1
|
Farr JN, Atkinson EJ, Achenbach SJ, Volkman TL, Tweed AJ, Vos SJ, Ruan M, Sfeir J, Drake MT, Saul D, Doolittle ML, Bancos I, Yu K, Tchkonia T, LeBrasseur NK, Kirkland JL, Monroe DG, Khosla S. Effects of intermittent senolytic therapy on bone metabolism in postmenopausal women: a phase 2 randomized controlled trial. Nat Med 2024; 30:2605-2612. [PMID: 38956196 DOI: 10.1038/s41591-024-03096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Preclinical evidence demonstrates that senescent cells accumulate with aging and that senolytics delay multiple age-related morbidities, including bone loss. Thus, we conducted a phase 2 randomized controlled trial of intermittent administration of the senolytic combination dasatinib plus quercetin (D + Q) in postmenopausal women (n = 60 participants). The primary endpoint, percentage changes at 20 weeks in the bone resorption marker C-terminal telopeptide of type 1 collagen (CTx), did not differ between groups (median (interquartile range), D + Q -4.1% (-13.2, 2.6), control -7.7% (-20.1, 14.3); P = 0.611). The secondary endpoint, percentage changes in the bone formation marker procollagen type 1 N-terminal propeptide (P1NP), increased significantly (relative to control) in the D + Q group at both 2 weeks (+16%, P = 0.020) and 4 weeks (+16%, P = 0.024), but was not different from control at 20 weeks (-9%, P = 0.149). No serious adverse events were observed. In exploratory analyses, the skeletal response to D + Q was driven principally by women with a high senescent cell burden (highest tertile for T cell p16 (also known as CDKN2A) mRNA levels) in which D + Q concomitantly increased P1NP (+34%, P = 0.035) and reduced CTx (-11%, P = 0.049) at 2 weeks, and increased radius bone mineral density (+2.7%, P = 0.004) at 20 weeks. Thus, intermittent D + Q treatment did not reduce bone resorption in the overall group of postmenopausal women. However, our exploratory analyses indicate that further studies are needed testing the hypothesis that the underlying senescent cell burden may dictate the clinical response to senolytics. ClinicalTrials.gov identifier: NCT04313634 .
Collapse
Affiliation(s)
- Joshua N Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | | | - Sara J Achenbach
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Tammie L Volkman
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Amanda J Tweed
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Stephanie J Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Ming Ruan
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Jad Sfeir
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Matthew T Drake
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Madison L Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Irina Bancos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Kai Yu
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - David G Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Padhiyar J, Mahajan R, Panda M. RASopathies: Evolving Concepts in Pathogenetics, Clinical Features, and Management. Indian Dermatol Online J 2024; 15:392-404. [PMID: 38845651 PMCID: PMC11152490 DOI: 10.4103/idoj.idoj_594_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 06/09/2024] Open
Abstract
RASopathies refers to the group of disorders which are caused by a mutation in various genes of the RAS/MAPK (RAT sarcoma virus/Mitogen activated protein kinase) pathway. It includes many genes with varied functions, which are responsible for cell cycle regulation. As the mutation in one gene affects the entire pathway, there are many overlapping features among the various syndromes which are included under an umbrella term "RASopathies." However, neuroectodermal involvement is a unifying feature among these syndromes, which are caused by germline mutations affecting genes along this pathway. Recently, many other RASopathies have been described to involve blood vessels, lymphatics, and immune system. Also, many cutaneous mosaic disorders have been found to have mutations in the concerned pathway. The purpose of this article is to briefly review the pathogenesis of RASopathies with cutaneous manifestations, and summarise the features that can be helpful as diagnostic clues to dermatologists. As we understand more about the pathogenesis of the pathway at the cellular level, the research on genotype-phenotype correlation and therapeutic options broadens. Targeted therapy is in the clinical and preclinical trial phase, which may brighten the future of many patients.
Collapse
Affiliation(s)
- Jigna Padhiyar
- Department of DVL, Gujarat Cancer Society Medical College, Hospital and Research Centre, Ahmedabad, Gujarat, India
| | - Rahul Mahajan
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Maitreyee Panda
- Department of Dermatology, IMS and SUM Hospital, Bhubaneshwar, Odisha, India
| |
Collapse
|
3
|
Monda E, Bakalakos A, Rubino M, Verrillo F, Diana G, De Michele G, Altobelli I, Lioncino M, Perna A, Falco L, Palmiero G, Elliott PM, Limongelli G. Targeted Therapies in Pediatric and Adult Patients With Hypertrophic Heart Disease: From Molecular Pathophysiology to Personalized Medicine. Circ Heart Fail 2023; 16:e010687. [PMID: 37477018 DOI: 10.1161/circheartfailure.123.010687] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023]
Abstract
Hypertrophic cardiomyopathy is a myocardial disease defined by an increased left ventricular wall thickness not solely explained by abnormal loading conditions. It is often genetically determined, with sarcomeric gene mutations accounting for around 50% of cases. Several conditions, including syndromic, metabolic, infiltrative, and neuromuscular diseases, may present with left ventricular hypertrophy, mimicking the hypertrophic cardiomyopathy phenotype but showing a different pathophysiology, clinical course, and outcome. Despite being rare, they are collectively responsible for a large proportion of patients presenting with hypertrophic heart disease, and their timely diagnosis can significantly impact patients' management. The understanding of disease pathophysiology has advanced over the last few years, and several therapeutic targets have been identified, leading to a new era of tailored treatments applying to different etiologies associated with left ventricular hypertrophy. This review aims to provide an overview of the existing and emerging therapies for the principal causes of hypertrophic heart disease, discussing the potential impact on patients' management and clinical outcome.
Collapse
Affiliation(s)
- Emanuele Monda
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
- Institute of Cardiovascular Sciences, University College London, United Kingdom (E.M., A.B., P.M.E., G.L.)
| | - Athanasios Bakalakos
- Institute of Cardiovascular Sciences, University College London, United Kingdom (E.M., A.B., P.M.E., G.L.)
| | - Marta Rubino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Federica Verrillo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Gaetano Diana
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Gianantonio De Michele
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Ippolita Altobelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Michele Lioncino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Alessia Perna
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Luigi Falco
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Giuseppe Palmiero
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Perry M Elliott
- Institute of Cardiovascular Sciences, University College London, United Kingdom (E.M., A.B., P.M.E., G.L.)
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
- Institute of Cardiovascular Sciences, University College London, United Kingdom (E.M., A.B., P.M.E., G.L.)
| |
Collapse
|
4
|
Bogle C, Colan SD, Miyamoto SD, Choudhry S, Baez-Hernandez N, Brickler MM, Feingold B, Lal AK, Lee TM, Canter CE, Lipshultz SE. Treatment Strategies for Cardiomyopathy in Children: A Scientific Statement From the American Heart Association. Circulation 2023; 148:174-195. [PMID: 37288568 DOI: 10.1161/cir.0000000000001151] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This scientific statement from the American Heart Association focuses on treatment strategies and modalities for cardiomyopathy (heart muscle disease) in children and serves as a companion scientific statement for the recent statement on the classification and diagnosis of cardiomyopathy in children. We propose that the foundation of treatment of pediatric cardiomyopathies is based on these principles applied as personalized therapy for children with cardiomyopathy: (1) identification of the specific cardiac pathophysiology; (2) determination of the root cause of the cardiomyopathy so that, if applicable, cause-specific treatment can occur (precision medicine); and (3) application of therapies based on the associated clinical milieu of the patient. These clinical milieus include patients at risk for developing cardiomyopathy (cardiomyopathy phenotype negative), asymptomatic patients with cardiomyopathy (phenotype positive), patients with symptomatic cardiomyopathy, and patients with end-stage cardiomyopathy. This scientific statement focuses primarily on the most frequent phenotypes, dilated and hypertrophic, that occur in children. Other less frequent cardiomyopathies, including left ventricular noncompaction, restrictive cardiomyopathy, and arrhythmogenic cardiomyopathy, are discussed in less detail. Suggestions are based on previous clinical and investigational experience, extrapolating therapies for cardiomyopathies in adults to children and noting the problems and challenges that have arisen in this experience. These likely underscore the increasingly apparent differences in pathogenesis and even pathophysiology in childhood cardiomyopathies compared with adult disease. These differences will likely affect the utility of some adult therapy strategies. Therefore, special emphasis has been placed on cause-specific therapies in children for prevention and attenuation of their cardiomyopathy in addition to symptomatic treatments. Current investigational strategies and treatments not in wide clinical practice, including future direction for investigational management strategies, trial designs, and collaborative networks, are also discussed because they have the potential to further refine and improve the health and outcomes of children with cardiomyopathy in the future.
Collapse
|
5
|
Singh P, Gollapalli K, Mangiola S, Schranner D, Yusuf MA, Chamoli M, Shi SL, Bastos BL, Nair T, Riermeier A, Vayndorf EM, Wu JZ, Nilakhe A, Nguyen CQ, Muir M, Kiflezghi MG, Foulger A, Junker A, Devine J, Sharan K, Chinta SJ, Rajput S, Rane A, Baumert P, Schönfelder M, Iavarone F, Lorenzo GD, Kumari S, Gupta A, Sarkar R, Khyriem C, Chawla AS, Sharma A, Sarper N, Chattopadhyay N, Biswal BK, Settembre C, Nagarajan P, Targoff KL, Picard M, Gupta S, Velagapudi V, Papenfuss AT, Kaya A, Ferreira MG, Kennedy BK, Andersen JK, Lithgow GJ, Ali AM, Mukhopadhyay A, Palotie A, Kastenmüller G, Kaeberlein M, Wackerhage H, Pal B, Yadav VK. Taurine deficiency as a driver of aging. Science 2023; 380:eabn9257. [PMID: 37289866 PMCID: PMC10630957 DOI: 10.1126/science.abn9257] [Citation(s) in RCA: 112] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/14/2023] [Indexed: 06/10/2023]
Abstract
Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and health span in monkeys. Mechanistically, taurine reduced cellular senescence, protected against telomerase deficiency, suppressed mitochondrial dysfunction, decreased DNA damage, and attenuated inflammaging. In humans, lower taurine concentrations correlated with several age-related diseases and taurine concentrations increased after acute endurance exercise. Thus, taurine deficiency may be a driver of aging because its reversal increases health span in worms, rodents, and primates and life span in worms and rodents. Clinical trials in humans seem warranted to test whether taurine deficiency might drive aging in humans.
Collapse
Affiliation(s)
- Parminder Singh
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Kishore Gollapalli
- Vagelos College of Physicians and Surgeons, Columbia University; New York, USA
| | - Stefano Mangiola
- Department of Medical Biology, University of Melbourne; Melbourne, Australia
- School of Cancer Medicine, La Trobe University; Bundoora, Australia
- Olivia Newton-John Cancer Research Institute; Heidelberg, Australia
| | - Daniela Schranner
- Exercise Biology Group, Technical University of Munich; Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München; Neuherberg, Germany
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University; Lucknow, India
| | - Manish Chamoli
- Buck Institute of Age Research, 8001 Redwood Blvd; California, USA
| | - Sting L. Shi
- Vagelos College of Physicians and Surgeons, Columbia University; New York, USA
| | - Bruno Lopes Bastos
- Institute for Research on Cancer and Aging of Nice (IRCAN); Nice, France
| | - Tripti Nair
- Molecular Aging Laboratory, National Institute of Immunology; New Delhi, India
| | - Annett Riermeier
- Exercise Biology Group, Technical University of Munich; Munich, Germany
| | - Elena M. Vayndorf
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Judy Z. Wu
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Aishwarya Nilakhe
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Christina Q. Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Michael Muir
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Michael G. Kiflezghi
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Anna Foulger
- Buck Institute of Age Research, 8001 Redwood Blvd; California, USA
| | - Alex Junker
- Department of Neurology, Columbia University; New York, USA
| | - Jack Devine
- Department of Neurology, Columbia University; New York, USA
| | - Kunal Sharan
- Mouse Genetics Project, Wellcome Sanger Institute; Cambridge, UK
| | | | - Swati Rajput
- Division of Endocrinology, CSIR-Central Drug Research Institute; Lucknow, India
| | - Anand Rane
- Buck Institute of Age Research, 8001 Redwood Blvd; California, USA
| | - Philipp Baumert
- Exercise Biology Group, Technical University of Munich; Munich, Germany
| | | | | | | | - Swati Kumari
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Alka Gupta
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Rajesh Sarkar
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Costerwell Khyriem
- Harry Perkins Institute of Medical Research; Perth, Australia
- Curtin Medical School, Curtin University; Perth, Australia
| | - Amanpreet S. Chawla
- Immunobiology Laboratory, National Institute of Immunology; New Delhi, India
- MRC-Protein Phosphorylation and Ubiquitination Unit, University of Dundee; Dundee, UK
| | - Ankur Sharma
- Harry Perkins Institute of Medical Research; Perth, Australia
- Curtin Medical School, Curtin University; Perth, Australia
| | - Nazan Sarper
- Pediatrics and Pediatric Hematology, Kocaeli University Hospital; Kocaeli, Turkey
| | | | - Bichitra K. Biswal
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM); Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University; Naples, Italy
| | - Perumal Nagarajan
- Primate Research Facility, National Institute of Immunology; New Delhi, India
- Small Animal Research Facility, National Institute of Immunology; New Delhi, India
| | - Kimara L. Targoff
- Division of Cardiology, Department of Pediatrics, Columbia University; New York, USA
| | - Martin Picard
- Department of Neurology, Columbia University; New York, USA
| | - Sarika Gupta
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Vidya Velagapudi
- Institute for Molecular Medicine Finland FIMM, University of Helsinki; Helsinki, Finland
| | | | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University; Virginia, USA
| | | | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore; Singapore, Singapore
- Centre for Healthy Longevity, National University Health System; Singapore, Singapore
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Singapore, Singapore
| | | | | | - Abdullah Mahmood Ali
- Department of Medicine, Columbia University Irving Medical Center; New York, USA
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology; New Delhi, India
| | - Aarno Palotie
- Institute for Molecular Medicine Finland FIMM, University of Helsinki; Helsinki, Finland
- Broad Institute of Harvard and MIT; Cambridge, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital; Boston, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München; Neuherberg, Germany
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | | | - Bhupinder Pal
- Department of Medical Biology, University of Melbourne; Melbourne, Australia
- School of Cancer Medicine, La Trobe University; Bundoora, Australia
| | - Vijay K. Yadav
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
- Vagelos College of Physicians and Surgeons, Columbia University; New York, USA
- Mouse Genetics Project, Wellcome Sanger Institute; Cambridge, UK
- Department of Genetics and Development, Columbia University; New York, USA
| |
Collapse
|
6
|
Xu H, Wang W, Liu X, Huang W, Zhu C, Xu Y, Yang H, Bai J, Geng D. Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:202. [PMID: 37198232 DOI: 10.1038/s41392-023-01467-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Since the proposal of Paul Ehrlich's magic bullet concept over 100 years ago, tremendous advances have occurred in targeted therapy. From the initial selective antibody, antitoxin to targeted drug delivery that emerged in the past decades, more precise therapeutic efficacy is realized in specific pathological sites of clinical diseases. As a highly pyknotic mineralized tissue with lessened blood flow, bone is characterized by a complex remodeling and homeostatic regulation mechanism, which makes drug therapy for skeletal diseases more challenging than other tissues. Bone-targeted therapy has been considered a promising therapeutic approach for handling such drawbacks. With the deepening understanding of bone biology, improvements in some established bone-targeted drugs and novel therapeutic targets for drugs and deliveries have emerged on the horizon. In this review, we provide a panoramic summary of recent advances in therapeutic strategies based on bone targeting. We highlight targeting strategies based on bone structure and remodeling biology. For bone-targeted therapeutic agents, in addition to improvements of the classic denosumab, romosozumab, and PTH1R ligands, potential regulation of the remodeling process targeting other key membrane expressions, cellular crosstalk, and gene expression, of all bone cells has been exploited. For bone-targeted drug delivery, different delivery strategies targeting bone matrix, bone marrow, and specific bone cells are summarized with a comparison between different targeting ligands. Ultimately, this review will summarize recent advances in the clinical translation of bone-targeted therapies and provide a perspective on the challenges for the application of bone-targeted therapy in the clinic and future trends in this area.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wentao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Xin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
7
|
Solman M, Woutersen DTJ, den Hertog J. Modeling (not so) rare developmental disorders associated with mutations in the protein-tyrosine phosphatase SHP2. Front Cell Dev Biol 2022; 10:1046415. [PMID: 36407105 PMCID: PMC9672471 DOI: 10.3389/fcell.2022.1046415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a highly conserved protein tyrosine phosphatase (PTP), which is encoded by PTPN11 and is indispensable during embryonic development. Mutations in PTPN11 in human patients cause aberrant signaling of SHP2, resulting in multiple rare hereditary diseases, including Noonan Syndrome (NS), Noonan Syndrome with Multiple Lentigines (NSML), Juvenile Myelomonocytic Leukemia (JMML) and Metachondromatosis (MC). Somatic mutations in PTPN11 have been found to cause cancer. Here, we focus on the role of SHP2 variants in rare diseases and advances in the understanding of its pathogenesis using model systems.
Collapse
Affiliation(s)
- Maja Solman
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jeroen den Hertog
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen den Hertog,
| |
Collapse
|
8
|
Tamargo J, Tamargo M, Caballero R. Hypertrophic cardiomyopathy: an up-to-date snapshot of the clinical drug development pipeline. Expert Opin Investig Drugs 2022; 31:1027-1052. [PMID: 36062808 DOI: 10.1080/13543784.2022.2113374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hypertrophic cardiomyopathy (HCM) is a complex cardiac disease with highly variable phenotypic expression and clinical course most often caused by sarcomeric gene mutations resulting in left ventricular hypertrophy, fibrosis, hypercontractility, and diastolic dysfunction. For almost 60 years, HCM has remained an orphan disease and still lacks a disease-specific treatment. AREAS COVERED This review summarizes recent preclinical and clinical trials with repurposed drugs and new emerging pharmacological and gene-based therapies for the treatment of HCM. EXPERT OPINION The off-label drugs routinely used alleviate symptoms but do not target the core pathophysiology of HCM or prevent or revert the phenotype. Recent advances in the genetics and pathophysiology of HCM led to the development of cardiac myosin adenosine triphosphatase inhibitors specifically directed to counteract the hypercontractility associated with HCM-causing mutations. Mavacamten, the first drug specifically developed for HCM successfully tested in a phase 3 trial, represents the major advance for the treatment of HCM. This opens new horizons for the development of novel drugs targeting HCM molecular substrates which hopefully modify the natural history of the disease. The role of current drugs in development and genetic-based approaches for the treatment of HCM are also discussed.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| | - María Tamargo
- Department of Cardiology, Hospital Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
9
|
Kontaridis MI, Roberts AE, Schill L, Schoyer L, Stronach B, Andelfinger G, Aoki Y, Axelrad ME, Bakker A, Bennett AM, Broniscer A, Castel P, Chang CA, Cyganek L, Das TK, den Hertog J, Galperin E, Garg S, Gelb BD, Gordon K, Green T, Gripp KW, Itkin M, Kiuru M, Korf BR, Livingstone JR, López‐Juárez A, Magoulas PL, Mansour S, Milner T, Parker E, Pierpont EI, Plouffe K, Rauen KA, Shankar SP, Smith SB, Stevenson DA, Tartaglia M, Van R, Wagner ME, Ware SM, Zenker M. The seventh international RASopathies symposium: Pathways to a cure-expanding knowledge, enhancing research, and therapeutic discovery. Am J Med Genet A 2022; 188:1915-1927. [PMID: 35266292 PMCID: PMC9117434 DOI: 10.1002/ajmg.a.62716] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 12/15/2022]
Abstract
RASopathies are a group of genetic disorders that are caused by genes that affect the canonical Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Despite tremendous progress in understanding the molecular consequences of these genetic anomalies, little movement has been made in translating these findings to the clinic. This year, the seventh International RASopathies Symposium focused on expanding the research knowledge that we have gained over the years to enhance new discoveries in the field, ones that we hope can lead to effective therapeutic treatments. Indeed, for the first time, research efforts are finally being translated to the clinic, with compassionate use of Ras/MAPK pathway inhibitors for the treatment of RASopathies. This biannual meeting, organized by the RASopathies Network, brought together basic scientists, clinicians, clinician scientists, patients, advocates, and their families, as well as representatives from pharmaceutical companies and the National Institutes of Health. A history of RASopathy gene discovery, identification of new disease genes, and the latest research, both at the bench and in the clinic, were discussed.
Collapse
Affiliation(s)
- Maria I. Kontaridis
- Department of Biomedical Research and Translational MedicineMasonic Medical Research InstituteUticaNew YorkUSA
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Amy E. Roberts
- Department of CardiologyBoston Children's HospitalBostonMassachusettsUSA
- Division of Genetics, Department of PediatricsBoston Children's HospitalBostonMassachusettsUSA
| | - Lisa Schill
- RASopathies Network USAAltadenaCaliforniaUSA
| | | | | | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Saint‐Justine Research CentreUniversité de MontréalMontréalCanada
| | - Yoko Aoki
- Department of Medical GeneticsTohoku University School of MedicineSendaiJapan
| | - Marni E. Axelrad
- Section of Psychology, Department of PediatricsBaylor College of MedicineHoustonTexasUSA
| | | | - Anton M. Bennett
- Yale Center for Molecular and Systems MetabolismYale University School of MedicineNew HavenConnecticutUSA
| | - Alberto Broniscer
- Division of Hematology‐OncologyUPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
| | - Pau Castel
- Department of Biochemistry and Molecular PharmacologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Caitlin A. Chang
- Department of Medical GeneticsBC Women and Children's HospitalVancouverBritish ColumbiaCanada
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
| | - Tirtha K. Das
- Department of Cell, Developmental, and Regenerative BiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jeroen den Hertog
- Hubrecht Institute‐KNAW and University Medical Center UtrechtUtrechtThe Netherlands
- Institute Biology LeidenLeiden UniversityLeidenThe Netherlands
| | - Emilia Galperin
- Department of Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonKentuckyUSA
| | - Shruti Garg
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences CentreUniversity of Manchester & Child & Adolescent Mental Health ServicesManchesterUK
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute and the Departments of Pediatrics and Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Kristiana Gordon
- Lymphovascular Medicine, Dermatology DepartmentSt. George's UniversityLondonUK
| | - Tamar Green
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Karen W. Gripp
- Department of GeneticsAI duPont Hospital for ChildrenWilmingtonDelawareUSA
| | - Maxim Itkin
- Center for Lymphatic Disorders, Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Maija Kiuru
- Department of Dermatology, Department of Pathology & Laboratory MedicineUniversity of California DavisSacramentoCaliforniaUSA
| | - Bruce R. Korf
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Alejandro López‐Juárez
- Department of Health and Biomedical SciencesUniversity of Texas Rio Grande ValleyTexasUSA
| | - Pilar L. Magoulas
- Department of Molecular and Human Genetics, Baylor College of MedicineTexas Children's HospitalHoustonTexasUSA
| | - Sahar Mansour
- Molecular and Clinical Sciences InstituteSt George's UniversityLondonUK
- South West Thames Regional Genetics ServiceSt George's NHS Foundation TrustLondonUK
| | | | | | - Elizabeth I. Pierpont
- Division of Clinical Behavioral Neuroscience, Department of PediatricsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Katherine A. Rauen
- Department of Pediatrics, Division of Genomic Medicine, MIND InstituteUniversity of California DavisSacramentoCaliforniaUSA
| | - Suma P. Shankar
- Department of Pediatrics, Division of Genomic Medicine, MIND InstituteUniversity of California DavisSacramentoCaliforniaUSA
- Department of Ophthalmology and Vision Science, School of MedicineUniversity of California DavisSacramentoCaliforniaUSA
| | | | - David A. Stevenson
- Department of Pediatrics, Division of Medical GeneticsStanford UniversityStanfordCaliforniaUSA
| | - Marco Tartaglia
- Genetics and Rare Diseases Research DivisionOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - Richard Van
- Helen Diller Family Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Morgan E. Wagner
- NCI RAS Initiative, Cancer Research Technology ProgramFrederick National Laboratory for Cancer ResearchFrederickMarylandUSA
| | - Stephanie M. Ware
- Department of Pediatrics, Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Martin Zenker
- Institute of Human Genetics, University HospitalOtto‐von‐Guericke UniversityMagdeburgGermany
| |
Collapse
|
10
|
Peng X, Zhou X, Yin Y, Luo B, Liu Y, Yang C. Inflammatory Microenvironment Accelerates Bone Marrow Mesenchymal Stem Cell Aging. Front Bioeng Biotechnol 2022; 10:870324. [PMID: 35646835 PMCID: PMC9133389 DOI: 10.3389/fbioe.2022.870324] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
MSC senescence is considered a contributing factor in aging-related diseases. We investigated the influence of the inflammatory microenvironment on bone marrow mesenchymal stem cells (BMSCs) under aging conditions and the underlying mechanism to provide new ideas for stem cell therapy for age-related osteoporosis. The BMSCs were cultured until passage 3 (P3) (young group) and passage 10 (P10) (aging group) in vitro. The supernatant was collected as the conditioned medium (CM). The young BMSCs were cultured in the CM of P3 or P10 cells. The effects of CM from different groups on the aging and stemness of the young BMSCs were examined. A Quantibody® mouse inflammation array on serum extracts from young (aged 8 weeks) and old (aged 78 weeks) mice was performed, and differentially expressed factors were screened out. We discovered that the CM from senescent MSCs changed the physiology of young BMSCs. Systemic inflammatory microenvironments changed with age in the mice. In particular, the pro-inflammatory cytokine IL-6 increased, and the anti-inflammatory cytokine IL-10 decreased. The underlying mechanism was investigated by GO and KEGG analyses, and there was a change in the JAK-STAT signaling pathway, which is closely related to IL-6 and IL-10. Collectively, our results demonstrated that the age-related inflammatory microenvironment has a significant effect on the biological functions of BMSCs. Targeted reversal of this inflammatory environment may provide a new strategy for stem cell therapy to treat aging-related skeletal diseases.
Collapse
Affiliation(s)
- Xin Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xin Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | | | | | - Yang Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Cheng Yang, ; Yang Liu,
| | - Cheng Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Cheng Yang, ; Yang Liu,
| |
Collapse
|
11
|
Liu J, Zhang J, Lin X, Boyce BF, Zhang H, Xing L. Age-associated callus senescent cells produce TGF-β1 that inhibits fracture healing in aged mice. J Clin Invest 2022; 132:e148073. [PMID: 35426372 PMCID: PMC9012290 DOI: 10.1172/jci148073] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 02/16/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence plays an important role in human diseases, including osteoporosis and osteoarthritis. Senescent cells (SCs) produce the senescence-associated secretory phenotype to affect the function of neighboring cells and SCs themselves. Delayed fracture healing is common in the elderly and is accompanied by reduced mesenchymal progenitor cells (MPCs). However, the contribution of cellular senescence to fracture healing in the aged has not to our knowledge been studied. Here, we used C57BL/6J 4-month-old young and 20-month-old aged mice and demonstrated a rapid increase in SCs in the fracture callus of aged mice. The senolytic drugs dasatinib plus quercetin enhanced fracture healing in aged mice. Aged callus SCs inhibited the growth and proliferation of callus-derived MPCs (CaMPCs) and expressed high levels of TGF-β1. TGF-β-neutralizing Ab prevented the inhibitory effects of aged callus SCs on CaMPCs and promoted fracture healing in aged mice, which was associated with increased CaMPCs and proliferating cells. Thus, fracture triggered a significant cellular senescence in the callus cells of aged mice, which inhibited MPCs by expressing TGF-β1. Short-term administration of dasatinib plus quercetin depleted callus SCs and accelerated fracture healing in aged mice. Senolytic drugs represent a promising therapy, while TGF-β1 signaling is a molecular mechanism for fractures in the elderly via SCs.
Collapse
Affiliation(s)
- Jiatong Liu
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Jun Zhang
- Plastic Surgery Center, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Xi Lin
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Brendan F. Boyce
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
12
|
Abstract
The RASopathies are a group of disorders caused by a germline mutation in one of the genes encoding a component of the RAS/MAPK pathway. These disorders, including neurofibromatosis type 1, Noonan syndrome, cardiofaciocutaneous syndrome, Costello syndrome and Legius syndrome, among others, have overlapping clinical features due to RAS/MAPK dysfunction. Although several of the RASopathies are very rare, collectively, these disorders are relatively common. In this Review, we discuss the pathogenesis of the RASopathy-associated genetic variants and the knowledge gained about RAS/MAPK signaling that resulted from studying RASopathies. We also describe the cell and animal models of the RASopathies and explore emerging RASopathy genes. Preclinical and clinical experiences with targeted agents as therapeutics for RASopathies are also discussed. Finally, we review how the recently developed drugs targeting RAS/MAPK-driven malignancies, such as inhibitors of RAS activation, direct RAS inhibitors and RAS/MAPK pathway inhibitors, might be leveraged for patients with RASopathies.
Collapse
Affiliation(s)
- Katie E Hebron
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Edjay Ralph Hernandez
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Yi JS, Perla S, Huang Y, Mizuno K, Giordano FJ, Vinks AA, Bennett AM. Low-dose Dasatinib Ameliorates Hypertrophic Cardiomyopathy in Noonan Syndrome with Multiple Lentigines. Cardiovasc Drugs Ther 2021; 36:589-604. [PMID: 33689087 PMCID: PMC9270274 DOI: 10.1007/s10557-021-07169-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 11/24/2022]
Abstract
Purpose Noonan syndrome with multiple lentigines (NSML) is an autosomal dominant disorder presenting with hypertrophic cardiomyopathy (HCM). Up to 85% of NSML cases are caused by mutations in the PTPN11 gene that encodes for the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2). We previously showed that low-dose dasatinib protects from the development of cardiac fibrosis in a mouse model of NSML harboring a Ptpn11Y279C mutation. This study is performed to determine the pharmacokinetic (PK) and pharmacodynamic (PD) properties of a low-dose of dasatinib in NSML mice and to determine its effectiveness in ameliorating the development of HCM. Methods Dasatinib was administered intraperitoneally into NSML mice with doses ranging from 0.05 to 0.5 mg/kg. PK parameters of dasatinib in NSML mice were determined. PD parameters were obtained for biochemical analyses from heart tissue. Dasatinib-treated NSML mice (0.1 mg/kg) were subjected to echocardiography and assessment of markers of HCM by qRT-PCR. Transcriptome analysis was performed from the heart tissue of low-dose dasatinib-treated mice. Results Low-dose dasatinib exhibited PK properties that were linear across doses in NSML mice. Dasatinib treatment of between 0.05 and 0.5 mg/kg in NSML mice yielded an exposure-dependent inhibition of c-Src and PZR tyrosyl phosphorylation and inhibited AKT phosphorylation. We found that doses as low as 0.1 mg/kg of dasatinib prevented HCM in NSML mice. Transcriptome analysis identified differentially expressed HCM-associated genes in the heart of NSML mice that were reverted to wild type levels by low-dose dasatinib administration. Conclusion These data demonstrate that low-dose dasatinib exhibits desirable therapeutic PK properties that is sufficient for effective target engagement to ameliorate HCM progression in NSML mice. These data demonstrate that low-dose dasatinib treatment may be an effective therapy against HCM in NSML patients. Supplementary Information The online version contains supplementary material available at 10.1007/s10557-021-07169-z.
Collapse
Affiliation(s)
- Jae-Sung Yi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Sravan Perla
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yan Huang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Kana Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Frank J Giordano
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.,Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
14
|
Culibrk RA, Hahn MS. The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Front Aging Neurosci 2020; 12:583884. [PMID: 33364931 PMCID: PMC7750365 DOI: 10.3389/fnagi.2020.583884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Late-onset Alzheimer's Disease (LOAD) is a devastating neurodegenerative disorder that causes significant cognitive debilitation in tens of millions of patients worldwide. Throughout disease progression, abnormal secretase activity results in the aberrant cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral extracellular space and hyperphosphorylation and destabilization of structural tau proteins surrounding neuronal microtubules. Both pathologies ultimately incite the propagation of a disease-associated subset of microglia-the principle immune cells of the brain-characterized by preferentially pro-inflammatory cytokine secretion and inhibited AD substrate uptake capacity, which further contribute to neuronal degeneration. For decades, chronic neuroinflammation has been identified as one of the cardinal pathophysiological driving features of AD; however, despite a number of works postulating the underlying mechanisms of inflammation-mediated neurodegeneration, its pathogenesis and relation to the inception of cognitive impairment remain obscure. Moreover, the limited clinical success of treatments targeting specific pathological features in the central nervous system (CNS) illustrates the need to investigate alternative, more holistic approaches for ameliorating AD outcomes. Accumulating evidence suggests significant interplay between peripheral immune activity and blood-brain barrier permeability, microglial activation and proliferation, and AD-related cognitive decline. In this work, we review a narrow but significant subset of chronic peripheral inflammatory conditions, describe how these pathologies are associated with the preponderance of neuroinflammation, and posit that we may exploit peripheral immune processes to design interventional, preventative therapies for LOAD. We then provide a comprehensive overview of notable treatment paradigms that have demonstrated considerable merit toward treating these disorders.
Collapse
Affiliation(s)
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
15
|
Kaur J, Farr JN. Cellular senescence in age-related disorders. Transl Res 2020; 226:96-104. [PMID: 32569840 PMCID: PMC7572662 DOI: 10.1016/j.trsl.2020.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Much of the population is now faced with an enormous burden of age-associated chronic diseases. Recent discoveries in geroscience indicate that healthspan in model organisms such as mice can be manipulated by targeting cellular senescence, a hallmark mechanism of aging, defined as an irreversible proliferative arrest that occurs when cells experience oncogenic or other diverse forms of damage. Senescent cells and their proinflammatory secretome have emerged as contributors to age-related tissue dysfunction and morbidity. Cellular senescence has causal roles in mediating osteoporosis, frailty, cardiovascular diseases, osteoarthritis, pulmonary fibrosis, renal diseases, neurodegenerative diseases, hepatic steatosis, and metabolic dysfunction. Therapeutically targeting senescent cells in mice can prevent, delay, or alleviate each of these conditions. Therefore, senotherapeutic approaches, including senolytics and senomorphics, that either selectively eliminate senescent cells or interfere with their ability to promote tissue dysfunction, are gaining momentum as potential realistic strategies to abrogate human senescence to thereby compress morbidity and extend healthspan.
Collapse
Affiliation(s)
- Japneet Kaur
- Division of Endocrinology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester Minnesota; Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic, Rochester Minnesota
| | - Joshua N Farr
- Division of Endocrinology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester Minnesota; Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic, Rochester Minnesota; Division of Physiology and Biomedical Engineering; Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
16
|
Yi JS, Perla S, Enyenihi L, Bennett AM. Tyrosyl phosphorylation of PZR promotes hypertrophic cardiomyopathy in PTPN11-associated Noonan syndrome with multiple lentigines. JCI Insight 2020; 5:137753. [PMID: 32584792 PMCID: PMC7455087 DOI: 10.1172/jci.insight.137753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/18/2020] [Indexed: 02/05/2023] Open
Abstract
Noonan syndrome with multiple lentigines (NSML) is a rare autosomal dominant disorder that presents with cardio-cutaneous-craniofacial defects. Hypertrophic cardiomyopathy (HCM) represents the major life-threatening presentation in NSML. Mutations in the PTPN11 gene that encodes for the protein tyrosine phosphatase (PTP), SHP2, represents the predominant cause of HCM in NSML. NSML-associated PTPN11 mutations render SHP2 catalytically inactive with an "open" conformation. NSML-associated PTPN11 mutations cause hypertyrosyl phosphorylation of the transmembrane glycoprotein, protein zero-related (PZR), resulting in increased SHP2 binding. Here we show that NSML mice harboring a tyrosyl phosphorylation-defective mutant of PZR (NSML/PZRY242F) that is defective for SHP2 binding fail to develop HCM. Enhanced AKT/S6 kinase signaling in heart lysates of NSML mice was reversed in NSML/PZRY242F mice, demonstrating that PZR/SHP2 interactions promote aberrant AKT/S6 kinase activity in NSML. Enhanced PZR tyrosyl phosphorylation in the hearts of NSML mice was found to drive myocardial fibrosis by engaging an Src/NF-κB pathway, resulting in increased activation of IL-6. Increased expression of IL-6 in the hearts of NSML mice was reversed in NSML/PZRY242F mice, and PZRY242F mutant fibroblasts were defective for IL-6 secretion and STAT3-mediated fibrogenesis. These results demonstrate that NSML-associated PTPN11 mutations that induce PZR hypertyrosyl phosphorylation trigger pathophysiological signaling that promotes HCM and cardiac fibrosis.
Collapse
Affiliation(s)
- Jae-Sung Yi
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Sravan Perla
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Liz Enyenihi
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Anton M. Bennett
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Zhu L, Roberts R, Huang R, Zhao J, Xia M, Delavan B, Mikailov M, Tong W, Liu Z. Drug Repositioning for Noonan and LEOPARD Syndromes by Integrating Transcriptomics With a Structure-Based Approach. Front Pharmacol 2020; 11:927. [PMID: 32676024 PMCID: PMC7333460 DOI: 10.3389/fphar.2020.00927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/08/2020] [Indexed: 01/24/2023] Open
Abstract
Noonan and LEOPARD syndromes (NS and LS) belong to a group of related disorders called RASopathies characterized by abnormalities of multiple organs and systems including hypertrophic cardiomyopathy and dysmorphic facial features. There are no approved drugs for these two rare diseases, but it is known that a missense mutation in PTPN11 genes is associated with approximately 50% and 70% of NS and LS cases, respectively. In this study, we implemented a hybrid computational drug repositioning framework by integrating transcriptomic and structure-based approaches to explore potential treatment options for NS and LS. Specifically, disease signatures were derived from the transcriptomic profiles of human induced pluripotent stem cells (iPSCs) from NS and LS patients and reverse correlated to drug transcriptomic signatures from CMap and L1000 projects on the basis that if disease and drug transcriptomic signatures are reversely correlated, the drug has the potential to treat that disease. The compounds that were ranked top based on their transcriptomic profiles were docked to mutated and wild-type 3D structures of PTPN11 by an adjusted Induced Fit Docking (IFD) protocol. In addition, we prioritized repositioned candidates for NS and LS by a consensus ranking strategy. Network analysis and phenotypic anchoring of the transcriptomic data could discriminate the two diseases at the molecular level. Furthermore, the adjusted IFD protocol was able to recapitulate the binding specificity of potential drug candidates to mutated 3D structures, revealing the relevant amino acids. Importantly, a list of potential drug candidates for repositioning was identified including 61 for NS and 43 for LS and was further verified from literature reports and on-going clinical trials. Altogether, this hybrid computational drug repositioning approach has highlighted a number of drug candidates for NS and LS and could be applied to identifying drug candidates for other diseases as well.
Collapse
Affiliation(s)
- Liyuan Zhu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Ruth Roberts
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States.,Department of Drug Safety, ApconiX, Alderley Edge, United Kingdom.,Department of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Brian Delavan
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States.,Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mike Mikailov
- Office of Science and Engineering Labs, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Weida Tong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Zhichao Liu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| |
Collapse
|
18
|
Khosla S, Farr JN, Tchkonia T, Kirkland JL. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 2020; 16:263-275. [PMID: 32161396 PMCID: PMC7227781 DOI: 10.1038/s41574-020-0335-y] [Citation(s) in RCA: 286] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
With the ageing of the global population, interest is growing in the 'geroscience hypothesis', which posits that manipulation of fundamental ageing mechanisms will delay (in parallel) the appearance or severity of multiple chronic, non-communicable diseases, as these diseases share the same underlying risk factor - namely, ageing. In this context, cellular senescence has received considerable attention as a potential target in preventing or treating multiple age-related diseases and increasing healthspan. Here we review mechanisms of cellular senescence and approaches to target this pathway therapeutically using 'senolytic' drugs that kill senescent cells or inhibitors of the senescence-associated secretory phenotype (SASP). Furthermore, we highlight the evidence that cellular senescence has a causative role in multiple diseases associated with ageing. Finally, we focus on the role of cellular senescence in a number of endocrine diseases, including osteoporosis, metabolic syndrome and type 2 diabetes mellitus, as well as other endocrine conditions. Although much remains to be done, considerable preclinical evidence is now leading to the initiation of proof-of-concept clinical trials using senolytics for several endocrine and non-endocrine diseases.
Collapse
Affiliation(s)
- Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - Joshua N Farr
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
19
|
P 0-Related Protein Accelerates Human Mesenchymal Stromal Cell Migration by Modulating VLA-5 Interactions with Fibronectin. Cells 2020; 9:cells9051100. [PMID: 32365526 PMCID: PMC7290418 DOI: 10.3390/cells9051100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
P0-related protein (PZR), a Noonan and LEOPARD syndrome target, is a member of the transmembrane Immunoglobulin superfamily. Its cytoplasmic tail contains two immune-receptor tyrosine-based inhibitory motifs (ITIMs), implicated in adhesion-dependent signaling and regulating cell adhesion and motility. PZR promotes cell migration on the extracellular matrix (ECM) molecule, fibronectin, by interacting with SHP-2 (Src homology-2 domain-containing protein tyrosine phosphatase-2), a molecule essential for skeletal development and often mutated in Noonan and LEOPARD syndrome patients sharing overlapping musculoskeletal abnormalities and cardiac defects. To further explore the role of PZR, we assessed the expression of PZR and its ITIM-less isoform, PZRb, in human bone marrow mesenchymal stromal cells (hBM MSC), and its ability to facilitate adhesion to and spreading and migration on various ECM molecules. Furthermore, using siRNA knockdown, confocal microscopy, and immunoprecipitation assays, we assessed PZR and PZRb interactions with β1 integrins. PZR was the predominant isoform in hBM MSC. Migrating hBM MSCs interacted most effectively with fibronectin and required the association of PZR, but not PZRb, with the integrin, VLA-5(α5β1), leading to modulation of focal adhesion kinase phosphorylation and vinculin levels. This raises the possibility that dysregulation of PZR function may modify hBM MSC migratory behavior, potentially contributing to skeletal abnormalities.
Collapse
|
20
|
Chow A, McCrea L, Kimball E, Schaub J, Quigley H, Pitha I. Dasatinib inhibits peripapillary scleral myofibroblast differentiation. Exp Eye Res 2020; 194:107999. [PMID: 32179077 DOI: 10.1016/j.exer.2020.107999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Scleral fibroblast activation occurs in glaucomatous and myopic eyes. Here we perform an unbiased screen to identify kinase inhibitors that reduce fibroblast activation to diverse stimuli in vitro and to in vivo intraocular pressure (IOP) elevation. Primary cultures of peripapillary scleral (PPS) fibroblasts from two human donors were screened using a library of 80 kinase inhibitors to identify compounds that inhibit TGFβ-induced extracellular matrix (ECM) synthesis. Inhibition of myofibroblast differentiation was verified by alpha smooth muscle actin (αSMA) immunoblot and collagen contraction assay. Inhibition of IOP-induced scleral fibroblast proliferation was assessed by ELISA assay for proliferating cell nuclear antigen (PCNA). The initial screen identified 7 inhibitors as showing>80% reduction in ECM binding. Three kinase inhibitors were verified to reduce TGFβ-induced αSMA expression and cellular contractility (rottlerin, PP2, tyrphostin 9). The effect of three Src inhibitors, bosutinib, dasatinib, and SU-6656, on myofibroblast differentiation was evaluated, with only dasatinib significantly inhibiting TGFβ-induced ECM synthesis, αSMA expression, and cellular contractility at nanomolar dosages. Subconjunctival injection of dasatinib reduced IOP-induced scleral fibroblast proliferation compared to control (4.9 ± 11.1 ng/sclera with 0.1 μM versus 88.7 ± 38.6 ng/sclera in control, P < 0.0001). Dasatinib inhibits scleral myofibroblast differentiation and there is pharmacologic evidence that this inhibition is not solely due to Src-kinase inhibition.
Collapse
Affiliation(s)
- Amanda Chow
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Liam McCrea
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Elizabeth Kimball
- Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Julie Schaub
- Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Harry Quigley
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ian Pitha
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
21
|
Abstract
Cellular senescence refers to a process induced by various types of stress that causes irreversible cell cycle arrest and distinct cellular alterations, including profound changes in gene expression, metabolism, and chromatin organization as well as activation/reinforcement of anti-apoptotic pathways and development of a pro-inflammatory secretome or senescence-associated secretory phenotype (SASP). However, because of challenges and technical limitations in identifying and characterizing senescent cells in living organisms, only recently have some of the diverse in vivo roles of these unique cells been discovered. New findings indicate that senescent cells and their SASP can have acute beneficial functions, such as in tissue regeneration and wound healing. However, in contrast, when senescent cells accumulate in excess chronically at sites of pathology or in old tissues they drive multiple age-associated chronic diseases. Senotherapeutics that selectively eliminate senescent cells ("senolytics") or inhibit their detrimental SASP ("senomorphics") have been developed and tested in aged preclinical models. These studies have established that targeting senescence is a powerful anti-aging strategy to improve "healthspan" - i.e., the healthy period of life free of chronic disease. The roles of senescence in mediating age-related bone loss have been a recent focus of rigorous investigation. Studies in mice and humans demonstrate that with aging, at least a subset of most cell types in the bone microenvironment become senescent and develop a heterogeneous SASP. Furthermore, age-related bone loss can be alleviated in old mice, with apparent advantages over anti-resorptive therapy, by reducing the senescent cell burden genetically or pharmacologically with the first class of senolytics or a senomorphic. Collectively, these findings point to targeting senescence as a transformational strategy to extend healthspan, therefore providing strong rationale for identifying and optimizing senotherapeutics to alleviate multiple chronic diseases of aging, including osteoporosis, and set the stage for translating senotherapeutics to humans, with clinical trials currently ongoing.
Collapse
Affiliation(s)
- Joshua N Farr
- Division of Endocrinology and Metabolism and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - Sundeep Khosla
- Division of Endocrinology and Metabolism and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
Farr JN, Almeida M. The Spectrum of Fundamental Basic Science Discoveries Contributing to Organismal Aging. J Bone Miner Res 2018; 33:1568-1584. [PMID: 30075061 PMCID: PMC6327947 DOI: 10.1002/jbmr.3564] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
Aging research has undergone unprecedented advances at an accelerating rate in recent years, leading to excitement in the field as well as opportunities for imagination and innovation. Novel insights indicate that, rather than resulting from a preprogrammed series of events, the aging process is predominantly driven by fundamental non-adaptive mechanisms that are interconnected, linked, and overlap. To varying degrees, these mechanisms also manifest with aging in bone where they cause skeletal fragility. Because these mechanisms of aging can be manipulated, it might be possible to slow, delay, or alleviate multiple age-related diseases and their complications by targeting conserved genetic signaling pathways, controlled functional networks, and basic biochemical processes. Indeed, findings in various mammalian species suggest that targeting fundamental aging mechanisms (eg, via either loss-of-function or gain-of-function mutations or administration of pharmacological therapies) can extend healthspan; ie, the healthy period of life free of chronic diseases. In this review, we summarize the evidence supporting the role of the spectrum of fundamental basic science discoveries contributing to organismal aging, with emphasis on mammalian studies and in particular aging mechanisms in bone that drive skeletal fragility. These mechanisms or aging hallmarks include: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. Because these mechanisms are linked, interventions that ameliorate one hallmark can in theory ameliorate others. In the field of bone and mineral research, current challenges include defining the relative contributions of each aging hallmark to the natural skeletal aging process, better understanding the complex interconnections among the hallmarks, and identifying the most effective therapeutic strategies to safely target multiple hallmarks. Based on their interconnections, it may be feasible to simultaneously interfere with several fundamental aging mechanisms to alleviate a wide spectrum of age-related chronic diseases, including osteoporosis. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joshua N Farr
- Division of Endocrinology and Metabolism and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
23
|
Jenkins C, Luty SB, Maxson JE, Eide CA, Abel ML, Togiai C, Nemecek ER, Bottomly D, McWeeney SK, Wilmot B, Loriaux M, Chang BH, Tyner JW. Synthetic lethality of TNK2 inhibition in PTPN11-mutant leukemia. Sci Signal 2018; 11:eaao5617. [PMID: 30018082 PMCID: PMC6168748 DOI: 10.1126/scisignal.aao5617] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protein tyrosine phosphatase PTPN11 is implicated in the pathogenesis of juvenile myelomonocytic leukemia (JMML), acute myeloid leukemia (AML), and other malignancies. Activating mutations in PTPN11 increase downstream proliferative signaling and cell survival. We investigated the signaling upstream of PTPN11 in JMML and AML cells and found that PTPN11 was activated by the nonreceptor tyrosine/serine/threonine kinase TNK2 and that PTPN11-mutant JMML and AML cells were sensitive to TNK2 inhibition. In cultured human cell-based assays, PTPN11 and TNK2 interacted directly, enabling TNK2 to phosphorylate PTPN11, which subsequently dephosphorylated TNK2 in a negative feedback loop. Mutations in PTPN11 did not affect this physical interaction but increased the basal activity of PTPN11 such that TNK2-mediated activation was additive. Consequently, coexpression of TNK2 and mutant PTPN11 synergistically increased mitogen-activated protein kinase (MAPK) signaling and enhanced colony formation in bone marrow cells from mice. Chemical inhibition of TNK2 blocked MAPK signaling and colony formation in vitro and decreased disease burden in a patient with PTPN11-mutant JMML who was treated with the multikinase (including TNK2) inhibitor dasatinib. Together, these data suggest that TNK2 is a promising therapeutic target for PTPN11-mutant leukemias.
Collapse
MESH Headings
- Animals
- Child
- Dasatinib/pharmacology
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myelomonocytic, Juvenile/drug therapy
- Leukemia, Myelomonocytic, Juvenile/enzymology
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/pathology
- Male
- Mice
- Prognosis
- Protein Kinase Inhibitors/pharmacology
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Signal Transduction
- Survival Rate
- Synthetic Lethal Mutations
- Tumor Stem Cell Assay
Collapse
Affiliation(s)
- Chelsea Jenkins
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samuel B Luty
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Julia E Maxson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa L Abel
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Corinne Togiai
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Eneida R Nemecek
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel Bottomly
- Oregon Clinical and Translational Research Institute, Portland, OR 97239, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Oregon Clinical and Translational Research Institute, Portland, OR 97239, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Beth Wilmot
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Oregon Clinical and Translational Research Institute, Portland, OR 97239, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marc Loriaux
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Bill H Chang
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeffrey W Tyner
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
24
|
Khosla S, Farr JN, Kirkland JL. Inhibiting Cellular Senescence: A New Therapeutic Paradigm for Age-Related Osteoporosis. J Clin Endocrinol Metab 2018; 103:1282-1290. [PMID: 29425296 PMCID: PMC6276719 DOI: 10.1210/jc.2017-02694] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/02/2018] [Indexed: 12/31/2022]
Abstract
Context With the aging of the population and projected increase in osteoporotic fractures coupled with the declining use of osteoporosis medications, there is a compelling need for new approaches to treat osteoporosis. Given that age-related osteoporosis generally coexists with multiple other comorbidities (e.g., atherosclerosis, diabetes, frailty) that share aging as the leading risk factor, there is growing interest in the "Geroscience Hypothesis," which posits that manipulation of fundamental aging mechanisms will delay the appearance or severity of multiple chronic diseases because these diseases share aging as the underlying risk factor. In this context, one fundamental aging mechanism that has received considerable attention recently as contributing to multiple age-related morbidities is cellular senescence. This mini-review provides an overview on cellular senescence with a focus on its role in mediating age-related bone loss. Methods This summary is based on the authors' knowledge of the field supplemented by a PubMed search using the terms "senescence," "aging," and "bone." Results There is compelling evidence from preclinical models and supportive human data demonstrating an increase in senescent cells in the bone microenvironment with aging. These cells produce a proinflammatory secretome that leads to increased bone resorption and decreased bone formation, and approaches that either eliminate senescent cells or impair the production of their proinflammatory secretome have been shown to prevent age-related bone loss in mice. Conclusions Targeting cellular senescence represents a novel therapeutic strategy to prevent not only bone loss but potentially multiple age-related diseases simultaneously.
Collapse
Affiliation(s)
- Sundeep Khosla
- Division of Endocrinology and Metabolism and Kogod Center on Aging, Mayo
Clinic, Rochester, Minnesota 55905
| | - Joshua N Farr
- Division of Endocrinology and Metabolism and Kogod Center on Aging, Mayo
Clinic, Rochester, Minnesota 55905
| | - James L Kirkland
- Division of Endocrinology and Metabolism and Kogod Center on Aging, Mayo
Clinic, Rochester, Minnesota 55905
| |
Collapse
|
25
|
Abstract
Cardiomyopathy is a disease of the heart muscle leading to abnormal structure or function in the absence of coronary artery disease, hypertension, or valvular or congenital heart disease. Currently, cardiomyopathy is the leading diagnosis of heart transplant patients worldwide. Incorporation of next-generation sequencing strategies will likely revolutionize genetic testing in cardiomyopathy. The use of patient-specific pluripotent stem cell-derived cardiomyocytes for disease modeling and therapeutic testing has opened a new avenue for precision medicine in cardiomyopathy. Stem cell therapy, gene therapy, interfering RNA, and small molecules are actively being evaluated in clinical trials.
Collapse
Affiliation(s)
- Paulino Alvarez
- Department of Cardiovascular Medicine, Heart and Vascular Institute , Cleveland Clinic, Cleveland, Ohio, USA
| | - Wh Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute , Cleveland Clinic, Cleveland, Ohio, USA.,Center for Clinical Genomics, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Schuhmacher AJ, Hernández-Porras I, García-Medina R, Guerra C. Noonan syndrome: lessons learned from genetically modified mouse models. Expert Rev Endocrinol Metab 2017; 12:367-378. [PMID: 30058892 DOI: 10.1080/17446651.2017.1361821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Noonan syndrome is a RASopathy that results from activating mutations in different members of the RAS/MAPK signaling pathway. At least eleven members of this pathway have been found mutated, PTPN11 being the most frequently mutated gene affecting about 50% of the patients, followed by SOS1 (10%), RAF1 (10%) and KRAS (5%). Recently, even more infrequent mutations have been newly identified by next generation sequencing. This spectrum of mutations leads to a broad variety of clinical symptoms such as cardiopathies, short stature, facial dysmorphia and neurocognitive impairment. The genetic variability of this syndrome makes it difficult to establish a genotype-phenotype correlation, which will greatly help in the clinical management of the patients. Areas covered: Studies performed with different genetically engineered mouse models (GEMMs) developed up to date. Expert commentary: GEMMs have helped us understand the role of some genes and the effect of the different mutations in the development of the syndrome. However, few models have been developed and more characterization of the existing ones should be performed to learn about the impact of the different modifiers in the phenotypes, the potential cancer risk in patients, as well as preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Alberto J Schuhmacher
- a Instituto de Investigación Sanitaria Aragón , Centro de Investigación Biomédica de Aragón , Zaragoza , Spain
| | - Isabel Hernández-Porras
- b Molecular Oncology Programs , Centro Nacional de Investigaciones Oncológicas (CNIO) , Madrid , Spain
| | - Raquel García-Medina
- b Molecular Oncology Programs , Centro Nacional de Investigaciones Oncológicas (CNIO) , Madrid , Spain
| | - Carmen Guerra
- b Molecular Oncology Programs , Centro Nacional de Investigaciones Oncológicas (CNIO) , Madrid , Spain
| |
Collapse
|
27
|
Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 2017; 23:1072-1079. [PMID: 28825716 PMCID: PMC5657592 DOI: 10.1038/nm.4385] [Citation(s) in RCA: 801] [Impact Index Per Article: 114.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/13/2017] [Indexed: 11/08/2022]
Abstract
Aging is associated with increased cellular senescence, which is hypothesized to drive the eventual development of multiple comorbidities. Here we investigate a role for senescent cells in age-related bone loss through multiple approaches. In particular, we used either genetic (i.e., the INK-ATTAC 'suicide' transgene encoding an inducible caspase 8 expressed specifically in senescent cells) or pharmacological (i.e., 'senolytic' compounds) means to eliminate senescent cells. We also inhibited the production of the proinflammatory secretome of senescent cells using a JAK inhibitor (JAKi). In aged (20- to 22-month-old) mice with established bone loss, activation of the INK-ATTAC caspase 8 in senescent cells or treatment with senolytics or the JAKi for 2-4 months resulted in higher bone mass and strength and better bone microarchitecture than in vehicle-treated mice. The beneficial effects of targeting senescent cells were due to lower bone resorption with either maintained (trabecular) or higher (cortical) bone formation as compared to vehicle-treated mice. In vitro studies demonstrated that senescent-cell conditioned medium impaired osteoblast mineralization and enhanced osteoclast-progenitor survival, leading to increased osteoclastogenesis. Collectively, these data establish a causal role for senescent cells in bone loss with aging, and demonstrate that targeting these cells has both anti-resorptive and anabolic effects on bone. Given that eliminating senescent cells and/or inhibiting their proinflammatory secretome also improves cardiovascular function, enhances insulin sensitivity, and reduces frailty, targeting this fundamental mechanism to prevent age-related bone loss suggests a novel treatment strategy not only for osteoporosis, but also for multiple age-related comorbidities.
Collapse
|