1
|
JIANG CHUAN, LIU CHUNLEI, YAO XI, SU JINGYA, LU WEI, WEI ZHENGBO, XIE YING. CES1 is associated with cisplatin resistance and poor prognosis of head and neck squamous cell carcinoma. Oncol Res 2024; 32:1935-1948. [PMID: 39574476 PMCID: PMC11576922 DOI: 10.32604/or.2024.052244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 11/24/2024] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a prevalent form of cancer globally, with chemoresistance posing a major challenge in treatment outcomes. The efficacy of the commonly used chemotherapeutic agent, cisplatin, is diminished in patients with poor prognoses. Methods Various bioinformatics databases were utilized to examine Carboxylesterase 1 (CES1) gene expression, clinicopathologic features, patient survival analysis, and gene function. An organoid model of HNSCC was established, along with the induction of drug-resistant HNSCC in the organoid model. CES1 expression was assessed using qRT-PCR and Western Blot, and differential markers were identified through transcriptome sequencing. Knockdown and overexpression models of CES1 were created in SCC-9 and patient-derived organoid (PDO) cells using shRNA and lentivirus to investigate the tumor biology and cisplatin resistance associated with CES1. Results Research in bioinformatics has uncovered a strong correlation between the expression level of CES1 and the prognosis of HNSCC. The data suggests a significant link between CES1 expression and tobacco smoking. RNA-sequencing revealed a notable increase in CES1 expression in HNSCC-PDOcis-R cells compared to the parental PDO cells. Subsequently, we performed in vitro studies by HNSCC-PDO and SCC-9 and found that CES1-overexpressing cells exhibited reduced sensitivity to cisplatin and stronger tumor malignant biological behavior compared with CES1-knockdown cells. Conclusion The observed association between CES1 expression and tobacco smoking implies a potential influence of smoking on the efficacy of cisplatin-based chemotherapy in HNSCC through the regulation of CES1 expression.
Collapse
Affiliation(s)
- CHUAN JIANG
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry ofEducation, Nanning, 530000, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530000, China
| | - CHUNLEI LIU
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry ofEducation, Nanning, 530000, China
- Department of Head and Neck Tumor Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530000, China
| | - XI YAO
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry ofEducation, Nanning, 530000, China
- Department of Head and Neck Tumor Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530000, China
| | - JINGYA SU
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry ofEducation, Nanning, 530000, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530000, China
| | - WEI LU
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry ofEducation, Nanning, 530000, China
- Department of Head and Neck Tumor Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530000, China
| | - ZHENGBO WEI
- Department of Head and Neck Tumor Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530000, China
| | - YING XIE
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry ofEducation, Nanning, 530000, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530000, China
| |
Collapse
|
2
|
Elfiky AMI, Canñizares JL, Li J, Li Yim AYF, Verhoeven AJ, Ghiboub M, de Jonge WJ. Carboxylesterase 1 directs the metabolic profile of dendritic cells to a reduced inflammatory phenotype. J Leukoc Biol 2024; 116:1094-1108. [PMID: 38869086 DOI: 10.1093/jleuko/qiae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/17/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
The metabolic profile of dendritic cells (DCs) shapes their phenotype and functions. The carboxylesterase 1 (CES1) enzyme is highly expressed in mononuclear myeloid cells; however, its exact role in DCs is elusive. We used a CES1 inhibitor (WWL113) and genetic overexpression to explore the role of CES1 in DC differentiation in inflammatory models. CES1 expression was analyzed during CD14+ monocytes differentiation to DCs (MoDCs) using quantitative polymerase chain reaction. A CES1 inhibitor (WWL113) was applied during MoDC differentiation. Surface markers, secreted cytokines, lactic acid production, and phagocytic and T cell polarization capacity were analyzed. The transcriptomic and metabolic profiles were assessed with RNA sequencing and mass spectrometry, respectively. Cellular respiration was assessed using seahorse respirometry. Transgenic mice were used to assess the effect of CES1 overexpression in DCs in inflammatory models. CES1 expression peaked early during MoDC differentiation. Pharmacological inhibition of CES1 led to higher expression of CD209, CD86 and MHCII. WWL113 treated MoDCs secreted higher quantities of interleukin (IL)-6, IL-8, tumor necrosis factor, and IL-10 and demonstrated stronger phagocytic ability and a higher capacity to polarize T helper 17 differentiation in an autologous DC-T cell coculture model. Transcriptomic profiling revealed enrichment of multiple inflammatory and metabolic pathways. Functional metabolic analysis showed impaired maximal mitochondrial respiration capacity, increased lactate production, and decreased intracellular amino acids and tricarboxylic acid cycle intermediates. Transgenic human CES1 overexpression in murine DCs generated a less inflammatory phenotype and increased resistance to T cell-mediated colitis. In conclusion, CES1 inhibition directs DC differentiation toward a more inflammatory phenotype that shows a stronger phagocytic capacity and supports T helper 17 skewing. This is associated with a disrupted mitochondrial respiration and amino acid depletion.
Collapse
Affiliation(s)
- Ahmed M I Elfiky
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Jessica López Canñizares
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, the Netherlands
| | - Jiarong Li
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Andrew Y F Li Yim
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Emma Children's Hospital, Pediatric Surgery, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Arthur J Verhoeven
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, the Netherlands
| | - Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Emma Children's Hospital, Pediatric Surgery, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Department of Surgery, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| |
Collapse
|
3
|
Feng C, Mao W, Yuan C, Dong P, Liu Y. Nicotine-induced CHRNA5 activation modulates CES1 expression, impacting head and neck squamous cell carcinoma recurrence and metastasis via MEK/ERK pathway. Cell Death Dis 2024; 15:785. [PMID: 39472448 PMCID: PMC11522702 DOI: 10.1038/s41419-024-07178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
The mucosal epithelium of the head and neck region (including the oral cavity, nasal cavity, pharynx, nasopharynx, and larynx) is the primary site exposed to tobacco smoke, and its presence of nicotinic acetylcholine receptors (nAChRs) has been observed in the mucosal epithelial cells of this area. It remains unclear whether HNSC cells can migrate and invade through nAChR signaling. A model of HNSC cells exposed to nicotine is established. Cell proliferation following nicotine exposure is assessed using the CCK-8 assay, while migration and invasion are evaluated through wound healing and Transwell assays. The effects of CHRNA5 knockdown and overexpression are also investigated. Immunofluorescence staining is used to analyze CHRNA5 expression and localization, and clonogenic assays are performed to measure colony proliferation after CHRNA5 knockdown and overexpression. The interaction between CHRNA5 and CES1 is examined using molecular docking, co-immunoprecipitation, and immunofluorescence. Differentially expressed genes are subjected to pathway enrichment analysis, and MEK/ERK protein expression and phosphorylation are validated via western blot. Tumor formation assays are performed in nude mice using sh-CHRNA5 Cal27 cells, followed by western blot and immunohistochemical staining. Additionally, laryngeal and hypopharyngeal cancer tissues are analyzed through immunohistochemistry. Nicotine significantly enhanced the proliferation, migration, and invasion capabilities of head and neck tumor cells, including Cal27, Fadu, HN6, and Tu686 cells, through the expression of CHRNA5. Knockdown of CHRNA5 can reduce cell migration, invasion, and proliferation, whereas nicotine exposure can reverse this trend. Additionally, the mRNA and protein expression of CES1 decreases with the knockdown of CHRNA5, indicating a regulatory relationship between the two. Transcriptomics revealed that the knockdown of CHRNA5 is associated with the MEK/ERK signaling pathway. Further cellular- and tissue-level evidence confirmed that the levels of p-MEK/MEK, p-ERK/ERK, and CES1 decreased following knockdown of CHRNA5, a trend that nicotine can reverse. Nicotine promotes the proliferation, migration, and invasion of HNSC by upregulating CHRNA5 expression. Knockdown of CHRNA5 reduces these effects, which can be reversed by nicotine. Nicotine exposure activates CHRNA5, regulating CES1 expression via the MEK/ERK pathway, contributing to the recurrence and metastasis of head and neck squamous carcinoma.
Collapse
Affiliation(s)
- Chen Feng
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Otolaryngology, Head and Neck Surgery, Qilu Hospital, Shandong University Cheeloo College of Medicine, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| | - Wei Mao
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Yuan
- Department of Otorhinolaryngology, Head and Neck surgery, The First Hospital affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Pin Dong
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuying Liu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Hussain M, Basheer S, Khalil A, Haider QUA, Saeed H, Faizan M. Pharmacogenetic study of CES1 gene and enalapril efficacy. J Appl Genet 2024; 65:463-471. [PMID: 38261266 DOI: 10.1007/s13353-024-00831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Enalapril is an orally administered angiotensin-converting enzyme inhibitor which is widely prescribed to treat hypertension, chronic kidney disease, and heart failure. It is an ester prodrug that needs to be activated by carboxylesterase 1 (CES1). CES1 is a hepatic hydrolase that in vivo biotransforms enalapril to its active form enalaprilat in order to produce its desired pharmacological impact. Several single nucleotide polymorphisms in CES1 gene are reported to alter the catalytic activity of CES1 enzyme and influence enalapril metabolism. G143E, L40T, G142E, G147C, Y170D, and R171C can completely block the enalapril metabolism. Some polymorphisms like Q169P, E220G, and D269fs do not completely block the CES1 function; however, they reduce the catalytic activity of CES1 enzyme. The prevalence of these polymorphisms is not the same among all populations which necessitate to consider the genetic panel of respective population before prescribing enalapril. These genetic variations are also responsible for interindividual variability of CES1 enzyme activity which ultimately affects the pharmacokinetics and pharmacodynamics of enalapril. The current review summarizes the CES1 polymorphisms which influence the enalapril metabolism and efficacy. The structure of CES1 catalytic domain and important amino acids impacting the catalytic activity of CES1 enzyme are also discussed. This review also highlights the importance of pharmacogenomics in personalized medicine.
Collapse
Affiliation(s)
- Misbah Hussain
- Department of Biotechnology, University of Sargodha, Sagodha, Pakistan.
| | - Sehrish Basheer
- Department of Biotechnology, University of Sargodha, Sagodha, Pakistan
| | - Adila Khalil
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | - Hafsa Saeed
- Department of Biotechnology, University of Sargodha, Sagodha, Pakistan
| | - Muhammad Faizan
- Rai Medical College Sargodha, Islamabad Road, Sargodha, Pakistan
| |
Collapse
|
5
|
Li X, Pham K, Ysaguirre J, Mahmud I, Tan L, Wei B, Shao LJ, Elizondo M, Habib R, Elizondo F, Sesaki H, Lorenzi PL, Sun K. Mechanistic insights into metabolic function of dynamin-related protein 1. J Lipid Res 2024; 65:100633. [PMID: 39182608 PMCID: PMC11426057 DOI: 10.1016/j.jlr.2024.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Dynamin-related protein 1 (DRP1) plays crucial roles in mitochondrial and peroxisome fission. However, the mechanisms underlying the functional regulation of DRP1 in adipose tissue during obesity remain unclear. To elucidate the metabolic and pathological significance of diminished DRP1 in obese adipose tissue, we utilized adipose tissue-specific DRP1 KO mice challenged with a high-fat diet. We observed significant metabolic dysregulations in the KO mice. Mechanistically, DRP1 exerts multifaceted functions in mitochondrial dynamics and endoplasmic reticulum (ER)-lipid droplet crosstalk in normal mice. Loss of function of DRP1 resulted in abnormally giant mitochondrial shapes, distorted mitochondrial membrane structure, and disrupted cristae architecture. Meanwhile, DRP1 deficiency induced the retention of nascent lipid droplets in ER, leading to perturbed overall lipid dynamics in the KO mice. Collectively, dysregulation of the dynamics of mitochondria, ER, and lipid droplets contributes to whole-body metabolic disorders, as evidenced by perturbations in energy metabolites. Our findings demonstrate that DRP1 plays diverse and critical roles in regulating energy metabolism within adipose tissue during the progression of obesity.
Collapse
Affiliation(s)
- Xin Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Katherine Pham
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jazmin Ysaguirre
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bo Wei
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Long J Shao
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maryam Elizondo
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rabie Habib
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fathima Elizondo
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA; Graduate Program in Biochemistry and Cellular Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
6
|
Pan Y, Li Y, Fan H, Cui H, Chen Z, Wang Y, Jiang M, Wang G. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of hepatocellular carcinoma (HCC). Biomed Pharmacother 2024; 177:117089. [PMID: 38972148 DOI: 10.1016/j.biopha.2024.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) holds a prominent position among global cancer types. Classically, HCC manifests in individuals with a genetic predisposition when they encounter risk elements, particularly in the context of liver cirrhosis. Peroxisome proliferator-activated receptors (PPARs), which are transcription factors activated by fatty acids, belong to the nuclear hormone receptor superfamily and play a pivotal role in the regulation of energy homeostasis. At present, three distinct subtypes of PPARs have been recognized: PPARα, PPARγ, and PPARβ/δ. They regulate the transcription of genes responsible for cellular development, energy metabolism, inflammation, and differentiation. In recent years, with the rising incidence of HCC, there has been an increasing focus on the mechanisms and roles of PPARs in HCC. PPARα primarily mediates the occurrence and development of HCC by regulating glucose and lipid metabolism, inflammatory responses, and oxidative stress. PPARβ/δ is closely related to the self-renewal ability of liver cancer stem cells (LCSCs) and the formation of the tumor microenvironment. PPARγ not only influences tumor growth by regulating the glucose and lipid metabolism of HCC, but its agonists also have significant clinical significance for the treatment of HCC. Therefore, this review offers an exhaustive examination of the role of the three PPAR subtypes in HCC progression, focusing on their mediation of critical cellular processes such as glucose and lipid metabolism, inflammation, oxidative stress, and other pivotal signaling pathways. At the end of the review, we discuss the merits and drawbacks of existing PPAR-targeted therapeutic strategies and suggest a few alternative combinatorial therapeutic approaches that diverge from conventional methods.
Collapse
Affiliation(s)
- Yujie Pan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hongyu Fan
- Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246 Baojian Road, Harbin 150086, China
| | - Huijuan Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhiyue Chen
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yunzhu Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Mengyu Jiang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
7
|
Zhang H, Zhang G, Lu S, Zhang X, Yu J. Integrated analysis of ncRNA in hepatocellular carcinoma with CTNNB1 mutations reveals miR-205-5p and miR-3940-3p Axes. Dig Liver Dis 2024:S1590-8658(24)00811-9. [PMID: 38918127 DOI: 10.1016/j.dld.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Catenin beta 1 (CTNNB1) mutations are one of the most common mutations involved in hepatocellular carcinoma (HCC) progression. However, the association between CTNNB1 mutations and HCC remains controversial. METHODS Five tumor samples with wild-type CTNNB1 and three tumor samples with CTNNB1 mutations were collected from patients with HCC for whole transcriptome sequencing. Selected ncRNAs and mRNAs were validated by qPCR in 48 HCC tumors. Selected ncRNA regulatory axes were verified in HCC cells by transfecting mimics and inhibitors of miRNA. RESULTS A network of differentially expressed (DE) lncRNA/circRNA-miRNA-mRNA was constructed to explore the effects of CTNNB1 mutations on ncRNA regulation. TXNRD1, CES1, MATN2, SERPINA5, lncRNA STAT4-210, hsa_circ_0007824, hsa_circ_0008234, hsa-miR-205-5p and hsa-miR-199a-5p were verified at the RNA expression level to validate the sequencing results. The down-up-down axes GLIS3-209/circ_0085440-miR-205-5p-GHRHR and WNK2-213-miR-3940-3p-LY6E were verified at the expression level, and proved to inhibit and promote cell proliferation, respectively. CONCLUSION This study demonstrated CTNNB1 mutations associated ncRNA regulatory axes playing different roles in HCC cell proliferation, providing novel insights into the controversial role of CTNNB1 in HCC.
Collapse
Affiliation(s)
- Haibin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Guoqing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Siyu Lu
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaolu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Jingya Yu
- Department of Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
8
|
Chen S, Liu Z, Wu H, Wang B, Ouyang Y, Liu J, Zheng X, Zhang H, Li X, Feng X, Li Y, Shen Y, Zhang H, Xiao B, Yu C, Deng W. Adipocyte‑rich microenvironment promotes chemoresistance via upregulation of peroxisome proliferator‑activated receptor gamma/ABCG2 in epithelial ovarian cancer. Int J Mol Med 2024; 53:37. [PMID: 38426604 PMCID: PMC10914313 DOI: 10.3892/ijmm.2024.5361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024] Open
Abstract
The effects of adipocyte‑rich microenvironment (ARM) on chemoresistance have garnered increasing interest. Ovarian cancer (OVCA) is a representative adipocyte‑rich associated cancer. In the present study, epithelial OVCA (EOC) was used to investigate the influence of ARM on chemoresistance with the aim of identifying novel targets and developing novel strategies to reduce chemoresistance. Bioinformatics analysis was used to explore the effects of ARM‑associated mechanisms contributing to chemoresistance and treated EOC cells, primarily OVCAR3 cells, with human adipose tissue extracts (HATES) from the peritumoral adipose tissue of patients were used to mimic ARM in vitro. Specifically, the peroxisome proliferator‑activated receptor γ (PPARγ) antagonist GW9662 and the ABC transporter G family member 2 (ABCG2) inhibitor KO143, were used to determine the underlying mechanisms. Next, the effect of HATES on the expression of PPARγ and ABCG2 in OVCAR3 cells treated with cisplatin (DDP) and paclitaxel (PTX) was determined. Additionally, the association between PPARγ, ABCG2 and chemoresistance in EOC specimens was assessed. To evaluate the effect of inhibiting PPARγ, using DDP, a nude mouse model injected with OVCAR3‑shPPARγ cells and a C57BL/6 model injected with ID8 cells treated with GW9662 were established. Finally, the factors within ARM that contributed to the mechanism were determined. It was found that HATES promoted chemoresistance by increasing ABCG2 expression via PPARγ. Expression of PPARγ/ABCG2 was related to chemoresistance in EOC clinical specimens. GW9662 or knockdown of PPARγ improved the efficacy of chemotherapy in mice. Finally, angiogenin and oleic acid played key roles in HATES in the upregulation of PPARγ. The present study showed that the introduction of ARM‑educated PPARγ attenuated chemoresistance in EOC, highlighting a potentially novel therapeutic adjuvant to chemotherapy and shedding light on a means of improving the efficacy of chemotherapy from the perspective of ARM.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zixuan Liu
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Haixia Wu
- Department of Pathology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, P.R. China
| | - Bo Wang
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yuqing Ouyang
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Junru Liu
- Department of Blood Transfusion, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong 253000, P.R. China
| | - Xiaoyan Zheng
- Department of Laboratory, Shanxi Eye Hospital, Taiyuan, Shanxi 030002, P.R. China
| | - Haoke Zhang
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xueying Li
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiaofan Feng
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yan Li
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yangyang Shen
- Department of Clinical Laboratory, The Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hong Zhang
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Bo Xiao
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Chunyan Yu
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Weimin Deng
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
9
|
Zhao Y, Tan H, Zhang X, Zhu J. Roles of peroxisome proliferator-activated receptors in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18042. [PMID: 37987033 PMCID: PMC10902579 DOI: 10.1111/jcmm.18042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the main pathological type of liver cancer, is linked to risk factors such as viral hepatitis, alcohol intake and non-alcoholic fatty liver disease (NAFLD). Recent advances have greatly improved our understanding that NAFLD is playing a major risk factor for HCC. Peroxisome proliferator-activated receptors (PPARs) are a class of transcription factors divided into three subtypes: PPARα (PPARA), PPARδ/β (PPARD) and PPARγ (PPARG). As important nuclear receptors, PPARs are involved in many physiological processes, and PPARs can improve NAFLD by regulating lipid metabolism, accelerating fatty acid oxidation and inhibiting inflammation. In recent years, some studies have shown that PPARs can participate in the occurrence and development of HCC by regulating metabolic pathways. In addition, PPAR modulators have been reported to inhibit the proliferation and metastasis of HCC cells and can enhance the curative effect of conventional treatments. This article reviews the role of PPARs in the occurrence and development of HCC, as well as its value in the diagnosis, treatment and prognosis of HCC, in order to provide directions for future research.
Collapse
Affiliation(s)
- Yaqin Zhao
- Department of Abdominal Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin HospitalHubei University of MedicineShiyanHubeiChina
| | - Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General SurgeryThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Jing Zhu
- Nanjing Drum Tower HospitalNanjingChina
| |
Collapse
|
10
|
Zhang Y, Xiao B, Liu Y, Wu S, Xiang Q, Xiao Y, Zhao J, Yuan R, Xie K, Li L. Roles of PPAR activation in cancer therapeutic resistance: Implications for combination therapy and drug development. Eur J Pharmacol 2024; 964:176304. [PMID: 38142851 DOI: 10.1016/j.ejphar.2023.176304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.
Collapse
Affiliation(s)
- Yanxia Zhang
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China; Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yunduo Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yuhan Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junxiu Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Keping Xie
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
11
|
Cai X, Li Y, Zheng J, Liu L, Jiao Z, Lin J, Jiang S, Lin X, Sun Y. Modeling of senescence-related chemoresistance in ovarian cancer using data analysis and patient-derived organoids. Front Oncol 2024; 13:1291559. [PMID: 38370348 PMCID: PMC10869451 DOI: 10.3389/fonc.2023.1291559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/26/2023] [Indexed: 02/20/2024] Open
Abstract
Background Ovarian cancer (OC) is a malignant tumor associated with poor prognosis owing to its susceptibility to chemoresistance. Cellular senescence, an irreversible biological state, is intricately linked to chemoresistance in cancer treatment. We developed a senescence-related gene signature for prognostic prediction and evaluated personalized treatment in patients with OC. Methods We acquired the clinical and RNA-seq data of OC patients from The Cancer Genome Atlas and identified a senescence-related prognostic gene set through differential and cox regression analysis in distinct chemotherapy response groups. A prognostic senescence-related signature was developed and validated by OC patient-derived-organoids (PDOs). We leveraged gene set enrichment analysis (GSEA) and ESTIMATE to unravel the potential functions and immune landscape of the model. Moreover, we explored the correlation between risk scores and potential chemotherapeutic agents. After confirming the congruence between organoids and tumor tissues through immunohistochemistry, we measured the IC50 of cisplatin in PDOs using the ATP activity assay, categorized by resistance and sensitivity to the drug. We also investigated the expression patterns of model genes across different groups. Results We got 2740 differentially expressed genes between two chemotherapy response groups including 43 senescence-related genes. Model prognostic genes were yielded through univariate cox analysis, and multifactorial cox analysis. Our work culminated in a senescence-related prognostic model based on the expression of SGK1 and VEGFA. Simultaneously, we successfully constructed and propagated three OC PDOs for drug screening. PCR and WB from PDOs affirmed consistent expression trends as those of our model genes derived from comprehensive data analysis. Specifically, SGK1 exhibited heightened expression in cisplatin-resistant OC organoids, while VEGFA manifested elevated expression in the sensitive group (P<0.05). Intriguingly, GSEA results unveiled the enrichment of model genes in the PPAR signaling pathway, pivotal regulator in chemoresistance and tumorigenesis. This revelation prompted the identification of potential beneficial drugs for patients with a high-risk score, including gemcitabine, dabrafenib, epirubicin, oxaliplatin, olaparib, teniposide, ribociclib, topotecan, venetoclax. Conclusion Through the formulation of a senescence-related signature comprising SGK1 and VEGFA, we established a promising tool for prognosticating chemotherapy reactions, predicting outcomes, and steering therapeutic strategies. Patients with high VEGFA and low SGK1 expression levels exhibit heightened sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Xintong Cai
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yanhong Li
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Jianfeng Zheng
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Li Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Zicong Jiao
- Department of Translational Medicine, Scientific Research System, Geneplus -Beijing Institute, Beijing, China
| | - Jie Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Shan Jiang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Xuefen Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, Liu B, Zhang Y, Gao X, Wang Y, Zhou H. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin Nutr 2024; 43:332-345. [PMID: 38142478 DOI: 10.1016/j.clnu.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Lipids represent the essential components of membranes, serve as fuels for high-energy processes, and play crucial roles in signaling and cellular function. One of the key hallmarks of cancer is the reprogramming of metabolic pathways, especially abnormal lipid metabolism. Alterations in lipid uptake, lipid desaturation, de novo lipogenesis, lipid droplets, and fatty acid oxidation in cancer cells all contribute to cell survival in a changing microenvironment by regulating feedforward oncogenic signals, key oncogenic functions, oxidative and other stresses, immune responses, or intercellular communication. Peroxisome proliferator-activated receptors (PPARs) are transcription factors activated by fatty acids and act as core lipid sensors involved in the regulation of lipid homeostasis and cell fate. In addition to regulating whole-body energy homeostasis in physiological states, PPARs play a key role in lipid metabolism in cancer, which is receiving increasing research attention, especially the fundamental molecular mechanisms and cancer therapies targeting PPARs. In this review, we discuss how cancer cells alter metabolic patterns and regulate lipid metabolism to promote their own survival and progression through PPARs. Finally, we discuss potential therapeutic strategies for targeting PPARs in cancer based on recent studies from the last five years.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yujie Pan
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
13
|
de Miguel FJ, Gentile C, Feng WW, Silva SJ, Sankar A, Exposito F, Cai WL, Melnick MA, Robles-Oteiza C, Hinkley MM, Tsai JA, Hartley AV, Wei J, Wurtz A, Li F, Toki MI, Rimm DL, Homer R, Wilen CB, Xiao AZ, Qi J, Yan Q, Nguyen DX, Jänne PA, Kadoch C, Politi KA. Mammalian SWI/SNF chromatin remodeling complexes promote tyrosine kinase inhibitor resistance in EGFR-mutant lung cancer. Cancer Cell 2023; 41:1516-1534.e9. [PMID: 37541244 PMCID: PMC10957226 DOI: 10.1016/j.ccell.2023.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023]
Abstract
Acquired resistance to tyrosine kinase inhibitors (TKI), such as osimertinib used to treat EGFR-mutant lung adenocarcinomas, limits long-term efficacy and is frequently caused by non-genetic mechanisms. Here, we define the chromatin accessibility and gene regulatory signatures of osimertinib sensitive and resistant EGFR-mutant cell and patient-derived models and uncover a role for mammalian SWI/SNF chromatin remodeling complexes in TKI resistance. By profiling mSWI/SNF genome-wide localization, we identify both shared and cancer cell line-specific gene targets underlying the resistant state. Importantly, genetic and pharmacologic disruption of the SMARCA4/SMARCA2 mSWI/SNF ATPases re-sensitizes a subset of resistant models to osimertinib via inhibition of mSWI/SNF-mediated regulation of cellular programs governing cell proliferation, epithelial-to-mesenchymal transition, epithelial cell differentiation, and NRF2 signaling. These data highlight the role of mSWI/SNF complexes in supporting TKI resistance and suggest potential utility of mSWI/SNF inhibitors in TKI-resistant lung cancers.
Collapse
Affiliation(s)
| | - Claudia Gentile
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William W Feng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Shannon J Silva
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Akshay Sankar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Wesley L Cai
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | | | - Camila Robles-Oteiza
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Madeline M Hinkley
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeanelle A Tsai
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Antja-Voy Hartley
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jin Wei
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Department of Laboratory Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Anna Wurtz
- Yale Cancer Center, New Haven, CT 06520, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, Laboratory of Epidemiology and Public Health, 60 College St, New Haven, CT 06510, USA
| | - Maria I Toki
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - David L Rimm
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Department of Medicine (Section of Medical Oncology), Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Robert Homer
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Department of Laboratory Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Andrew Z Xiao
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Qin Yan
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Don X Nguyen
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Department of Medicine (Section of Medical Oncology), Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Katerina A Politi
- Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Department of Medicine (Section of Medical Oncology), Yale School of Medicine, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|