1
|
Bariani MV, Grimm SL, Coarfa C, Velez Edwards DR, Yang Q, Walker CL, Ali M, Al-Hendy A. Altered extracellular matrix-related pathways accelerate the transition from normal to prefibroid myometrium in Black women. Am J Obstet Gynecol 2024; 231:324.e1-324.e12. [PMID: 38825029 PMCID: PMC11344675 DOI: 10.1016/j.ajog.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Black women experience a disproportionate impact of uterine fibroids compared to White women, including earlier diagnosis, higher frequency, and more severe symptoms. The etiology underlying this racial disparity remains elusive. OBJECTIVE The aim of this study was to evaluate the molecular differences in normal myometrium (fibroid-free uteri) and at-risk myometrium (fibroid-containing uteri) tissues in Black and White women. STUDY DESIGN We conducted whole-genome RNA-seq on normal and at-risk myometrium tissues obtained from both self-identified Black and White women (not Hispanic or Latino) to determine global gene expression profiles and to conduct enriched pathway analyses (n=3 per group). We initially assessed the differences within the same type of tissue (normal or at-risk myometrium) between races. Subsequently, we analyzed the transcriptome of normal myometrium compared to at-risk myometrium in each race and determined the differences between them. We validated our findings through real-time PCR (sample size range=5-12), western blot (sample size range=5-6), and immunohistochemistry techniques (sample size range=9-16). RESULTS The transcriptomic analysis revealed distinct profiles between Black and White women in normal and at-risk myometrium tissues. Interestingly, genes and pathways related to extracellular matrix and mechanosensing were more enriched in normal myometrium from Black than White women. Transcription factor enrichment analysis detected greater activity of the serum response transcription factor positional motif in normal myometrium from Black compared to White women. Furthermore, we observed increased expression levels of myocardin-related transcription factor-serum response factor and the serum response factor in the same comparison. In addition, we noted increased expression of both mRNA and protein levels of vinculin, a target gene of the serum response factor, in normal myometrium tissues from Black women as compared to White women. Importantly, the transcriptomic profile of normal to at-risk myometrium conversion differs between Black and White women. Specifically, we observed that extracellular matrix-related pathways are involved in the transition from normal to at-risk myometrium and that these processes are exacerbated in Black women. We found increased levels of Tenascin C, type I collagen alpha 1 chain, fibronectin, and phospho-p38 MAPK (Thr180/Tyr182, active) protein levels in at-risk over normal myometrium tissues from Black women, whereas such differences were not observed in samples from White women. CONCLUSION These findings indicate that the racial disparities in uterine fibroids may be attributed to heightened production of extracellular matrix in the myometrium in Black women, even before the tumors appear. Future research is needed to understand early life determinants of the observed racial differences.
Collapse
Affiliation(s)
| | - Sandra L Grimm
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Cristian Coarfa
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN; Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN; Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | - Cheryl L Walker
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL.
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL.
| |
Collapse
|
2
|
George JW, Cancino RA, Griffin Miller JL, Qiu F, Lin Q, Rowley MJ, Chennathukuzhi VM, Davis JS. Characterization of m6A Modifiers and RNA Modifications in Uterine Fibroids. Endocrinology 2024; 165:bqae074. [PMID: 38946397 PMCID: PMC11222979 DOI: 10.1210/endocr/bqae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Uterine leiomyoma or fibroids are prevalent noncancerous tumors of the uterine muscle layer, yet their origin and development remain poorly understood. We analyzed RNA expression profiles of 15 epigenetic mediators in uterine fibroids compared to myometrium using publicly available RNA sequencing (RNA-seq) data. To validate our findings, we performed RT-qPCR on a separate cohort of uterine fibroids targeting these modifiers confirming our RNA-seq data. We then examined protein profiles of key N6-methyladenosine (m6A) modifiers in fibroids and their matched myometrium, showing no significant differences in concordance with our RNA expression profiles. To determine RNA modification abundance, mRNA and small RNA from fibroids and matched myometrium were analyzed by ultra-high performance liquid chromatography-mass spectrometry identifying prevalent m6A and 11 other known modifiers. However, no aberrant expression in fibroids was detected. We then mined a previously published dataset and identified differential expression of m6A modifiers that were specific to fibroid genetic subtype. Our analysis also identified m6A consensus motifs on genes previously identified to be dysregulated in uterine fibroids. Overall, using state-of-the-art mass spectrometry, RNA expression, and protein profiles, we characterized and identified differentially expressed m6A modifiers in relation to driver mutations. Despite the use of several different approaches, we identified limited differential expression of RNA modifiers and associated modifications in uterine fibroids. However, considering the highly heterogenous genomic and cellular nature of fibroids, and the possible contribution of single molecule m6A modifications to fibroid pathology, there is a need for greater in-depth characterization of m6A marks and modifiers in a larger and diverse patient cohort.
Collapse
Affiliation(s)
- Jitu W George
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Rosa A Cancino
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer L Griffin Miller
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Qishan Lin
- RNA Epitranscriptomics and Proteomics Resource, Department of Chemistry, University at Albany, Albany, NY 12222, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Varghese M Chennathukuzhi
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
3
|
Dye CK, Wu H, VanNoy B, Calluori S, Marfori CQ, Baccarelli AA, Zota AR. Psychosocial Stress and MicroRNA Expression Profiles in Myometrial Tissue of Women Undergoing Surgical Treatment for Uterine Fibroids. Reprod Sci 2024; 31:1651-1661. [PMID: 38379067 PMCID: PMC11426992 DOI: 10.1007/s43032-024-01482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Uterine leiomyomas (fibroids) are the most common non-cancerous tumors affecting women. Psychosocial stress is associated with fibroid risk and severity. The relationship between psychosocial stress and fibroid pathogenesis may involve alterations in microRNAs (miRNAs) although this has yet to be examined. We investigated associations between two psychosocial stress measures, a composite measure of recent stressful life events and perceived social status, with expression levels of 401 miRNAs in myometrium (n = 20) and fibroids (n = 44; 20 with paired fibroid and myometrium samples) among pre-menopausal women who underwent surgery for fibroid treatment. We used linear regressions to identify psychosocial stressors associated with miRNAs, adjusting for covariates (age, body mass index, race/ethnicity, and oral contraceptive use). The association between psychosocial stressors and miRNAs was considered statistically significant at an FDR p < 0.10 and showed a monotonic response (nominal p-trend < 0.05). In the myometrium, 21 miRNAs were significantly associated with a composite measure of recent stressful events, and two miRNAs were associated with perceived social status. No fibroid miRNAs were associated with either stress measure. Pathway analyses revealed miRNA-mRNA targets were significantly enriched (FDR p < 0.05) in pathways relevant to cancer/tumor development. Of the 74 differentially expressed miRNAs between myometrium and fibroids, miR-27a-5p and miR-301b were also associated with stress exposure. Our pilot analysis suggests that psychosocial stress is associated with myometrial miRNA expression and, thus, may have a role in the pathogenesis of fibroids from healthy myometrium.
Collapse
Affiliation(s)
- Christian K Dye
- Department of Environmental Health Sciences, Columbia University, 722, West 168Th St. 16Th Floor, New York, NY, 10032, USA.
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University, 722, West 168Th St. 16Th Floor, New York, NY, 10032, USA
| | - Brianna VanNoy
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Stephanie Calluori
- Department of Environmental Health Sciences, Columbia University, 722, West 168Th St. 16Th Floor, New York, NY, 10032, USA
| | - Cherie Q Marfori
- Minimally Invasive Gynecologic Surgery, Inova Health Systems, Arlington, VA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University, 722, West 168Th St. 16Th Floor, New York, NY, 10032, USA
| | - Ami R Zota
- Department of Environmental Health Sciences, Columbia University, 722, West 168Th St. 16Th Floor, New York, NY, 10032, USA
| |
Collapse
|
4
|
Paul EN, Carpenter TJ, Pavliscak LA, Bennett AZ, Ochoa-Bernal MA, Fazleabas AT, Teixeira JM. Unraveling the Molecular Landscape of Uterine Fibroids, Insights into HMGA2 and Stem Cell Involvement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591351. [PMID: 38712187 PMCID: PMC11071509 DOI: 10.1101/2024.04.26.591351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Uterine fibroids are prevalent benign tumors in women that exhibit considerable heterogeneity in clinical presentation and molecular characteristics, necessitating a deeper understanding of their etiology and pathogenesis. HMGA2 overexpression has been associated with fibroid development, yet its precise role remains elusive. Mutations in fibroids are mutually exclusive and largely clonal, suggesting that tumors originate from a single mutant cell. We explored a possible role for HMGA2 overexpression in differentiated myometrial cells, hypothesizing its potential to induce a stem cell-like or dedifferentiating phenotype and drive fibroid development. Myometrial cells were immortalized and transduced with an HMGA2 lentivirus to produce HMGA2hi cells. In vitro stem cell assays were conducted and RNA from HMGA2hi and control cells and fibroid-free myometrial and HMGA2 fibroid (HMGA2F) tissues were submitted for RNA-sequencing. HMGA2hi cells have enhanced self-renewal capacity, decreased proliferation, and have a greater ability to differentiate into other mesenchymal cell types. HMGA2hi cells exhibit a stem cell-like signature and share transcriptomic similarities with HMGA2F. Moreover, dysregulated extracellular matrix pathways are observed in both HMGA2hi cells and HMGA2F. Our findings suggest that HMGA2 overexpression drives myometrial cells to dedifferentiate into a more plastic phenotype and underscore a pivotal role for HMGA2 in fibroid pathogenesis.
Collapse
|
5
|
Ramaiyer MS, Saad E, Kurt I, Borahay MA. Genetic Mechanisms Driving Uterine Leiomyoma Pathobiology, Epidemiology, and Treatment. Genes (Basel) 2024; 15:558. [PMID: 38790186 PMCID: PMC11121260 DOI: 10.3390/genes15050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Uterine leiomyomas (ULs) are the most common benign tumor of the uterus. They can be associated with symptoms including abnormal uterine bleeding, pelvic pain, urinary frequency, and pregnancy complications. Despite the high prevalence of UL, its underlying pathophysiology mechanisms have historically been poorly understood. Several mechanisms of pathogenesis have been suggested, implicating various genes, growth factors, cytokines, chemokines, and microRNA aberrations. The purpose of this study is to summarize the current research on the relationship of genetics with UL. Specifically, we performed a literature review of published studies to identify how genetic aberrations drive pathophysiology, epidemiology, and therapeutic approaches of UL. With regards to pathophysiology, research has identified MED12 mutations, HMGA2 overexpression, fumarate hydratase deficiency, and cytogenetic abnormalities as contributors to the development of UL. Additionally, epigenetic modifications, such as histone acetylation and DNA methylation, have been identified as contributing to UL tumorigenesis. Specifically, UL stem cells have been found to contain a unique DNA methylation pattern compared to more differentiated UL cells, suggesting that DNA methylation has a role in tumorigenesis. On a population level, genome-wide association studies (GWASs) and epidemiologic analyses have identified 23 genetic loci associated with younger age at menarche and UL growth. Additionally, various GWASs have investigated genetic loci as potential drivers of racial disparities in UL incidence. For example, decreased expression of Cytohesin 4 in African Americans has been associated with increased UL risk. Recent studies have investigated various therapeutic options, including ten-eleven translocation proteins mediating DNA methylation, adenovirus vectors for drug delivery, and "suicide gene therapy" to induce apoptosis. Overall, improved understanding of the genetic and epigenetic drivers of UL on an individual and population level can propel the discovery of novel therapeutic options.
Collapse
Affiliation(s)
| | - Eslam Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
| | - Irem Kurt
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
- Faculty of Medicine, Selcuk University, 42000 Konya, Turkey
| | - Mostafa A. Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
| |
Collapse
|
6
|
Khan NH, McNally R, Kim JJ, Wei JJ. Racial disparity in uterine leiomyoma: new insights of genetic and environmental burden in myometrial cells. Mol Hum Reprod 2024; 30:gaae004. [PMID: 38290796 PMCID: PMC10904341 DOI: 10.1093/molehr/gaae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Uterine leiomyoma (LM), also known as uterine fibroids, are common gynecological tumors and can reach a prevalence of 70% among women by the age of 50 years. Notably, the LM burden is much higher in Black women with earlier onset, a greater tumor number, size, and severity compared to White women. Published knowledge shows that there are genetic, environmental, and lifestyle-based risk factors associated with racial disparity for LM. Significant strides have been made on genomic, epigenomic, and transcriptomic data levels in Black and White women to elucidate the underlying pathomolecular reasons of racial disparity in LM development. However, racial disparity of LM remains a major area of concern in gynecological research. This review highlights risk factors of LM and their role in different races. Furthermore, we discuss the genetics and uterine myometrial microenvironment in LM development. Comparative findings revealed that a major racial difference in the disease is linked to myometrial oxidative burden and altered ROS pathways which is relevant to the oxidized guanine in genomic DNA and MED12 mutations that drive the LM genesis. Considering the burden and morbidity of LM, we anticipate that this review on genetic risk and myometrial microenvironment will strengthen understanding and propel the growth of research to address the racial disparity of LM burden.
Collapse
Affiliation(s)
- Nazeer H Khan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ross McNally
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - J Julie Kim
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
7
|
Nieh C, Mabila SL. Incidence and health care burden of uterine fibroids among female service members in the active component of the U.S. Armed Forces, 2011-2022. MSMR 2024; 31:9-15. [PMID: 38466970 PMCID: PMC10959453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Uterine fibroids are the most common benign tumors of the uterus among women of reproductive age, disproportionally affecting non-Hispanic Black women compared to other races and ethnicities. This report is an update of a 2011 MSMR report that examined uterine fibroids among female active component service members in the U.S. Armed Forces from 2001 to 2010. Incident uterine fibroids were identified for this report from inpatient and outpatient medical encounter data from 2011 to 2022. Health care burden was estimated utilizing uterine fibroid-related inpatient and outpatient diagnostic and procedure codes. Crude incidence rates and incidence rate ratios were calculated to compare rate differences between subpopulations. A total of 16,046 new uterine fibroid cases were identified, with an incidence rate of 63.5 cases per 10,000 person-years (95% confidence interval: 62.5-64.5). The highest incidence rates were observed among service women 40 years and older, non-Hispanic Black women, and those who served in the Army. Health care burden analysis showed that, even with increases in medical encounters and individuals affected, the numbers of hospital bed days declined over time. The decline in uterine fibroid-related hospital bed days could be attributed to early diagnoses and minimally-invasive treatments. Continued promotion of uterine fibroid awareness can potentially help further reduce uterine fibroid-related impacts on military readiness.
Collapse
Affiliation(s)
- Chiping Nieh
- Epidemiology and Analysis Section, Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, MD
| | - Sithembile L Mabila
- Epidemiology and Analysis Section, Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, MD
| |
Collapse
|
8
|
Chuang TD, Ton N, Rysling S, Boos D, Khorram O. The Effect of Race/Ethnicity and MED12 Mutation on the Expression of Long Non-Coding RNAs in Uterine Leiomyoma and Myometrium. Int J Mol Sci 2024; 25:1307. [PMID: 38279317 PMCID: PMC10816284 DOI: 10.3390/ijms25021307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The objective of this study was to elucidate the expression of long non-coding RNA (lncRNA) in leiomyomas (Lyo) and paired myometrium (Myo) and explore the impact of race and MED12 mutation. Fold change analysis (Lyo/paired Myo) indicated the expression of 63 lncRNAs was significantly altered in the mutated group but not in the non-mutated Lyo. Additionally, 65 lncRNAs exhibited an over 1.5-fold change in the Black but not the White group. Fifteen differentially expressed lncRNAs identified with next-generation sequencing underwent qRT-PCR confirmation. Compared with Myo, the expression of TPTEP1, PART1, RPS10P7, MSC-AS1, SNHG12, CA3-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was significantly higher, while the expression of ZEB2-AS1, LINC00957, and LINC01186 was significantly lower. Comparison of normal Myo with diseased Myo showed significant differences in the expression of several lncRNAs. Analysis based on race and Lyo MED12 mutation status indicated a significantly higher expression of RPS10P7, SNHG12, LINC01449, LINC02433, and LINC02624 in Lyo from Black patients. The expression of TPTEP1, PART1, RPS10P7, MSC-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was higher, while LINC01186 was significantly lower in the MED12-mutated group. These results indicate that Lyo are characterized by aberrant lncRNA expression, which is further impacted by race and Lyo MED12 mutation status.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
9
|
Yang Q, Vafaei S, Falahati A, Khosh A, Bariani MV, Omran MM, Bai T, Siblini H, Ali M, He C, Boyer TG, Al-Hendy A. Bromodomain-Containing Protein 9 Regulates Signaling Pathways and Reprograms the Epigenome in Immortalized Human Uterine Fibroid Cells. Int J Mol Sci 2024; 25:905. [PMID: 38255982 PMCID: PMC10815284 DOI: 10.3390/ijms25020905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Bromodomain-containing proteins (BRDs) are involved in many biological processes, most notably epigenetic regulation of transcription, and BRD dysfunction has been linked to many diseases, including tumorigenesis. However, the role of BRDs in the pathogenesis of uterine fibroids (UFs) is entirely unknown. The present study aimed to determine the expression pattern of BRD9 in UFs and matched myometrium and further assess the impact of a BRD9 inhibitor on UF phenotype and epigenetic/epitranscriptomic changes. Our studies demonstrated that the levels of BRD9 were significantly upregulated in UFs compared to matched myometrium, suggesting that the aberrant BRD expression may contribute to the pathogenesis of UFs. We then evaluated the potential roles of BRD9 using its specific inhibitor, I-BRD9. Targeted inhibition of BRD9 suppressed UF tumorigenesis with increased apoptosis and cell cycle arrest, decreased cell proliferation, and extracellular matrix deposition in UF cells. The latter is the key hallmark of UFs. Unbiased transcriptomic profiling coupled with downstream bioinformatics analysis further and extensively demonstrated that targeted inhibition of BRD9 impacted the cell cycle- and ECM-related biological pathways and reprogrammed the UF cell epigenome and epitranscriptome in UFs. Taken together, our studies support the critical role of BRD9 in UF cells and the strong interconnection between BRD9 and other pathways controlling the UF progression. Targeted inhibition of BRDs might provide a non-hormonal treatment option for this most common benign tumor in women of reproductive age.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Ali Falahati
- DNA GTx LAB, Dubai Healthcare City, Dubai 505262, United Arab Emirates;
| | - Azad Khosh
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.K.); (T.G.B.)
| | - Maria Victoria Bariani
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Mervat M. Omran
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Tao Bai
- Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA;
| | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.K.); (T.G.B.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| |
Collapse
|
10
|
Dye CK, Wu H, VanNoy B, Calluori S, Marfori CQ, Baccarelli AA, Zota AR. Psychosocial stress and microRNA expression profiles in myometrial tissue of women undergoing surgical treatment for uterine fibroids. RESEARCH SQUARE 2023:rs.3.rs-3373251. [PMID: 37790535 PMCID: PMC10543257 DOI: 10.21203/rs.3.rs-3373251/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Uterine leiomyomas (fibroids) are the most common non-cancerous tumor affecting women. Psychosocial stress is associated with fibroid risk and severity. The relationship between psychosocial stress and fibroid pathogenesis may involve alterations in microRNAs (miRNAs) although this has yet to be examined. We investigated associations between two psychosocial stress measures, a composite measure of recent stressful life events and perceived social status, with expression levels of 401 miRNAs in myometrium (n = 20) and fibroids (n = 44; 20 matched between tissues) from pre-menopausal women who underwent surgery for fibroid treatment. We used linear regressions to identify psychosocial stressors associated with miRNAs, adjusting for covariates (age, body mass index, and race/ethnicity). Psychosocial stressors were modeled as ordinal variables and results were considered statistically significant if the overall variable significant was below false discovery threshold (FDR < 0.10) and showed a monotonic dose-response (nominal p-trend < 0.05). In the myometrium, 16 miRNAs were significantly associated with total stressful events and two miRNAs were associated with perceived social status. No fibroid miRNAs were associated with either stress measure. Pathway analyses revealed miRNA-mRNA targets were significantly enriched (FDR < 0.05) in pathways relevant to cancer/tumor development. Of the 74 differentially expressed miRNAs between myometrium and fibroids (p < 0.05), miR-27a-5p was also associated with stress exposure. Our pilot analysis suggests that psychosocial stress is associated with changes in myometrium miRNAs, and thus, plays a role in the pathogenesis of fibroids from healthy myometrium.
Collapse
Affiliation(s)
- Christian K Dye
- Department of Environmental Health Sciences, Columbia University
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University
| | | | | | | | | | - Ami R Zota
- Department of Environmental Health Sciences, Columbia University
| |
Collapse
|
11
|
Yang Q, Ali M, Treviño LS, Mas A, Al-Hendy A. Developmental reprogramming of myometrial stem cells by endocrine disruptor linking to risk of uterine fibroids. Cell Mol Life Sci 2023; 80:274. [PMID: 37650943 PMCID: PMC10471700 DOI: 10.1007/s00018-023-04919-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The stage, when tissues and organs are growing, is very vulnerable to environmental influences, but it's not clear how exposure during this time causes changes to the epigenome and increases the risk of hormone-related illnesses like uterine fibroids (UFs). METHODS Developmental reprogramming of myometrial stem cells (MMSCs), the putative origin from which UFs originate, was investigated in vitro and in the Eker rat model by RNA-seq, ChIP-seq, RRBS, gain/loss of function analysis, and luciferase activity assays. RESULTS When exposed to the endocrine-disrupting chemical (EDC) diethylstilbestrol during Eker rat development, MMSCs undergo a reprogramming of their estrogen-responsive transcriptome. The reprogrammed genes in MMSCs are known as estrogen-responsive genes (ERGs) and are activated by mixed lineage leukemia protein-1 (MLL1) and DNA hypo-methylation mechanisms. Additionally, we observed a notable elevation in the expression of ERGs in MMSCs from Eker rats exposed to natural steroids after developmental exposure to EDC, thereby augmenting estrogen activity. CONCLUSION Our studies identify epigenetic mechanisms of MLL1/DNA hypo-methylation-mediated MMSC reprogramming. EDC exposure epigenetically targets MMSCs and leads to persistent changes in the expression of a subset of ERGs, imparting a hormonal imprint on the ERGs, resulting in a "hyper-estrogenic" phenotype, and increasing the hormone-dependent risk of UFs.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637 USA
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637 USA
| | - Lindsey S. Treviño
- Division of Health Equities, Department of Population Sciences, City of Hope, Duarte, CA 91010 USA
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, Avda. Menéndez Pelayo 4, 46010 Valencia, Spain
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637 USA
| |
Collapse
|
12
|
Chuang TD, Ton N, Rysling S, Quintanilla D, Boos D, Gao J, McSwiggin H, Yan W, Khorram O. The Influence of Race/Ethnicity on the Transcriptomic Landscape of Uterine Fibroids. Int J Mol Sci 2023; 24:13441. [PMID: 37686244 PMCID: PMC10487975 DOI: 10.3390/ijms241713441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The objective of this study was to determine if the aberrant expression of select genes could form the basis for the racial disparity in fibroid characteristics. The next-generation RNA sequencing results were analyzed as fold change [leiomyomas/paired myometrium, also known as differential expression (DF)], comparing specimens from White (n = 7) and Black (n = 12) patients. The analysis indicated that 95 genes were minimally changed in tumors from White (DF ≈ 1) but were significantly altered by more than 1.5-fold (up or down) in Black patients. Twenty-one novel genes were selected for confirmation in 69 paired fibroids by qRT-PCR. Among these 21, coding of transcripts for the differential expression of FRAT2, SOX4, TNFRSF19, ACP7, GRIP1, IRS4, PLEKHG4B, PGR, COL24A1, KRT17, MMP17, SLN, CCDC177, FUT2, MYO5B, MYOG, ZNF703, CDC25A, and CDCA7 was significantly higher, while the expression of DAB2 and CAV2 was significantly lower in tumors from Black or Hispanic patients compared with tumors from White patients. Western blot analysis revealed a greater differential expression of PGR-A and total progesterone (PGR-A and PGR-B) in tumors from Black compared with tumors from White patients. Collectively, we identified a set of genes uniquely expressed in a race/ethnicity-dependent manner, which could form the underlying mechanisms for the racial disparity in fibroids and their associated symptoms.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Derek Quintanilla
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Jianjun Gao
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Hayden McSwiggin
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
George JW, Cancino RA, Miller JLG, Qiu F, Lin Q, Rowley MJ, Chennathukuzhi VM, Davis JS. Characterization of m 6A modifiers and RNA modifications in uterine fibroids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552278. [PMID: 37609293 PMCID: PMC10441280 DOI: 10.1101/2023.08.07.552278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Uterine leiomyoma or fibroids are the most common prevalent noncancerous tumors of the uterine muscle layer. Common symptoms associated with fibroids include pelvic pain, heavy menstrual bleeding, anemia, and pelvic pressure. These tumors are a leading cause of gynecological care but lack long-term therapy as the origin and development of fibroids are not well understood. Several next-generation sequencing technologies have been performed to identify the underlying genetic and epigenetic basis of fibroids. However, there remains a systemic gap in our understanding of molecular and biological process that define uterine fibroids. Recent epitranscriptomics studies have unraveled RNA modifications that are associated with all forms of RNA and are thought to influence both normal physiological functions and the progression of diseases. We quantified RNA expression profiles by analyzing publicly available RNA-seq data for 15 known epigenetic mediators to identify their expression profile in uterine fibroids compared to myometrium. To validate our findings, we performed RT-qPCR on a separate cohort of uterine fibroids targeting these modifiers confirming our RNA-seq data. We then examined protein profiles of key m6A modifiers in fibroids and their matched myometrium. In concordance with our RNA expression profiles, no significant differences were observed in these proteins in uterine fibroids compared to myometrium. To determine abundance of RNA modifications, mRNA and small RNA from fibroids and matched myometrium were analyzed by UHPLC MS/MS. In addition to the prevalent N6-methyladenosine (m6A), we identified 11 other known modifiers but did not identify any aberrant expression in fibroids. We then mined a previously published dataset and identified differential expression of m6A modifiers that were specific to fibroid genetic sub-type. Our analysis also identified m6A consensus motifs on genes previously identified to be dysregulated in uterine fibroids. Overall, using state-of-the-art mass spectrometry, RNA expression and protein profiles, we characterized and identified differentially expressed m6A modifiers in relation to driver mutations. Despite the use of several different approaches, we identified limited differential expression of RNA modifiers and associated modifications in uterine fibroids. However, considering the highly heterogenous genomic and cellular nature of fibroids, and the possible contribution of single molecule m6A modifications to fibroid pathology, there is a need for greater in-depth characterization of m6A marks and modifiers in a larger and varied patient cohort.
Collapse
Affiliation(s)
- Jitu W. George
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| | - Rosa A. Cancino
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer L. Griffin Miller
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qishan Lin
- RNA Epitranscriptomics and Proteomics Resource, Department of Chemistry, University at Albany, Albany, NY, United States
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Varghese M. Chennathukuzhi
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John S. Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| |
Collapse
|
14
|
Li Y, McNally RP, Feng Y, Kim JJ, Wei JJ. Racial differences in transcriptomics and reactive oxygen species burden in myometrium and leiomyoma. Hum Reprod 2023; 38:609-620. [PMID: 36749068 PMCID: PMC10068273 DOI: 10.1093/humrep/dead020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
STUDY QUESTION Are there differences in Mediator Complex Subunit 12 mutations (MED12) mutation, transcriptomics, and protein expression in uterine myometrium and leiomyomas of Black and White women? SUMMARY ANSWER RNA sequencing, tissue microarray, and immunohistochemistry data revealed that Black and White women have significant differences in their myometrium and leiomyoma profiles. WHAT IS KNOWN ALREADY Black women develop uterine leiomyoma earlier than White women, and are more likely to be anemic, have multiple tumors, undergo hysterectomy at an earlier age, have a higher uterine weight, and report very severe pelvic pain. STUDY DESIGN, SIZE, DURATION Uterine tissues were collected from premenopausal women undergoing hysterectomy or myomectomy at Northwestern University Prentice Women's Hospital (Chicago, IL) from 2010 to 2021. Tissues were collected from a total of 309 women, including from 136 Black women, 135 White women, and 38 women from other racial groups. A total of 529 uterine leiomyomas (290 from Black women, 184 from White women, and 55 from women of other racial groups) were subjected to molecular analysis. Leiomyoma and matched myometrium from a total of 118 cases including 60 Black women and 58 White women, were used for tissue microarrays, along with 34 samples of myometrium without leiomyoma from White women. PARTICIPANTS/MATERIALS, SETTING, METHODS Tissues from the above patient cohorts were analyzed by tissue microarray, immunohistochemistry, RNA sequencing, and mutation analysis. MAIN RESULTS AND THE ROLE OF CHANCE The results indicated that leiomyoma from Black women have a higher rate of MED12 mutations (79.0%) than those from White women (68.5%) (*P ≤ 0.05). RNA-sequencing analysis in myometrium revealed differentially expressed genes (270 upregulated, 374 downregulated) dependent on race, wherein reactive oxygen species, hypoxia, and oxidative phosphorylation pathways were positively correlated with samples derived from Black patients. The levels of proteins associated with oxidative DNA damage and repair, 8-hydroxyguanosine (8-OHdG), 8-oxoguanine glycosylase (OGG1), heme oxygenase-1 (HO-1), and kelch-like ECH-associated protein 1 (KEAP1), were higher in leiomyoma and matched myometrium, particularly those from Black patients, compared to the control myometrium (with leiomyoma) (***P ≤ 0.001). LARGE SCALE DATA The datasets are available in the NCBI (The BioProject number: PRJNA859428). LIMITATIONS, REASONS FOR CAUTION Myometrium without leiomyoma derived from White patients was used as a control in the tissue microarray analysis, as myometrium without leiomyoma from Black patients was not accessible in large numbers. The RNA sequencing was performed on myometrium tissue with leiomyoma present from 10 White and 10 Black women. However, one sample from a Black woman yielded low-quality RNA-sequencing data and was excluded from further analysis. WIDER IMPLICATIONS OF THE FINDINGS Women with symptomatic leiomyomas have a considerable loss in their quality of life. This study provides information on underlying genetic and molecular defects that may be necessary for future therapeutics targeted at leiomyomas. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from NCI (R01CA254367) and NICHD (P01HD057877). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Yinuo Li
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Ross P McNally
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA
| | - Yue Feng
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - J Julie Kim
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA
| |
Collapse
|