1
|
Messaoud-Nacer Y, Culerier E, Rose S, Maillet I, Boussad R, Veront C, Savigny F, Malissen B, Radzikowska U, Sokolowska M, da Silva GVL, Edwards MR, Jackson DJ, Johnston SL, Ryffel B, Quesniaux VF, Togbe D. STING-dependent induction of neutrophilic asthma exacerbation in response to house dust mite. Allergy 2024. [PMID: 39466641 DOI: 10.1111/all.16369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/22/2024] [Accepted: 09/01/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Severe refractory, neutrophilic asthma remains an unsolved clinical problem. STING agonists induce a neutrophilic response in the airways, suggesting that STING activation may contribute to the triggering of neutrophilic exacerbations. We aim to determine whether STING-induced neutrophilic lung inflammation mimics severe asthma. METHODS We developed new models of neutrophilic lung inflammation induced by house dust mite (HDM) plus STING agonists diamidobenzimidazole (diABZI) or cGAMP in wild-type, and conditional-STING-deficient mice. We measured DNA damage, cell death, NETs, cGAS/STING pathway activation by immunoblots, N1/N2 balance by flow cytometry, lung function by plethysmography, and Th1/Th2 cytokines by multiplex. We evaluated diABZI effects on human airway epithelial cells from healthy or patients with asthma, and validated the results by transcriptomic analyses of rhinovirus infected healthy controls vs patients with asthma. RESULTS DiABZI administration during HDM challenge increased airway hyperresponsiveness, neutrophil recruitment with prominent NOS2+ARG1- type 1 neutrophils, protein extravasation, cell death by PANoptosis, NETs formation, extracellular dsDNA release, DNA sensors activation, IFNγ, IL-6 and CXCL10 release. Functionally, STING agonists exacerbated airway hyperresponsiveness. DiABZI caused DNA and epithelial barrier damage, STING pathway activation in human airway epithelial cells exposed to HDM, in line with DNA-sensing and PANoptosis pathways upregulation and tight-junction downregulation induced by rhinovirus challenge in patients with asthma. CONCLUSIONS Our study identifies that triggering STING in the context of asthma induces cell death by PANoptosis, fueling the flame of inflammation through a mixed Th1/Th2 immune response recapitulating the features of severe asthma with a prognostic signature of type 1 neutrophils.
Collapse
Affiliation(s)
- Yasmine Messaoud-Nacer
- Experimental and Molecular Immunology and Neurogenetics, INEM UMR7355 University of Orleans and CNRS, Orleans, France
| | - Elodie Culerier
- Experimental and Molecular Immunology and Neurogenetics, INEM UMR7355 University of Orleans and CNRS, Orleans, France
| | - Stéphanie Rose
- Experimental and Molecular Immunology and Neurogenetics, INEM UMR7355 University of Orleans and CNRS, Orleans, France
| | - Isabelle Maillet
- Experimental and Molecular Immunology and Neurogenetics, INEM UMR7355 University of Orleans and CNRS, Orleans, France
| | - Rania Boussad
- Experimental and Molecular Immunology and Neurogenetics, INEM UMR7355 University of Orleans and CNRS, Orleans, France
| | - Chloé Veront
- Experimental and Molecular Immunology and Neurogenetics, INEM UMR7355 University of Orleans and CNRS, Orleans, France
| | - Florence Savigny
- Experimental and Molecular Immunology and Neurogenetics, INEM UMR7355 University of Orleans and CNRS, Orleans, France
| | - Bernard Malissen
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Herman- Burchard-Strasse 1, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Herman- Burchard-Strasse 1, Davos, Switzerland
| | | | - Michael R Edwards
- National Heart and Lung Institute, Imperial College Londont, London, UK
- Asthma UK Centre in Allergic Mechanism of Asthma, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - David J Jackson
- National Heart and Lung Institute, Imperial College Londont, London, UK
- Asthma UK Centre in Allergic Mechanism of Asthma, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Sebastian L Johnston
- National Heart and Lung Institute, Imperial College Londont, London, UK
- Asthma UK Centre in Allergic Mechanism of Asthma, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and Neurogenetics, INEM UMR7355 University of Orleans and CNRS, Orleans, France
| | - Valerie F Quesniaux
- Experimental and Molecular Immunology and Neurogenetics, INEM UMR7355 University of Orleans and CNRS, Orleans, France
| | - Dieudonnée Togbe
- Experimental and Molecular Immunology and Neurogenetics, INEM UMR7355 University of Orleans and CNRS, Orleans, France
| |
Collapse
|
2
|
Liu M, Wang D, Xu L, Pan Y, Huang H, Li M, Liu Q. Group 2 innate lymphoid cells suppress neuroinflammation and brain injury following intracerebral hemorrhage. J Cereb Blood Flow Metab 2024; 44:355-366. [PMID: 37933727 PMCID: PMC10870958 DOI: 10.1177/0271678x231208168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Intracerebral hemorrhage (ICH) mobilizes circulating leukocytes that contribute to neuroinflammation and neural injury. However, little is known about the endogenous regulatory immune mechanisms to restrict neuroinflammation following ICH. We examined the role of group 2 innate lymphoid cells (ILC2) that are a specialized subset of innate immune modulators in a mouse model of ICH. We found accumulation of ILC2 in the brain following acute ICH and a concomitant increase of ILC2 within the peripheral lymph nodes. Depletion of ILC2 exacerbated neurodeficits and brain edema after ICH in male and female mice. This aggravated ICH injury was accompanied by augmented microglia activity and leukocyte infiltration. In contrast, expansion of ILC2 using IL-33 led to reduced ICH injury, microglia activity and leukocyte infiltration. Notably, elimination of microglia using a colony stimulating factor 1 receptor inhibitor diminished the exacerbation of ICH injury induced by depletion of ILC2. Brain-infiltrating ILC2 had upregulation of IL-13 after ICH. Results from in vitro assays revealed that ILC2 suppressed thrombin-induced inflammatory activity in microglia-like BV2 cells. Thus, our findings demonstrate that ILC2 suppress neuroinflammation and acute ICH injury.
Collapse
Affiliation(s)
- Mingming Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Danni Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Lin Xu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Pan
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Huachen Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
Zhang H, Xue K, Li W, Yang X, Gou Y, Su X, Qian F, Sun L. Cullin5 drives experimental asthma exacerbations by modulating alveolar macrophage antiviral immunity. Nat Commun 2024; 15:252. [PMID: 38177117 PMCID: PMC10766641 DOI: 10.1038/s41467-023-44168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Asthma exacerbations caused by respiratory viral infections are a serious global health problem. Impaired antiviral immunity is thought to contribute to the pathogenesis, but the underlying mechanisms remain understudied. Here using mouse models we find that Cullin5 (CUL5), a key component of Cullin-RING E3 ubiquitin ligase 5, is upregulated and associated with increased neutrophil count and influenza-induced exacerbations of house dust mite-induced asthma. By contrast, CUL5 deficiency mitigates neutrophilic lung inflammation and asthma exacerbations by augmenting IFN-β production. Mechanistically, following thymic stromal lymphopoietin stimulation, CUL5 interacts with O-GlcNAc transferase (OGT) and induces Lys48-linked polyubiquitination of OGT, blocking the effect of OGT on mitochondrial antiviral-signaling protein O-GlcNAcylation and RIG-I signaling activation. Our results thus suggest that, in mouse models, pre-existing allergic injury induces CUL5 expression, impairing antiviral immunity and promoting neutrophilic inflammation for asthma exacerbations. Targeting of the CUL5/IFN-β signaling axis may thereby serve as a possible therapy for treating asthma exacerbations.
Collapse
Affiliation(s)
- Haibo Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Keke Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Wen Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xinyi Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Yusen Gou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 200031, Shanghai, P.R. China
| | - Feng Qian
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| | - Lei Sun
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| |
Collapse
|
4
|
Yao S, Weng D, Wang Y, Zhang Y, Huang Q, Wu K, Li H, Zhang X, Yin Y, Xu W. The preprogrammed anti-inflammatory phenotypes of CD11c high macrophages by Streptococcus pneumoniae aminopeptidase N safeguard from allergic asthma. J Transl Med 2023; 21:898. [PMID: 38082290 PMCID: PMC10712085 DOI: 10.1186/s12967-023-04768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Early microbial exposure is associate with protective allergic asthma. We have previously demonstrated that Streptococcus pneumoniae aminopeptidase N (PepN), one of the pneumococcal components, inhibits ovalbumin (OVA) -induced airway inflammation in murine models of allergic asthma, but the underlying mechanism was incompletely determined. METHODS BALB/c mice were pretreated with the PepN protein and exposed intranasally to HDM allergen. The anti-inflammatory mechanisms were investigated using depletion and adoptive transfer experiments as well as transcriptome analysis and isolated lung CD11chigh macrophages. RESULTS We found pretreatment of mice with PepN promoted the proliferation of lung-resident F4/80+CD11chigh macrophages in situ but also mobilized bone marrow monocytes to infiltrate lung tissue that were then transformed into CD11high macrophages. PepN pre-programmed the macrophages during maturation to an anti-inflammatory phenotype by shaping the metabolic preference for oxidative phosphorylation (OXPHOS) and also inhibited the inflammatory response of macrophages by activating AMP-activated protein kinase. Furthermore, PepN treated macrophages also exhibited high-level costimulatory signaling molecules which directed the differentiation into Treg. CONCLUSION Our results demonstrated that the expansion of CD11chigh macrophages in lungs and the OXPHOS metabolic bias of macrophages are associated with reduced allergic airway inflammation after PepN exposure, which paves the way for its application in preventing allergic asthma.
Collapse
Affiliation(s)
- Shifei Yao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Laboratory Medicine, The First People's Hospital of Zunyi City (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, China
| | - Danlin Weng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yanyu Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qi Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, The First People's Hospital of Zunyi City (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, China
| | - Honghui Li
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Lee IS, Van Dyken SJ. Both Horatio and Polonius: Innate Lymphoid Cells in Tissue Homeostasis and Repair. Immunohorizons 2023; 7:729-736. [PMID: 37916861 PMCID: PMC10695417 DOI: 10.4049/immunohorizons.2300053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells (ILCs) have emerged as critical tissue-resident lymphocytes that coordinate responses to environmental stress and injury. Traditionally, their function was thought to mirror adaptive lymphocytes that respond to specific pathogens. However, recent work has uncovered a more central role for ILCs in maintaining homeostasis even in the absence of infection. ILCs are now better conceptualized as an environmental rheostat that helps maintain the local tissue setpoint during environmental challenge by integrating sensory stimuli to direct homeostatic barrier and repair programs. In this article, we trace the developmental origins of ILCs, relate how ILCs sense danger signals, and describe their subsequent engagement of appropriate repair responses using a general paradigm of ILCs functioning as central controllers in tissue circuits. We propose that these interactions form the basis for how ILC subsets maintain organ function and organismal homeostasis, with important implications for human health.
Collapse
Affiliation(s)
- Intelly S. Lee
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Steven J. Van Dyken
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
6
|
Wang C, Du Z, Li R, Luo Y, Zhu C, Ding N, Lei A. Interferons as negative regulators of ILC2s in allergic lung inflammation and respiratory viral infections. J Mol Med (Berl) 2023; 101:947-959. [PMID: 37414870 DOI: 10.1007/s00109-023-02345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s), characterized by a lack of antigen receptors, have been regarded as an important component of type 2 pulmonary immunity. Analogous to Th2 cells, ILC2s are capable of releasing type 2 cytokines and amphiregulin, thus playing an essential role in a variety of diseases, such as allergic diseases and virus-induced respiratory diseases. Interferons (IFNs), an important family of cytokines with potent antiviral effects, can be triggered by microbial products, microbial exposure, and pathogen infections. Interestingly, the past few years have witnessed encouraging progress in revealing the important role of IFNs and IFN-producing cells in modulating ILC2 responses in allergic lung inflammation and respiratory viral infections. This review underscores recent progress in understanding the role of IFNs and IFN-producing cells in shaping ILC2 responses and discusses disease phenotypes, mechanisms, and therapeutic targets in the context of allergic lung inflammation and infections with viruses, including influenza virus, rhinovirus (RV), respiratory syncytial virus (RSV), and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Cui Wang
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Zhaoxiang Du
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Ranhui Li
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Ying Luo
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Nan Ding
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Aihua Lei
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
7
|
Britt RD, Ruwanpathirana A, Ford ML, Lewis BW. Macrophages Orchestrate Airway Inflammation, Remodeling, and Resolution in Asthma. Int J Mol Sci 2023; 24:10451. [PMID: 37445635 PMCID: PMC10341920 DOI: 10.3390/ijms241310451] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Asthma is a heterogenous chronic inflammatory lung disease with endotypes that manifest different immune system profiles, severity, and responses to current therapies. Regardless of endotype, asthma features increased immune cell infiltration, inflammatory cytokine release, and airway remodeling. Lung macrophages are also heterogenous in that there are separate subsets and, depending on the environment, different effector functions. Lung macrophages are important in recruitment of immune cells such as eosinophils, neutrophils, and monocytes that enhance allergic inflammation and initiate T helper cell responses. Persistent lung remodeling including mucus hypersecretion, increased airway smooth muscle mass, and airway fibrosis contributes to progressive lung function decline that is insensitive to current asthma treatments. Macrophages secrete inflammatory mediators that induce airway inflammation and remodeling. Additionally, lung macrophages are instrumental in protecting against pathogens and play a critical role in resolution of inflammation and return to homeostasis. This review summarizes current literature detailing the roles and existing knowledge gaps for macrophages as key inflammatory orchestrators in asthma pathogenesis. We also raise the idea that modulating inflammatory responses in lung macrophages is important for alleviating asthma.
Collapse
Affiliation(s)
- Rodney D Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Anushka Ruwanpathirana
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Maria L Ford
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Brandon W Lewis
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| |
Collapse
|
8
|
Wang Z, Sun P, Pan B, Qiu J, Zhang X, Shen S, Ke X, Tang N. IL-33/ST2 antagonizes STING signal transduction via autophagy in response to acetaminophen-mediated toxicological immunity. Cell Commun Signal 2023; 21:80. [PMID: 37081450 PMCID: PMC10116723 DOI: 10.1186/s12964-023-01114-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/25/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Interleukin-33 (IL-33), defined as "alarming", exert diverse functions through signaling via the suppression of tumorigenicity 2 (ST2). However, the physiological roles of IL-33/ST2 signaling during acetaminophen (APAP)-induced liver injury are still poorly understood by modern medicine (AILI). This research aims to explore the relationship between IL-33/ST2 and stimulator of interferon (IFN) response cGAMP interactor 1 (STING)-mediated signal transduction. METHODS C57BL/6N mice (WT) and IL-33-deficient mice (KO) were intraperitoneally injected with APAP (250 mg/kg). Recombinant IL-33 (500 ng/mouse) and the cGAS/STING inhibitor RU.521 (200 g/kg) were combined to treat AILI. For mechanistic research in vitro, CRISPR-mediated KD technology, immunoprecipitation, mass spectrometry, and immunofluorescence were utilized. RESULTS We discovered that IL-33 deficient mice had increased APAP-induced hepatotoxicity, DNA accumulation, and type 1 IFN production. Mechanistic analysis revealed that IL-33/ST2 enhanced the interaction between Beclin-1 and STING, disrupting STING dimerization, IRF3 phosphorylation, nuclear transport, and IFN-1 gene transcription in HepaRG and Huh7 cells. Beclin-1 interacted with the C-terminus of STING, causing Lys338 acetylation and autophagy degradation of STING. ST2 depletion increased STING signal transduction and IFN-1 promoter activity. Surprisingly, the cGAS/STING inhibitor RU.521 and recombinant IL-33 together improved AILI in vivo. CONCLUSIONS These results shed insight on the potential of inhibiting cGAS/STING as a therapy for AILI and emphasize the crucial role of IL-33/ST2 signaling in the regulation of APAP-induced STING signaling. Video Abstract.
Collapse
Affiliation(s)
- Zengbin Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Pei Sun
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiacheng Qiu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shuling Shen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoling Ke
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
9
|
Sha JF, Xie QM, Chen N, Song SM, Ruan Y, Zhao CC, Liu Q, Shi RH, Jiang XQ, Fei GH, Wu HM. TLR2-hif1α-mediated glycolysis contributes to pyroptosis and oxidative stress in allergic airway inflammation. Free Radic Biol Med 2023; 200:102-116. [PMID: 36907255 DOI: 10.1016/j.freeradbiomed.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
As a pattern recognition receptor which activates innate immune system, toll-like receptor 2 (TLR2) has been reportedly mediates allergic airway inflammation (AAI), yet the underlying mechanism remains elusive. Here, in a murine AAI model, TLR2-/- mice showed decreased airway inflammation, pyroptosis and oxidative stress. RNA-sequencing revealed that allergen-induced hif1 signaling pathway and glycolysis were significantly downregulated when TLR2 was deficient, which were confirmed by lung protein immunoblots. Glycolysis inhibitor 2-Deoxy-d-glucose (2-DG) inhibited allergen-induced airway inflammation, pyroptosis, oxidative stress and glycolysis in wild type (WT) mice, while hif1α stabilizer ethyl 3,4-dihydroxybenzoate (EDHB) restored theses allergen-induced changes in TLR2-/- mice, indicating TLR2-hif1α-mediated glycolysis contributes to pyroptosis and oxidative stress in AAI. Moreover, upon allergen challenge, lung macrophages were highly activated in WT mice but were less activated in TLR2-/- mice, 2-DG replicated while EDHB reversed such effect of TLR2 deficiency on lung macrophages. Likewise, both in vivo and ex vivo WT alveolar macrophages (AMs) exhibited higher TLR2/hif1α expression, glycolysis and polarization activation in response to ovalbumin (OVA), which were all inhibited in TLR2-/- AMs, suggesting AMs activation and metabolic switch are dependent on TLR2. Finally, depletion of resident AMs in TLR2-/- mice abolished while transfer of TLR2-/- resident AMs to WT mice replicated the protective effect of TLR2 deficiency on AAI when administered before allergen challenge. Collectively, we suggested that loss of TLR2-hif1α-mediated glycolysis in resident AMs ameliorates allergic airway inflammation that inhibits pyroptosis and oxidative stress, therefore the TLR2-hif1α-glycolysis axis in resident AMs may be a novel therapeutic target for AAI.
Collapse
Affiliation(s)
- Jia-Feng Sha
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Qiu-Meng Xie
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Ning Chen
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Si-Ming Song
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Ya Ruan
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Cui-Cui Zhao
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Qian Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Huang Shan Road 443, Hefei, Anhui, 230027, PR China
| | - Rong-Hua Shi
- Division of Life Sciences and Medicine, University of Science and Technology of China, Huang Shan Road 443, Hefei, Anhui, 230027, PR China
| | - Xu-Qin Jiang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Huang Shan Road 443, Hefei, Anhui, 230027, PR China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of University of Science and Technology of China, Lujiang Road 17, Hefei, Anhui, 230001, PR China.
| | - Guang-He Fei
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China.
| | - Hui-Mei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China.
| |
Collapse
|
10
|
Mues N, Martin RJ, Alam R, Schaunaman N, Dimasuay KG, Kolakowski C, Wright CJ, Zheng L, Chu HW. Bacterial DNA amplifies neutrophilic inflammation in IL-17-exposed airways. ERJ Open Res 2023; 9:00474-2022. [PMID: 36699649 PMCID: PMC9868970 DOI: 10.1183/23120541.00474-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background Neutrophilic asthma (NA) is associated with increased airway interleukin (IL)-17 and abnormal bacterial community such as dominance of nontypeable Haemophilus influenzae (NTHi), particularly during asthma exacerbations. Bacteria release various products including DNA, but whether they cooperate with IL-17 in exaggerating neutrophilic inflammation is unclear. We sought to investigate the role of bacteria-derived DNA in airway neutrophilic inflammation related to IL-17-high asthma and underlying mechanisms (e.g. Toll-like receptor 9 (TLR9)/IL-36γ signalling axis). Methods Bacterial DNA, IL-8 and IL-36γ were measured in bronchoalveolar lavage fluid (BALF) of people with asthma and healthy subjects. The role of co-exposure to IL-17 and bacterial DNA or live bacteria in neutrophilic inflammation, and the contribution of the TLR9/IL-36γ signalling axis, were determined in cultured primary human airway epithelial cells and alveolar macrophages, and mouse models. Results Bacterial DNA levels were increased in asthma BALF, which positively correlated with IL-8 and neutrophil levels. Moreover, IL-36γ increased in BALF of NA patients. Bacterial DNA or NTHi infection under an IL-17-high setting amplified IL-8 production and mouse lung neutrophilic inflammation. DNase I treatment in IL-17-exposed and NTHi-infected mouse lungs reduced neutrophilic inflammation. Mechanistically, bacterial DNA-mediated amplification of neutrophilic inflammation is in part dependent on the TLR9/IL-36γ signalling axis. Conclusions Bacterial DNA amplifies airway neutrophilic inflammation in an IL-17-high setting partly through the TLR9 and IL-36γ signalling axis. Our novel findings may offer several potential therapeutic targets including TLR9 antagonists, IL-36γ neutralising antibodies and DNase I to reduce asthma severity associated with exaggerated airway neutrophilic inflammation.
Collapse
Affiliation(s)
- Nastaran Mues
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | - Rafeul Alam
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | | | | | - Clyde J. Wright
- Department of Pediatrics, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lijun Zheng
- Department of Pediatrics, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
11
|
de Moura Rodrigues D, Lacerda-Queiroz N, Couillin I, Riteau N. STING Targeting in Lung Diseases. Cells 2022; 11:3483. [PMID: 36359882 PMCID: PMC9657237 DOI: 10.3390/cells11213483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 01/30/2024] Open
Abstract
The cGAS-STING pathway displays important functions in the regulation of innate and adaptive immunity following the detection of microbial and host-derived DNA. Here, we briefly summarize biological functions of STING and review recent literature highlighting its important contribution in the context of respiratory diseases. Over the last years, tremendous progress has been made in our understanding of STING activation, which has favored the development of STING agonists or antagonists with potential therapeutic benefits. Antagonists might alleviate STING-associated chronic inflammation and autoimmunity. Furthermore, pharmacological activation of STING displays strong antiviral properties, as recently shown in the context of SARS-CoV-2 infection. STING agonists also elicit potent stimulatory activities when used as an adjuvant promoting antitumor responses and vaccines efficacy.
Collapse
Affiliation(s)
- Dorian de Moura Rodrigues
- Experimental and Molecular Immunology and Neurogenetics Laboratory, University of Orleans, Centre National de la Recherche Scientifique (CNRS), UMR7355, 45100 Orleans, France
| | | | - Isabelle Couillin
- Experimental and Molecular Immunology and Neurogenetics Laboratory, University of Orleans, Centre National de la Recherche Scientifique (CNRS), UMR7355, 45100 Orleans, France
| | - Nicolas Riteau
- Experimental and Molecular Immunology and Neurogenetics Laboratory, University of Orleans, Centre National de la Recherche Scientifique (CNRS), UMR7355, 45100 Orleans, France
| |
Collapse
|
12
|
Crosstalk between macrophages and innate lymphoid cells (ILCs) in diseases. Int Immunopharmacol 2022; 110:108937. [PMID: 35779490 DOI: 10.1016/j.intimp.2022.108937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
Innate lymphoid cells (ILCs) and macrophages are tissue-resident cells that play important roles in tissue-immune homeostasis and immune regulation. ILCs are mainly distributed on the barrier surfaces of mammals to ensure immunity or tissue homeostasis following host, microbial, or environmental stimulation. Their complex relationships with different organs enable them to respond quickly to disturbances in environmental conditions and organ homeostasis, such as during infections and tissue damage. Gradually emerging evidence suggests that ILCs also play complex and diverse roles in macrophage development, homeostasis, polarization, inflammation, and viral infection. In turn, macrophages also determine the fate of ILCs to some extent, which indicates that network crossover between these interactions is a key determinant of the immune response. More work is needed to better define the crosstalk of ILCs with macrophages in different tissues and demonstrate how it is affected during inflammation and other diseases. Here, we summarize current research on the functional interactions between ILCs and macrophages and consider the potential therapeutic utility of these interactions for the benefit of human health.
Collapse
|
13
|
Tang J, Cai L, Xu C, Sun S, Liu Y, Rosenecker J, Guan S. Nanotechnologies in Delivery of DNA and mRNA Vaccines to the Nasal and Pulmonary Mucosa. NANOMATERIALS 2022; 12:nano12020226. [PMID: 35055244 PMCID: PMC8777913 DOI: 10.3390/nano12020226] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Recent advancements in the field of in vitro transcribed mRNA (IVT-mRNA) vaccination have attracted considerable attention to such vaccination as a cutting-edge technique against infectious diseases including COVID-19 caused by SARS-CoV-2. While numerous pathogens infect the host through the respiratory mucosa, conventional parenterally administered vaccines are unable to induce protective immunity at mucosal surfaces. Mucosal immunization enables the induction of both mucosal and systemic immunity, efficiently removing pathogens from the mucosa before an infection occurs. Although respiratory mucosal vaccination is highly appealing, successful nasal or pulmonary delivery of nucleic acid-based vaccines is challenging because of several physical and biological barriers at the airway mucosal site, such as a variety of protective enzymes and mucociliary clearance, which remove exogenously inhaled substances. Hence, advanced nanotechnologies enabling delivery of DNA and IVT-mRNA to the nasal and pulmonary mucosa are urgently needed. Ideal nanocarriers for nucleic acid vaccines should be able to efficiently load and protect genetic payloads, overcome physical and biological barriers at the airway mucosal site, facilitate transfection in targeted epithelial or antigen-presenting cells, and incorporate adjuvants. In this review, we discuss recent developments in nucleic acid delivery systems that target airway mucosa for vaccination purposes.
Collapse
Affiliation(s)
- Jie Tang
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia;
| | - Larry Cai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia;
| | - Chuanfei Xu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Si Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Yuheng Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- Correspondence: (J.R.); (S.G.); Tel.: +49-89-440057713 (J.R.); +86-23-68771645 (S.G.)
| | - Shan Guan
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
- Correspondence: (J.R.); (S.G.); Tel.: +49-89-440057713 (J.R.); +86-23-68771645 (S.G.)
| |
Collapse
|
14
|
Georgakis S, Gkirtzimanaki K, Papadaki G, Gakiopoulou H, Drakos E, Eloranta ML, Makridakis M, Kontostathi G, Zoidakis J, Baira E, Rönnblom L, Boumpas DT, Sidiropoulos P, Verginis P, Bertsias G. NETs decorated with bioactive IL-33 infiltrate inflamed tissues and induce IFN-α production in patients with SLE. JCI Insight 2021; 6:147671. [PMID: 34554930 PMCID: PMC8663547 DOI: 10.1172/jci.insight.147671] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
IL-33, a nuclear alarmin released during cell death, exerts context-specific effects on adaptive and innate immune cells, eliciting potent inflammatory responses. We screened blood, skin, and kidney tissues from patients with systemic lupus erythematosus (SLE), a systemic autoimmune disease driven by unabated type I IFN production, and found increased amounts of extracellular IL-33 complexed with neutrophil extracellular traps (NETs), correlating with severe, active disease. Using a combination of molecular, imaging, and proteomic approaches, we show that SLE neutrophils, activated by disease immunocomplexes, release IL-33–decorated NETs that stimulate robust IFN-α synthesis by plasmacytoid DCs in a manner dependent on the IL-33 receptor ST2L. IL33-silenced neutrophil-like cells cultured under lupus-inducing conditions generated NETs with diminished interferogenic effect. Importantly, NETs derived from patients with SLE are enriched in mature bioactive isoforms of IL-33 processed by the neutrophil proteases elastase and cathepsin G. Pharmacological inhibition of these proteases neutralized IL-33–dependent IFN-α production elicited by NETs. We believe these data demonstrate a novel role for cleaved IL-33 alarmin decorating NETs in human SLE, linking neutrophil activation, type I IFN production, and end-organ inflammation, with skin pathology mirroring that observed in the kidneys.
Collapse
Affiliation(s)
- Spiros Georgakis
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Katerina Gkirtzimanaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Garyfalia Papadaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Hariklia Gakiopoulou
- 1st Department of Pathology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Elias Drakos
- Department of Pathology, University of Crete, Medical School, Iraklio, Greece
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Georgia Kontostathi
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jerome Zoidakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eirini Baira
- Laboratory of Toxicological Assessment of Pesticides, Scientific Directorate of Pesticides Assessment and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dimitrios T Boumpas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,Joint Rheumatology Program and 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Prodromos Sidiropoulos
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Panayotis Verginis
- Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece.,Laboratory of Immune Regulation and Tolerance, University of Crete, Medical School, Iraklio, Greece
| | - George Bertsias
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| |
Collapse
|
15
|
Lewington-Gower E, Chan L, Shah A. Review of current and future therapeutics in ABPA. Ther Adv Chronic Dis 2021; 12:20406223211047003. [PMID: 34729149 PMCID: PMC8543630 DOI: 10.1177/20406223211047003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis is an allergic pulmonary condition caused by hypersensitivity to antigens of Aspergillus sp. found most commonly in patients with underlying asthma or cystic fibrosis. Host factors which alter the innate and adaptive immune responses to this abundant airborne fungus contribute to the development of chronic airway inflammation, bronchiectasis, and fibrosis. Traditionally, treatment has focussed on reducing fungal burden and immune response to fungal antigens. However, a significant proportion of patients continue to suffer recurrent exacerbations with progressive lung damage, and the side effect burden of existing treatments is high. New treatments including novel antifungal agents, monoclonal antibodies against aspects of the adaptive immune response as well as targeted immunotherapies may be better tolerated and achieve improved outcomes but have not yet been studied in large-scale randomised control trials.
Collapse
Affiliation(s)
- Elisa Lewington-Gower
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Ley Chan
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Anand Shah
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SW3 6NP, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
16
|
Crucial role of stimulator of interferon genes-dependent signaling in house dust mite extract-induced IgE production. Sci Rep 2021; 11:13157. [PMID: 34162937 PMCID: PMC8222396 DOI: 10.1038/s41598-021-92561-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 01/04/2023] Open
Abstract
Stimulator of interferon genes (STING) is a DNA sensor that responds to pathogens and induces type I interferon production. Herein, the role of STING in house dust mite extract (HDM)-induced allergic asthma was investigated. C57BL/6 wild-type (WT) and Sting−/− mice were intratracheally sensitized with HDM, and the bronchoalveolar lavage fluid (BALF), sera, lungs, and mediastinal lymph nodes (MLNs) were analyzed. The total and HDM-specific serum IgE levels were lower in Sting−/− mice than in WT mice. B cell and IgE-positive B cell proportion in BALF and MLNs, respectively, was significantly lower in Sting−/− mice than in WT mice. Additionally, cyclic GMP-AMP, a STING ligand, augmented total and HDM-specific serum IgE levels and B cell proportion in BALF when applied in combination with HDM. To elucidate the role of STING in IgE production, follicular helper T (Tfh) cells, which are involved in B cell maturation, were investigated. Tfh cell proportion in MLNs decreased in Sting−/− mice, and IL-4 and IL-13 production by HDM-restimulated MLN cells from HDM-sensitized mice was decreased in Sting−/− mice compared with WT mice. Thus, STING plays an important role in the maturation and class switching of IgE-producing B cells in allergic inflammation via Tfh cells.
Collapse
|