1
|
Schuijs MJ, Brenis Gomez CM, Bick F, Van Moorleghem J, Vanheerswynghels M, van Loo G, Beyaert R, Voehringer D, Locksley RM, Hammad H, Lambrecht BN. Interleukin-33-activated basophils promote asthma by regulating Th2 cell entry into lung tissue. J Exp Med 2024; 221:e20240103. [PMID: 39297875 PMCID: PMC11413418 DOI: 10.1084/jem.20240103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Asthma is characterized by lung eosinophilia, remodeling, and mucus plugging, controlled by adaptive Th2 effector cells secreting IL-4, IL-5, and IL-13. Inhaled house dust mite (HDM) causes the release of barrier epithelial cytokines that activate various innate immune cells like DCs and basophils that can promote Th2 adaptive immunity directly or indirectly. Here, we show that basophils play a crucial role in the development of type 2 immunity and eosinophilic inflammation, mucus production, and bronchial hyperreactivity in response to HDM inhalation in C57Bl/6 mice. Interestingly, conditional depletion of basophils during sensitization did not reduce Th2 priming or asthma inception, whereas depletion during allergen challenge did. During the challenge of sensitized mice, basophil-intrinsic IL-33/ST2 signaling, and not FcεRI engagement, promoted basophil IL-4 production and subsequent Th2 cell recruitment to the lungs via vascular integrin expression. Basophil-intrinsic loss of the ubiquitin modifying molecule Tnfaip3, involved in dampening IL-33 signaling, enhanced key asthma features. Thus, IL-33-activated basophils are gatekeepers that boost allergic airway inflammation by controlling Th2 tissue entry.
Collapse
Affiliation(s)
- Martijn J. Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Claudia M. Brenis Gomez
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Fabian Bick
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- Laboratory of Molecular and Cellular Pathophysiology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Erlangen, Germany
| | - Richard M. Locksley
- UCSF Department of Medicine and Howard Hugues Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, Rotterdam, Netherlands
| |
Collapse
|
2
|
Jiang Y, Wang Y, Guo J, Wang Z, Wang X, Yao X, Yang H, Zou Y. Exploring potential therapeutic targets for asthma: a proteome-wide Mendelian randomization analysis. J Transl Med 2024; 22:978. [PMID: 39472987 PMCID: PMC11520847 DOI: 10.1186/s12967-024-05782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Asthma poses a significant global health challenge, characterized by high rates of morbidity and mortality. Despite available treatments, many severe asthma patients remain poorly managed, highlighting the need for novel therapeutic strategies. This study aims to identify potential drug targets for asthma by examining the influence of circulating plasma proteins on asthma risk. METHODS This study employs summary-data-based Mendelian randomization (MR) and two-sample MR methods to investigate the association between 2940 plasma proteins from the UK Biobank study and asthma. The analysis includes discovery (FinnGen cohort) and replication (GERA cohort) phases, with Bayesian colocalization used to validate the relationships between proteins and asthma. Furthermore, protein-protein interaction and druggability assessments were conducted on high-evidence strength protein biomarkers, and candidate drug prediction and molecular docking were performed for proteins without targeted drugs. Given the complexity of asthma pathogenesis, the study also explores the relationships between plasma proteins and asthma-related endpoints (e.g., obesity-related asthma, infection-related asthma, childhood asthma) to identify potential therapeutic targets for different subtypes. RESULTS In the discovery cohort, 75 plasma proteins were associated with asthma, including IL1RAP, IL1RL1, IL6, CXCL5, and CXCL8. Additionally, 6 proteins (IL4R, LTB, CASP8, MAX, PCDH12, and SCLY) were validated through co-localization analysis and validation cohort. The assessment of drug targetability revealed potential drug targets for IL4R, CASP8, and SCLY, while candidate drugs were predicted for LTB and MAX proteins. MAX exhibited strong binding affinity with multiple small molecules indicating a highly stable interaction and significant druggability potential. Analysis of the 75 proteins with 9 asthma-related endpoints highlighted promising targets such as DOK2, ITGAM, CA1, BTN2A1, and GZMB. CONCLUSION These findings elucidate the link between asthma, its related endpoints, and plasma proteins, advancing our understanding of molecular pathogenesis and treatment strategies. The discovery of potential therapeutic targets offers new insights into asthma drug target research.
Collapse
Affiliation(s)
- Yuhan Jiang
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Yifan Wang
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Ju Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zixuan Wang
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China
| | - Xuelin Wang
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Xueming Yao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hongxi Yang
- Department of Bioinformatics, School of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China.
| | - Yingxue Zou
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China.
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China.
| |
Collapse
|
3
|
Kelchtermans J, March ME, Hakonarson H, McGrath-Morrow SA. Phenotype wide association study links bronchopulmonary dysplasia with eosinophilia in children. Sci Rep 2024; 14:21391. [PMID: 39271728 PMCID: PMC11399246 DOI: 10.1038/s41598-024-72348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth. Despite this, genetic drivers of BPD are poorly understood. The objective of this study is to better understand the impact of single nucleotide polymorphisms (SNPs) previously associated with BPD by examining associations with other phenotypes. We drew pediatric subjects from the biorepository at the Center for Applied Genomics to identify associations between these SNPs and 2,146 imputed phenotypes. Methylation data, external cohorts, and in silico validation methods were used to corroborate significant associations. We identified 60 SNPs that were previously associated with BPD. We found a significant association between rs3771150 and rs3771171 and mean eosinophil percentage in a European cohort of 6,999 patients and replicated this in external cohorts. Both SNPs were also associated with asthma, COPD and FEV1/FVC ratio. These SNPs displayed associations with methylation probes and were functionally linked to ST2 (IL1RL1) levels in blood and lung tissue. Our findings support a genetic justification for the epidemiological link between BPD and asthma. Given the well-established link between ST2 and type 2 inflammation in asthma, these findings provide a rationale for future studies exploring the role of type 2 inflammation in the pathogenesis of BPD.
Collapse
Affiliation(s)
- Jelte Kelchtermans
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.
| | - Michael E March
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA
| | - Sharon A McGrath-Morrow
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Alhallak K, Nagai J, Zaleski K, Marshall S, Salloum T, Derakhshan T, Hayashi H, Feng C, Kratchmarov R, Lai J, Kuchibhotla V, Nishida A, Balestrieri B, Laidlaw T, Dwyer DF, Boyce JA. Mast cells control lung type 2 inflammation via prostaglandin E 2-driven soluble ST2. Immunity 2024; 57:1274-1288.e6. [PMID: 38821053 PMCID: PMC11168874 DOI: 10.1016/j.immuni.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/26/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Severe asthma and sinus disease are consequences of type 2 inflammation (T2I), mediated by interleukin (IL)-33 signaling through its membrane-bound receptor, ST2. Soluble (s)ST2 reduces available IL-33 and limits T2I, but little is known about its regulation. We demonstrate that prostaglandin E2 (PGE2) drives production of sST2 to limit features of lung T2I. PGE2-deficient mice display diminished sST2. In humans with severe respiratory T2I, urinary PGE2 metabolites correlate with serum sST2. In mice, PGE2 enhanced sST2 secretion by mast cells (MCs). Mice lacking MCs, ST2 expression by MCs, or E prostanoid (EP)2 receptors by MCs showed reduced sST2 lung concentrations and strong T2I. Recombinant sST2 reduced T2I in mice lacking PGE2 or ST2 expression by MCs back to control levels. PGE2 deficiency also reversed the hyperinflammatory phenotype in mice lacking ST2 expression by MCs. PGE2 thus suppresses T2I through MC-derived sST2, explaining the severe T2I observed in low PGE2 states.
Collapse
Affiliation(s)
- Kinan Alhallak
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jun Nagai
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kendall Zaleski
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sofia Marshall
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tamara Salloum
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tahereh Derakhshan
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Hiroaki Hayashi
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Chunli Feng
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Radomir Kratchmarov
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Juying Lai
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Virinchi Kuchibhotla
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Airi Nishida
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Barbara Balestrieri
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tanya Laidlaw
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel F Dwyer
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Joshua A Boyce
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Röwekamp I, Maschirow L, Rabes A, Fiocca Vernengo F, Hamann L, Heinz GA, Mashreghi MF, Caesar S, Milek M, Fagundes Fonseca AC, Wienhold SM, Nouailles G, Yao L, Mousavi S, Bruder D, Boehme JD, Puzianowska-Kuznicka M, Beule D, Witzenrath M, Löhning M, Klose CSN, Heimesaat MM, Diefenbach A, Opitz B. IL-33 controls IL-22-dependent antibacterial defense by modulating the microbiota. Proc Natl Acad Sci U S A 2024; 121:e2310864121. [PMID: 38781213 PMCID: PMC11145264 DOI: 10.1073/pnas.2310864121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
IL-22 plays a critical role in defending against mucosal infections, but how IL-22 production is regulated is incompletely understood. Here, we show that mice lacking IL-33 or its receptor ST2 (IL-1RL1) were more resistant to Streptococcus pneumoniae lung infection than wild-type animals and that single-nucleotide polymorphisms in IL33 and IL1RL1 were associated with pneumococcal pneumonia in humans. The effect of IL-33 on S. pneumoniae infection was mediated by negative regulation of IL-22 production in innate lymphoid cells (ILCs) but independent of ILC2s as well as IL-4 and IL-13 signaling. Moreover, IL-33's influence on IL-22-dependent antibacterial defense was dependent on housing conditions of the mice and mediated by IL-33's modulatory effect on the gut microbiota. Collectively, we provide insight into the bidirectional crosstalk between the innate immune system and the microbiota. We conclude that both genetic and environmental factors influence the gut microbiota, thereby impacting the efficacy of antibacterial immune defense and susceptibility to pneumonia.
Collapse
Affiliation(s)
- Ivo Röwekamp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Laura Maschirow
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Anne Rabes
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Facundo Fiocca Vernengo
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Lutz Hamann
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Gitta Anne Heinz
- German Rheumatism Research Center, a Leibniz Institute, Berlin10117, Germany
| | | | - Sandra Caesar
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Miha Milek
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin10117, Germany
| | - Anna Carolina Fagundes Fonseca
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Sandra-Maria Wienhold
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Ling Yao
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg39120, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig38124, Germany
| | - Julia D. Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg39120, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig38124, Germany
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw02-106, Poland
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw01-813, Poland
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin10117, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
- German center for lung research (DZL), Berlin13353, Germany
| | | | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, a Leibniz Institute, Berlin10117, Germany
| | - Christoph S. N. Klose
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Andreas Diefenbach
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Bastian Opitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
- German center for lung research (DZL), Berlin13353, Germany
| |
Collapse
|
6
|
He PY, Wu MY, Zheng LY, Duan Y, Fan Q, Zhu XM, Yao YM. Interleukin-33/serum stimulation-2 pathway: Regulatory mechanisms and emerging implications in immune and inflammatory diseases. Cytokine Growth Factor Rev 2024; 76:112-126. [PMID: 38155038 DOI: 10.1016/j.cytogfr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Interleukin (IL)- 33, a nuclear factor and pleiotropic cytokine of the IL-1 family, is gaining attention owing to its important role in chronic inflammatory and autoimmune diseases. This review extends our knowledge of the effects exerted by IL-33 on target cells by binding to its specific receptor serum stimulation-2 (ST2). Depending on the tissue context, IL-33 performs multiple functions encompassing host defence, immune response, initiation and amplification of inflammation, tissue repair, and homeostasis. The levels and activity of IL-33 in the body are controlled by complex IL-33-targeting regulatory pathways. The unique temporal and spatial expression patterns of IL-33 are associated with host homeostasis and the development of immune and inflammatory disorders. Therefore, understanding the origin, function, and processes of IL-33 under various conditions is crucial. This review summarises the regulatory mechanisms underlying the IL-33/ST2 signalling axis and its potential role and clinical significance in immune and inflammatory diseases, and discusses the current complex and conflicting findings related to IL-33 in host responses.
Collapse
Affiliation(s)
- Peng-Yi He
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Meng-Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Duan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Emergency Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiao-Mei Zhu
- Tissue Repair and Regeneration Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Saikumar Jayalatha AK, Jonker MR, Carpaij OA, van den Berge M, Affleck KX, Koppelman GH, Nawijn MC. Lack of a transcriptional response of primary bronchial epithelial cells from patients with asthma and controls to IL-33. Am J Physiol Lung Cell Mol Physiol 2024; 326:L65-L70. [PMID: 38050688 DOI: 10.1152/ajplung.00298.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
IL-33 and IL-1RL1 are well-replicated asthma genes that act in a single pathway toward type-2 immune responses. IL-33 is expressed by basal epithelial cells, and the release of IL-33 upon epithelial damage can activate innate lymphoid cells, T helper-2 cells, basophilic granulocytes, and mast cells through a receptor complex containing IL-1RL1. However, it is unknown how bronchial epithelial cells respond to IL-33, and whether this response is increased in the disease. We aimed to characterize the IL-33-driven transcriptomic changes in cultured primary bronchial epithelial cells from patients with asthma and healthy controls. Primary bronchial epithelial cells (PBECs) were obtained by bronchial brushing from six healthy control for air-liquid interface (ALI) cultures, whereas we selected eight healthy controls and seven patients with asthma for epithelial organoid cultures. We then stimulated the cultures for 24 h with recombinant IL-33 (rhIL33) at various concentrations with 1, 10, and 50 ng/mL for the ALI cultures and 20 ng/mL and 100 ng/mL for the organoid cultures, followed by RNA-sequencing and differential gene expression analysis. We did not detect any genome-wide significant differentially expressed genes after stimulation of PBECs with IL-33, irrespective of growth in three-dimensional (3-D) epithelial organoids or after differentiation in ALI cultures. These results were identical between PBECs obtained from patients with asthma or from healthy control subjects. We detected very low levels of IL-1RL1 gene expression in these airway epithelial cell cultures. We conclude that bronchial epithelial cells do not have a transcriptional response to IL-33, independent of their differentiation state. Hence, the airway epithelium acts as a source of IL-33 but does not seem to contribute to the response upon release of the alarmin after epithelial damage.NEW & NOTEWORTHY The IL-33/IL-1RL1 pathway stands as a formidable genetic predisposition for asthma, with ongoing clinical developments of various drugs designed to mitigate its influence in patients with asthma. The absence of a transcriptomic reaction to IL-33 within the bronchial epithelium holds significance in the pursuit of identifying biomarkers that can aid in pinpointing those individuals who would derive the greatest benefit from therapies targeting the IL-33 pathway.
Collapse
Affiliation(s)
- Akshaya Keerthi Saikumar Jayalatha
- Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marnix R Jonker
- Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Orestes A Carpaij
- Department of Pulmonary Diseases, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonary Diseases, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karen X Affleck
- Immunology Research Unit, GlaxoSmithkline, Stevenage, United Kingdom
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn C Nawijn
- Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Faiz A, Mahbub RM, Boedijono FS, Tomassen MI, Kooistra W, Timens W, Nawijn M, Hansbro PM, Johansen MD, Pouwels SD, Heijink IH, Massip F, de Biase MS, Schwarz RF, Adcock IM, Chung KF, van der Does A, Hiemstra PS, Goulaouic H, Xing H, Abdulai R, de Rinaldis E, Cunoosamy D, Harel S, Lederer D, Nivens MC, Wark PA, Kerstjens HAM, Hylkema MN, Brandsma CA, van den Berge M. IL-33 Expression Is Lower in Current Smokers at both Transcriptomic and Protein Levels. Am J Respir Crit Care Med 2023; 208:1075-1087. [PMID: 37708400 PMCID: PMC10867944 DOI: 10.1164/rccm.202210-1881oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 09/14/2023] [Indexed: 09/16/2023] Open
Abstract
Rationale: IL-33 is a proinflammatory cytokine thought to play a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). A recent clinical trial using an anti-IL-33 antibody showed a reduction in exacerbation and improved lung function in ex-smokers but not current smokers with COPD. Objectives: This study aimed to understand the effects of smoking status on IL-33. Methods: We investigated the association of smoking status with the level of gene expression of IL-33 in the airways in eight independent transcriptomic studies of lung airways. Additionally, we performed Western blot analysis and immunohistochemistry for IL-33 in lung tissue to assess protein levels. Measurements and Main Results: Across the bulk RNA-sequencing datasets, IL-33 gene expression and its signaling pathway were significantly lower in current versus former or never-smokers and increased upon smoking cessation (P < 0.05). Single-cell sequencing showed that IL-33 is predominantly expressed in resting basal epithelial cells and decreases during the differentiation process triggered by smoke exposure. We also found a higher transitioning of this cellular subpopulation into a more differentiated cell type during chronic smoking, potentially driving the reduction of IL-33. Protein analysis demonstrated lower IL-33 levels in lung tissue from current versus former smokers with COPD and a lower proportion of IL-33-positive basal cells in current versus ex-smoking controls. Conclusions: We provide strong evidence that cigarette smoke leads to an overall reduction in IL-33 expression in transcriptomic and protein level, and this may be due to the decrease in resting basal cells. Together, these findings may explain the clinical observation that a recent antibody-based anti-IL-33 treatment is more effective in former than current smokers with COPD.
Collapse
Affiliation(s)
- Alen Faiz
- Respiratory Bioinformatics and Molecular Biology, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Groningen Research Institute for Asthma and COPD
- Department of Pulmonary Diseases, and
| | - Rashad M. Mahbub
- Respiratory Bioinformatics and Molecular Biology, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Fia Sabrina Boedijono
- Respiratory Bioinformatics and Molecular Biology, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
| | - Milan I. Tomassen
- Groningen Research Institute for Asthma and COPD
- Department of Pathology & Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Wierd Kooistra
- Groningen Research Institute for Asthma and COPD
- Department of Pathology & Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Wim Timens
- Groningen Research Institute for Asthma and COPD
- Department of Pathology & Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn Nawijn
- Groningen Research Institute for Asthma and COPD
- Department of Pathology & Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
| | - Simon D. Pouwels
- Groningen Research Institute for Asthma and COPD
- Department of Pulmonary Diseases, and
| | - Irene H. Heijink
- Groningen Research Institute for Asthma and COPD
- Department of Pulmonary Diseases, and
- Department of Pathology & Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Florian Massip
- Centre for Computational Biology, Mines ParisTech, Paris Sciences et Lettres Research University, Paris, France
- Cancer and Genome: Bioinformatics, Biostatistics and Epidemiology of Complex Systems Institut Curie, Paris, France
- Institut Nationale de la Santé et de la Recherche Médicale U900, Paris, France
| | - Maria Stella de Biase
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Roland F. Schwarz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Computational Cancer Biology, Center for Integrated Oncology, Cancer Research Center Cologne Essen, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
- Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Ian M. Adcock
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Kian F. Chung
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Anne van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | - Sivan Harel
- Regeneron Pharmaceuticals, Tarrytown, New York
| | | | | | - Peter A. Wark
- Centre for Asthma & Respiratory Disease, The University of Newcastle, Newcastle, New South Wales, Australia; and
- Hunter Medical Research Institute, Vaccines, Infection, Viruses & Asthma Newcastle, New South Wales, Australia
| | - Huib A. M. Kerstjens
- Groningen Research Institute for Asthma and COPD
- Department of Pulmonary Diseases, and
| | - Machteld N. Hylkema
- Groningen Research Institute for Asthma and COPD
- Department of Pathology & Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- Groningen Research Institute for Asthma and COPD
- Department of Pathology & Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD
- Department of Pulmonary Diseases, and
| | - the Cambridge Lung Cancer Early Detection Programme
- Respiratory Bioinformatics and Molecular Biology, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Groningen Research Institute for Asthma and COPD
- Department of Pulmonary Diseases, and
- Department of Pathology & Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
- Centre for Computational Biology, Mines ParisTech, Paris Sciences et Lettres Research University, Paris, France
- Cancer and Genome: Bioinformatics, Biostatistics and Epidemiology of Complex Systems Institut Curie, Paris, France
- Institut Nationale de la Santé et de la Recherche Médicale U900, Paris, France
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Computational Cancer Biology, Center for Integrated Oncology, Cancer Research Center Cologne Essen, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
- Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
- Sanofi, Chilly-Mazarin, France
- Sanofi, Cambridge, Massachusetts
- Regeneron Pharmaceuticals, Tarrytown, New York
- Centre for Asthma & Respiratory Disease, The University of Newcastle, Newcastle, New South Wales, Australia; and
- Hunter Medical Research Institute, Vaccines, Infection, Viruses & Asthma Newcastle, New South Wales, Australia
| |
Collapse
|
9
|
Phelan KJ, Dill-McFarland KA, Kothari A, Segnitz RM, Burkle J, Grashel B, Jenkins S, Spagna D, Martin LJ, Haslam DB, Biagini JM, Kalra M, McCoy KS, Ross KR, Jackson DJ, Mersha TB, Altman MC, Khurana Hershey GK. Airway transcriptome networks identify susceptibility to frequent asthma exacerbations in children. J Allergy Clin Immunol 2023; 152:73-83. [PMID: 36918038 PMCID: PMC10395049 DOI: 10.1016/j.jaci.2023.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Frequent asthma exacerbators, defined as those experiencing more than 1 hospitalization in a year for an asthma exacerbation, represent an important subgroup of individuals with asthma. However, this group remains poorly defined and understudied in children. OBJECTIVE Our aim was to determine the molecular mechanisms underlying asthma pathogenesis and exacerbation frequency. METHODS We performed RNA sequencing of upper airway cells from both frequent and nonfrequent exacerbators enrolled in the Ohio Pediatric Asthma Repository. RESULTS Through molecular network analysis, we found that nonfrequent exacerbators display an increase in modules enriched for immune system processes, including type 2 inflammation and response to infection. In contrast, frequent exacerbators showed expression of modules enriched for nervous system processes, such as synaptic formation and axonal outgrowth. CONCLUSION These data suggest that the upper airway of frequent exacerbators undergoes peripheral nervous system remodeling, representing a novel mechanism underlying pediatric asthma exacerbation.
Collapse
Affiliation(s)
- Kieran J Phelan
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Arjun Kothari
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - R Max Segnitz
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Wash
| | - Jeff Burkle
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Brittany Grashel
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Seth Jenkins
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Daniel Spagna
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David B Haslam
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jocelyn M Biagini
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Maninder Kalra
- Department of Pediatrics, Dayton Children's Hospital, Dayton, Ohio
| | - Karen S McCoy
- Division of Pediatric Pulmonology, Nationwide Children's Hospital, Columbus; Ohio
| | - Kristie R Ross
- Department of Pediatrics-Pulmonary, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Tesfaye B Mersha
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Matthew C Altman
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Wash; Systems Immunology Program, Benaroya Research Institute, Seattle, Wash
| | - Gurjit K Khurana Hershey
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
10
|
Murphy RC, Lai Y, Liu M, Al-Shaikhly T, Altman MC, Altemeier WA, Frevert CW, Debley JS, Piliponsky AM, Ziegler SF, Gharib SA, Hallstrand TS. Distinct Epithelial-Innate Immune Cell Transcriptional Circuits Underlie Airway Hyperresponsiveness in Asthma. Am J Respir Crit Care Med 2023; 207:1565-1575. [PMID: 37212596 PMCID: PMC10273121 DOI: 10.1164/rccm.202209-1707oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/02/2023] [Indexed: 05/23/2023] Open
Abstract
Rationale: Indirect airway hyperresponsiveness (AHR) is a highly specific feature of asthma, but the underlying mechanisms responsible for driving indirect AHR remain incompletely understood. Objectives: To identify differences in gene expression in epithelial brushings obtained from individuals with asthma who were characterized for indirect AHR in the form of exercise-induced bronchoconstriction (EIB). Methods: RNA-sequencing analysis was performed on epithelial brushings obtained from individuals with asthma with EIB (n = 11) and without EIB (n = 9). Differentially expressed genes (DEGs) between the groups were correlated with measures of airway physiology, sputum inflammatory markers, and airway wall immunopathology. On the basis of these relationships, we examined the effects of primary airway epithelial cells (AECs) and specific epithelial cell-derived cytokines on both mast cells (MCs) and eosinophils (EOS). Measurements and Main Results: We identified 120 DEGs in individuals with and without EIB. Network analyses suggested critical roles for IL-33-, IL-18-, and IFN-γ-related signaling among these DEGs. IL1RL1 expression was positively correlated with the density of MCs in the epithelial compartment, and IL1RL1, IL18R1, and IFNG were positively correlated with the density of intraepithelial EOS. Subsequent ex vivo modeling demonstrated that AECs promote sustained type 2 (T2) inflammation in MCs and enhance IL-33-induced T2 gene expression. Furthermore, EOS increase the expression of IFNG and IL13 in response to both IL-18 and IL-33 as well as exposure to AECs. Conclusions: Circuits involving epithelial interactions with MCs and EOS are closely associated with indirect AHR. Ex vivo modeling indicates that epithelial-dependent regulation of these innate cells may be critical in indirect AHR and modulating T2 and non-T2 inflammation in asthma.
Collapse
Affiliation(s)
- Ryan C. Murphy
- Division of Pulmonary, Critical Care and Sleep
- Center for Lung Biology
| | - Ying Lai
- Division of Pulmonary, Critical Care and Sleep
- Center for Lung Biology
| | - Matthew Liu
- Division of Pulmonary, Critical Care and Sleep
- Center for Lung Biology
| | - Taha Al-Shaikhly
- Division of Allergy and Infectious Diseases, Department of Medicine
- Center for Lung Biology
| | - Matthew C. Altman
- Division of Allergy and Infectious Diseases, Department of Medicine
- Immunology Program, Benaroya Research Institute, Seattle, Washington
| | | | | | - Jason S. Debley
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, Washington
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Adrian M. Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Steven F. Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, Washington
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care and Sleep
- Center for Lung Biology
| | | |
Collapse
|
11
|
Jeon Y, Kang TK, Lee WB, Jung SH, Kim YJ. Gene Signatures and Associated Transcription Factors of Allergic Rhinitis: KLF4 Expression Is Associated with Immune Response. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1317998. [PMID: 37206297 PMCID: PMC10191743 DOI: 10.1155/2023/1317998] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/21/2023]
Abstract
This study is aimed at investigating the potential molecular features of allergic rhinitis (AR) and identifying gene signatures and related transcription factors using transcriptome analysis and in silico datasets. Transcriptome profiles were obtained using three independent cohorts (GSE101720, GSE19190, and GSE46171) comprising healthy controls (HC) and patients with AR. The pooled dataset (n = 82) was used to identify the critical signatures of AR compared with HC. Subsequently, key transcription factors were identified by a combined analysis using transcriptome and in silico datasets. Gene ontology: bioprocess (GO: BP) analysis using differentially expressed genes (DEGs) revealed that immune response-related genes were significantly enriched in AR compared with HC. Among them, IL1RL1, CD274, and CD44 were significantly higher in AR patients. We also identified key transcription factors between HC and AR using the in silico dataset and found that AR samples frequently express KLF transcription factor 4 (KLF4), which regulates immune response-related genes including IL1RL1, CD274, and CD44 in human nasal epithelial cells. Our integrative analysis of transcriptomic regulation provides new insights into AR, which may help in developing precision management for patients with AR.
Collapse
Affiliation(s)
- Youngsic Jeon
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Tae Kyeom Kang
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Wook-Bin Lee
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Sang Hoon Jung
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Gangneung, Republic of Korea
| | - Young-Joo Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| |
Collapse
|
12
|
Rojo-Tolosa S, Sánchez-Martínez JA, Pineda-Lancheros LE, Gálvez-Navas JM, González-Gutiérrez MV, Jiménez-Gálvez G, Pérez-Ramírez C, Morales-García C, Jiménez-Morales A. Influence of Genetics on the Response to Omalizumab in Patients with Severe Uncontrolled Asthma with an Allergic Phenotype. Int J Mol Sci 2023; 24:7029. [PMID: 37108192 PMCID: PMC10139019 DOI: 10.3390/ijms24087029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Omalizumab is a monoclonal antibody indicated for the treatment of severe uncontrolled asthma with an allergic phenotype. Its effectiveness could be influenced by clinical variables and single nucleotide polymorphisms (SNPs) in one or more of the genes involved in the mechanism of action and process of response to omalizumab, and these could be used as predictive biomarkers of response. We conducted an observational retrospective cohort study that included patients with severe uncontrolled allergic asthma treated with omalizumab in a tertiary hospital. Satisfactory response after 12 months of treatment was defined as (1) Reduction ≥ 50% of exacerbations or no exacerbations, (2) Improvement of lung function ≥ 10% FEV1, and (3) Reduction ≥ 50% of OCS courses or no OCS. Polymorphisms in the FCER1A (rs2251746, rs2427837), FCER1B (rs1441586, rs573790, rs1054485, rs569108), C3 (rs2230199), FCGR2A (rs1801274), FCGR2B (rs3219018, rs1050501), FCGR3A (rs10127939, rs396991), IL1RL1 (rs1420101, rs17026974, rs1921622), and GATA2 (rs4857855) genes were analyzed by real-time polymerase chain reaction (PCR) using TaqMan probes. A total of 110 patients under treatment with omalizumab were recruited. After 12 months of treatment, the variables associated with a reduction in exacerbations were the absence of polyposis (odds ratio [OR] = 4.22; 95% confidence interval [CI] = 0.95-19.63), IL1RL1 rs17026974-AG (OR = 19.07; 95% CI = 1.27-547), and IL1RL1 rs17026974-GG (OR = 16.76; 95% CI = 1.22-438.76). Reduction in oral corticosteroids (OCS) was associated with age of starting omalizumab treatment (OR = 0.95; 95% CI = 0.91-0.99) and blood eosinophil levels > 300 cells/µL (OR = 2.93; 95% CI = 1.01-9.29). Improved lung function showed a relationship to the absence of chronic obstructive pulmonary disease (COPD) (OR = 12.16; 95% CI = 2.45-79.49), FCGR2B rs3219018-C (OR = 8.6; 95% CI = 1.12-117.15), GATA2 rs4857855-T (OR = 15.98; 95% CI = 1.52-519.57) and FCGR2A rs1801274-G (OR = 13.75; 95% CI = 2.14-142.68; AG vs. AA and OR = 7.46; 95% CI = 0.94-89.12; GG vs. AA). Meeting one response criterion was related to FCER1A rs2251746-TT (OR = 24; 95% CI = 0.77-804.57), meeting two to age of asthma diagnosis (OR = 0.93; 95% CI = 0.88-0.99), and meeting all three to body mass index (BMI) < 25 (OR = 14.23; 95% CI = 3.31-100.77) and C3 rs2230199-C (OR = 3; 95% CI = 1.01-9.92). The results of this study show the possible influence of the polymorphisms studied on the response to omalizumab and the clinical benefit that could be obtained by defining predictive biomarkers of treatment response.
Collapse
Affiliation(s)
- Susana Rojo-Tolosa
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (S.R.-T.)
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
| | | | - Laura Elena Pineda-Lancheros
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
| | - José María Gálvez-Navas
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- Cancer Registry of Granada, Andalusian School of Public Health, Carretera del Observatorio, 4, 18011 Granada, Spain
| | | | - Gonzalo Jiménez-Gálvez
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (S.R.-T.)
| | - Cristina Pérez-Ramírez
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
| | - Concepción Morales-García
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (S.R.-T.)
| | - Alberto Jiménez-Morales
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| |
Collapse
|
13
|
Stikker BS, Hendriks RW, Stadhouders R. Decoding the genetic and epigenetic basis of asthma. Allergy 2023; 78:940-956. [PMID: 36727912 DOI: 10.1111/all.15666] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
Asthma is a complex and heterogeneous chronic inflammatory disease of the airways. Alongside environmental factors, asthma susceptibility is strongly influenced by genetics. Given its high prevalence and our incomplete understanding of the mechanisms underlying disease susceptibility, asthma is frequently studied in genome-wide association studies (GWAS), which have identified thousands of genetic variants associated with asthma development. Virtually all these genetic variants reside in non-coding genomic regions, which has obscured the functional impact of asthma-associated variants and their translation into disease-relevant mechanisms. Recent advances in genomics technology and epigenetics now offer methods to link genetic variants to gene regulatory elements embedded within non-coding regions, which have started to unravel the molecular mechanisms underlying the complex (epi)genetics of asthma. Here, we provide an integrated overview of (epi)genetic variants associated with asthma, focusing on efforts to link these disease associations to biological insight into asthma pathophysiology using state-of-the-art genomics methodology. Finally, we provide a perspective as to how decoding the genetic and epigenetic basis of asthma has the potential to transform clinical management of asthma and to predict the risk of asthma development.
Collapse
Affiliation(s)
- Bernard S Stikker
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Akhmerova YN, Shpakova TA, Grammatikati KS, Mitrofanov SI, Kazakova PG, Mkrtchian AA, Zemsky PU, Pilipenko MN, Feliz NV, Frolova LV, Frolovskaya AA, Yudin VS, Keskinov AA, Kraevoy SA, Yudin SM, Skvortsova VI. Genetic Variants Associated with Bronchial Asthma Specific to the Population of the Russian Federation. Acta Naturae 2023; 15:31-41. [PMID: 37153512 PMCID: PMC10154776 DOI: 10.32607/actanaturae.11853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/09/2023] [Indexed: 05/09/2023] Open
Abstract
Bronchial asthma (BA) is a disease that still lacks an exhaustive treatment protocol. In this regard, the global medical community pays special attention to the genetic prerequisites for the occurrence of this disease. Therefore, the search for the genetic polymorphisms underlying bronchial asthma has expanded considerably. As the present study progressed, a significant amount of scientific medical literature was analyzed and 167 genes reported to be associated with the development of bronchial asthma were identified. A group of participants (n = 7,303) who had voluntarily provided their biomaterial (venous blood) to be used in the research conducted by the Federal Medical Biological Agency of Russia was formed to subsequently perform a bioinformatic verification of known associations and search for new ones. This group of participants was divided into four cohorts, including two sex-distinct cohorts of individuals with a history of asthma and two sex-distinct cohorts of apparently healthy individuals. A search for polymorphisms was made in each cohort among the selected genes, and genetic variants were identified whose difference in occurrence in the different cohorts was statistically significant (significance level less than 0.0001). The study revealed 11 polymorphisms that affect the development of asthma: four genetic variants (rs869106717, rs1461555098, rs189649077, and rs1199362453), which are more common in men with bronchial asthma compared to apparently healthy men; five genetic variants (rs1923038536, rs181066119, rs143247175, rs140597386, and rs762042586), which are more common in women with bronchial asthma compared to apparently healthy women; and two genetic variants (rs1219244986 and rs2291651) that are rare in women with a history of asthma.
Collapse
Affiliation(s)
- Y. N. Akhmerova
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - T. A. Shpakova
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - K. S. Grammatikati
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - S. I. Mitrofanov
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - P. G. Kazakova
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - A. A. Mkrtchian
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - P. U. Zemsky
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - M. N. Pilipenko
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - N. V. Feliz
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - L. V. Frolova
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - A. A. Frolovskaya
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - V. S. Yudin
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - A. A. Keskinov
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - S. A. Kraevoy
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - S. M. Yudin
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - V. I. Skvortsova
- Federal Medical Biological Agency (FMBA of Russia), Moscow, 123182 Russian Federation
| |
Collapse
|
15
|
Gaurav R, Poole JA. Interleukin (IL)-33 immunobiology in asthma and airway inflammatory diseases. J Asthma 2022; 59:2530-2538. [PMID: 34928757 PMCID: PMC9234100 DOI: 10.1080/02770903.2021.2020815] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Identify key features of IL-33 immunobiology important in allergic and nonallergic airway inflammatory diseases and potential therapeutic strategies to reduce disease burden. DATA SOURCES PubMed, clinicaltrials.gov. STUDY SELECTIONS A systematic and focused literature search was conducted of PubMed from March 2021 to December 2021 using keywords to either PubMed or BioMed Explorer including IL-33/ST2, genetic polymorphisms, transcription, translation, post-translation modification, nuclear protein, allergy, asthma, and lung disease. Clinical trial information on IL-33 was extracted from clinicaltrials.gov in August 2021. RESULTS In total, 72 publications with relevance to IL-33 immunobiology and/or clinical lung disease were identified (allergic airway inflammation/allergic asthma n = 26, non-allergic airway inflammation n = 9, COPD n = 8, lung fibrosis n = 10). IL-33 levels were higher in serum, BALF and/or lungs across inflammatory lung diseases. Eight studies described viral infections and IL-33 and 4 studies related to COVID-19. Mechanistic studies (n = 39) including transcript variants and post-translational modifications related to the immunobiology of IL-33. Single nucleotide polymorphism in IL-33 or ST2 were described in 9 studies (asthma n = 5, inflammatory bowel disease n = 1, mycosis fungoides n = 1, ankylosing spondylitis n = 1, coronary artery disease n = 1). Clinicaltrials.gov search yielded 84 studies of which 17 were related to therapeutic or biomarker relevance in lung disease. CONCLUSION An integral role of IL-33 in the pathogenesis of allergic and nonallergic airway inflammatory disease is evident with several emerging clinical trials investigating therapeutic approaches. Current data support a critical role of IL-33 in damage signaling, repair and regeneration of lungs.
Collapse
Affiliation(s)
- Rohit Gaurav
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| | - Jill A. Poole
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
16
|
Noureddine N, Chalubinski M, Wawrzyniak P. The Role of Defective Epithelial Barriers in Allergic Lung Disease and Asthma Development. J Asthma Allergy 2022; 15:487-504. [PMID: 35463205 PMCID: PMC9030405 DOI: 10.2147/jaa.s324080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
The respiratory epithelium constitutes the physical barrier between the human body and the environment, thus providing functional and immunological protection. It is often exposed to allergens, microbial substances, pathogens, pollutants, and environmental toxins, which lead to dysregulation of the epithelial barrier and result in the chronic inflammation seen in allergic diseases and asthma. This epithelial barrier dysfunction results from the disturbed tight junction formation, which are multi-protein subunits that promote cell-cell adhesion and barrier integrity. The increasing interest and evidence of the role of impaired epithelial barrier function in allergy and asthma highlight the need for innovative approaches that can provide new knowledge in this area. Here, we review and discuss the current role and mechanism of epithelial barrier dysfunction in developing allergic diseases and the effect of current allergy therapies on epithelial barrier restoration.
Collapse
Affiliation(s)
- Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Maciej Chalubinski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Portelli MA, Rakkar K, Hu S, Guo Y, Adcock IM, Sayers I. Translational Analysis of Moderate to Severe Asthma GWAS Signals Into Candidate Causal Genes and Their Functional, Tissue-Dependent and Disease-Related Associations. FRONTIERS IN ALLERGY 2022; 2:738741. [PMID: 35386986 PMCID: PMC8974692 DOI: 10.3389/falgy.2021.738741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Asthma affects more than 300 million people globally and is both under diagnosed and under treated. The most recent and largest genome-wide association study investigating moderate to severe asthma to date was carried out in 2019 and identified 25 independent signals. However, as new and in-depth downstream databases become available, the translational analysis of these signals into target genes and pathways is timely. In this study, unique (U-BIOPRED) and publicly available datasets (HaploReg, Open Target Genetics and GTEx) were investigated for the 25 GWAS signals to identify 37 candidate causal genes. Additional traits associated with these signals were identified through PheWAS using the UK Biobank resource, with asthma and eosinophilic traits amongst the strongest associated. Gene expression omnibus dataset examination identified 13 candidate genes with altered expression profiles in the airways and blood of asthmatic subjects, including MUC5AC and STAT6. Gene expression analysis through publicly available datasets highlighted lung tissue cell specific expression, with both MUC5AC and SLC22A4 genes showing enriched expression in ciliated cells. Gene enrichment pathway and interaction analysis highlighted the dominance of the HLA-DQA1/A2/B1/B2 gene cluster across many immunological diseases including asthma, type I diabetes, and rheumatoid arthritis. Interaction and prediction analyses found IL33 and IL18R1 to be key co-localization partners for other genes, predicted that CD274 forms co-expression relationships with 13 other genes, including the HLA-DQA1/A2/B1/B2 gene cluster and that MUC5AC and IL37 are co-expressed. Drug interaction analysis revealed that 11 of the candidate genes have an interaction with available therapeutics. This study provides significant insight into these GWAS signals in the context of cell expression, function, and disease relationship with the view of informing future research and drug development efforts for moderate-severe asthma.
Collapse
Affiliation(s)
- Michael A Portelli
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Kamini Rakkar
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Sile Hu
- Data Science Institute, Imperial College London, London, United Kingdom
| | - Yike Guo
- Data Science Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- The National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ian Sayers
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
18
|
Wu M, Zheng X, Huang J, Hu X. Association of IL33, IL1RL1, IL1RAP Polymorphisms and Asthma in Chinese Han Children. Front Cell Dev Biol 2022; 9:759542. [PMID: 34977013 PMCID: PMC8714920 DOI: 10.3389/fcell.2021.759542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Genome-wide association studies have identified interleukin 33 (IL33), interleukin 1 receptor-like 1 (IL1RL1), interleukin 1 receptor accessory protein (IL1RAP) as asthma susceptibility loci in Europeans. IL33, IL1RL1, and IL1RAP constitute a ligand-receptor complex. Objective: We analyzed associations of asthma susceptibility, eosinophilic airway inflammation, and response to inhaled corticosteroid (ICS) with single nucleotide polymorphisms (SNPs) of 3 genes encoding IL33, IL1RL1, and its coreceptor IL1RAP in Chinese Han nationality children. Methods: A total of 153 non-asthmatic children and 265 asthmatic children who visited the Xiangya Hospital between September 2015 and August 2019 were recruited for this study. Pulmonary function tests, peripheral blood eosinophil counts (PBEC), and fractional exhaled nitric oxide (FeNO) tests were performed before treatment, and 3 months after treatment. Each participant’s DNA was extracted from the peripheral blood, and a Mass ARRAY system was used to genotype the SNPs. Results: The T allele of rs4742170 in IL33 was associated with a risk of higher FeNO at baseline, and no improvement in FeNO and airway hyperresponsiveness was found after ICS treatment. The A allele of rs10208293 and C allele of rs13424006 in IL1RL1 both were associated with lower susceptibility to asthma and lower FeNO. The TT genotype of rs1420101 and AA genotype of rs4142132 in IL1RL1 were associated with a greater probability of improvement in PBEC after ICS treatment. Conclusion: IL33-IL1RL1-IL1RAP complex polymorphisms are associated with childhood asthma susceptibility, eosinophilic airway inflammation, and ICS response in Chinese Han children in Hunan. We speculate that IL33-IL1RL1-IL1RAP complex polymorphisms affect the development of asthma, airway inflammation, and subsequent ICS response in childhood.
Collapse
Affiliation(s)
- Maolan Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangrong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Huang
- Department of Pediatrics, The First Hospital of Changsha, Changsha, China
| | - Xiaolei Hu
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Zhang M, Duffen JL, Nocka KH, Kasaian MT. IL-13 Controls IL-33 Activity through Modulation of ST2. THE JOURNAL OF IMMUNOLOGY 2021; 207:3070-3080. [PMID: 34789557 DOI: 10.4049/jimmunol.2100655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
IL-33 is a multifunctional cytokine that mediates local inflammation upon tissue damage. IL-33 is known to act on multiple cell types including group 2 innate lymphoid cells (ILC2s), Th2 cells, and mast cells to drive production of Th2 cytokines including IL-5 and IL-13. IL-33 signaling activity through transmembrane ST2L can be inhibited by soluble ST2 (sST2), which acts as a decoy receptor. Previous findings suggested that modulation of IL-13 levels in mice lacking decoy IL-13Rα2, or mice lacking IL-13, impacted responsiveness to IL-33. In this study, we used Il13 -/- mice to investigate whether IL-13 regulates IL-33 activity by modulating the transmembrane and soluble forms of ST2. In Il13 -/- mice, the effects of IL-33 administration were exacerbated relative to wild type (WT). Il13 -/- mice administered IL-33 i.p. had heightened splenomegaly, more immune cells in the peritoneum including an expanded ST2L+ ILC2 population, increased eosinophilia in the spleen and peritoneum, and reduced sST2 in the circulation and peritoneum. In the spleen, lung, and liver of mice given IL-33, gene expression of both isoforms of ST2 was increased in Il13 -/- mice relative to WT. We confirmed fibroblasts to be an IL-13-responsive cell type that can regulate IL-33 activity through production of sST2. This study elucidates the important regulatory activity that IL-13 exerts on IL-33 through induction of IL-33 decoy receptor sST2 and through modulation of ST2L+ ILC2s.
Collapse
Affiliation(s)
- Melvin Zhang
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| | - Jennifer L Duffen
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| | - Karl H Nocka
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| | - Marion T Kasaian
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| |
Collapse
|
20
|
Dugger DT, Calabrese DR, Gao Y, Deiter F, Tsao T, Maheshwari J, Hays SR, Leard L, Kleinhenz ME, Shah R, Golden J, Kukreja J, Gordon ED, Singer JP, Greenland JR. Lung Allograft Epithelium DNA Methylation Age Is Associated With Graft Chronologic Age and Primary Graft Dysfunction. Front Immunol 2021; 12:704172. [PMID: 34691018 PMCID: PMC8528961 DOI: 10.3389/fimmu.2021.704172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/09/2021] [Indexed: 02/04/2023] Open
Abstract
Advanced donor age is a risk factor for poor survival following lung transplantation. However, recent work identifying epigenetic determinants of aging has shown that biologic age may not always reflect chronologic age and that stressors can accelerate biologic aging. We hypothesized that lung allografts that experienced primary graft dysfunction (PGD), characterized by poor oxygenation in the first three post-transplant days, would have increased biologic age. We cultured airway epithelial cells isolated by transbronchial brush at 1-year bronchoscopies from 13 subjects with severe PGD and 15 controls matched on age and transplant indication. We measured epigenetic age using the Horvath epigenetic clock. Linear models were used to determine the association of airway epigenetic age with chronologic ages and PGD status, adjusted for recipient PGD risk factors. Survival models assessed the association with chronic lung allograft dysfunction (CLAD) or death. Distributions of promoter methylation within pathways were compared between groups. DNA methyltransferase (DNMT) activity was quantified in airway epithelial cells under hypoxic or normoxic conditions. Airway epigenetic age appeared younger but was strongly associated with the age of the allograft (slope 0.38 per year, 95% CI 0.27–0.48). There was no correlation between epigenetic age and recipient age (P = 0.96). Epigenetic age was 6.5 years greater (95% CI 1.7–11.2) in subjects who had experienced PGD, and this effect remained significant after adjusting for donor and recipient characteristics (P = 0.03). Epigenetic age was not associated with CLAD-free survival risk (P = 0.11). Analysis of differential methylation of promoters of key biologic pathways revealed hypomethylation in regions related to hypoxia, inflammation, and metabolism-associated pathways. Accordingly, airway epithelial cells cultured in hypoxic conditions showed suppressed DNMT activity. While airway methylation age was primarily determined by donor chronologic age, early injury in the form of PGD was associated with increased allograft epigenetic age. These data show how PGD might suppress key promoter methylation resulting in long-term impacts on the allograft.
Collapse
Affiliation(s)
- Daniel T Dugger
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R Calabrese
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States.,Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| | - Ying Gao
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Fred Deiter
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Tasha Tsao
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Julia Maheshwari
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Steven R Hays
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Lorriana Leard
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Mary Ellen Kleinhenz
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Rupal Shah
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jeff Golden
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jasleen Kukreja
- Department of Surgery, University of California at San Francisco, San Francisco, CA, United States
| | - Erin D Gordon
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jonathan P Singer
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - John R Greenland
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States.,Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| |
Collapse
|
21
|
Alobaidi A, Alsamarai A, Alsamarai MA. Inflammation in Asthma Pathogenesis: Role of T cells, Macrophages, Epithelial Cells and Type 2 Inflammation. Antiinflamm Antiallergy Agents Med Chem 2021; 20:317-332. [PMID: 34544350 DOI: 10.2174/1871523020666210920100707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Asthma is a chronic disease with abnormal inflammatory and immunological responses. The disease initiated by antigens in subjects with genetic susceptibility. However, environmental factors play a role in the initiation and exacerbation of asthma attack. Asthma is T helper 2 (Th2)-cell-mediated disease. Recent studies indicated that asthma is not a single disease entity, but it is with multiple phenotypes and endotypes. The pathophysiological changes in asthma included a series of subsequent continuous vicious circle of cellular activation contributed to induction of chemokines and cytokines that potentiate inflammation. The heterogeneity of asthma influenced the treatment response. The asthma pathogenesis driven by varied set of cells such as eosinophils, basophils, neutrophils, mast cells, macrophages, epithelial cells and T cells. In this review the role of T cells, macrophage, and epithelial cells are discussed.
Collapse
Affiliation(s)
- Amina Alobaidi
- Kirkuk University College of Veterinary Medicine, Kirkuk. Iraq
| | - Abdulghani Alsamarai
- Aalborg Academy College of Medicine [AACOM], Denmark. Tikrit University College of Medicine, [TUCOM], Tikrit. Iraq
| | | |
Collapse
|
22
|
Ditz B, Sarma A, Kerstjens HA, Liesker JJ, Bathoorn E, Vonk JM, Bernal V, Horvatovich P, Guryev V, Caldera S, Langelier C, Faiz A, Christenson SA, van den Berge M. The sputum transcriptome better predicts COPD exacerbations after the withdrawal of inhaled corticosteroids than sputum eosinophils. ERJ Open Res 2021; 7:00097-2021. [PMID: 34235210 PMCID: PMC8255541 DOI: 10.1183/23120541.00097-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Continuing inhaled corticosteroid (ICS) use does not benefit all patients with COPD, yet it is difficult to determine which patients may safely sustain ICS withdrawal. Although eosinophil levels can facilitate this decision, better biomarkers could improve personalised treatment decisions. METHODS We performed transcriptional profiling of sputum to explore the molecular biology and compared the predictive value of an unbiased gene signature versus sputum eosinophils for exacerbations after ICS withdrawal in COPD patients. RNA-sequencing data of induced sputum samples from 43 COPD patients were associated with the time to exacerbation after ICS withdrawal. Expression profiles of differentially expressed genes were summarised to create gene signatures. In addition, we built a Bayesian network model to determine coregulatory networks related to the onset of COPD exacerbations after ICS withdrawal. RESULTS In multivariate analyses, we identified a gene signature (LGALS12, ALOX15, CLC, IL1RL1, CD24, EMR4P) associated with the time to first exacerbation after ICS withdrawal. The addition of this gene signature to a multiple Cox regression model explained more variance of time to exacerbations compared to a model using sputum eosinophils. The gene signature correlated with sputum eosinophil as well as macrophage cell counts. The Bayesian network model identified three coregulatory gene networks as well as sex to be related to an early versus late/nonexacerbation phenotype. CONCLUSION We identified a sputum gene expression signature that exhibited a higher predictive value for predicting COPD exacerbations after ICS withdrawal than sputum eosinophilia. Future studies should investigate the utility of this signature, which might enhance personalised ICS treatment in COPD patients.
Collapse
Affiliation(s)
- Benedikt Ditz
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Aartik Sarma
- University of California, San Francisco, CA, USA
| | - Huib A.M. Kerstjens
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Jeroen J.W. Liesker
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Erik Bathoorn
- Dept of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M. Vonk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- Dept of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Victor Bernal
- Dept of Analytical Biochemistry, Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - Peter Horvatovich
- Dept of Analytical Biochemistry, Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Saharai Caldera
- Division of Infectious Diseases, Dept of Medicine, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Chaz Langelier
- Division of Infectious Diseases, Dept of Medicine, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Alen Faiz
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life Sciences, Sydney, Australia
- These authors contributed equally
| | | | - Maarten van den Berge
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- These authors contributed equally
| |
Collapse
|
23
|
Kotas ME, Dion J, Van Dyken S, Ricardo-Gonzalez RR, Danel CJ, Taillé C, Mouthon L, Locksley RM, Terrier B. A role for IL-33-activated ILC2s in eosinophilic vasculitis. JCI Insight 2021; 6:143366. [PMID: 33974563 PMCID: PMC8262498 DOI: 10.1172/jci.insight.143366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare but serious disease with poorly understood mechanisms. Here, we report that patients with EGPA have elevated levels of TSLP, IL-25, and soluble ST2, which are well-characterized cytokine “alarmins” that activate or modulate type 2 innate lymphoid cells (ILC2s). Patients with active EGPA have a concurrent reduction in circulating ILC2s, suggesting a role for ILC2s in the pathogenesis of this disease. To explore the mechanism of these findings in patients, we established a model of EGPA in which active vasculitis and pulmonary hemorrhage were induced by IL-33 administration in predisposed, hypereosinophilic mice. In this model, induction of pulmonary hemorrhage and vasculitis was dependent on ILC2s and signaling through IL4Rα. In the absence of IL4Rα or STAT6, IL-33–treated mice had less vascular leak and pulmonary edema, less endothelial activation, and reduced eotaxin production, cumulatively leading to a reduction of pathologic eosinophil migration into the lung parenchyma. These results offer a mouse model for use in future mechanistic studies of EGPA, and they suggest that IL-33, ILC2s, and IL4Rα signaling may be potential targets for further study and therapeutic targeting in patients with EGPA.
Collapse
Affiliation(s)
- Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy & Sleep Medicine, University of California, San Francisco, California, USA
| | - Jérémie Dion
- Department of Internal Medicine, National Referral Center for Rare and Systemic Autoimmune Diseases, Cochin Hospital, AP-HP, Paris, France
| | - Steven Van Dyken
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, Missouri, USA
| | | | | | - Camille Taillé
- Department of Pulmonology, Bichat Hospital, AP-HP, Paris, France
| | - Luc Mouthon
- Department of Internal Medicine, National Referral Center for Rare and Systemic Autoimmune Diseases, Cochin Hospital, AP-HP, Paris, France
| | - Richard M Locksley
- Howard Hughes Medical Institute, University of California, San Francisco, California, USA.,Department of Medicine, University of California, San Francisco, California, USA
| | - Benjamin Terrier
- Department of Internal Medicine, National Referral Center for Rare and Systemic Autoimmune Diseases, Cochin Hospital, AP-HP, Paris, France
| |
Collapse
|
24
|
Ziani M, Henry AP, Hall IP. Association study between asthma and single nucleotide polymorphisms of ORMDL3, GSDMB, and IL1RL1 genes in an Algerian population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00163-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
Genetic variation has a key role in the development of asthma, but genetic influences may vary between different populations. In this study, we looked for evidence of association of key asthma SNPs, namely, rs1420101 and rs10192157 within the IL1RL1 gene, rs2305480 in GSDMB gene, and the rs3744246 polymorphism in the ORMDL3 gene, in the Algerian population. We included 266 unrelated subjects of an Algerian population in a case-control study, with 125 adult asthmatic and 141 healthy controls. DNA was extracted and genotypes determined by the Taqman PCR technique for characterization of the different genetic variants.
Results
The results show that there were no significant differences in allele frequencies for 3 of the chosen SNPs in the ORMDL3, GSDMB, and IL1RL1 genes between the asthmatic and control groups with respective P values of 0.922, 0.331, and 0.937. However the T allele of rs10192157 of the IL1RL1gene was associated with protection from asthma (P value=0.010).
Conclusion
These results indicate that there is no marked effect of rs3744246, rs2305480, and rs1420101 polymorphisms of the ORMDL3, GSDMB, and IL1RL1 genes on asthma risk in the Algerian population. However, a protective effect of the rs10192157 polymorphism of the IL1RL1 gene was found.
Collapse
|
25
|
Han K, Singh K, Rodman MJ, Hassanzadeh S, Baumer Y, Huffstutler RD, Chen J, Candia J, Cheung F, Stagliano KER, Pirooznia M, Powell-Wiley TM, Sack MN. Identification and Validation of Nutrient State-Dependent Serum Protein Mediators of Human CD4 + T Cell Responsiveness. Nutrients 2021; 13:nu13051492. [PMID: 33924911 PMCID: PMC8146063 DOI: 10.3390/nu13051492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Intermittent fasting and fasting mimetic diets ameliorate inflammation. Similarly, serum extracted from fasted healthy and asthmatic subjects' blunt inflammation in vitro, implicating serum components in this immunomodulation. To identify the proteins orchestrating these effects, SOMAScan technology was employed to evaluate serum protein levels in healthy subjects following an overnight, 24-h fast and 3 h after refeeding. Partial least square discriminant analysis identified several serum proteins as potential candidates to confer feeding status immunomodulation. The characterization of recombinant IGFBP1 (elevated following 24 h of fasting) and PYY (elevated following refeeding) in primary human CD4+ T cells found that they blunted and induced immune activation, respectively. Furthermore, integrated univariate serum protein analysis compared to RNA-seq analysis from peripheral blood mononuclear cells identified the induction of IL1RL1 and MFGE8 levels in refeeding compared to the 24-h fasting in the same study. Subsequent quantitation of these candidate proteins in lean versus obese individuals identified an inverse regulation of serum levels in the fasted subjects compared to the obese subjects. In parallel, IL1RL1 and MFGE8 supplementation promoted increased CD4+ T responsiveness to T cell receptor activation. Together, these data show that caloric load-linked conditions evoke serological protein changes, which in turn confer biological effects on circulating CD4+ T cell immune responsiveness.
Collapse
Affiliation(s)
- Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.); (M.J.R.); (S.H.)
| | - Komudi Singh
- Bioinformatics and Computational Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (M.P.)
| | - Matthew J. Rodman
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.); (M.J.R.); (S.H.)
| | - Shahin Hassanzadeh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.); (M.J.R.); (S.H.)
| | - Yvonne Baumer
- Determinants of Obesity and Cardiovascular Risk, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.B.); (T.M.P.-W.)
| | - Rebecca D. Huffstutler
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Jinguo Chen
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.C.); (J.C.); (F.C.); (K.E.R.S.)
| | - Julián Candia
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.C.); (J.C.); (F.C.); (K.E.R.S.)
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Foo Cheung
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.C.); (J.C.); (F.C.); (K.E.R.S.)
| | - Katherine E. R. Stagliano
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.C.); (J.C.); (F.C.); (K.E.R.S.)
| | - Mehdi Pirooznia
- Bioinformatics and Computational Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (M.P.)
| | - Tiffany M. Powell-Wiley
- Determinants of Obesity and Cardiovascular Risk, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.B.); (T.M.P.-W.)
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael N. Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.); (M.J.R.); (S.H.)
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA;
- Correspondence:
| |
Collapse
|
26
|
Saikumar Jayalatha AK, Hesse L, Ketelaar ME, Koppelman GH, Nawijn MC. The central role of IL-33/IL-1RL1 pathway in asthma: From pathogenesis to intervention. Pharmacol Ther 2021; 225:107847. [PMID: 33819560 DOI: 10.1016/j.pharmthera.2021.107847] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-33 (IL-33), a member of the IL-1 family, and its cognate receptor, Interleukin-1 receptor like-1 (IL-1RL1 or ST2), are susceptibility genes for childhood asthma. In response to cellular damage, IL-33 is released from barrier tissues as an 'alarmin' to activate the innate immune response. IL-33 drives type 2 responses by inducing signalling through its receptor IL-1RL1 in several immune and structural cells, thereby leading to type 2 cytokine and chemokine production. IL-1RL1 gene transcript encodes different isoforms generated through alternative splicing. Its soluble isoform, IL-1RL1-a or sST2, acts as a decoy receptor by sequestering IL-33, thereby inhibiting IL1RL1-b/IL-33 signalling. IL-33 and its receptor IL-1RL1 are therefore considered as putative biomarkers or targets for pharmacological intervention in asthma. This review will provide an overview of the genetics and biology of the IL-33/IL-1RL1 pathway in the context of asthma pathogenesis. It will discuss the potential and complexities of targeting the cytokine or its receptor, how genetics or biomarkers may inform precision medicine for asthma targeting this pathway, and the possible positioning of therapeutics targeting IL-33 or its receptor in the expanding landscape of novel biologicals applied in asthma management.
Collapse
Affiliation(s)
- A K Saikumar Jayalatha
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - L Hesse
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - M E Ketelaar
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - G H Koppelman
- University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - M C Nawijn
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands.
| |
Collapse
|
27
|
Saferali A, Yun JH, Lee S, Chase RP, Bowler RP, Castaldi PJ, Hersh CP. Transcriptomic Signature of Asthma-Chronic Obstructive Pulmonary Disease Overlap in Whole Blood. Am J Respir Cell Mol Biol 2021; 64:268-271. [PMID: 33522883 PMCID: PMC7874396 DOI: 10.1165/rcmb.2020-0382le] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Aabida Saferali
- Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts, and
| | - Jeong H. Yun
- Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts, and
| | - Sool Lee
- Brigham and Women’s Hospital, Boston, Massachusetts
| | | | | | - Peter J. Castaldi
- Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts, and
| | - Craig P. Hersh
- Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts, and
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The alarmins, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25 and IL-33, are upstream regulators of T2 (type 2) inflammation and found to be expressed at high levels in airway epithelium of patients with T2 asthma. This review will summarize how alarmins regulate the inflamed asthmatic airways through previously described and newly identified mechanisms. RECENT FINDINGS Alarmins drive allergic and nonallergic asthma through activation of innate lymphoid cell 2 (ILC2), which are a rich source of cytokines such as IL-5 and IL-13, with resulting effects on eosinophilopoeisis and remodelling, respectively. Findings from bronchial allergen challenges have illustrated widespread expression of alarmins and their receptors across many effector cells in airways, and recent studies have emphasized alarmin regulation of CD4 T lymphocytes, eosinophils and basophils, and their progenitors. Furthermore, a link between alarmins and lipid mediators is being uncovered. SUMMARY Alarmins can drive well defined inflammatory pathways through activation of dendritic cells and polarizing T cells to produce type 2 cytokines, as well as they can directly activate many other effector cells that play a central role in allergic and nonallergic asthma. Clinical trials support a central role for TSLP in driving airway inflammation and asthma exacerbations, while ongoing trials blocking IL-33 and IL-25 will help to define their respective role in asthma.
Collapse
|
29
|
IL-33-ST2 axis regulates myeloid cell differentiation and activation enabling effective club cell regeneration. Nat Commun 2020; 11:4786. [PMID: 32963227 PMCID: PMC7508874 DOI: 10.1038/s41467-020-18466-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Evidence points to an indispensable function of macrophages in tissue regeneration, yet the underlying molecular mechanisms remain elusive. Here we demonstrate a protective function for the IL-33-ST2 axis in bronchial epithelial repair, and implicate ST2 in myeloid cell differentiation. ST2 deficiency in mice leads to reduced lung myeloid cell infiltration, abnormal alternatively activated macrophage (AAM) function, and impaired epithelial repair post naphthalene-induced injury. Reconstitution of wild type (WT) AAMs to ST2-deficient mice completely restores bronchial re-epithelialization. Central to this mechanism is the direct effect of IL-33-ST2 signaling on monocyte/macrophage differentiation, self-renewal and repairing ability, as evidenced by the downregulation of key pathways regulating myeloid cell cycle, maturation and regenerative function of the epithelial niche in ST2−/− mice. Thus, the IL-33-ST2 axis controls epithelial niche regeneration by activating a large multi-cellular circuit, including monocyte differentiation into competent repairing AAMs, as well as group-2 innate lymphoid cell (ILC2)-mediated AAM activation. Signaling of IL-33 via its receptor, ST2, has been implicated in macrophage function in tissue repair. Here the authors show, using genetic mouse models and single-cell transcriptomic data, that the IL-33/ST2 axis regulates both ILC2-derived IL-13 and macrophage differentiation/reparative function required for club cell regeneration.
Collapse
|
30
|
Heijink IH, Kuchibhotla VNS, Roffel MP, Maes T, Knight DA, Sayers I, Nawijn MC. Epithelial cell dysfunction, a major driver of asthma development. Allergy 2020; 75:1902-1917. [PMID: 32460363 PMCID: PMC7496351 DOI: 10.1111/all.14421] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
Airway epithelial barrier dysfunction is frequently observed in asthma and may have important implications. The physical barrier function of the airway epithelium is tightly interwoven with its immunomodulatory actions, while abnormal epithelial repair responses may contribute to remodelling of the airway wall. We propose that abnormalities in the airway epithelial barrier play a crucial role in the sensitization to allergens and pathogenesis of asthma. Many of the identified susceptibility genes for asthma are expressed in the airway epithelium, supporting the notion that events at the airway epithelial surface are critical for the development of the disease. However, the exact mechanisms by which the expression of epithelial susceptibility genes translates into a functionally altered response to environmental risk factors of asthma are still unknown. Interactions between genetic factors and epigenetic regulatory mechanisms may be crucial for asthma susceptibility. Understanding these mechanisms may lead to identification of novel targets for asthma intervention by targeting the airway epithelium. Moreover, exciting new insights have come from recent studies using single‐cell RNA sequencing (scRNA‐Seq) to study the airway epithelium in asthma. This review focuses on the role of airway epithelial barrier function in the susceptibility to develop asthma and novel insights in the modulation of epithelial cell dysfunction in asthma.
Collapse
Affiliation(s)
- Irene H. Heijink
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
- Department of Pulmonology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Virinchi N. S. Kuchibhotla
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
- School of Biomedical Sciences and Pharmacy University of Newcastle Callaghan NSW Australia
| | - Mirjam P. Roffel
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent University Ghent Belgium
| | - Tania Maes
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent University Ghent Belgium
| | - Darryl A. Knight
- School of Biomedical Sciences and Pharmacy University of Newcastle Callaghan NSW Australia
- UBC Providence Health Care Research Institute Vancouver BC Canada
- Department of Anesthesiology, Pharmacology and Therapeutics University of British Columbia Vancouver BC Canada
| | - Ian Sayers
- Division of Respiratory Medicine National Institute for Health Research Nottingham Biomedical Research Centre University of Nottingham Biodiscovery Institute University of Nottingham Nottingham UK
| | - Martijn C. Nawijn
- Department of Pathology & Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
| |
Collapse
|
31
|
Bretherick AD, Canela-Xandri O, Joshi PK, Clark DW, Rawlik K, Boutin TS, Zeng Y, Amador C, Navarro P, Rudan I, Wright AF, Campbell H, Vitart V, Hayward C, Wilson JF, Tenesa A, Ponting CP, Baillie JK, Haley C. Linking protein to phenotype with Mendelian Randomization detects 38 proteins with causal roles in human diseases and traits. PLoS Genet 2020; 16:e1008785. [PMID: 32628676 PMCID: PMC7337286 DOI: 10.1371/journal.pgen.1008785] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 04/21/2020] [Indexed: 01/25/2023] Open
Abstract
To efficiently transform genetic associations into drug targets requires evidence that a particular gene, and its encoded protein, contribute causally to a disease. To achieve this, we employ a three-step proteome-by-phenome Mendelian Randomization (MR) approach. In step one, 154 protein quantitative trait loci (pQTLs) were identified and independently replicated. From these pQTLs, 64 replicated locally-acting variants were used as instrumental variables for proteome-by-phenome MR across 846 traits (step two). When its assumptions are met, proteome-by-phenome MR, is equivalent to simultaneously running many randomized controlled trials. Step 2 yielded 38 proteins that significantly predicted variation in traits and diseases in 509 instances. Step 3 revealed that amongst the 271 instances from GeneAtlas (UK Biobank), 77 showed little evidence of pleiotropy (HEIDI), and 92 evidence of colocalization (eCAVIAR). Results were wide ranging: including, for example, new evidence for a causal role of tyrosine-protein phosphatase non-receptor type substrate 1 (SHPS1; SIRPA) in schizophrenia, and a new finding that intestinal fatty acid binding protein (FABP2) abundance contributes to the pathogenesis of cardiovascular disease. We also demonstrated confirmatory evidence for the causal role of four further proteins (FGF5, IL6R, LPL, LTA) in cardiovascular disease risk.
Collapse
Affiliation(s)
- Andrew D. Bretherick
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Oriol Canela-Xandri
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
- The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - Peter K. Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, Scotland, United Kingdom
| | - David W. Clark
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, Scotland, United Kingdom
| | - Konrad Rawlik
- The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - Thibaud S. Boutin
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Yanni Zeng
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Carmen Amador
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, Scotland, United Kingdom
| | - Alan F. Wright
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, Scotland, United Kingdom
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - James F. Wilson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, Scotland, United Kingdom
| | - Albert Tenesa
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
- The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - Chris P. Ponting
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - J. Kenneth Baillie
- The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - Chris Haley
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
- The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
32
|
Portelli MA, Dijk FN, Ketelaar ME, Shrine N, Hankinson J, Bhaker S, Grotenboer NS, Obeidat M, Henry AP, Billington CK, Shaw D, Johnson SR, Pogson ZE, Fogarty A, McKeever TM, Nickle DC, Bossé Y, van den Berge M, Faiz A, Brouwer S, Vonk JM, de Vos P, Brandsma CA, Vermeulen CJ, Singapuri A, Heaney LG, Mansur AH, Chaudhuri R, Thomson NC, Holloway JW, Lockett GA, Howarth PH, Niven R, Simpson A, Blakey JD, Tobin MD, Postma DS, Hall IP, Wain LV, Nawijn MC, Brightling CE, Koppelman GH, Sayers I. Phenotypic and functional translation of IL1RL1 locus polymorphisms in lung tissue and asthmatic airway epithelium. JCI Insight 2020; 5:132446. [PMID: 32324168 PMCID: PMC7205441 DOI: 10.1172/jci.insight.132446] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
The IL1RL1 (ST2) gene locus is robustly associated with asthma; however, the contribution of single nucleotide polymorphisms (SNPs) in this locus to specific asthma subtypes and the functional mechanisms underlying these associations remain to be defined. We tested for association between IL1RL1 region SNPs and characteristics of asthma as defined by clinical and immunological measures and addressed functional effects of these genetic variants in lung tissue and airway epithelium. Utilizing 4 independent cohorts (Lifelines, Dutch Asthma GWAS [DAG], Genetics of Asthma Severity and Phenotypes [GASP], and Manchester Asthma and Allergy Study [MAAS]) and resequencing data, we identified 3 key signals associated with asthma features. Investigations in lung tissue and primary bronchial epithelial cells identified context-dependent relationships between the signals and IL1RL1 mRNA and soluble protein expression. This was also observed for asthma-associated IL1RL1 nonsynonymous coding TIR domain SNPs. Bronchial epithelial cell cultures from asthma patients, exposed to exacerbation-relevant stimulations, revealed modulatory effects for all 4 signals on IL1RL1 mRNA and/or protein expression, suggesting SNP-environment interactions. The IL1RL1 TIR signaling domain haplotype affected IL-33–driven NF-κB signaling, while not interfering with TLR signaling. In summary, we identify that IL1RL1 genetic signals potentially contribute to severe and eosinophilic phenotypes in asthma, as well as provide initial mechanistic insight, including genetic regulation of IL1RL1 isoform expression and receptor signaling.
Collapse
Affiliation(s)
- Michael A Portelli
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - F Nicole Dijk
- Department of Pediatric Pulmonology and Pediatric Allergology, and
| | - Maria E Ketelaar
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,Department of Pediatric Pulmonology and Pediatric Allergology, and.,Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Jenny Hankinson
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Sangita Bhaker
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Néomi S Grotenboer
- Department of Pediatric Pulmonology and Pediatric Allergology, and.,Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Ma'en Obeidat
- The University of British Columbia Center for Heart Lung Innovation, St. Paul's Hospital Vancouver, Vancouver, British Columbia, Canada
| | - Amanda P Henry
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Charlotte K Billington
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Dominick Shaw
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simon R Johnson
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Zara Ek Pogson
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - Andrew Fogarty
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - Tricia M McKeever
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - David C Nickle
- Departments of Genetics and Pharmacogenomics, Merck Research Laboratories, Boston, Massachusetts, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pulmonary Diseases, and
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pulmonary Diseases, and
| | - Sharon Brouwer
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Judith M Vonk
- Department of Epidemiology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Cornelis J Vermeulen
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Amisha Singapuri
- Respiratory sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Liam G Heaney
- Centre for Experimental Medicine, Queens University of Belfast, Belfast, United Kingdom
| | - Adel H Mansur
- Department of Respiratory Medicine, Birmingham Heartlands Hospital and University of Birmingham, Birmingham, United Kingdom
| | - Rekha Chaudhuri
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Neil C Thomson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - John W Holloway
- Department of Human Development and.,Department of Health & Clinical and Experimental Sciences, Faculty of Medicine and NIH Research (NIHR), Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Gabrielle A Lockett
- Department of Human Development and.,Department of Health & Clinical and Experimental Sciences, Faculty of Medicine and NIH Research (NIHR), Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Peter H Howarth
- Department of Human Development and.,Department of Health & Clinical and Experimental Sciences, Faculty of Medicine and NIH Research (NIHR), Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Robert Niven
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Angela Simpson
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - John D Blakey
- Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom.,NIHR, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Dirkje S Postma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pulmonary Diseases, and
| | - Ian P Hall
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom.,NIHR, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Christopher E Brightling
- Respiratory sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom.,NIHR, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | | | - Ian Sayers
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
33
|
Dijk FN, Vijverberg SJ, Hernandez‐Pacheco N, Repnik K, Karimi L, Mitratza M, Farzan N, Nawijn MC, Burchard EG, Engelkes M, Verhamme KM, Potočnik U, Pino‐Yanes M, Postma DS, Maitland‐van der Zee A, Koppelman GH. IL1RL1 gene variations are associated with asthma exacerbations in children and adolescents using inhaled corticosteroids. Allergy 2020; 75:984-989. [PMID: 31755552 PMCID: PMC7176513 DOI: 10.1111/all.14125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- F. Nicole Dijk
- Department of Pediatric Pulmonology and Pediatric Allergology Beatrix Children's Hospital Groningen Research Institute for Asthma and COPD (GRIAC) University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology Faculty of Science Utrecht University Utrecht The Netherlands
| | - Natalia Hernandez‐Pacheco
- Research Unit Hospital Universitario N.S. de Candelaria Universidad de La Laguna Santa Cruz de Tenerife Spain
- Genomics and Health Group Department of Biochemistry, Microbiology, Cell Biology and Genetics Universidad de La Laguna La Laguna, Tenerife Spain
| | - Katja Repnik
- Center for Human Molecular Genetics and Pharmacogenomics Faculty of Medicine University of Maribor Maribor Slovenia
- Laboratory for Biochemistry Molecular Biology and Genomics Faculty for Chemistry and Chemical Engineering University of Maribor Maribor Slovenia
| | - Leila Karimi
- Department of Medical Informatics Erasmus University Medical Center Rotterdam The Netherlands
| | - Marianna Mitratza
- Division of Pharmacoepidemiology and Clinical Pharmacology Faculty of Science Utrecht University Utrecht The Netherlands
| | - Niloufar Farzan
- Department of Respiratory Medicine Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology Faculty of Science Utrecht University Utrecht The Netherlands
| | - Martijn C. Nawijn
- Laboratory of Allergology and Pulmonary Diseases, Pathology and Medical Biology Groningen Research Institute for Asthma and COPD (GRIAC) University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Esteban G. Burchard
- Department of Medicine University of California San Francisco CA USA
- Department of Bioengineering and Therapeutic Sciences University of California San Francisco CA USA
| | - Marjolein Engelkes
- Department of Medical Informatics Erasmus University Medical Center Rotterdam The Netherlands
| | - Katia M. Verhamme
- Department of Medical Informatics Erasmus University Medical Center Rotterdam The Netherlands
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics Faculty of Medicine University of Maribor Maribor Slovenia
- Laboratory for Biochemistry Molecular Biology and Genomics Faculty for Chemistry and Chemical Engineering University of Maribor Maribor Slovenia
| | - Maria Pino‐Yanes
- Research Unit Hospital Universitario N.S. de Candelaria Universidad de La Laguna Santa Cruz de Tenerife Spain
- Genomics and Health Group Department of Biochemistry, Microbiology, Cell Biology and Genetics Universidad de La Laguna La Laguna, Tenerife Spain
- CIBER de Enfermedades Respiratorias Instituto de Salud Carlos III Madrid Spain
| | - Dirkje S. Postma
- Department of Pulmonary Diseases Groningen Research Institute for Asthma and COPD (GRIAC) University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Anke‐Hilse Maitland‐van der Zee
- Department of Respiratory Medicine Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology Faculty of Science Utrecht University Utrecht The Netherlands
- Department of Pediatric Respiratory Medicine and Allergy Emma's Children Hospital Academic Medical Center (AMC) University of Amsterdam Amsterdam The Netherlands
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology Beatrix Children's Hospital Groningen Research Institute for Asthma and COPD (GRIAC) University Medical Center Groningen University of Groningen Groningen The Netherlands
| |
Collapse
|
34
|
Neubert H, Shuford CM, Olah TV, Garofolo F, Schultz GA, Jones BR, Amaravadi L, Laterza OF, Xu K, Ackermann BL. Protein Biomarker Quantification by Immunoaffinity Liquid Chromatography–Tandem Mass Spectrometry: Current State and Future Vision. Clin Chem 2020; 66:282-301. [DOI: 10.1093/clinchem/hvz022] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Abstract
Immunoaffinity–mass spectrometry (IA-MS) is an emerging analytical genre with several advantages for profiling and determination of protein biomarkers. Because IA-MS combines affinity capture, analogous to ligand binding assays (LBAs), with mass spectrometry (MS) detection, this platform is often described using the term hybrid methods. The purpose of this report is to provide an overview of the principles of IA-MS and to demonstrate, through application, the unique power and potential of this technology. By combining target immunoaffinity enrichment with the use of stable isotope-labeled internal standards and MS detection, IA-MS achieves high sensitivity while providing unparalleled specificity for the quantification of protein biomarkers in fluids and tissues. In recent years, significant uptake of IA-MS has occurred in the pharmaceutical industry, particularly in the early stages of clinical development, enabling biomarker measurement previously considered unattainable. By comparison, IA-MS adoption by CLIA laboratories has occurred more slowly. Current barriers to IA-MS use and opportunities for expanded adoption are discussed. The path forward involves identifying applications for which IA-MS is the best option compared with LBA or MS technologies alone. IA-MS will continue to benefit from advances in reagent generation, more sensitive and higher throughput MS technologies, and continued growth in use by the broader analytical community. Collectively, the pursuit of these opportunities will secure expanded long-term use of IA-MS for clinical applications.
Collapse
|
35
|
Interleukin-13 Stimulation Reveals the Cellular and Functional Plasticity of the Airway Epithelium. Ann Am Thorac Soc 2019; 15:S98-S102. [PMID: 29676620 DOI: 10.1513/annalsats.201711-868mg] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
About 50% of patients with asthma exhibit chronic airway inflammation driven by the type 2 cytokines interleukin (IL)-4, IL-5, and IL-13. These patients with type 2-high asthma experience more allergic symptoms, greater airway hyperresponsiveness, and more severe mucus obstruction than patients with type 2-low asthma. Mouse models of asthma have shown that much of the airway dysfunction in these models can be generated by IL-13 stimulation of the airway epithelium alone. Both in vivo mouse model studies and in vitro studies of human mucociliary airway epithelial cultures have shown that IL-13 induces cellular remodeling of the airway epithelium through proliferation-independent transdifferentiation processes. In both humans and mice, IL-13 stimulation of the airway epithelium results in generation of hypersecretory mucin 5AC (MUC5AC)-expressing mucus cells. Whereas club cells have been shown to be the source of these mucin 5AC-positive mucus cells in mice, the origin of these mucus cells in humans is unclear. In humans, chronic IL-13 stimulation appears to result in loss of ciliated cells. Moreover, IL-13 stimulation can block ciliated cell differentiation from human basal airway epithelial cells. Coincident with IL-13 cellular remodeling are reported decreases in mucociliary transport and ciliary beat frequency. These IL-13-mediated changes in mucociliary function are accompanied by disorganization of cilia, a decrease in the ratio of mucin 5B (MUC5B) to mucin 5AC, and mucus gel tethering to the epithelial surface by mucin 5AC. These airway epithelial responses to IL-13 are mediated by multiple transcription factors, including signal transducer and activator of transcription-6 (STAT6), SAM pointed domain-containing Ets transcription factor (SPDEF), Forkhead box A2 (FOXA2), and Forkhead box J1 (FOXJ1). In addition, analysis of RNA-sequencing data derived from airway epithelial cells shows how IL-13 stimulation promotes broad changes in gene expression across the transcriptome. These results reveal the plastic nature of airway epithelial cells that enables the epithelium to undergo remodeling and functional shifts in response to IL-13 stimulation. With use of new technology, future studies should lead to greater understanding of how IL-13 and other stimuli of disease bring about airway epithelial remodeling, which may aid in the development of therapies that ameliorate airway dysfunction in asthma and other diseases.
Collapse
|
36
|
Lambrecht BN, Hammad H, Fahy JV. The Cytokines of Asthma. Immunity 2019; 50:975-991. [PMID: 30995510 DOI: 10.1016/j.immuni.2019.03.018] [Citation(s) in RCA: 626] [Impact Index Per Article: 125.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/13/2023]
Abstract
Asthma is a chronic inflammatory airway disease associated with type 2 cytokines interleukin-4 (IL-4), IL-5, and IL-13, which promote airway eosinophilia, mucus overproduction, bronchial hyperresponsiveness (BHR), and immunogloubulin E (IgE) synthesis. However, only half of asthma patients exhibit signs of an exacerbated Type 2 response. "Type 2-low" asthma has different immune features: airway neutrophilia, obesity-related systemic inflammation, or in some cases, few signs of immune activation. Here, we review the cytokine networks driving asthma, placing these in cellular context and incorporating insights from cytokine-targeting therapies in the clinic. We discuss established and emerging paradigms in the context of the growing appreciation of disease heterogeneity and argue that the development of new and improved therapeutics will require understanding the diverse mechanisms underlying the spectrum of asthma pathologies.
Collapse
Affiliation(s)
- Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Hamida Hammad
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - John V Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, USA
| |
Collapse
|
37
|
Peters MC, Ringel L, Dyjack N, Herrin R, Woodruff PG, Rios C, O’Connor B, Fahy JV, Seibold MA. A Transcriptomic Method to Determine Airway Immune Dysfunction in T2-High and T2-Low Asthma. Am J Respir Crit Care Med 2019; 199:465-477. [PMID: 30371106 PMCID: PMC6376622 DOI: 10.1164/rccm.201807-1291oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type 2 (T2) inflammation drives airway dysfunction in many patients with asthma; yet, we lack a comprehensive understanding of the airway immune cell types and networks that sustain this inflammation. Moreover, defects in the airway immune system in patients with asthma without T2 inflammation are not established. OBJECTIVES To determine the gene networks that sustain T2 airway inflammation in T2-high asthma and to explore the gene networks that characterize T2-low asthma. METHODS Network analysis of sputum cell transcriptome expression data from 84 subjects with asthma and 27 healthy control subjects was used to identify immune cell type-enriched networks that underlie asthma subgroups. RESULTS Sputum T2 gene expression was characterized by an immune cell network derived from multiple innate immune cells, including eosinophils, mast cells/basophils, and inflammatory dendritic cells. Clustering of subjects within this network stratified subjects into T2-high and T2-low groups, but it also revealed a subgroup of T2-high subjects with uniformly higher expression of the T2 network. These "T2-ultrahigh subjects" were characterized clinically by older age and more severe airflow obstruction and pathologically by a second T2 network derived from T2-skewed, CD11b+/CD103-/IRF4+ classical dendritic cells. Subjects with T2-low asthma were differentiated from healthy control subjects by lower expression of a cytotoxic CD8+ T-cell network, which was negatively correlated with body mass index and plasma IL-6 concentrations. CONCLUSIONS Persistent airway T2 inflammation is a complex construct of innate and adaptive immunity gene expression networks that are variable across individuals with asthma and persist despite steroid treatment. Individuals with T2-low asthma exhibit an airway deficiency in cytotoxic T cells associated with obesity-driven inflammation.
Collapse
Affiliation(s)
- Michael C. Peters
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | | | | | | | - Prescott G. Woodruff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Cydney Rios
- Center for Genes, Environment, and Health and
| | | | - John V. Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Max A. Seibold
- Center for Genes, Environment, and Health and
- Department of Pediatrics, National Jewish Health, Denver, Colorado; and
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado – Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
38
|
Chen Y, Huang A, Ao W, Wang Z, Yuan J, Song Q, Wei D, Ye H. Proteomic analysis of serum proteins from HIV/AIDS patients with Talaromyces marneffei infection by TMT labeling-based quantitative proteomics. Clin Proteomics 2018; 15:40. [PMID: 30598657 PMCID: PMC6302400 DOI: 10.1186/s12014-018-9219-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Talaromyces marneffei (TM) is an emerging pathogenic fungus that can cause a fatal systemic mycosis in patients infected with human immunodeficiency virus (HIV). Although global awareness regarding HIV/TM coinfection is increasing little is known about the mechanism that mediates the rapid progression to HIV/AIDS disease in coinfected individuals. The aim of this study was to analyze the serum proteome of HIV/TM coinfected patients and to identify the associated protein biomarkers for TM in patients with HIV/AIDS. METHODS We systematically used multiplexed isobaric tandem mass tag labeling combined with liquid chromatography mass spectrometry (LC-MS/MS) to screen for differentially expressed proteins in the serum samples from HIV/TM-coinfected patients. RESULTS Of a total data set that included 1099 identified proteins, approximately 86% of the identified proteins were quantified. Among them, 123 proteins were at least 1.5-fold up-or downregulated in the serum between HIV/TM-coinfected and HIV-mono-infected patients. Furthermore, our results indicate that two selected proteins (IL1RL1 and THBS1) are potential biomarkers for distinguishing HIV/TM-coinfected patients. CONCLUSIONS This is the first report to provide a global proteomic profile of serum samples from HIV/TM-coinfected patients. Our data provide insights into the proteins that are involved as host response factors during infection. These data shed new light on the molecular mechanisms that are dysregulated and contribute to the pathogenesis of HIV/TM coinfection. IL1RL1 and THBS1 are promising diagnostic markers for HIV/TM-coinfected patients although further large-scale studies are needed. Thus, quantitative proteomic analysis revealed molecular differences between the HIV/TM-coinfected and HIV-mono-infected individuals, and might provide fundamental information for further detailed investigations.
Collapse
Affiliation(s)
- Yahong Chen
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Aiqiong Huang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Wen Ao
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Zhengwu Wang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Jinjin Yuan
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Qing Song
- Shanxi Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, 710072 People’s Republic of China
| | - Dahai Wei
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- The First Affiliated Hospital of Jiaxing University, 1882 Zhonghuan Road, Jiaxing, 314001 People’s Republic of China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 People’s Republic of China
| | - Hanhui Ye
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| |
Collapse
|
39
|
Hayden LP, Cho MH, Raby BA, Beaty TH, Silverman EK, Hersh CP. Childhood asthma is associated with COPD and known asthma variants in COPDGene: a genome-wide association study. Respir Res 2018; 19:209. [PMID: 30373671 PMCID: PMC6206739 DOI: 10.1186/s12931-018-0890-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/12/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Childhood asthma is strongly influenced by genetics and is a risk factor for reduced lung function and chronic obstructive pulmonary disease (COPD) in adults. This study investigates self-reported childhood asthma in adult smokers from the COPDGene Study. We hypothesize that childhood asthma is associated with decreased lung function, increased risk for COPD, and that a genome-wide association study (GWAS) will show association with established asthma variants. METHODS We evaluated current and former smokers ages 45-80 of non-Hispanic white (NHW) or African American (AA) race. Childhood asthma was defined by self-report of asthma, diagnosed by a medical professional, with onset at < 16 years or during childhood. Subjects with a history of childhood asthma were compared to those who never had asthma based on lung function, development of COPD, and genetic variation. GWAS was performed in NHW and AA populations, and combined in meta-analysis. Two sets of established asthma SNPs from published literature were examined for association with childhood asthma. RESULTS Among 10,199 adult smokers, 730 (7%) reported childhood asthma and 7493 (73%) reported no history of asthma. Childhood asthmatics had reduced lung function and increased risk for COPD (OR 3.42, 95% CI 2.81-4.18). Genotype data was assessed for 8031 subjects. Among NHWs, 391(7%) had childhood asthma, and GWAS identified one genome-wide significant association in KIAA1958 (rs59289606, p = 4.82 × 10- 8). Among AAs, 339 (12%) had childhood asthma. No SNPs reached genome-wide significance in the AAs or in the meta-analysis combining NHW and AA subjects; however, potential regions of interest were identified. Established asthma SNPs were examined, seven from the NHGRI-EBI database and five with genome-wide significance in the largest pediatric asthma GWAS. Associations were found in the current childhood asthma GWAS with known asthma loci in IL1RL1, IL13, LINC01149, near GSDMB, and in the C11orf30-LRRC32 region (Bonferroni adjusted p < 0.05 for all comparisons). CONCLUSIONS Childhood asthmatics are at increased risk for COPD. Defining asthma by self-report is valid in populations at risk for COPD, identifying subjects with clinical and genetic characteristics known to associate with childhood asthma. This has potential to improve clinical understanding of asthma-COPD overlap (ACO) and enhance future research into ACO-specific treatment regimens. TRIAL REGISTRATION ClinicalTrials.gov, NCT00608764 (Active since January 28, 2008).
Collapse
Affiliation(s)
- Lystra P. Hayden
- Division of Respiratory Diseases, Boston Children’s Hospital, Boston, MA USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Benjamin A. Raby
- Division of Respiratory Diseases, Boston Children’s Hospital, Boston, MA USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Terri H. Beaty
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Craig P. Hersh
- Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA USA
| |
Collapse
|
40
|
Mast cells signal their importance in health and disease. J Allergy Clin Immunol 2018; 142:381-393. [DOI: 10.1016/j.jaci.2018.01.034] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/11/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023]
|
41
|
Tsai YH, Parker JS, Yang IV, Kelada SNP. Meta-analysis of airway epithelium gene expression in asthma. Eur Respir J 2018; 51:13993003.01962-2017. [PMID: 29650561 DOI: 10.1183/13993003.01962-2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/30/2018] [Indexed: 01/15/2023]
Abstract
Differential gene expression in the airway epithelium of patients with asthma versus controls has been reported in several studies. However, there is no consensus on which genes are reproducibly affected in asthma. We sought to identify a consensus list of differentially expressed genes (DEGs) using a meta-analysis approach.We identified eight studies with data that met defined inclusion criteria. These studies comprised 355 cases and 193 controls and involved sampling either bronchial or nasal epithelium. We conducted study-level analyses, followed by a meta-analysis. Likewise, we applied a meta-analysis framework to the results of study-level pathway enrichment.We identified 1273 DEGs, 431 of which had not been identified in previous studies. 450 DEGs exhibited large effect sizes and were robust to study population differences in age, sex, race/ethnicity, medication use, smoking status and exacerbations. The magnitude of differential expression of these 450 genes was highly similar in bronchial and nasal airway epithelia. Meta-analysis of pathway enrichment revealed a number of consistently dysregulated biological pathways, including putative transcriptional and post-transcriptional regulators.In total, we identified a set of genes that is consistently dysregulated in asthma, that links to known and novel biological pathways, and that will inform asthma subtype identification.
Collapse
Affiliation(s)
- Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Dept of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Ivana V Yang
- Dept of Medicine, University of Colorado, Aurora, CO, USA
| | - Samir N P Kelada
- Dept of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
42
|
Dijk FN, Xu C, Melén E, Carsin AE, Kumar A, Nolte IM, Gruzieva O, Pershagen G, Grotenboer NS, Savenije OEM, Antó JM, Lavi I, Dobaño C, Bousquet J, van der Vlies P, van der Valk RJP, de Jongste JC, Nawijn MC, Guerra S, Postma DS, Koppelman GH. Genetic regulation of IL1RL1 methylation and IL1RL1-a protein levels in asthma. Eur Respir J 2018. [PMID: 29519908 DOI: 10.1183/13993003.01377-2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Interleukin-1 receptor-like 1 (IL1RL1) is an important asthma gene. (Epi)genetic regulation of IL1RL1 protein expression has not been established. We assessed the association between IL1RL1 single nucleotide polymorphisms (SNPs), IL1RL1 methylation and serum IL1RL1-a protein levels, and aimed to identify causal pathways in asthma.Associations of IL1RL1 SNPs with asthma were determined in the Dutch Asthma Genome-wide Association Study cohort and three European birth cohorts, BAMSE (Children/Barn, Allergy, Milieu, Stockholm, an Epidemiological survey), INMA (Infancia y Medio Ambiente) and PIAMA (Prevention and Incidence of Asthma and Mite Allergy), participating in the Mechanisms of the Development of Allergy study. We performed blood DNA IL1RL1 methylation quantitative trait locus (QTL) analysis (n=496) and (epi)genome-wide protein QTL analysis on serum IL1RL1-a levels (n=1462). We investigated the association of IL1RL1 CpG methylation with asthma (n=632) and IL1RL1-a levels (n=548), with subsequent causal inference testing. Finally, we determined the association of IL1RL1-a levels with asthma and its clinical characteristics (n=1101).IL1RL1 asthma-risk SNPs strongly associated with IL1RL1 methylation (rs1420101; p=3.7×10-16) and serum IL1RL1-a levels (p=2.8×10-56). IL1RL1 methylation was not associated with asthma or IL1RL1-a levels. IL1RL1-a levels negatively correlated with blood eosinophil counts, whereas there was no association between IL1RL1-a levels and asthma.In conclusion, asthma-associated IL1RL1 SNPs strongly regulate IL1RL1 methylation and serum IL1RL1-a levels, yet neither these IL1RL1-methylation CpG sites nor IL1RL1-a levels are associated with asthma.
Collapse
Affiliation(s)
- F Nicole Dijk
- Dept of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Chengjian Xu
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Dept of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Dept of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden.,Sachs Children's Hospital, South General Hospital, Stockholm, Sweden
| | - Anne-Elie Carsin
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Asish Kumar
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Dept of Public Health Epidemiology, Unit of Chronic Disease Epidemiology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Ilja M Nolte
- Dept of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Goran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Neomi S Grotenboer
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Laboratory of Allergology and Pulmonary Diseases, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Olga E M Savenije
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Dept of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Josep Maria Antó
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Iris Lavi
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Carlota Dobaño
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jean Bousquet
- University Hospital, Montpellier, France.,MACVIA-LR, Contre les MAladies Chroniques pour un VIeillissement Actif en Languedoc-Roussillon, European Innovation Partnership on Active and Healthy Ageing Reference Site, France.,INSERM, VIMA: Ageing and chronic diseases. Epidemiological and Public Health Approaches, U1168, UVSQ, UMR-S 1168, Université Versailles St-Quentin-en-Yvelines, Paris, France
| | - Pieter van der Vlies
- Dept of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Laboratory of Allergology and Pulmonary Diseases, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefano Guerra
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Dirkje S Postma
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Dept of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerard H Koppelman
- Dept of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands .,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
43
|
Deckers J, De Bosscher K, Lambrecht BN, Hammad H. Interplay between barrier epithelial cells and dendritic cells in allergic sensitization through the lung and the skin. Immunol Rev 2017; 278:131-144. [DOI: 10.1111/imr.12542] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julie Deckers
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
- Department of Biochemistry; Ghent University; Ghent Belgium
- Receptor Research Laboratories; Nuclear Receptor Lab; VIB Center for Medical Biotechnology; Ghent Belgium
| | - Karolien De Bosscher
- Department of Biochemistry; Ghent University; Ghent Belgium
- Receptor Research Laboratories; Nuclear Receptor Lab; VIB Center for Medical Biotechnology; Ghent Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
- Department of Pulmonary Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Hamida Hammad
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
| |
Collapse
|
44
|
Wesolowska-Andersen A, Everman JL, Davidson R, Rios C, Herrin R, Eng C, Janssen WJ, Liu AH, Oh SS, Kumar R, Fingerlin TE, Rodriguez-Santana J, Burchard EG, Seibold MA. Dual RNA-seq reveals viral infections in asthmatic children without respiratory illness which are associated with changes in the airway transcriptome. Genome Biol 2017; 18:12. [PMID: 28103897 PMCID: PMC5244706 DOI: 10.1186/s13059-016-1140-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/16/2016] [Indexed: 12/01/2022] Open
Abstract
Background Respiratory illness caused by viral infection is associated with the development and exacerbation of childhood asthma. Little is known about the effects of respiratory viral infections in the absence of illness. Using quantitative PCR (qPCR) for common respiratory viruses and for two genes known to be highly upregulated in viral infections (CCL8/CXCL11), we screened 92 asthmatic and 69 healthy children without illness for respiratory virus infections. Results We found 21 viral qPCR-positive and 2 suspected virus-infected subjects with high expression of CCL8/CXCL11. We applied a dual RNA-seq workflow to these subjects, together with 25 viral qPCR-negative subjects, to compare qPCR with sequencing-based virus detection and to generate the airway transcriptome for analysis. RNA-seq virus detection achieved 86% sensitivity when compared to qPCR-based screening. We detected additional respiratory viruses in the two CCL8/CXCL11-high subjects and in two of the qPCR-negative subjects. Viral read counts varied widely and were used to stratify subjects into Virus-High and Virus-Low groups. Examination of the host airway transcriptome found that the Virus-High group was characterized by immune cell airway infiltration, downregulation of cilia genes, and dampening of type 2 inflammation. Even the Virus-Low group was differentiated from the No-Virus group by 100 genes, some involved in eIF2 signaling. Conclusions Respiratory virus infection without illness is not innocuous but may determine the airway function of these subjects by driving immune cell airway infiltration, cellular remodeling, and alteration of asthmogenic gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1140-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jamie L Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Rebecca Davidson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Cydney Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Rachelle Herrin
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Andrew H Liu
- Department of Pediatrics, National Jewish Health, 1400 Jackson St, Denver, CO, 80206, USA.,Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, USA
| | - Sam S Oh
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Rajesh Kumar
- Department of Pediatrics, The Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tasha E Fingerlin
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.,Department of Biomedical Research, National Jewish Health, Denver, CO, USA
| | | | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA. .,Department of Pediatrics, National Jewish Health, 1400 Jackson St, Denver, CO, 80206, USA. .,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|