T, Kanaan SB, Chae A, Laughney CI, Nelson JL, Gammill HS, Shree R. Increased fetal microchimerism in immune and stem cell subsets in preeclampsia. Am J Reprod Immunol 2023; 89:e13666. [PMID: 36482289 PMCID: PMC10413445 DOI: 10.1111/aji.13666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Preeclampsia (PE) is associated with an increased risk of maternal cardiovascular disease (CVD), however, it is unclear whether this is due to shared underlying physiology or changes which occur during the disease process. Fetal microchimerism (FMc) within the maternal circulation can durably persist decades after pregnancy, is known to occur at greater frequency in PE, and can potentially affect local and systemic immune programming, thus changes in cellular FMc may provide a mechanism for long-term health outcomes associated with PE. METHOD OF STUDY We investigated whether PE is associated with alterations in FMc immune and stem cell populations. We analyzed maternal peripheral blood mononuclear cells (PBMC) from PE cases (n = 16) and matched controls from normal pregnancies (n = 16), from which immune and stem cell subsets were isolated by flow cytometry. Genomic DNA was extracted from total PMBC and individual cell subsets, and FMc frequency was quantified by quantitative polymerase chain reaction assays targeting a fetal-specific non-shared polymorphism identified from family genotyping. RESULTS There was a significant increase in FMc concentration in immune cell subsets in PE cases compared to controls, predominantly in B cell, and NK cell lymphocyte populations. There was no significant difference in FMc frequency or concentration within the stem cell population between PE and controls. CONCLUSIONS The altered concentrations of immune cells within FMc in the maternal blood provides a potential mechanism for the inflammation which occurs during PE to induce long-lasting changes to the maternal immune system and may potentially promote chronic maternal disease.
Collapse
Affiliation(s)
- Stephen A McCartney
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Teodora Kolarova
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Sami B Kanaan
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Angel Chae
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Caitlin I Laughney
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - J Lee Nelson
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hilary S Gammill
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Raj Shree
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Schreiner C, Powell TL, Palmer C, Jansson T. Placental proteins with predicted roles in fetal development decrease in premature infants. Pediatr Res 2022; 92:1316-1324. [PMID: 35132128 PMCID: PMC9357234 DOI: 10.1038/s41390-022-01942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Emerging evidence from animal experiments indicate that factors secreted by the placenta are critical for normal fetal organ development. Our objective was to characterize the umbilical vein and artery proteome in preterm infants and identify proteins that decrease in the neonatal circulation following delivery. METHODS Cord blood at delivery and neonatal blood at 48-72 h of life was collected in 25 preterm infants. Plasma protein abundance was determined using the SomaLogic platform. RESULTS When comparing protein levels of umbilical venous to arterial cord blood, 434 proteins were significantly higher indicating placental secretion into the fetal circulation. Moreover, when comparing neonatal blood to umbilical vein levels, 142 proteins were significantly lower. These proteins included Endoplasmic reticulum resident protein 29, CD59, Fibroblast growth factor 2 and Dynactin subunit 2, which are involved in brain development and prevention of brain damage as well as Fibroblast growth factor 1 which prevents lung fibrosis. CONCLUSIONS The late second trimester human placenta secretes proteins into the fetal circulation which decrease following delivery. Many of these proteins are predicted to be important in the development of fetal organs. Further studies are needed to directly link placental proteins to organ development and poor outcomes in preterm infants. IMPACT Prematurity remains a leading cause of morbidity and mortality requiring the development of novel treatments. Emerging evidence from animal studies suggest that factors secreted from the placenta may be critical in the development of the fetus. We report that the preterm human placenta secretes an array of proteins into the fetal circulation. Some of these proteins are predicted to be involved in the development of the brain and the lung. When born prematurely, infants are deprived of these placental proteins, which may contribute to their poor outcomes.
Collapse
Affiliation(s)
- Cynthia Schreiner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pediatrics at Renown Children's Hospital, Reno, NV, USA.
| | - Theresa L Powell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Obstetrics, Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Claire Palmer
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics, Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Sherer ML, Voegtline KM, Park HS, Miller KN, Shuffrey LC, Klein SL, Osborne LM. The immune phenotype of perinatal anxiety. Brain Behav Immun 2022; 106:280-288. [PMID: 36115543 DOI: 10.1016/j.bbi.2022.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/12/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Immune dysregulation has been linked to both psychiatric illness and pregnancy morbidity, including perinatal depression, but little is known about the immune phenotype of perinatal anxiety. Here, we sought to identify the unique immune profile of antenatal anxiety. MATERIALS AND METHODS Pregnant women (n = 107) were followed prospectively at 2nd and 3rd trimesters (T2, T3) and 6 weeks postpartum (PP6). Each visit included a blood draw and psychological evaluation, with clinical anxiety assessed using the Spielberg State-Trait Anxiety Scale. We enrolled both healthy controls and participants with anxiety alone; those with comorbid depression were excluded. Multiplex cytokine assays and flow cytometry were used to examine the association of anxiety symptoms with secreted immune markers and PBMC-derived immune cells. RESULTS K cluster means revealed three clusters of anxiety symptomatology; due to low numbers in the highest severity anxiety group, these were collapsed into two groups: Non-Anxiety and Anxiety. Principal components analysis revealed two distinct clusters of cytokine secretion including one cluster that consisted of many innate immune cytokines and differed between groups. Compared to women in the Non-Anxiety group, women in the Anxiety group had lower levels of cytokine expression during pregnancy and an increase in levels into the postpartum, whereas Non-Anxiety women experienced a time-dependent decline. Immune cell populations also differed between our two groups, with the Anxiety group showing a decrease in the ratio of B cells to T cells from pregnancy to postpartum, whereas the Non-Anxiety women showed an increase in this ratio over time. Women in the Anxiety group also demonstrated an increased ratio of cytotoxic to helper T cells throughout pregnancy, a modest increase in the Th1:Th2 ratio across pregnancy, and a lower ratio of Th17:TREG cells in the postpartum as compared with Non-Anxiety women. CONCLUSION These data suggest that the immune response throughout the antenatal period differs for women with anxiety symptoms compared to those without, suggestive of a unique immune phenotype of perinatal anxiety.
Collapse
Affiliation(s)
- Morgan L Sherer
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Kristin M Voegtline
- Division of General Pediatrics, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kristen N Miller
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren C Shuffrey
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lauren M Osborne
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Liu Z, Chen Z, Cui F, Ding Y, Gao Y, Han G, Jia J, Li J, Li Z, Liu Y, Mao Q, Wang A, Wang W, Wei L, Xia J, Xie Q, Yang X, Yin X, Zhang H, Zhang L, Zhang W, Zhuang H, Dou X, Hou J. Management Algorithm for Prevention of Mother-to-child Transmission of Hepatitis B Virus (2022). J Clin Transl Hepatol 2022; 10:1004-1010. [PMID: 36304493 PMCID: PMC9547256 DOI: 10.14218/jcth.2022.00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/07/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
The World Health Organization (WHO) has set the goal of eliminating hepatitis as a threat to public health by 2030. Blocking mother-to-child transmission (MTCT) of hepatitis B virus (HBV) is not only the key to eliminating viral hepatitis, but also a hot issue in the field of hepatitis B prevention and treatment. To standardize the clinical management of preventing MTCT of HBV and achieve zero HBV infection among infants, the Chinese Foundation for Hepatitis Prevention and Control organized experts to compile a management algorithm for prevention of MTCT of HBV based on the latest research progress and guidelines, including 10 steps of pregnancy management and postpartum follow-up, among which screening, antiviral treatment, and infant immunization are its core components.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongdan Chen
- World Health Organization, Office of the WHO Representative in China, Beijing, China
| | - Fuqiang Cui
- School of Public Health, Peking University, Beijing, China
| | - Yang Ding
- Department of Infectious Diseases, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yunfei Gao
- Department of Gynecology and Obstetrics, Zengcheng Branch of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guorong Han
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of the Southeast University, Nanjing, Jiangsu, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jie Li
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zengde Li
- Chinese Foundation for Hepatitis Prevention and Control, Beijing, China
| | - Yingxia Liu
- The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Qing Mao
- Department of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ailing Wang
- National Center for Women and Children’s Health, China CDC, Beijing, China
| | - Wei Wang
- Department of Health Care, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen, Guangdong, China
| | - Lai Wei
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jianhong Xia
- Guangdong Maternal and Child Health Hospital, Guangzhou, Guangdong, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xizhong Yang
- Chinese Foundation for Hepatitis Prevention and Control, Beijing, China
| | - Xueru Yin
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Zhang
- Department of Gynecology and Obstetrics, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Liaoyun Zhang
- Department of Infectious Diseases, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hui Zhuang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoguang Dou
- Department of Infectious Diseases, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
- Correspondence to: Jinlin Hou, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China. ORCID: https://orcid.org/0000-0001-8230-8583. Tel/Fax: +86-20-61641941, E-mail: ; Xiaoguang Dou, Department of Infectious Diseases, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110022, China. ORCID: https://orcid.org/0000-0003-1856-7331. Tel: +86-24-96615-62211, E-mail:
| | - Jinlin Hou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Correspondence to: Jinlin Hou, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China. ORCID: https://orcid.org/0000-0001-8230-8583. Tel/Fax: +86-20-61641941, E-mail: ; Xiaoguang Dou, Department of Infectious Diseases, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110022, China. ORCID: https://orcid.org/0000-0003-1856-7331. Tel: +86-24-96615-62211, E-mail:
| |
Collapse
|
11
|
Degnes MHL, Westerberg AC, Zucknick M, Powell TL, Jansson T, Henriksen T, Roland MCP, Michelsen TM. Placenta-derived proteins across gestation in healthy pregnancies-a novel approach to assess placental function? BMC Med 2022; 20:227. [PMID: 35773701 PMCID: PMC9248112 DOI: 10.1186/s12916-022-02415-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Placenta-derived proteins in the systemic maternal circulation are suggested as potential biomarkers for placental function. However, the identity and longitudinal patterns of such proteins are largely unknown due to the inaccessibility of the human placenta and limitations in assay technologies. We aimed to identify proteins derived from and taken up by the placenta in the maternal circulation. Furthermore, we aimed to describe the longitudinal patterns across gestation of placenta-derived proteins as well as identify placenta-derived proteins that can serve as reference curves for placental function. METHODS We analyzed proteins in plasma samples collected in two cohorts using the Somalogic 5000-plex platform. Antecubital vein samples were collected at three time points (gestational weeks 14-16, 22-24, and 30-32) across gestation in 70 healthy pregnancies in the longitudinal STORK cohort. In the cross sectional 4-vessel cohort, blood samples were collected simultaneously from the maternal antecubital vein (AV), radial artery (RA), and uterine vein (UV) during cesarean section in 75 healthy pregnancies. Placenta-derived proteins and proteins taken up by the placenta were identified using venoarterial differences (UV-RA). Placenta-derived proteins were defined as placenta-specific by comparison to the venoarterial difference in the antecubital vein-radial artery (AV-RA). These proteins were described longitudinally based on the STORK cohort samples using a linear mixed effects model per protein. Using a machine learning algorithm, we identified placenta-derived proteins that could predict gestational age, meaning that they closely tracked gestation, and were potential read-outs of placental function. RESULTS Among the nearly 5000 measured proteins, we identified 256 placenta-derived proteins and 101 proteins taken up by the placenta (FDR < 0.05). Among the 256 placenta-derived proteins released to maternal circulation, 101 proteins were defined as placenta-specific. These proteins formed two clusters with distinct developmental patterns across gestation. We identified five placenta-derived proteins that closely tracked gestational age when measured in the systemic maternal circulation, termed a "placental proteomic clock." CONCLUSIONS Together, these data may serve as a first step towards a reference for the healthy placenta-derived proteome that can be measured in the systemic maternal circulation and potentially serve as biomarkers of placental function. The "placental proteomic clock" represents a novel concept that warrants further investigation. Deviations in the proteomic pattern across gestation of such proteomic clock proteins may serve as an indication of placental dysfunction.
Collapse
Affiliation(s)
- Maren-Helene Langeland Degnes
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Oslo, Norway. .,Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway.
| | - Ane Cecilie Westerberg
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | - Manuela Zucknick
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Theresa L Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tore Henriksen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marie Cecilie Paasche Roland
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,National Research Centre for Women's Health, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Trond Melbye Michelsen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Arenas-Hernandez M, Romero R, Gershater M, Tao L, Xu Y, Garcia-Flores V, Pusod E, Miller D, Galaz J, Motomura K, Schwenkel G, Para R, Gomez-Lopez N. Specific innate immune cells uptake fetal antigen and display homeostatic phenotypes in the maternal circulation. J Leukoc Biol 2022; 111:519-538. [PMID: 34889468 PMCID: PMC8881318 DOI: 10.1002/jlb.5hi0321-179rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Pregnancy represents a period when the mother undergoes significant immunological changes to promote tolerance of the fetal semi-allograft. Such tolerance results from the exposure of the maternal immune system to fetal antigens (Ags), a process that has been widely investigated at the maternal-fetal interface and in the adjacent draining lymph nodes. However, the peripheral mechanisms of maternal-fetal crosstalk are poorly understood. Herein, we hypothesized that specific innate immune cells interact with fetal Ags in the maternal circulation. To test this hypothesis, a mouse model was utilized in which transgenic male mice expressing the chicken ovalbumin (OVA) Ag under the beta-actin promoter were allogeneically mated with wild-type females to allow for tracking of the fetal Ag. Fetal Ag-carrying Ly6G+ and F4/80+ cells were identified in the maternal circulation, where they were more abundant in the second half of pregnancy. Such innate immune cells displayed unique phenotypes: while Ly6G+ cells expressed high levels of MHC-II and CD80 together with low levels of pro-inflammatory cytokines, F4/80+ cells up-regulated the expression of CD86 as well as the anti-inflammatory cytokines IL-10 and TGF-β. In vitro studies using allogeneic GFP+ placental particles revealed that maternal peripheral Ly6G+ and F4/80+ cells phagocytose fetal Ags in mid and late murine pregnancy. Importantly, cytotrophoblast-derived particles were also engulfed in vitro by CD15+ and CD14+ cells from women in the second and third trimester, providing translational evidence that this process also occurs in humans. Collectively, this study demonstrates novel interactions between specific maternal circulating innate immune cells and fetal Ags, thereby shedding light on the systemic mechanisms of maternal-fetal crosstalk.
Collapse
Affiliation(s)
- Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Meyer Gershater
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Errile Pusod
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - George Schwenkel
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
13
|
Fenizia C, Cetin I, Mileto D, Vanetti C, Saulle I, Di Giminiani M, Saresella M, Parisi F, Trabattoni D, Clerici M, Biasin M, Savasi V. Pregnant Women Develop a Specific Immunological Long-Lived Memory Against SARS-COV-2. Front Immunol 2022; 13:827889. [PMID: 35251011 PMCID: PMC8889908 DOI: 10.3389/fimmu.2022.827889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
It is well established that pregnancy induces deep changes in the immune system. This is part of the physiological adaptation of the female organism to the pregnancy and the immunological tolerance toward the fetus. Indeed, over the three trimesters, the suppressive T regulatory lymphocytes are progressively more represented, while the expression of co-stimulatory molecules decreases overtime. Such adaptations relate to an increased risk of infections and progression to severe disease in pregnant women, potentially resulting in an altered generation of long-lived specific immunological memory of infection contracted during pregnancy. How potent is the immune response against SARS-CoV-2 in infected pregnant women and how long the specific SARS-CoV-2 immunity might last need to be urgently addressed, especially considering the current vaccinal campaign. To address these questions, we analyzed the long-term immunological response upon SARS-CoV-2 infection in pregnant women from delivery to a six-months follow-up. In particular, we investigated the specific antibody production, T cell memory subsets, and inflammation profile. Results show that 80% developed an anti-SARS-CoV-2-specific IgG response, comparable with the general population. While IgG were present only in 50% of the asymptomatic subjects, the antibody production was elicited by infection in all the mild-to-critical patients. The specific T-cell memory subsets rebalanced over-time, and the pro-inflammatory profile triggered by specific SARS-CoV-2 stimulation faded away. These results shed light on SARS-CoV-2-specific immunity in pregnant women; understanding the immunological dynamics of the immune system in response to SARS-CoV-2 is essential for defining proper obstetric management of pregnant women and fine tune gender-specific vaccinal plans.
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Irene Cetin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Department of Woman, Mother and Neonate Buzzi Children’s Hospital, ASST Fatebenefratelli‐Sacco, Milan, Italy
| | - Davide Mileto
- Clinical Microbiology, Virology and Bio-emergence Diagnosis, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Claudia Vanetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Irma Saulle
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Maria Di Giminiani
- Unit of Obstetrics and Gynecology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | - Francesca Parisi
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Unit of Obstetrics and Gynecology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione don Carlo Gnocchi, IRCCS, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Valeria Savasi
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Unit of Obstetrics and Gynecology, ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
14
|
Stelzer IA, Ghaemi MS, Han X, Ando K, Hédou JJ, Feyaerts D, Peterson LS, Rumer KK, Tsai ES, Ganio EA, Gaudillière DK, Tsai AS, Choisy B, Gaigne LP, Verdonk F, Jacobsen D, Gavasso S, Traber GM, Ellenberger M, Stanley N, Becker M, Culos A, Fallahzadeh R, Wong RJ, Darmstadt GL, Druzin ML, Winn VD, Gibbs RS, Ling XB, Sylvester K, Carvalho B, Snyder MP, Shaw GM, Stevenson DK, Contrepois K, Angst MS, Aghaeepour N, Gaudillière B. Integrated trajectories of the maternal metabolome, proteome, and immunome predict labor onset. Sci Transl Med 2021; 13:13/592/eabd9898. [PMID: 33952678 DOI: 10.1126/scitranslmed.abd9898] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/01/2020] [Accepted: 04/14/2021] [Indexed: 12/28/2022]
Abstract
Estimating the time of delivery is of high clinical importance because pre- and postterm deviations are associated with complications for the mother and her offspring. However, current estimations are inaccurate. As pregnancy progresses toward labor, major transitions occur in fetomaternal immune, metabolic, and endocrine systems that culminate in birth. The comprehensive characterization of maternal biology that precedes labor is key to understanding these physiological transitions and identifying predictive biomarkers of delivery. Here, a longitudinal study was conducted in 63 women who went into labor spontaneously. More than 7000 plasma analytes and peripheral immune cell responses were analyzed using untargeted mass spectrometry, aptamer-based proteomic technology, and single-cell mass cytometry in serial blood samples collected during the last 100 days of pregnancy. The high-dimensional dataset was integrated into a multiomic model that predicted the time to spontaneous labor [R = 0.85, 95% confidence interval (CI) [0.79 to 0.89], P = 1.2 × 10-40, N = 53, training set; R = 0.81, 95% CI [0.61 to 0.91], P = 3.9 × 10-7, N = 10, independent test set]. Coordinated alterations in maternal metabolome, proteome, and immunome marked a molecular shift from pregnancy maintenance to prelabor biology 2 to 4 weeks before delivery. A surge in steroid hormone metabolites and interleukin-1 receptor type 4 that preceded labor coincided with a switch from immune activation to regulation of inflammatory responses. Our study lays the groundwork for developing blood-based methods for predicting the day of labor, anchored in mechanisms shared in preterm and term pregnancies.
Collapse
Affiliation(s)
- Ina A Stelzer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Mohammad S Ghaemi
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Digital Technologies Research Centre, National Research Council Canada, Toronto, ON M5T 3J1, Canada
| | - Xiaoyuan Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA 94103, USA
| | - Kazuo Ando
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Julien J Hédou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Laura S Peterson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Kristen K Rumer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Eileen S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Dyani K Gaudillière
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Benjamin Choisy
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Lea P Gaigne
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Franck Verdonk
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Danielle Jacobsen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Sonia Gavasso
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Department of Neurology, NeuroSys-Med, Haukeland University Hospital, 5021 Bergen, Norway
| | - Gavin M Traber
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Mathew Ellenberger
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Natalie Stanley
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Anthony Culos
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ramin Fallahzadeh
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ronald J Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Gary L Darmstadt
- Division of Neonatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Maurice L Druzin
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ronald S Gibbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Xuefeng B Ling
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Karl Sylvester
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Brendan Carvalho
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Gary M Shaw
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - David K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA. .,Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| |
Collapse
|
15
|
Antonson AM, Evans MV, Galley JD, Chen HJ, Rajasekera TA, Lammers SM, Hale VL, Bailey MT, Gur TL. Unique maternal immune and functional microbial profiles during prenatal stress. Sci Rep 2020; 10:20288. [PMID: 33219314 PMCID: PMC7679384 DOI: 10.1038/s41598-020-77265-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Maternal stress during pregnancy is widespread and is associated with poor offspring outcomes, including long-term mental health issues. Prenatal stress-induced fetal neuroinflammation is thought to underlie aberrant neurodevelopment and to derive from a disruption in intrauterine immune homeostasis, though the exact origins are incompletely defined. We aimed to identify divergent immune and microbial metagenome profiles of stressed gestating mice that may trigger detrimental inflammatory signaling at the maternal-fetal interface. In response to stress, maternal glucocorticoid circuit activation corresponded with indicators of systemic immunosuppression. At the maternal-fetal interface, density of placental mononuclear leukocytes decreased with stress, yet maternal whole blood leukocyte analysis indicated monocytosis and classical M1 phenotypic shifts. Genome-resolved microbial metagenomic analyses revealed reductions in genes, microbial strains, and metabolic pathways in stressed dams that are primarily associated with pro-inflammatory function. In particular, disrupted Parasutterella excrementihominis appears to be integral to inflammatory and metabolic dysregulation during prenatal stress. Overall, these perturbations in maternal immunological and microbial regulation during pregnancy may displace immune equilibrium at the maternal-fetal interface. Notably, the absence of and reduction in overt maternal inflammation during stress indicates that the signaling patterns driving fetal outcomes in this context are more nuanced and complex than originally anticipated.
Collapse
Affiliation(s)
- Adrienne M Antonson
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Morgan V Evans
- Environmental Health Sciences Division, College of Public Health, The Ohio State University, Columbus, OH, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeffrey D Galley
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Helen J Chen
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Medical Scientist Training Program, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Therese A Rajasekera
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Environmental Health Sciences Division, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Sydney M Lammers
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Barnes Medical Student Research Scholarship Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Vanessa L Hale
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Michael T Bailey
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tamar L Gur
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Medical Scientist Training Program, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Obstetrics & Gynecology, The Ohio State University Wexner Medical Center, 120A Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, USA.
| |
Collapse
|
16
|
Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal Immunological Adaptation During Normal Pregnancy. Front Immunol 2020; 11:575197. [PMID: 33133091 PMCID: PMC7579415 DOI: 10.3389/fimmu.2020.575197] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
The risk and severity of specific infections are increased during pregnancy due to a combination of physiological and immunological changes. Characterizing the maternal immune system during pregnancy is important to understand how the maternal immune system maintains tolerance towards the allogeneic fetus. This may also inform strategies to prevent maternal fatalities due to infections and optimize maternal vaccination to best protect the mother-fetus dyad and the infant after birth. In this review, we describe what is known about the immunological changes that occur during a normal pregnancy.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christina Michalski
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pascal M Lavoie
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Bozward AG, Wootton GE, Podstawka O, Oo YH. Autoimmune Hepatitis: Tolerogenic Immunological State During Pregnancy and Immune Escape in Post-partum. Front Immunol 2020; 11:591380. [PMID: 33072138 PMCID: PMC7541906 DOI: 10.3389/fimmu.2020.591380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
The maternal immune system engages in a fine balancing act during pregnancy by simultaneously maintaining immune tolerance to the fetus and immune responses to protect against invading organisms. Pregnancy is an intricately orchestrated process where effector immune cells with fetal specificity are selectively silenced. This requires a sustained immune suppressive state not only by expansion of maternal Foxp3+ regulatory T cells (Tregs) but also by leaning the immune clock toward a Th2 dominant arm. The fetus, known as a semi-allograft or temporary-self, leads to remission of autoimmune hepatitis during pregnancy. However, this tolerogenic immune state reverts back to a Th1 dominant arm, resulting in post-partum flare of AIH. Various hormones play a significant role in endocrine-immune axis during pregnancy. The placenta functions as a barrier between the maternal immune system and the fetus also plays a pivotal role in creating a tolerogenic environment during pregnancy. We review the evidence of immune tolerance during pregnancy and immune escape at post-partum period, focusing on patients with autoimmune hepatitis.
Collapse
Affiliation(s)
- Amber G Bozward
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Centre for Rare Diseases, European Reference Network ERN Rare-Liver, Birmingham, United Kingdom
| | - Grace E Wootton
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Centre for Rare Diseases, European Reference Network ERN Rare-Liver, Birmingham, United Kingdom
| | - Oskar Podstawka
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ye H Oo
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Centre for Rare Diseases, European Reference Network ERN Rare-Liver, Birmingham, United Kingdom.,Liver Transplant and Hepatology Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
18
|
Abstract
Systems biological approaches to immunology have grown exponentially in the past decade, especially as broad approaches to data collection have become more accessible. It is still in its infancy; however, largely descriptive, and looking for the main drivers of particular phenomena, such as vaccination effects or pregnancy. But this lays the ground work for an increasingly sophisticated appreciation of subsystems and interactions and will lead to predictive modeling and a deeper understanding of human diseases and interactions with pathogens.
Collapse
Affiliation(s)
- Mark M Davis
- Institute for Immunity, Transplantation and Infection, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|