1
|
Caron DP, Specht WL, Chen D, Wells SB, Szabo PA, Jensen IJ, Farber DL, Sims PA. Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues. CELL REPORTS METHODS 2025; 5:100938. [PMID: 39814026 DOI: 10.1016/j.crmeth.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/21/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities.
Collapse
Affiliation(s)
- Daniel P Caron
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - William L Specht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Chen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Isaac J Jensen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
2
|
Kashima K, Matsuyama H, Yoshishige Y, Nakazono S. A Case of Interstitial Pneumonia Leading to Respiratory Failure Several Months After COVID-19 Infection. Cureus 2025; 17:e77153. [PMID: 39925489 PMCID: PMC11805603 DOI: 10.7759/cureus.77153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
While acute pneumonia is commonly observed in the early stages of coronavirus disease 2019 (COVID-19) infection, isolated cases of interstitial pneumonia have been reported several months later. In this case, interstitial lung disease was identified on a routine follow-up examination five months after infection. Eight months after infection, the patient developed worsening interstitial lung disease, pulmonary hypertension, and worsening symptoms, leading to respiratory failure. Careful follow-up is necessary for patients with COVID-19 who experience progressive pulmonary lesions.
Collapse
|
3
|
Fan W, Gui B, Zhou X, Li L, Chen H. A narrative review on lung injury: mechanisms, biomarkers, and monitoring. Crit Care 2024; 28:352. [PMID: 39482752 PMCID: PMC11526606 DOI: 10.1186/s13054-024-05149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024] Open
Abstract
Lung injury is closely associated with the heterogeneity, severity, mortality, and prognosis of various respiratory diseases. Effective monitoring of lung injury is crucial for the optimal management and improved outcomes of patients with lung diseases. This review describes acute and chronic respiratory diseases characterized by significant lung injury and current clinical tools for assessing lung health. Furthermore, we summarized the mechanisms of lung cell death observed in these diseases and highlighted recently identified biomarkers in the plasma indicative of injury to specific cell types and scaffold structure in the lung. Last, we propose an artificial intelligence-driven lung injury monitoring model to assess disease severity, and predict mortality and prognosis, aiming to achieve precision and personalized medicine.
Collapse
Affiliation(s)
- Wenping Fan
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China
| | - Biyu Gui
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
| | - Xiaolei Zhou
- Department of Pulmonary Medicine, Chest Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Li Li
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
| | - Huaiyong Chen
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China.
- Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China.
| |
Collapse
|
4
|
Verma S, Bradley MC, Gray J, Dogra P, Caron DP, Maurrasse S, Grunstein E, Waldman E, Jang M, Pethe K, Farber DL, Connors TJ. Distinct Localization, Transcriptional Profiles, and Functionality in Early Life Tonsil Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:306-316. [PMID: 38905110 PMCID: PMC11304551 DOI: 10.4049/jimmunol.2300890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/27/2024] [Indexed: 06/23/2024]
Abstract
CD4+ regulatory T cells (Tregs) are key orchestrators of the immune system, fostering the establishment of protective immunity while preventing deleterious responses. Infancy and childhood are crucial periods of rapid immunologic development, but how Tregs mediate immune responses at these earliest timepoints of human life is poorly understood. In this study, we compare blood and tissue (tonsil) Tregs across pediatric and adult subjects to investigate age-related differences in Treg biology. We observed increased FOXP3 expression and proportions of Tregs in tonsil compared with paired blood samples in children. Within tonsil, early life Tregs accumulated in extrafollicular regions with cellular interactions biased toward CD8+ T cells. Tonsil Tregs in both children and adults expressed transcriptional profiles enriched for lineage defining signatures and canonical functionality compared with blood, suggesting tissue as the primary site of Treg activity. Early life tonsil Tregs transcriptional profiles were further defined by pathways associated with activation, proliferation, and polyfunctionality. Observed differences in pediatric tonsil Treg transcriptional signatures were associated with phenotypic differences, high proliferative capacity, and robust production of IL-10 compared with adult Tregs. These results identify tissue as a major driver of Treg identity, provide new insights into developmental differences in Treg biology across the human lifespan, and demonstrate unique functional properties of early life Tregs.
Collapse
Affiliation(s)
- Shivali Verma
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Marissa C Bradley
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Joshua Gray
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Daniel P Caron
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Sarah Maurrasse
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Eli Grunstein
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Erik Waldman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Minyoung Jang
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Kalpana Pethe
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Thomas J Connors
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| |
Collapse
|
5
|
Johansson MW, Balnis J, Muehlbauer LK, Bukhman YV, Stefely MS, Overmyer KA, Vancavage R, Tiwari A, Adhikari AR, Feustel PJ, Schwartz BS, Coon JJ, Stewart R, Jaitovich A, Mosher DF. Decreased plasma cartilage acidic protein 1 in COVID-19. Physiol Rep 2023; 11:e15814. [PMID: 37667413 PMCID: PMC10477339 DOI: 10.14814/phy2.15814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 09/06/2023] Open
Abstract
Cartilage acidic protein-1 (CRTAC1) is produced by several cell types, including Type 2 alveolar epithelial (T2AE) cells that are targeted by SARS-CoV2. Plasma CRTAC1 is known based on proteomic surveys to be low in patients with severe COVID-19. Using an ELISA, we found that patients treated for COVID-19 in an ICU almost uniformly had plasma concentrations of CRTAC1 below those of healthy controls. Magnitude of decrease in CRTAC1 distinguished COVID-19 from other causes of acute respiratory decompensation and correlated with established metrics of COVID-19 severity. CRTAC1 concentrations below those of controls were found in some patients a year after hospitalization with COVID-19, long COVID after less severe COVID-19, or chronic obstructive pulmonary disease. Decreases in CRTAC1 in severe COVID-19 correlated (r = 0.37, p = 0.0001) with decreases in CFP (properdin), which interacts with CRTAC1. Thus, decreases of CRTAC1 associated with severe COVID-19 may result from loss of production by T2AE cells or co-depletion with CFP. Determination of significance of and reasons behind decreased CRTAC1 concentration in a subset of patients with long COVID will require analysis of roles of preexisting lung disease, impact of prior acute COVID-19, age, and other confounding variables in a larger number of patients.
Collapse
Affiliation(s)
- Mats W Johansson
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Laura K Muehlbauer
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yury V Bukhman
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | | | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA
| | - Rachel Vancavage
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Anupama Tiwari
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Anish Raj Adhikari
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Bradford S Schwartz
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Deane F Mosher
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Arish M, Qian W, Narasimhan H, Sun J. COVID-19 immunopathology: From acute diseases to chronic sequelae. J Med Virol 2023; 95:e28122. [PMID: 36056655 PMCID: PMC9537925 DOI: 10.1002/jmv.28122] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/17/2023]
Abstract
The clinical manifestation of coronavirus disease 2019 (COVID-19) mainly targets the lung as a primary affected organ, which is also a critical site of immune cell activation by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, recent reports also suggest the involvement of extrapulmonary tissues in COVID-19 pathology. The interplay of both innate and adaptive immune responses is key to COVID-19 management. As a result, a robust innate immune response provides the first line of defense, concomitantly, adaptive immunity neutralizes the infection and builds memory for long-term protection. However, dysregulated immunity, both innate and adaptive, can skew towards immunopathology both in acute and chronic cases. Here we have summarized some of the recent findings that provide critical insight into the immunopathology caused by SARS-CoV-2, in acute and post-acute cases. Finally, we further discuss some of the immunomodulatory drugs in preclinical and clinical trials for dampening the immunopathology caused by COVID-19.
Collapse
Affiliation(s)
- Mohd Arish
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Qian
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Harish Narasimhan
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|