1
|
Arduini A, Fleming SJ, Xiao L, Hall AW, Akkad AD, Chaffin MD, Bendinelli KJ, Tucker NR, Papangeli I, Mantineo H, Flores-Bringas P, Babadi M, Stegmann CM, García-Cardeña G, Lindsay ME, Klattenhoff C, Ellinor PT. Transcriptional profile of the rat cardiovascular system at single-cell resolution. Cell Rep 2025; 44:115091. [PMID: 39709602 PMCID: PMC11781962 DOI: 10.1016/j.celrep.2024.115091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/24/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024] Open
Abstract
We sought to characterize cellular composition across the cardiovascular system of the healthy Wistar rat, an important model in preclinical cardiovascular research. We performed single-nucleus RNA sequencing (snRNA-seq) in 78 samples in 10 distinct regions, including the four chambers of the heart, ventricular septum, sinoatrial node, atrioventricular node, aorta, pulmonary artery, and pulmonary veins, which produced 505,835 nuclei. We identified 26 distinct cell types and additional subtypes, with different cellular composition across cardiac regions and tissue-specific transcription for each cell type. Several cell subtypes were region specific, including a subtype of vascular smooth muscle cells enriched in the large vasculature. We observed tissue-enriched cellular communication networks, including heightened Nppa-Npr1/2/3 signaling in the sinoatrial node. The existence of tissue-restricted cell types suggests regional regulation of cardiovascular physiology. Our detailed transcriptional characterization of each cell type offers the potential to identify novel therapeutic targets and improve preclinical models of cardiovascular disease.
Collapse
Affiliation(s)
- Alessandro Arduini
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA
| | - Stephen J Fleming
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ling Xiao
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amelia W Hall
- Gene Regulation Observatory, The Broad Institute, Cambridge, MA 02142, USA
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA 02142, USA
| | - Mark D Chaffin
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA
| | - Kayla J Bendinelli
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA
| | | | - Irinna Papangeli
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA 02142, USA
| | - Helene Mantineo
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Mehrtash Babadi
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Guillermo García-Cardeña
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Mark E Lindsay
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Carla Klattenhoff
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA 02142, USA
| | - Patrick T Ellinor
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiology Division, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Son SS, Jeong HS, Lee SW, Lee ES, Lee JG, Lee JH, Yi J, Park MJ, Choi MS, Lee D, Choi SY, Ha J, Kang JS, Cho NJ, Park S, Gil HW, Chung CH, Park JS, Kim MH, Park J, Lee EY. EPRS1-mediated fibroblast activation and mitochondrial dysfunction promote kidney fibrosis. Exp Mol Med 2024; 56:2673-2689. [PMID: 39623092 DOI: 10.1038/s12276-024-01360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 12/28/2024] Open
Abstract
Kidney fibrosis causes irreversible structural damage in chronic kidney disease and is characterized by aberrant extracellular matrix (ECM) accumulation. Although glutamyl-prolyl-tRNA synthetase 1 (EPRS1) is a crucial enzyme involved in proline-rich protein synthesis, its role in kidney fibrosis remains unclear. The present study revealed that EPRS1 expression levels were increased in the fibrotic kidneys of patients and mice, especially in fibroblasts and proximal tubular epithelial cells, on the basis of single-cell analysis and immunostaining of fibrotic kidneys. Moreover, C57BL/6 EPRS1tm1b heterozygous knockout (Eprs1+/-) and pharmacological EPRS1 inhibition with the first-in-class EPRS1 inhibitor DWN12088 protected against kidney fibrosis and dysfunction by preventing fibroblast activation and proximal tubular injury. Interestingly, in vitro assays demonstrated that EPRS1-mediated nontranslational pathways in addition to translational pathways under transforming growth factor β-treated conditions by phosphorylating SMAD family member 3 in fibroblasts and signal transducers and activators of transcription 3 in injured proximal tubules. EPRS1 knockdown and catalytic inhibition suppressed these pathways, preventing fibroblast activation, proliferation, and subsequent collagen production. Additionally, we revealed that EPRS1 caused mitochondrial damage in proximal tubules but that this damage was attenuated by EPRS1 inhibition. Our findings suggest that the EPRS1-mediated ECM accumulation induces kidney fibrosis via fibroblast activation and mitochondrial dysfunction. Therefore, targeting EPRS1 could be a potential therapeutic target for alleviating fibrotic injury in chronic kidney disease.
Collapse
Affiliation(s)
- Seung Seob Son
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Hee Seul Jeong
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Seong-Woo Lee
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jeong Geon Lee
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Ji-Hye Lee
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Mi Ju Park
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Min Sun Choi
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Donghyeong Lee
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Sin Young Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Jiheon Ha
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Nam-Jun Cho
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Samel Park
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Hyo-Wook Gil
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Joon Seok Park
- Drug Discovery Center, Daewoong Pharmaceutical Co. Ltd., Yongin, Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Eun Young Lee
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea.
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea.
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea.
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea.
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Korea.
| |
Collapse
|
3
|
Chuang TD, Ton N, Rysling S, Khorram O. The in vivo effects of knockdown of long non-coding RNA XIST on fibroid growth and gene expression. FASEB J 2024; 38:e70140. [PMID: 39475327 DOI: 10.1096/fj.202401982r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/21/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
The role of long non-coding RNAs in fibroid pathogenesis remains largely unexplored. In a previous study, we found elevated XIST (X-inactive specific transcript) levels in fibroids, which sponged miR-29c and miR-200c, leading to the overexpression of their target genes. This study aimed to assess the therapeutic potential of XIST downregulation in fibroid treatment. Ovariectomized SCID (severe combined immunodeficiency) mice were implanted with fibroid tumors transduced with XIST siRNA or a control via lentivirus. After 1 month, animals were sacrificed and the xenografts were removed for further analysis. XIST knockdown reduced tumor weight by 15% and increased miR-29c and miR-200c expression by 3.9-fold and 2.2-fold, respectively. The mRNA expression of miR-29c targets (COL3A1, TGF-β3, CDK2, SPARC) and miR-200c targets (CDK2, FN1, TDO2), as well as PRL, E2F1, and EZH2, was significantly decreased. Protein abundance of collagen, COL3A1, FN1, CDK2, SPARC, and EZH2 was also reduced. IHC analysis of xenograft sections using the markers of Ki67 for cell proliferation and cleaved caspase 3 for apoptosis showed decreased cell proliferation and no changes in apoptosis in the XIST knockdown xenografts. This analysis also revealed decreased collagen and E2F1 staining nuclei in the XIST knockdown xenografts. These results indicate that downregulation of XIST in fibroids has beneficial therapeutic effects, by reducing tumor growth and the expression of genes involved in cell proliferation, inflammation, and extracellular matrix regulation.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- The Lundquist Institute for Biomedical Innovation, Torrance, California, USA
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, California, USA
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, California, USA
| | - Omid Khorram
- The Lundquist Institute for Biomedical Innovation, Torrance, California, USA
- Department of Obstetrics/Gynecology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
Toba H, Takai S. Exploring the roles of SPARC as a proinflammatory factor and its potential as a novel therapeutic target against cardiovascular disease. Am J Physiol Heart Circ Physiol 2024; 327:H1174-H1186. [PMID: 39269452 DOI: 10.1152/ajpheart.00565.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide, and the number of patients with CVD continues to increase despite extensive research and developments in this field. Chronic inflammation is a pivotal pathological component of CVD, and unveiling new proinflammatory factors will help devise novel preventive and therapeutic strategies. The extracellular matrix (ECM) not only provides structural support between cells but also contributes to cellular functions. Secreted protein acidic and rich in cysteine (SPARC) is a collagen-binding matricellular protein that is particularly induced during development and tissue remodeling. A proinflammatory role for SPARC has been demonstrated in various animal models, such as in the lipopolysaccharide-induced footpad model and dextran sodium sulfate-induced colitis model. Recent clinical studies reported a positive correlation between elevated plasma SPARC levels and hypertension, obesity, and the inflammatory marker high-sensitive C-reactive protein. In addition, SPARC gene deletion attenuates the cardiac injury induced by aging, myocardial infarction, and pressure load, suggesting that SPARC has deleterious effects on CVD. This review summarizes the regulatory and proinflammatory mechanisms of SPARC on CVD, chronic kidney disease (CKD), and cerebrovascular disease and discusses the rationale behind measuring SPARC as a biomarker of CVD and the effects of inhibition of SPARC in the prevention and treatment of CVD.
Collapse
Affiliation(s)
- Hiroe Toba
- Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
- Department of Pharmacology, Educational Foundation of Osaka Medical and Pharmacological University, Takatsuki, Japan
| | - Shinji Takai
- Department of Pharmacology, Educational Foundation of Osaka Medical and Pharmacological University, Takatsuki, Japan
| |
Collapse
|
5
|
Bateman NW, Abulez T, Tarney CM, Bariani MV, Driscoll JA, Soltis AR, Zhou M, Hood BL, Litzi T, Conrads KA, Jackson A, Oliver J, Ganakammal SR, Schneider F, Dalgard CL, Wilkerson MD, Smith B, Borda V, O'Connor T, Segars J, Shobeiri SA, Phippen NT, Darcy KM, Al-Hendy A, Conrads TP, Maxwell GL. Multiomic analysis of uterine leiomyomas in self-described Black and White women: molecular insights into health disparities. Am J Obstet Gynecol 2024; 231:321.e1-321.e11. [PMID: 38723985 DOI: 10.1016/j.ajog.2024.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Black women are at an increased risk of developing uterine leiomyomas and experiencing worse disease prognosis than White women. Epidemiologic and molecular factors have been identified as underlying these disparities, but there remains a paucity of deep, multiomic analysis investigating molecular differences in uterine leiomyomas from Black and White patients. OBJECTIVE To identify molecular alterations within uterine leiomyoma tissues correlating with patient race by multiomic analyses of uterine leiomyomas collected from cohorts of Black and White women. STUDY DESIGN We performed multiomic analysis of uterine leiomyomas from Black (42) and White (47) women undergoing hysterectomy for symptomatic uterine leiomyomata. In addition, our analysis included the application of orthogonal methods to evaluate fibroid biomechanical properties, such as second harmonic generation microscopy, uniaxial compression testing, and shear-wave ultrasonography analyses. RESULTS We found a greater proportion of MED12 mutant uterine leiomyomas from Black women (>35% increase; Mann-Whitney U, P<.001). MED12 mutant tumors exhibited an elevated abundance of extracellular matrix proteins, including several collagen isoforms, involved in the regulation of the core matrisome. Histologic analysis of tissue fibrosis using trichrome staining and secondary harmonic generation microscopy confirmed that MED12 mutant tumors are more fibrotic than MED12 wild-type tumors. Using shear-wave ultrasonography in a prospectively collected cohort, Black patients had fibroids that were firmer than White patients, even when similar in size. In addition, these analyses uncovered ancestry-linked expression quantitative trait loci with altered allele frequencies in African and European populations correlating with differential abundance of several proteins in uterine leiomyomas independently of MED12 mutation status, including tetratricopeptide repeat protein 38. CONCLUSION Our study shows that Black women have a higher prevalence of uterine leiomyomas harboring mutations in MED12 and that this mutational status correlates with increased tissue fibrosis compared with wild-type uterine leiomyomas. Our study provides insights into molecular alterations correlating with racial disparities in uterine leiomyomas and improves our understanding of the molecular etiology underlying uterine leiomyoma development within these populations.
Collapse
Affiliation(s)
- Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD
| | - Christopher M Tarney
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD
| | | | - Jordan A Driscoll
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD
| | | | - Ming Zhou
- The American Genome Center, Center for Military Precision Health, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD
| | - Tracy Litzi
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD
| | - Amanda Jackson
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD
| | | | | | - Clifton L Dalgard
- The American Genome Center, Center for Military Precision Health, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Matthew D Wilkerson
- The American Genome Center, Center for Military Precision Health, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Barbara Smith
- Johns Hopkins University Medical Center, Baltimore, MD
| | - Victor Borda
- Program in Personalize and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Timothy O'Connor
- Program in Personalize and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - James Segars
- Johns Hopkins University Medical Center, Baltimore, MD
| | - S Abbas Shobeiri
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA
| | - Neil T Phippen
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD
| | - Ayman Al-Hendy
- The University of Chicago College of Medicine, Chicago, IL
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA.
| | - George Larry Maxwell
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD; Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA.
| |
Collapse
|
6
|
Chen X, Zhong X, Luo D, Lei Y, Huang R. Plasma SMOC2 Predicts Prognosis in Patients with Heart Failure: A Prospective Cohort. Int J Gen Med 2024; 17:1651-1664. [PMID: 38706743 PMCID: PMC11069073 DOI: 10.2147/ijgm.s445457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
Background Heart failure (HF) is a chronic disease with a poor prognosis, making it extremely important to assess the prognosis of patients with HF for accurate treatment. Secreted modular calcium-binding protein 2 (SMOC2) is a cysteine-rich acidic secreted protein that plays a pathophysiological role in many diseases, including regulation of vascular growth factor activity. It has previously been found that SMOC2 plays an essential role in cardiac fibrosis in our previous preclinical study, but whether it can be used as a clinical marker in heart failure patients remains unclear. The purpose of this research was to evaluate the correlation between plasma levels of SMOC2 and the prognosis for individuals with HF. Methods HF patients diagnosed with ischemic cardiomyopathy were enrolled from January to December 2021. Baseline plasma levels of SMOC2 were measured after demographic and clinical features were collected. Linear and nonlinear multivariate Cox regression models were used to determine the association between plasma SMOC2 and patient outcomes during follow-up. All analysis was performed using SPSS, EmpowerStats, and R software. Results The study included 188 patients, and the average follow-up time was 489.5±88.3 days. The plasma SMOC2 concentrations were positively correlated with N-terminal pro-B-type Natriuretic Peptide (NT-proBNP), left ventricular end-diastolic diameter (LVEDd), and length of hospital stay and were negatively correlated with left ventricular ejection fraction (LVEF) at baseline. A total of 53 patients (28.2%) were rehospitalized due to cardiac deterioration, 14 (7.4%) died, and 37 (19.7%) developed malignant arrhythmias. A fully adjusted multivariate COX regression model showed that SMOC2 is associated with readmission (HR = 1.02, 95% CI:1.012-1.655). A significant increase in rehospitalization risk was observed in group Q2 (HR =1.064, 95% CI: 1.037, 3.662, p=0.005) and group Q3 (HR =1.085, 95% CI:1.086, 3.792, p=0.009) in comparison with group Q1. The p for trend also shows a linear correlation across the three models (P < 0.001). SMOC2 was associated with the severity of HF in patients, but not with all-cause deaths and arrhythmias during follow-up. Conclusion Plasma SMOC2 is associated with the severity of HF and readmission rate, and is a good predictor of the risk of readmission in patients.
Collapse
Affiliation(s)
- Xin Chen
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, People’s Republic of China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshii, Hubei Province, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bio applications, Enshii, Hubei Province, People’s Republic of China
| | - Xing Zhong
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, People’s Republic of China
- Department of Medicine, Hubei Minzu University, Enshi, Hubei Province, People’s Republic of China
| | - Dan Luo
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, People’s Republic of China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshii, Hubei Province, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bio applications, Enshii, Hubei Province, People’s Republic of China
| | - Yuhua Lei
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, People’s Republic of China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshii, Hubei Province, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bio applications, Enshii, Hubei Province, People’s Republic of China
| | - Rui Huang
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, People’s Republic of China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshii, Hubei Province, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bio applications, Enshii, Hubei Province, People’s Republic of China
| |
Collapse
|
7
|
Ji K, Zhang M, Du L, Wang J, Liu Y, Xu C, He N, Wang Q, Gu Y, Song H, Wang Y, Liu Q. Exploring the Role of Inulin in Targeting the Gut Microbiota: An Innovative Strategy for Alleviating Colonic Fibrosis Induced By Irradiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5710-5724. [PMID: 38457473 PMCID: PMC10958509 DOI: 10.1021/acs.jafc.3c03432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
The use of radiation therapy to treat pelvic and abdominal cancers can lead to the development of either acute or chronic radiation enteropathy. Radiation-induced chronic colonic fibrosis is a common gastrointestinal disorder resulting from the above radiation therapy. In this study, we establish the efficacy of inulin supplements in safeguarding against colonic fibrosis caused by irradiation therapy. Studies have demonstrated that inulin supplements enhance the proliferation of bacteria responsible to produce short-chain fatty acids (SCFAs) and elevate the levels of SCFAs in feces. In a mouse model of chronic radiation enteropathy, the transplantation of gut microbiota and its metabolites from feces of inulin-treated mice were found to reduce colonic fibrosis in validation experiments. Administering inulin-derived metabolites from gut microbiota led to a notable decrease in the expression of genes linked to fibrosis and collagen production in mouse embryonic fibroblast cell line NIH/3T3. In the cell line, inulin-derived metabolites also suppressed the expression of genes linked to the extracellular matrix synthesis pathway. The results indicate a novel and practical approach to safeguarding against chronic radiation-induced colonic fibrosis.
Collapse
Affiliation(s)
| | | | - Liqing Du
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Jinhan Wang
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Yang Liu
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Chang Xu
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Ningning He
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Qin Wang
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Yeqing Gu
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Huijuan Song
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Yan Wang
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Qiang Liu
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| |
Collapse
|
8
|
Kaesler N, Cheng M, Nagai J, O’Sullivan J, Peisker F, Bindels EM, Babler A, Moellmann J, Droste P, Franciosa G, Dugourd A, Saez-Rodriguez J, Neuss S, Lehrke M, Boor P, Goettsch C, Olsen JV, Speer T, Lu TS, Lim K, Floege J, Denby L, Costa I, Kramann R. Mapping cardiac remodeling in chronic kidney disease. SCIENCE ADVANCES 2023; 9:eadj4846. [PMID: 38000021 PMCID: PMC10672229 DOI: 10.1126/sciadv.adj4846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023]
Abstract
Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.
Collapse
Affiliation(s)
- Nadine Kaesler
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, University Hospital of the RWTH Aachen, Aachen, Germany
| | - James Nagai
- Institute for Computational Genomics, University Hospital of the RWTH Aachen, Aachen, Germany
| | - James O’Sullivan
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Fabian Peisker
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Eric M. J. Bindels
- Department of Hematology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Anne Babler
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Julia Moellmann
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Patrick Droste
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Pathology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Aurelien Dugourd
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Sabine Neuss
- Institute of Pathology, University Hospital of the RWTH Aachen, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Peter Boor
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Pathology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Claudia Goettsch
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Jesper V. Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thimoteus Speer
- Department of Medicine (Nephrology), Goethe University Frankfurt, Frankfurt, Germany
| | - Tzong-Shi Lu
- Brigham and Women’s Hospital, Renal Division, Boston, MA, USA
| | - Kenneth Lim
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jürgen Floege
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Laura Denby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ivan Costa
- Institute for Computational Genomics, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Rafael Kramann
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
9
|
Arduini A, Fleming SJ, Xiao L, Hall AW, Akkad AD, Chaffin M, Bendinelli KJ, Tucker NR, Papangeli I, Mantineo H, Babadi M, Stegmann CM, García-Cardeña G, Lindsay ME, Klattenhoff C, Ellinor PT. Transcriptional profile of the rat cardiovascular system at single cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567085. [PMID: 38014050 PMCID: PMC10680727 DOI: 10.1101/2023.11.14.567085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Despite the critical role of the cardiovascular system, our understanding of its cellular and transcriptional diversity remains limited. We therefore sought to characterize the cellular composition, phenotypes, molecular pathways, and communication networks between cell types at the tissue and sub-tissue level across the cardiovascular system of the healthy Wistar rat, an important model in preclinical cardiovascular research. We obtained high quality tissue samples under controlled conditions that reveal a level of cellular detail so far inaccessible in human studies. Methods and Results We performed single nucleus RNA-sequencing in 78 samples in 10 distinct regions including the four chambers of the heart, ventricular septum, sinoatrial node, atrioventricular node, aorta, pulmonary artery, and pulmonary veins (PV), which produced an aggregate map of 505,835 nuclei. We identified 26 distinct cell types and additional subtypes, including a number of rare cell types such as PV cardiomyocytes and non-myelinating Schwann cells (NMSCs), and unique groups of vascular smooth muscle cells (VSMCs), endothelial cells (ECs) and fibroblasts (FBs), which gave rise to a detailed cell type distribution across tissues. We demonstrated differences in the cellular composition across different cardiac regions and tissue-specific differences in transcription for each cell type, highlighting the molecular diversity and complex tissue architecture of the cardiovascular system. Specifically, we observed great transcriptional heterogeneities among ECs and FBs. Importantly, several cell subtypes had a unique regional localization such as a subtype of VSMCs enriched in the large vasculature. We found the cellular makeup of PV tissue is closer to heart tissue than to the large arteries. We further explored the ligand-receptor repertoire across cell clusters and tissues, and observed tissue-enriched cellular communication networks, including heightened Nppa - Npr1/2/3 signaling in the sinoatrial node. Conclusions Through a large single nucleus sequencing effort encompassing over 500,000 nuclei, we broadened our understanding of cellular transcription in the healthy cardiovascular system. The existence of tissue-restricted cellular phenotypes suggests regional regulation of cardiovascular physiology. The overall conservation in gene expression and molecular pathways across rat and human cell types, together with our detailed transcriptional characterization of each cell type, offers the potential to identify novel therapeutic targets and improve preclinical models of cardiovascular disease.
Collapse
Affiliation(s)
- Alessandro Arduini
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
| | - Stephen J. Fleming
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
| | - Ling Xiao
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
| | - Amelia W. Hall
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, 02142
| | - Mark Chaffin
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
| | - Kayla J. Bendinelli
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
| | | | - Irinna Papangeli
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, 02142
| | - Helene Mantineo
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
| | - Mehrtash Babadi
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
| | | | - Guillermo García-Cardeña
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA 02215
| | - Mark E. Lindsay
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
| | | | - Patrick T. Ellinor
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA 02114
| |
Collapse
|
10
|
Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev 2023; 103:2827-2872. [PMID: 37440209 PMCID: PMC10642920 DOI: 10.1152/physrev.00027.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
11
|
DeGroot MS, Williams B, Chang TY, Maas Gamboa ML, Larus IM, Hong G, Fromme JC, Liu J. SMOC-1 interacts with both BMP and glypican to regulate BMP signaling in C. elegans. PLoS Biol 2023; 21:e3002272. [PMID: 37590248 PMCID: PMC10464977 DOI: 10.1371/journal.pbio.3002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/29/2023] [Accepted: 07/22/2023] [Indexed: 08/19/2023] Open
Abstract
Secreted modular calcium-binding proteins (SMOCs) are conserved matricellular proteins found in organisms from Caenorhabditis elegans to humans. SMOC homologs characteristically contain 1 or 2 extracellular calcium-binding (EC) domain(s) and 1 or 2 thyroglobulin type-1 (TY) domain(s). SMOC proteins in Drosophila and Xenopus have been found to interact with cell surface heparan sulfate proteoglycans (HSPGs) to exert both positive and negative influences on the conserved bone morphogenetic protein (BMP) signaling pathway. In this study, we used a combination of biochemical, structural modeling, and molecular genetic approaches to dissect the functions of the sole SMOC protein in C. elegans. We showed that CeSMOC-1 binds to the heparin sulfate proteoglycan GPC3 homolog LON-2/glypican, as well as the mature domain of the BMP2/4 homolog DBL-1. Moreover, CeSMOC-1 can simultaneously bind LON-2/glypican and DBL-1/BMP. The interaction between CeSMOC-1 and LON-2/glypican is mediated specifically by the EC domain of CeSMOC-1, while the full interaction between CeSMOC-1 and DBL-1/BMP requires full-length CeSMOC-1. We provide both in vitro biochemical and in vivo functional evidence demonstrating that CeSMOC-1 functions both negatively in a LON-2/glypican-dependent manner and positively in a DBL-1/BMP-dependent manner to regulate BMP signaling. We further showed that in silico, Drosophila and vertebrate SMOC proteins can also bind to mature BMP dimers. Our work provides a mechanistic basis for how the evolutionarily conserved SMOC proteins regulate BMP signaling.
Collapse
Affiliation(s)
- Melisa S. DeGroot
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Byron Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Timothy Y. Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Maria L. Maas Gamboa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Isabel M. Larus
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Garam Hong
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - J. Christopher Fromme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
12
|
Zhou L, Peng F, Li J, Gong H. Exploring novel biomarkers in dilated cardiomyopathy‑induced heart failure by integrated analysis and in vitro experiments. Exp Ther Med 2023; 26:325. [PMID: 37346398 PMCID: PMC10280324 DOI: 10.3892/etm.2023.12024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/12/2023] [Indexed: 06/23/2023] Open
Abstract
Despite the availability of several effective and promising treatment methods, heart failure (HF) remains a significant public health concern that requires advanced therapeutic strategies and techniques. Dilated cardiomyopathy (DCM) is a crucial factor that contributes to the development and deterioration of HF. The aim of the present study was to identify novel biomarkers and biological pathways to enhance the diagnosis and treatment of patients with DCM-induced HF using weighted gene co-expression network analysis (WGCNA). A total of 24 co-expressed gene modules connected with DCM-induced HF were obtained by WGCNA. Among these, the blue module had the highest correlation with DCM-induced HF (r=0.91; P<0.001) and was enriched in the AGE-RAGE signaling pathway in diabetic complications, the p53 and MAPK signaling pathway, adrenergic signaling in cardiomyocytes, the Janus kinase-STAT signaling pathway and cGMP/PKG signaling. Eight key genes, including secreted protein acidic and rich in cysteine-related modular calcium-binding protein 2 (SMOC2), serpin family A member 3 (SERPINA3), myosin heavy chain 6 (MYH6), S100 calcium binding protein A9 (S100A9), tubulin α (TUBA)3E, TUBA3D, lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE1) and phospholipase C ε1 (PLCE1), were selected as the therapeutic targets of DCM-induced HF based on WGCNA and differentially expressed gene analysis. Immune cell infiltration analysis revealed that the proportion of naive B cells and CD4-activated memory T cells was markedly upregulated in DCM-induced HF tissues compared with tissues from healthy controls. Furthermore, reverse transcription-quantitative PCR in AC16 human cardiomyocyte cells treated with doxorubicin showed that among the eight key genes, only SERPINA3, MYH6, S100A9, LYVE1 and PLCE1 exhibited expression levels identical to those revealed by bioinformatics analysis, suggesting that these genes may be involved in the development of DCM-induced HF.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Fei Peng
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Juexing Li
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
13
|
Li L, Zhao G, Wu J, Pang H, Zhang T, Chen J, Zhang K, Zhu L. Interactions between genetic variants and environmental risk factors are associated with the severity of pelvic organ prolapse. Menopause 2023; 30:621-628. [PMID: 37040585 PMCID: PMC10227931 DOI: 10.1097/gme.0000000000002182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/06/2023] [Indexed: 04/13/2023]
Abstract
OBJECTIVE Both environmental and genetic risk factors contribute to pelvic organ prolapse (POP). No genome-wide study has investigated the gene-environment (G × E) interactions. In this study, we aim to identify single nucleotide polymorphisms (SNPs) that may interact with the potential environmental factors, maximum birth weight, and age in Chinese women. METHODS We recruited 576 women for phase 1 and 264 women for phase 2 with stages III and IV prolapse from six geographic regions of China. Genomic DNAs from blood samples were genotyped using Affymetrix Axiom Genome-Wide CHB1 Array of 640,674 SNPs for phase 1 and Illumina Infinium Asian Screening Array of 743,722 SNPs for phase 2. Meta-analysis was used to combine the two results. Interactions of genetic variants with maximum birth weight and age on POP severity were identified. RESULTS In phase 1, 502,283 SNPs in 523 women passed quality control and 450 women had complete POP-quantification measurements. In phase 2, 463,351 SNPs in 257 women passed quality control with complete POP-quantification measurements. Three SNPs rs76662748 ( WDR59 , Pmeta = 2.146 × 10 -8 ), rs149541061 ( 3p26.1 , Pmeta = 9.273 × 10 -9 ), and rs34503674 ( DOCK9 , Pmeta = 1.778 × 10 -9 ) respectively interacted with maximum birth weight, and two SNPs rs74065743 ( LINC01343 , Pmeta = 4.386 × 10 -8 ) and rs322376 ( NEURL1B - DUSP1 , Pmeta = 2.263 × 10 -8 ), respectively, interacted with age. The magnitude of disease severity associated with maximum birth weight and age differed according to genetic variants. CONCLUSIONS This study provided preliminary evidence that interactions between genetic variants and environmental risk factors are associated with POP severity, suggesting the potential use of combining epidemiologic exposure data with selected genotyping for risk assessment and patient stratification.
Collapse
Affiliation(s)
- Lei Li
- From the National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangyi Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Wu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haiyu Pang
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tianli Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Juan Chen
- From the National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kunlin Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lan Zhu
- From the National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Larsen FT, Hansen D, Terkelsen MK, Bendixen SM, Avolio F, Wernberg CW, Lauridsen MM, Grønkjaer LL, Jacobsen BG, Klinggaard EG, Mandrup S, Di Caterino T, Siersbæk MS, Indira Chandran V, Graversen JH, Krag A, Grøntved L, Ravnskjaer K. Stellate cell expression of SPARC-related modular calcium-binding protein 2 is associated with human non-alcoholic fatty liver disease severity. JHEP Rep 2023; 5:100615. [PMID: 36687468 PMCID: PMC9850195 DOI: 10.1016/j.jhepr.2022.100615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
Background & Aims Histological assessment of liver biopsies is the gold standard for diagnosis of non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD), despite its well-established limitations. Therefore, non-invasive biomarkers that can offer an integrated view of the liver are needed to improve diagnosis and reduce sampling bias. Hepatic stellate cells (HSCs) are central in the development of hepatic fibrosis, a hallmark of NASH. Secreted HSC-specific proteins may, therefore, reflect disease state in the NASH liver and serve as non-invasive diagnostic biomarkers. Methods We performed RNA-sequencing on liver biopsies from a histologically characterised cohort of obese patients (n = 30, BMI >35 kg/m2) to identify and evaluate HSC-specific genes encoding secreted proteins. Bioinformatics was used to identify potential biomarkers and their expression at single-cell resolution. We validated our findings using single-molecule fluorescence in situ hybridisation (smFISH) and ELISA to detect mRNA in liver tissue and protein levels in plasma, respectively. Results Hepatic expression of SPARC-related modular calcium-binding protein 2 (SMOC2) was increased in NASH compared to no-NAFLD (p.adj <0.001). Single-cell RNA-sequencing data indicated that SMOC2 was primarily expressed by HSCs, which was validated using smFISH. Finally, plasma SMOC2 was elevated in NASH compared to no-NAFLD (p <0.001), with a predictive accuracy of AUROC 0.88. Conclusions Increased SMOC2 in plasma appears to reflect HSC activation, a key cellular event associated with NASH progression, and may serve as a non-invasive biomarker of NASH. Impact and implications Non-alcoholic fatty liver disease (NAFLD) and its progressive form, non-alcoholic steatohepatitis (NASH), are the most common forms of chronic liver diseases. Currently, liver biopsies are the gold standard for diagnosing NAFLD. Blood-based biomarkers to complement liver biopsies for diagnosis of NAFLD are required. We found that activated hepatic stellate cells, a cell type central to NAFLD pathogenesis, upregulate expression of the secreted protein SPARC-related modular calcium-binding protein 2 (SMOC2). SMOC2 was elevated in blood samples from patients with NASH and may hold promise as a blood-based biomarker for the diagnosis of NAFLD.
Collapse
Key Words
- AUROC, area under the receiver operating characteristic curve
- ECM, extracellular matrix
- HSC, hepatic stellate cells
- LSM, liver stiffness measurement
- MCP, matricellular protein
- NAFL, non-alcoholic fatty liver
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- PCA, principal component analysis
- SAF, steatosis, activity, and fibrosis
- SE, sensitivity
- SMOC2
- SMOC2, SPARC-related modular calcium-binding protein 2
- SP, specificity
- SPARC, secreted protein acidic and cysteine-rich
- VSMCs, vascular smooth muscle cells
- WGCNA, weighted gene co-expression network analysis
- aHSC, activated HSC
- hepatic stellate cells
- non-invasive biomarker
- qHSC, quiescent HSC
- smFISH, single-molecule fluorescence in situ hybridisation
- transcriptomics
Collapse
Affiliation(s)
- Frederik T. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Daniel Hansen
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Mike K. Terkelsen
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Sofie M. Bendixen
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Fabio Avolio
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Charlotte W. Wernberg
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
- Department of Gastroenterology and Hepatology, University Hospital of
Southern Denmark, Esbjerg, Denmark
- Center for Liver Research (FLASH), Department of Gastroenterology and
Hepatology, Odense University Hospital, Odense, Denmark
| | - Mette M. Lauridsen
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
- Department of Gastroenterology and Hepatology, University Hospital of
Southern Denmark, Esbjerg, Denmark
| | - Lea L. Grønkjaer
- Department of Gastroenterology and Hepatology, University Hospital of
Southern Denmark, Esbjerg, Denmark
| | - Birgitte G. Jacobsen
- Department of Gastroenterology and Hepatology, University Hospital of
Southern Denmark, Esbjerg, Denmark
| | - Ellen G. Klinggaard
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Tina Di Caterino
- Department of Pathology, Odense University Hospital, Odense,
Denmark
| | - Majken S. Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Vineesh Indira Chandran
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense,
Denmark
| | - Jonas H. Graversen
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense,
Denmark
| | - Aleksander Krag
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
- Center for Liver Research (FLASH), Department of Gastroenterology and
Hepatology, Odense University Hospital, Odense, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
- Corresponding author. Address: Department of Biochemistry and Molecular
Biology, Campusvej 55, 5230 Odense M, Denmark. Tel.: +45 65508906/+45
93979317.
| |
Collapse
|
15
|
DeGroot MS, Williams B, Chang TY, Maas Gamboa ML, Larus I, Fromme JC, Liu J. C. elegans SMOC-1 interacts with both BMP and glypican to regulate BMP signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523017. [PMID: 36711863 PMCID: PMC9881921 DOI: 10.1101/2023.01.06.523017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Secreted modular calcium binding (SMOC) proteins are conserved matricellular proteins found in organisms from C. elegans to humans. SMOC homologs characteristically contain one or two extracellular calcium (EC) binding domain(s) and one or two thyroglobulin type-1 (TY) domain(s). SMOC proteins in Drosophila and Xenopus have been found to interact with cell surface heparan sulfate protein glycans (HSPGs) to exert both positive and negative influences on the conserved bone morphogenetic protein (BMP) signaling pathway. In this study, we used a combination of biochemical, structural modeling, and molecular genetic approaches to dissect the functions of the sole SMOC protein in C. elegans . We showed that SMOC-1 binds LON-2/glypican, as well as the mature domain of DBL-1/BMP. Moreover, SMOC-1 can simultaneously bind LON-2/glypican and DBL-1/BMP. The interaction between SMOC-1 and LON-2/glypican is mediated by the EC domain of SMOC-1, while the interaction between SMOC-1 and DBL-1/BMP involves full-length SMOC-1. We further showed that while SMOC-1(EC) is sufficient to promote BMP signaling when overexpressed, both the EC and TY domains are required for SMOC-1 function at the endogenous locus. Finally, when overexpressed, SMOC-1 can promote BMP signaling in the absence of LON-2/glypican. Taken together, our findings led to a model where SMOC-1 functions both negatively in a LON-2-dependent manner and positively in a LON-2-independent manner to regulate BMP signaling. Our work provides a mechanistic basis for how the evolutionarily conserved SMOC proteins regulate BMP signaling.
Collapse
Affiliation(s)
- Melisa S. DeGroot
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Byron Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Timothy Y Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Maria L. Maas Gamboa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Isabel Larus
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
16
|
Mediation by DNA methylation on the association of BMI and serum uric acid in Chinese monozygotic twins. Gene 2023; 850:146957. [DOI: 10.1016/j.gene.2022.146957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 02/13/2023]
|
17
|
SMOC2 promotes aggressive behavior of fibroblast-like synoviocytes in rheumatoid arthritis through transcriptional and post-transcriptional regulating MYO1C. Cell Death Dis 2022; 13:1035. [PMID: 36513634 PMCID: PMC9747908 DOI: 10.1038/s41419-022-05479-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Fibroblast-like synoviocytes (FLSs), play a key role in perpetuating synovial inflammation and bone erosion in rheumatoid arthritis (RA), however, the underlying mechanism(s) of RA FLSs activation and aggression remain unclear. Identifying endogenous proteins that selectively target FLSs is urgently needed. Here, we systematically identified that secreted modular calcium-binding protein 2 (SMOC2), was significantly increased in RA FLSs and synovial tissues. SMOC2 knockdown specifically regulated cytoskeleton remodeling and decreased the migration and invasion of RA FLSs. Mechanistically, cytoskeleton-related genes were significantly downregulated in RA FLSs with reduced SMOC2 expression, especially the motor protein myosin1c (MYO1C). SMOC2 controlled MYO1C expression by SRY-related high-mobility group box 4 (SOX4) and AlkB homolog 5 (ALKHB5) mediated-m6A modification through transcriptional and post-transcriptional regulation. Furthermore, intra-articular Ad-shRNA-SMOC2 treatment attenuated synovial inflammation as well as bone and cartilage erosion in rats with collagen-induced arthritis (CIA). Our findings suggest that increased SMOC2 expression in FLSs may contribute to synovial aggression and joint destruction in RA. SMOC2 may serve as a potential target against RA. SMOC2-mediated regulation of the synovial migration and invasion in RA FLSs. In RA FLSs, SMOC2 is significantly increased, leading to the increased level of MYO1C via SOX4-mediated transcriptional regulation and ALKBH5-mediated m6A modification, thereby causing cytoskeleton remodeling and promoting RA FLSs migration and invasion. The Figure was drawn by Figdraw.
Collapse
|
18
|
Chaudhary NS, Armstrong ND, Hidalgo BA, Gutiérrez OM, Hellwege JN, Limdi NA, Reynolds RJ, Judd SE, Nadkarni GN, Lange L, Winkler CA, Kopp JB, Arnett DK, Tiwari HK, Irvin MR. SMOC2 gene interacts with APOL1 in the development of end-stage kidney disease: A genome-wide association study. Front Med (Lausanne) 2022; 9:971297. [PMID: 36250097 PMCID: PMC9554233 DOI: 10.3389/fmed.2022.971297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Some but not all African-Americans (AA) who carry APOL1 nephropathy risk variants (APOL1) develop kidney failure (end-stage kidney disease, ESKD). To identify genetic modifiers, we assessed gene-gene interactions in a large prospective cohort of the REasons for Geographic and Racial Differences in Stroke (REGARDS) study. Methods Genotypes from 8,074 AA participants were obtained from Illumina Infinium Multi-Ethnic AMR/AFR Extended BeadChip. We compared 388 incident ESKD cases with 7,686 non-ESKD controls, using a two-locus interaction approach. Logistic regression was used to examine the effect of APOL1 risk status (using recessive and additive models), single nucleotide polymorphism (SNP), and APOL1*SNP interaction on incident ESKD, adjusting for age, sex, and ancestry. APOL1 *SNP interactions that met the threshold of 1.0 × 10-5 were replicated in the Genetics of Hypertension Associated Treatment (GenHAT) study (626 ESKD cases and 6,165 controls). In a sensitivity analysis, models were additionally adjusted for diabetes status. We conducted additional replication in the BioVU study. Results Two APOL1 risk alleles prevalence (recessive model) was similar in the REGARDS and GenHAT studies. Only one APOL1-SNP interaction, for rs7067944 on chromosome 10, ~10 KB from the PCAT5 gene met the genome-wide statistical threshold (P interaction = 3.4 × 10-8), but this interaction was not replicated in the GenHAT study. Among other relevant top findings (with P interaction < 1.0 × 10-5), a variant (rs2181251) near SMOC2 on chromosome six interacted with APOL1 risk status (additive) on ESKD outcomes (REGARDS study, P interaction =5.3 × 10-6) but the association was not replicated (GenHAT study, P interaction = 0.07, BioVU study, P interaction = 0.53). The association with the locus near SMOC2 persisted further in stratified analyses. Among those who inherited ≥1 alternate allele of rs2181251, APOL1 was associated with an increased risk of incident ESKD (OR [95%CI] = 2.27[1.53, 3.37]) but APOL1 was not associated with ESKD in the absence of the alternate allele (OR [95%CI] = 1.34[0.96, 1.85]) in the REGARDS study. The associations were consistent after adjusting for diabetes. Conclusion In a large genome-wide association study of AAs, a locus SMOC2 exhibited a significant interaction with the APOL1 locus. SMOC2 contributes to the progression of fibrosis after kidney injury and the interaction with APOL1 variants may contribute to an explanation for why only some APOLI high-risk individuals develop ESKD.
Collapse
Affiliation(s)
- Ninad S. Chaudhary
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nicole D. Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bertha A. Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Orlando M. Gutiérrez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jacklyn N. Hellwege
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nita A. Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Richard J. Reynolds
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suzanne E. Judd
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Girish N. Nadkarni
- Division of Data-Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Leslie Lange
- Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Denver, CO, United States
| | - Cheryl A. Winkler
- Basic Research Program, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jeffrey B. Kopp
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Donna K. Arnett
- Deans Office, College of Public Health, University of Kentucky, Lexington, KY, United States
| | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
19
|
Pro-oxidative priming but maintained cardiac function in a broad spectrum of murine models of chronic kidney disease. Redox Biol 2022; 56:102459. [PMID: 36099852 PMCID: PMC9482130 DOI: 10.1016/j.redox.2022.102459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Aims Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular events and exhibit myocardial changes including left ventricular (LV) hypertrophy and fibrosis, overall referred to as ‘uremic cardiomyopathy’. Although different CKD animal models have been studied for cardiac effects, lack of consistent reporting on cardiac function and pathology complicates clear comparison of these models. Therefore, this study aimed at a systematic and comprehensive comparison of cardiac function and cardiac pathophysiological characteristics in eight different CKD models and mouse strains, with a main focus on adenine-induced CKD. Methods and results CKD of different severity and duration was induced by subtotal nephrectomy or adenine-rich diet in various strains (C57BL/6J, C57BL/6 N, hyperlipidemic C57BL/6J ApoE−/−, 129/Sv), followed by the analysis of kidney function and morphology, blood pressure, cardiac function, cardiac hypertrophy, fibrosis, myocardial calcification and inflammation using functional, histological and molecular techniques, including cardiac gene expression profiling supplemented by oxidative stress analysis. Intriguingly, despite uremia of variable degree, neither cardiac dysfunction, hypertrophy nor interstitial fibrosis were observed. However, already moderate CKD altered cardiac oxidative stress responses and enhanced oxidative stress markers in each mouse strain, with cardiac RNA sequencing revealing activation of oxidative stress signaling as well as anti-inflammatory feedback responses. Conclusion This study considerably expands the knowledge on strain- and protocol-specific differences in the field of cardiorenal research and reveals that several weeks of at least moderate experimental CKD increase oxidative stress responses in the heart in a broad spectrum of mouse models. However, this was insufficient to induce relevant systolic or diastolic dysfunction, suggesting that additional “hits” are required to induce uremic cardiomyopathy. Translational perspective Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular adverse events and exhibit myocardial changes, overall referred to as ‘uremic cardiomyopathy’. We revealed that CKD increases cardiac oxidative stress responses in the heart. Nonetheless, several weeks of at least moderate experimental CKD do not necessarily trigger cardiac dysfunction and remodeling, suggesting that additional “hits” are required to induce uremic cardiomyopathy in the clinical setting. Whether the altered cardiac oxidative stress balance in CKD may increase the risk and extent of cardiovascular damage upon additional cardiovascular risk factors and/or events will be addressed in future studies. Development of a CKD mouse model with a clear cardiac functional or morphological phenotype is challenging. Cardiac oxidative stress response as well as oxidative stress markers are increased in a broad spectrum of CKD mouse models. Our findings suggest need of additional cardiovascular hits to clearly induce uremic cardiomyopathy as observed in patients.
Collapse
|
20
|
Feng D, Gao P, Henley N, Dubuissez M, Chen N, Laurin LP, Royal V, Pichette V, Gerarduzzi C. SMOC2 promotes an epithelial-mesenchymal transition and a pro-metastatic phenotype in epithelial cells of renal cell carcinoma origin. Cell Death Dis 2022; 13:639. [PMID: 35869056 PMCID: PMC9307531 DOI: 10.1038/s41419-022-05059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
Renal Cell Carcinoma (RCC) is the most common form of all renal cancer cases, and well-known for its highly aggressive metastatic behavior. SMOC2 is a recently described non-structural component of the extracellular matrix (ECM) that is highly expressed during tissue remodeling processes with emerging roles in cancers, yet its role in RCC remains elusive. Using gene expression profiles from patient samples, we identified SMOC2 as being significantly expressed in RCC tissue compared to normal renal tissue, which correlated with shorter RCC patient survival. Specifically, de novo protein synthesis of SMOC2 was shown to be much higher in the tubular epithelial cells of patients with biopsy-proven RCC. More importantly, we provide evidence of SMOC2 triggering kidney epithelial cells into an epithelial-to-mesenchymal transition (EMT), a phenotype known to promote metastasis. We found that SMOC2 induced mesenchymal-like morphology and activities in both RCC and non-RCC kidney epithelial cell lines. Mechanistically, treatment of RCC cell lines ACHN and 786-O with SMOC2 (recombinant and enforced expression) caused a significant increase in EMT-markers, -matrix production, -proliferation, and -migration, which were inhibited by targeting SMOC2 by siRNA. We further characterized SMOC2 activation of EMT to occur through the integrin β3, FAK and paxillin pathway. The proliferation and metastatic potential of SMOC2 overexpressing ACHN and 786-O cell lines were validated in vivo by their significantly higher tumor growth in kidneys and systemic dissemination into other organs when compared to their respective controls. In principle, understanding the impact that SMOC2 has on EMT may lead to more evidence-based treatments and biomarkers for RCC metastasis.
Collapse
Affiliation(s)
- Daniel Feng
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Peng Gao
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Henley
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Marion Dubuissez
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Nan Chen
- Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Louis-Philippe Laurin
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Virginie Royal
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
| | - Vincent Pichette
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Casimiro Gerarduzzi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada.
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
21
|
The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat Rev Nephrol 2022; 18:545-557. [PMID: 35788561 DOI: 10.1038/s41581-022-00590-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Kidney fibrosis, characterized by excessive deposition of extracellular matrix (ECM) that leads to tissue scarring, is the final common outcome of a wide variety of chronic kidney diseases. Rather than being distributed uniformly across the kidney parenchyma, renal fibrotic lesions initiate at certain focal sites in which the fibrogenic niche is formed in a spatially confined fashion. This niche provides a unique tissue microenvironment that is orchestrated by a specialized ECM network consisting of de novo-induced matricellular proteins. Other structural elements of the fibrogenic niche include kidney resident and infiltrated inflammatory cells, extracellular vesicles, soluble factors and metabolites. ECM proteins in the fibrogenic niche recruit soluble factors including WNTs and transforming growth factor-β from the extracellular milieu, creating a distinctive profibrotic microenvironment. Studies using decellularized ECM scaffolds from fibrotic kidneys show that the fibrogenic niche autonomously promotes fibroblast proliferation, tubular injury, macrophage activation and endothelial cell depletion, pathological features that recapitulate key events in the pathogenesis of chronic kidney disease. The concept of the fibrogenic niche represents a paradigm shift in understanding of the mechanism of kidney fibrosis that could lead to the development of non-invasive biomarkers and novel therapies not only for chronic kidney disease, but also for fibrotic diseases of other organs.
Collapse
|
22
|
Lu Y, Ying D, Tian Y, Ruan Y, Cheng G, Lv K, Zhou X, Han S. LncRNA LINC01857 drives pancreatic adenocarcinoma progression via modulating miR-19a-3p/SMOC2. Clinics (Sao Paulo) 2022; 77:100047. [PMID: 35662010 PMCID: PMC9168480 DOI: 10.1016/j.clinsp.2022.100047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Emerging evidence has demonstrated that LINC01857 exerts a pivotal function in many cancers. However, its function in Pancreatic Ductal Adenocarcinoma (PDAC) still remains unclear. This study was designed to investigate the regulatory character of LINC01857 in PDAC. METHODS Bioinformatic tools and databases were used to seek potential miRNAs and mRNAs. Gene expression was evaluated by Reverse Transcription quantitative real-time Polymerase Chain Reaction (RT-qPCR), and western blot was used for protein level detection. A subcellular fraction assay was done to ascertain the location of LINC01857 in PANC-1 and BxPC-3 human pancreatic cancer cells. CCK-8, EdU, wound healing and Transwell assays were performed to inquire into the influence of LINC01857, and SPARC -related Modular Calcium-binding protein-2 (SMOC2) on cell viability, proliferation, migration, and invasion, respectively. The interaction between LINC01857 and its downstream genes was explored by RNA immunoprecipitation and luciferase reporter assays. RESULTS LINC01857 levels were significantly elevated in PDAC. Knockdown of LINC01857 significantly restrained the proliferation, migration, invasion, and Epithelial-Mesenchymal Transition (EMT) process of PDAC cells. MiR-19a-3p was a downstream target of LINC01857, and miR-19a-3p levels were significantly decreased in PDAC cells. In addition, SMOC2 expression had a negative correlation with that of miR-19a-3p, and SMOC2 was a downstream target of miR-19a-3p. Furthermore, SMOC2 upregulation partially abolished the inhibitive influence of LINC01857 downregulation on cell proliferation, migration, invasion, and the EMT process. CONCLUSION LINC01857 promotes malignant phenotypes of PDAC cells via upregulation of SMOC2 by interacting with miR-19a-3p.
Collapse
Affiliation(s)
- Yeting Lu
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University(Ningbo Medical Center Lihuili Hospital), Ningbo 315100, Zhejiang, China
| | - Dongjian Ying
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University(Ningbo Medical Center Lihuili Hospital), Ningbo 315100, Zhejiang, China
| | - Yuan Tian
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University(Ningbo Medical Center Lihuili Hospital), Ningbo 315100, Zhejiang, China
| | - Yi Ruan
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University(Ningbo Medical Center Lihuili Hospital), Ningbo 315100, Zhejiang, China
| | - Gong Cheng
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University(Ningbo Medical Center Lihuili Hospital), Ningbo 315100, Zhejiang, China
| | - Kaiji Lv
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University(Ningbo Medical Center Lihuili Hospital), Ningbo 315100, Zhejiang, China
| | - Xinhua Zhou
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University(Ningbo Medical Center Lihuili Hospital), Ningbo 315100, Zhejiang, China
| | - Shuo Han
- Department of Healthcare Security and Price Management, The Affiliated Lihuili Hospital, Ningbo University (Ningbo Medical Center Lihuili Hospital), Ningbo 315100, Zhejiang, China.
| |
Collapse
|
23
|
Zhang W, Man Y, Chen Z. microRNA-148a in Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Alleviates Cardiomyocyte Apoptosis in Atrial Fibrillation by Inhibiting SMOC2. Mol Biotechnol 2022; 64:1076-1087. [PMID: 35397056 DOI: 10.1007/s12033-022-00487-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
Exosomes-related microRNAs (miRNAs) have been considered to be the significant biomarkers contributing to the development of atrial fibrillation (AF). We observed the implicit mechanism of exosomes-miR-148a derived from bone marrow mesenchymal stem cells (BMSCs) in AF. The AF cell and mice models were established firstly. QRT-PCR and Western blot analysis were applied to detect the expression of miR-148a, SPARC-associated modular calcium-binding protein 2 (SMOC2), Bcl-2, Bax, and caspase-3. BMSCs were separated from healthy mice and exosomes were obtained from BMSCs. BMSCs were transfected with mimics and inhibitor, and HL-1 cells were treated with mimics and pcDNA3.1. MTT assay were used to detect cell viability of cells. Flow cytometric analysis and TUNEL analysis were used for detecting cell apoptosis of cells. In our study, exosomes derived from BMSCs inhibited the development of AF, and miR-148a acted a vital role in this segment. SMOC2 was a target gene of miR-148a and promoted apoptosis of HL-1 cells. Additionally, miR-148a mimics decreased cellular apoptosis, eliminated SMOC2 expression, and elevated Bcl-2 expression in AF-treated cells. Collectively, miR-148a overexpressed in BMSC-exosomes restrained cardiomyocytes apoptosis by inhibiting SMOC2.
Collapse
Affiliation(s)
- Weijuan Zhang
- Department of Cardiology, Xi'an No. 3 Hospital, the Affiliated Hospital Northwest University, Xi'an, Shanxi, 710018, P.R. China
| | - Yilong Man
- Department of Cardiology, Jinan Central Hospital, Jinan, 250013, China
| | - Zhanghu Chen
- Department of Emergency, Xi'an No. 3 Hospital, the Affiliated Hospital Northwest University, Xi'an, Shaanxi, 710018, P.R. China.
| |
Collapse
|
24
|
Aga H, Soultoukis G, Stadion M, Garcia-Carrizo F, Jähnert M, Gottmann P, Vogel H, Schulz TJ, Schürmann A. Distinct Adipogenic and Fibrogenic Differentiation Capacities of Mesenchymal Stromal Cells from Pancreas and White Adipose Tissue. Int J Mol Sci 2022; 23:ijms23042108. [PMID: 35216219 PMCID: PMC8876166 DOI: 10.3390/ijms23042108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic steatosis associates with β-cell failure and may participate in the development of type-2-diabetes. Our previous studies have shown that diabetes-susceptible mice accumulate more adipocytes in the pancreas than diabetes-resistant mice. In addition, we have demonstrated that the co-culture of pancreatic islets and adipocytes affect insulin secretion. The aim of this current study was to elucidate if and to what extent pancreas-resident mesenchymal stromal cells (MSCs) with adipogenic progenitor potential differ from the corresponding stromal-type cells of the inguinal white adipose tissue (iWAT). miRNA (miRNome) and mRNA expression (transcriptome) analyses of MSCs isolated by flow cytometry of both tissues revealed 121 differentially expressed miRNAs and 1227 differentially expressed genes (DEGs). Target prediction analysis estimated 510 DEGs to be regulated by 58 differentially expressed miRNAs. Pathway analyses of DEGs and miRNA target genes showed unique transcriptional and miRNA signatures in pancreas (pMSCs) and iWAT MSCs (iwatMSCs), for instance fibrogenic and adipogenic differentiation, respectively. Accordingly, iwatMSCs revealed a higher adipogenic lineage commitment, whereas pMSCs showed an elevated fibrogenesis. As a low degree of adipogenesis was also observed in pMSCs of diabetes-susceptible mice, we conclude that the development of pancreatic steatosis has to be induced by other factors not related to cell-autonomous transcriptomic changes and miRNA-based signals.
Collapse
Affiliation(s)
- Heja Aga
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
| | - George Soultoukis
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany;
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
| | - Francisco Garcia-Carrizo
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany;
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
- Research Group Genetics of Obesity, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, 14469 Potsdam, Germany
| | - Tim J. Schulz
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany;
- Institute of Nutritional Sciences, University of Potsdam, 14558 Nuthetal, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
- Institute of Nutritional Sciences, University of Potsdam, 14558 Nuthetal, Germany
- Correspondence: ; Tel.: +49-33-200-88-2368
| |
Collapse
|
25
|
Moeller MJ, Kramann R, Lammers T, Hoppe B, Latz E, Ludwig-Portugall I, Boor P, Floege J, Kurts C, Weiskirchen R, Ostendorf T. New Aspects of Kidney Fibrosis-From Mechanisms of Injury to Modulation of Disease. Front Med (Lausanne) 2022; 8:814497. [PMID: 35096904 PMCID: PMC8790098 DOI: 10.3389/fmed.2021.814497] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/20/2021] [Indexed: 02/02/2023] Open
Abstract
Organ fibrogenesis is characterized by a common pathophysiological final pathway independent of the underlying progressive disease of the respective organ. This makes it particularly suitable as a therapeutic target. The Transregional Collaborative Research Center “Organ Fibrosis: From Mechanisms of Injury to Modulation of Disease” (referred to as SFB/TRR57) was hosted from 2009 to 2021 by the Medical Faculties of RWTH Aachen University and the University of Bonn. This consortium had the ultimate goal of discovering new common but also different fibrosis pathways in the liver and kidneys. It finally successfully identified new mechanisms and established novel therapeutic approaches to interfere with hepatic and renal fibrosis. This review covers the consortium's key kidney-related findings, where three overarching questions were addressed: (i) What are new relevant mechanisms and signaling pathways triggering renal fibrosis? (ii) What are new immunological mechanisms, cells and molecules that contribute to renal fibrosis?, and finally (iii) How can renal fibrosis be modulated?
Collapse
Affiliation(s)
- Marcus J Moeller
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany.,Heisenberg Chair for Preventive and Translational Nephrology, Aachen, Germany
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Faculty of Medicine, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Bernd Hoppe
- Division of Pediatric Nephrology and Kidney Transplantation, University Hospital of Bonn, Bonn, Germany.,German Hyperoxaluria Center, Pediatric Kidney Care Center, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital of Bonn, Bonn, Germany
| | - Isis Ludwig-Portugall
- Institute for Molecular Medicine and Experimental Immunology, University Hospital of Bonn, Bonn, Germany
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany.,Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Kurts
- Institute for Molecular Medicine and Experimental Immunology, University Hospital of Bonn, Bonn, Germany.,Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Tammo Ostendorf
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
26
|
Rui H, Zhao F, Yuhua L, Hong J. Suppression of SMOC2 alleviates myocardial fibrosis via the ILK/p38 pathway. Front Cardiovasc Med 2022; 9:951704. [PMID: 36935650 PMCID: PMC10017443 DOI: 10.3389/fcvm.2022.951704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/13/2022] [Indexed: 03/06/2023] Open
Abstract
Background Fibrosis of the myocardium is one of the main pathological changes of adverse cardiac remodeling, which is associated with unsatisfactory outcomes in patients with heart disease. Further investigations into the precise molecular mechanisms of cardiac fibrosis are urgently required to seek alternative therapeutic strategies for individuals suffering from heart failure. SMOC2 has been shown to be essential to exert key pathophysiological roles in various physiological processes in vivo, possibly contributing to the pathogenesis of fibrosis. A study investigating the relationship between SMOC2 and myocardial fibrosis has yet to be conducted. Methods Mice received a continuous ISO injection subcutaneously to induce cardiac fibrosis, and down-regulation of SMOC2 was achieved by adeno-associated virus-9 (AAV9)-mediated shRNA knockdown. Neonatal fibroblasts were separated and cultured in vitro with TGFβ to trigger fibrosis and infected with either sh-SMOC2 or sh-RNA as a control. The role and mechanisms of SMOC2 in myocardial fibrosis were further examined and analyzed. Results SMOC2 knockdown partially reversed cardiac functional impairment and cardiac fibrosis in vivo after 21 consecutive days of ISO injection. We further demonstrated that targeting SMOC2 expression effectively slowed down the trans-differentiation and collagen deposition of cardiac fibroblasts stimulated by TGFβ. Mechanistically, targeting SMOC2 expression inhibited the induction of ILK and p38 in vivo and in vitro, and ILK overexpression increased p38 phosphorylation activity and compromised the protective effects of sh-SMOC2-mediated cardiac fibrosis. Conclusion Therapeutic SMOC2 silencing alleviated cardiac fibrosis through inhibition of the ILK/p38 signaling, providing a preventative and control strategy for cardiac remodeling management in clinical practice.
Collapse
Affiliation(s)
- Huang Rui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Fang Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lei Yuhua
- Department of Cardiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, China
| | - Jiang Hong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Jiang Hong,
| |
Collapse
|
27
|
Watanabe H, Martini AG, Brown EA, Liang X, Medrano S, Goto S, Narita I, Arend LJ, Sequeira-Lopez MLS, Gomez RA. Inhibition of the renin-angiotensin system causes concentric hypertrophy of renal arterioles in mice and humans. JCI Insight 2021; 6:e154337. [PMID: 34762601 PMCID: PMC8783690 DOI: 10.1172/jci.insight.154337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Inhibitors of the renin-angiotensin system (RAS) are widely used to treat hypertension. Using mice harboring fluorescent cell lineage tracers, single-cell RNA-Seq, and long-term inhibition of RAS in both mice and humans, we found that deletion of renin or inhibition of the RAS leads to concentric thickening of the intrarenal arteries and arterioles. This severe disease was caused by the multiclonal expansion and transformation of renin cells from a classical endocrine phenotype to a matrix-secretory phenotype: the cells surrounded the vessel walls and induced the accumulation of adjacent smooth muscle cells and extracellular matrix, resulting in blood flow obstruction, focal ischemia, and fibrosis. Ablation of the renin cells via conditional deletion of β1 integrin prevented arteriolar hypertrophy, indicating that renin cells are responsible for vascular disease. Given these findings, prospective morphological studies in humans are necessary to determine the extent of renal vascular damage caused by the widespread use of inhibitors of the RAS.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Alexandre G. Martini
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Evan A. Brown
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Xiuyin Liang
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Silvia Medrano
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Lois J. Arend
- Department of Pathology, Johns Hopkins University and Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Maria Luisa S. Sequeira-Lopez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - R. Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
28
|
Wu YS, Liang S, Li DY, Wen JH, Tang JX, Liu HF. Cell Cycle Dysregulation and Renal Fibrosis. Front Cell Dev Biol 2021; 9:714320. [PMID: 34900982 PMCID: PMC8660570 DOI: 10.3389/fcell.2021.714320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
Precise regulation of cell cycle is essential for tissue homeostasis and development, while cell cycle dysregulation is associated with many human diseases including renal fibrosis, a common process of various chronic kidney diseases progressing to end-stage renal disease. Under normal physiological conditions, most of the renal cells are post-mitotic quiescent cells arrested in the G0 phase of cell cycle and renal cells turnover is very low. Injuries induced by toxins, hypoxia, and metabolic disorders can stimulate renal cells to enter the cell cycle, which is essential for kidney regeneration and renal function restoration. However, more severe or repeated injuries will lead to maladaptive repair, manifesting as cell cycle arrest or overproliferation of renal cells, both of which are closely related to renal fibrosis. Thus, cell cycle dysregulation of renal cells is a potential therapeutic target for the treatment of renal fibrosis. In this review, we focus on cell cycle regulation of renal cells in healthy and diseased kidney, discussing the role of cell cycle dysregulation of renal cells in renal fibrosis. Better understanding of the function of cell cycle dysregulation in renal fibrosis is essential for the development of therapeutics to halt renal fibrosis progression or promote regression.
Collapse
Affiliation(s)
- Yun-Shan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shan Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dong-Yi Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jun-Hao Wen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Shunde Women and Children's Hospital, Guangdong Medical University (Foshan Shunde Maternal and Child Healthcare Hospital), Foshan, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
29
|
Wang Y, Yang H, Su X, Cao A, Chen F, Chen P, Yan F, Hu H. TGF-β1/SMOC2/AKT and ERK axis regulates proliferation, migration, and fibroblast to myofibroblast transformation in lung fibroblast, contributing with the asthma progression. Hereditas 2021; 158:47. [PMID: 34876240 PMCID: PMC8653533 DOI: 10.1186/s41065-021-00213-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Asthma is a common chronic respiratory disease that influences 300 million people all over the world. However, the pathogenesis of asthma has not been fully elucidated. It has been reported that transforming growth factor-β (TGF-β) can activate myofibroblasts. Moreover, the fibroblast to myofibroblast transformation (FMT) can be triggered by TGF-β, which is a major mediator of subepithelial fibrosis. Secreted modular calcium-binding protein 2 (SMOC2) is a member of cysteine (SPARC) family and is involved in the progression of multiple diseases. However, its role in asthma remains poorly understood. RT-qPCR evaluated the expression of SMOC2. Bromodeoxyuridine assay and wound-healing assay detected the proliferation and migration of lung fibroblasts, respectively. IF staining was performed to assess the expression of α-smooth muscle actin (α-SMA). Western blot analysis detected the levels of proteins. Flow cytometry was utilized for determination of the number of myofibroblasts. Results We found the expression of SMOC2 was upregulated by the treatment of TGF-β1 in lung fibroblasts. In addition, SMOC2 promoted the proliferation and migration of lung fibroblasts. More importantly, SMOC2 accelerated FMT of lung fibroblasts. Furthermore, SMOC2 was verified to control the activation of AKT and ERK. Rescue assays showed that the inhibition of AKT and ERK pathway reversed the promoting effect of SMOC2 overexpression on proliferation, migration and FMT in lung fibroblasts. Conclusions This work demonstrated that SMOC2 modulated TGF-β1-induced proliferation, migration and FMT in lung fibroblasts and may promote asthma, which potentially provided a novel therapeutic target for the management of asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00213-w.
Collapse
Affiliation(s)
- Yuebin Wang
- Department of Respiratory and Critical Care Medicine, Chengdu Third People's Hospital, Chengdu City, 610031, Sichuan Province, China
| | - Huike Yang
- Department of Anatomy, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, China
| | - Xian Su
- Department of Respiratory and Critical Care Medicine, Chengdu Third People's Hospital, Chengdu City, 610031, Sichuan Province, China
| | - Anqiang Cao
- Department of Cardiothoracic Surgery, Chengdu Third People's Hospital, No.82, Qinglong Street, Qingyang District, Chengdu City, Sichuan Province, China.
| | - Feng Chen
- Department of Cardiothoracic Surgery, Chengdu Third People's Hospital, No.82, Qinglong Street, Qingyang District, Chengdu City, Sichuan Province, China
| | - Peng Chen
- Department of Cardiothoracic Surgery, Chengdu Third People's Hospital, No.82, Qinglong Street, Qingyang District, Chengdu City, Sichuan Province, China
| | - Fangtao Yan
- Department of Cardiothoracic Surgery, Chengdu Third People's Hospital, No.82, Qinglong Street, Qingyang District, Chengdu City, Sichuan Province, China
| | - Huirong Hu
- Department of Cardiothoracic Surgery, Chengdu Third People's Hospital, No.82, Qinglong Street, Qingyang District, Chengdu City, Sichuan Province, China
| |
Collapse
|
30
|
Gutierrez A, Demond H, Brebi P, Ili CG. Novel Methylation Biomarkers for Colorectal Cancer Prognosis. Biomolecules 2021; 11:1722. [PMID: 34827720 PMCID: PMC8615818 DOI: 10.3390/biom11111722] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) comprises the third most common cancer worldwide and the second regarding number of deaths. In order to make a correct and early diagnosis to predict metastasis formation, biomarkers are an important tool. Although there are multiple signaling pathways associated with cancer progression, the most recognized are the MAPK pathway, p53 pathway, and TGF-β pathway. These pathways regulate many important functions in the cell, such as cell cycle regulation, proliferation, differentiation, and metastasis formation, among others. Changes in expression in genes belonging to these pathways are drivers of carcinogenesis. Often these expression changes are caused by mutations; however, epigenetic changes, such as DNA methylation, are increasingly acknowledged to play a role in the deregulation of oncogenic genes. This makes DNA methylation changes an interesting biomarkers in cancer. Among the newly identified biomarkers for CRC metastasis INHBB, SMOC2, BDNF, and TBRG4 are included, all of which are highly deregulated by methylation and closely associated with metastasis. The identification of such biomarkers in metastasis of CRC may allow a better treatment and early identification of cancer formation in order to perform better diagnostics and improve the life expectancy.
Collapse
Affiliation(s)
| | | | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| | - Carmen Gloria Ili
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| |
Collapse
|
31
|
Hubert F, Payan SM, Pelce E, Bouchard L, Sturny R, Lenfant N, Mottola G, Collart F, Kelly RG, Rochais F. FGF10 promotes cardiac repair through a dual cellular mechanism increasing cardiomyocyte renewal and inhibiting fibrosis. Cardiovasc Res 2021; 118:2625-2637. [PMID: 34755840 DOI: 10.1093/cvr/cvab340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS Promoting cardiomyocyte renewal represents a major therapeutic approach for heart regeneration and repair. Our study aims to investigate the relevance of FGF10 as a potential target for heart regeneration. METHODS AND RESULTS Our results first reveal that Fgf10 levels are upregulated in the injured ventricle after MI. Adult mice with reduced Fgf10 expression subjected to MI display impaired cardiomyocyte proliferation and enhanced cardiac fibrosis, leading to a worsened cardiac function and remodeling post-MI. In contrast, conditional Fgf10 overexpression post-MI revealed that, by enhancing cardiomyocyte proliferation and preventing scar-promoting myofibroblast activation, FGF10 preserves cardiac remodeling and function. Moreover, FGF10 activates major regenerative pathways including the regulation of Meis1 expression levels, the Hippo signaling pathway and a pro-glycolytic metabolic switch. Finally, we demonstrate that elevated FGF10 levels in failing human hearts correlate with reduced fibrosis and enhanced cardiomyocyte proliferation. CONCLUSIONS Altogether, our study shows that FGF10 promotes cardiac regeneration and repair through two cellular mechanisms: elevating cardiomyocyte renewal and limiting fibrosis. This study thus identifies FGF10 as a clinically relevant target for heart regeneration and repair in man.
Collapse
Affiliation(s)
- Fabien Hubert
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | - Sandy M Payan
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | - Edeline Pelce
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France.,Department of Cardiac Surgery, Timone Hospital, AP-HM, Marseille, France
| | | | - Rachel Sturny
- Aix Marseille Univ, CNRS UMR 7288, IBDM, Marseille, France
| | | | - Giovanna Mottola
- Aix-Marseille Univ, C2VN, INSERM 1263, INRAE 1260, Marseille, France.,Laboratory of Biochemistry, Timone Hospital, Marseille, France
| | - Frédéric Collart
- Department of Cardiac Surgery, Timone Hospital, AP-HM, Marseille, France
| | - Robert G Kelly
- Aix Marseille Univ, CNRS UMR 7288, IBDM, Marseille, France
| | | |
Collapse
|
32
|
Xin C, Lei J, Wang Q, Yin Y, Yang X, Moran Guerrero JA, Sabbisetti V, Sun X, Vaidya VS, Bonventre JV. Therapeutic silencing of SMOC2 prevents kidney function loss in mouse model of chronic kidney disease. iScience 2021; 24:103193. [PMID: 34703992 PMCID: PMC8524153 DOI: 10.1016/j.isci.2021.103193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with substantial morbidity and mortality. We developed a mouse model that mimics human CKD with inflammation, extracellular matrix deposition, tubulointerstitial fibrosis, increased proteinuria, and associated reduction in glomerular filtration rate over time. Using this model, we show that genetic deficiency of SMOC2 or therapeutic silencing of SMOC2 with small interfering RNAs (siRNAs) after disease onset significantly ameliorates inflammation, fibrosis, and kidney function loss. Mechanistically, we found that SMOC2 promotes fibroblast to myofibroblast differentiation by activation of diverse cellular signaling pathways including MAPKs, Smad, and Akt. Thus, targeting SMOC2 therapeutically offers an approach to prevent fibrosis progression and CKD after injury.
Collapse
Affiliation(s)
- Cuiyan Xin
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiahui Lei
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Wang
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Second Department of General Geriatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yixia Yin
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoqian Yang
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jose Alberto Moran Guerrero
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Venkata Sabbisetti
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoming Sun
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vishal S. Vaidya
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph V. Bonventre
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Schmidt IM, Colona MR, Kestenbaum BR, Alexopoulos LG, Palsson R, Srivastava A, Liu J, Stillman IE, Rennke HG, Vaidya VS, Wu H, Humphreys BD, Waikar SS. Cadherin-11, Sparc-related modular calcium binding protein-2, and Pigment epithelium-derived factor are promising non-invasive biomarkers of kidney fibrosis. Kidney Int 2021; 100:672-683. [PMID: 34051265 PMCID: PMC8384690 DOI: 10.1016/j.kint.2021.04.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/25/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023]
Abstract
Kidney fibrosis constitutes the shared final pathway of nearly all chronic nephropathies, but biomarkers for the non-invasive assessment of kidney fibrosis are currently not available. To address this, we characterize five candidate biomarkers of kidney fibrosis: Cadherin-11 (CDH11), Sparc-related modular calcium binding protein-2 (SMOC2), Pigment epithelium-derived factor (PEDF), Matrix-Gla protein, and Thrombospondin-2. Gene expression profiles in single-cell and single-nucleus RNA-sequencing (sc/snRNA-seq) datasets from rodent models of fibrosis and human chronic kidney disease (CKD) were explored, and Luminex-based assays for each biomarker were developed. Plasma and urine biomarker levels were measured using independent prospective cohorts of CKD: the Boston Kidney Biopsy Cohort, a cohort of individuals with biopsy-confirmed semiquantitative assessment of kidney fibrosis, and the Seattle Kidney Study, a cohort of patients with common forms of CKD. Ordinal logistic regression and Cox proportional hazards regression models were used to test associations of biomarkers with interstitial fibrosis and tubular atrophy and progression to end-stage kidney disease and death, respectively. Sc/snRNA-seq data confirmed cell-specific expression of biomarker genes in fibroblasts. After multivariable adjustment, higher levels of plasma CDH11, SMOC2, and PEDF and urinary CDH11 and PEDF were significantly associated with increasing severity of interstitial fibrosis and tubular atrophy in the Boston Kidney Biopsy Cohort. In both cohorts, higher levels of plasma and urinary SMOC2 and urinary CDH11 were independently associated with progression to end-stage kidney disease. Higher levels of urinary PEDF associated with end-stage kidney disease in the Seattle Kidney Study, with a similar signal in the Boston Kidney Biopsy Cohort, although the latter narrowly missed statistical significance. Thus, we identified CDH11, SMOC2, and PEDF as promising non-invasive biomarkers of kidney fibrosis.
Collapse
Affiliation(s)
- Insa M Schmidt
- Section of Nephrology, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachussetts, USA; Renal Division, Brigham & Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachussetts, USA
| | - Mia R Colona
- Section of Nephrology, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachussetts, USA; Renal Division, Brigham & Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachussetts, USA
| | - Bryan R Kestenbaum
- Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Leonidas G Alexopoulos
- School of Mechanical Engineering, National Technical University of Athens, Athens Greece; ProtATonce, Ltd., Athens, Greece
| | - Ragnar Palsson
- Division of Nephrology, Landspitali-The National University Hospital of Iceland, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Anand Srivastava
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jing Liu
- Section of Nephrology, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachussetts, USA; Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachussetts, USA
| | - Helmut G Rennke
- Department of Pathology, Brigham & Women's Hospital, Boston, Massachussetts, USA
| | - Vishal S Vaidya
- Renal Division, Brigham & Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachussetts, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachussetts, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachussetts, USA; Renal Division, Brigham & Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachussetts, USA.
| |
Collapse
|
34
|
Fazilaty H, Brügger MD, Valenta T, Szczerba BM, Berkova L, Doumpas N, Hausmann G, Scharl M, Basler K. Tracing colonic embryonic transcriptional profiles and their reactivation upon intestinal damage. Cell Rep 2021; 36:109484. [PMID: 34348153 DOI: 10.1016/j.celrep.2021.109484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
We lack a holistic understanding of the genetic programs orchestrating embryonic colon morphogenesis and governing damage response in the adult. A window into these programs is the transcriptomes of the epithelial and mesenchymal cell populations in the colon. Performing unbiased single-cell transcriptomic analyses of the developing mouse colon at different embryonic stages (embryonic day 14.5 [E14.5], E15.5, and E18.5), we capture cellular and molecular profiles of the stages before, during, and after the appearance of crypt structures, as well as in a model of adult colitis. The data suggest most adult lineages are established by E18.5. We find embryonic-specific gene expression profiles and cell populations that reappear in response to tissue damage. Comparison of the datasets from mice and human colitis suggests the processes are conserved. In this study, we provide a comprehensive single-cell atlas of the developing mouse colon and evidence for the reactivation of embryonic genes in disease.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michael David Brügger
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Barbara M Szczerba
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Linda Berkova
- Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Nikolaos Doumpas
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
35
|
Prashanth G, Vastrad B, Tengli A, Vastrad C, Kotturshetti I. Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules. BMC Endocr Disord 2021; 21:80. [PMID: 33902539 PMCID: PMC8074411 DOI: 10.1186/s12902-021-00718-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. METHODS To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. RESULTS A total of 820 DEGs were identified between healthy obese and metabolically unhealthy obese, among 409 up regulated and 411 down regulated genes. The GO enrichment analysis results showed that these DEGs were significantly enriched in ion transmembrane transport, intrinsic component of plasma membrane, transferase activity, transferring phosphorus-containing groups, cell adhesion, integral component of plasma membrane and signaling receptor binding, whereas, the REACTOME pathway enrichment analysis results showed that these DEGs were significantly enriched in integration of energy metabolism and extracellular matrix organization. The hub genes CEBPD, TP73, ESR2, TAB1, MAP 3K5, FN1, UBD, RUNX1, PIK3R2 and TNF, which might play an essential role in obesity associated type 2 diabetes mellitus was further screened. CONCLUSIONS The present study could deepen the understanding of the molecular mechanism of obesity associated type 2 diabetes mellitus, which could be useful in developing therapeutic targets for obesity associated type 2 diabetes mellitus.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, Karnataka, 577501, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka, 582103, India
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka, 582209, India
| |
Collapse
|
36
|
Oe M, Ojima K, Muroya S. Difference in potential DNA methylation impact on gene expression between fast- and slow-type myofibers. Physiol Genomics 2021; 53:69-83. [PMID: 33459151 DOI: 10.1152/physiolgenomics.00099.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscles are comprised of two major types of myofibers, fast and slow. It is hypothesized that once myofiber type is determined, muscle fiber-type specificity is maintained by an epigenetic mechanism, however, this remains poorly understood. To address this, we conducted a comprehensive CpG methylation analysis with a reduced representation of bisulfite sequencing (RRBS). Using GFP-myh7 mouse, we visually distinguished and separately pooled slow-type and myh7-negative fast-type fibers for analyses. A total of 31,967 and 26,274 CpGs were hypermethylated by ≥10% difference in the fast- and slow-type fibers, respectively. Notably, the number of promoter-hypermethylated genes with downregulated expression in the slow-type fibers was 3.5 times higher than that in the fast-type fibers. Gene bodies of the fast-type-specific myofibrillar genes Actn3, Tnnt3, Tnni2, Tnnc2, and Tpm1 were hypermethylated in the slow-type fibers, whereas those of the slow-type-specific genes Myh7, Tnnt1, and Tpm3 were hypermethylated in the fast-type fibers. Each of the instances of gene hypermethylation was associated with the respective downregulated expression. In particular, a relationship between CpG methylation sites and the transcription variant distribution of Tpm1 was observed, suggesting a regulation of Tpm1 alternative promoter usage by gene body CpG methylation. An association of hypermethylation with the regulation of gene expression was also observed in the transcription factors Sim2 and Tbx1. These results suggest not only a myofiber type-specific regulation of gene expression and alternative promoter usage by gene body CpG methylation but also a dominant effect of promoter-hypermethylation on the gene expressions in slow myofibers.
Collapse
Affiliation(s)
- Mika Oe
- Muscle Biology Research Unit, Division of Animal Products Research, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Susumu Muroya
- Muscle Biology Research Unit, Division of Animal Products Research, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| |
Collapse
|
37
|
Morkmued S, Clauss F, Schuhbaur B, Fraulob V, Mathieu E, Hemmerlé J, Clevers H, Koo BK, Dollé P, Bloch-Zupan A, Niederreither K. Deficiency of the SMOC2 matricellular protein impairs bone healing and produces age-dependent bone loss. Sci Rep 2020; 10:14817. [PMID: 32908163 PMCID: PMC7481257 DOI: 10.1038/s41598-020-71749-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Secreted extracellular matrix components which regulate craniofacial development could be reactivated and play roles in adult wound healing. We report a patient with a loss-of-function of the secreted matricellular protein SMOC2 (SPARC related modular calcium binding 2) presenting severe oligodontia, microdontia, tooth root deficiencies, alveolar bone hypoplasia, and a range of skeletal malformations. Turning to a mouse model, Smoc2-GFP reporter expression indicates SMOC2 dynamically marks a range of dental and bone progenitors. While germline Smoc2 homozygous mutants are viable, tooth number anomalies, reduced tooth size, altered enamel prism patterning, and spontaneous age-induced periodontal bone and root loss are observed in this mouse model. Whole-genome RNA-sequencing analysis of embryonic day (E) 14.5 cap stage molars revealed reductions in early expressed enamel matrix components (Odontogenic ameloblast-associated protein) and dentin dysplasia targets (Dentin matrix acidic phosphoprotein 1). We tested if like other matricellular proteins SMOC2 was required for regenerative repair. We found that the Smoc2-GFP reporter was reactivated in adjacent periodontal tissues 4 days after tooth avulsion injury. Following maxillary tooth injury, Smoc2−/− mutants had increased osteoclast activity and bone resorption surrounding the extracted molar. Interestingly, a 10-day treatment with the cyclooxygenase 2 (COX2) inhibitor ibuprofen (30 mg/kg body weight) blocked tooth injury-induced bone loss in Smoc2−/− mutants, reducing matrix metalloprotease (Mmp)9. Collectively, our results indicate that endogenous SMOC2 blocks injury-induced jaw bone osteonecrosis and offsets age-induced periodontal decay.
Collapse
Affiliation(s)
- Supawich Morkmued
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Faculty of Dentistry, Pediatrics Division, Preventive Department, Khon Kaen University, Khon Kaen, Thailand
| | - François Clauss
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O Rares, Filière TETECOU, ERN CRANIO, 1 place de l'Hôpital, 67000, Strasbourg, France.,Regenerative NanoMedicine, INSERM UMR1260, FMTS, Hôpitaux Universitaires de Strasbourg, 11 rue Humann, 67000, Strasbourg, France
| | - Brigitte Schuhbaur
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Valérie Fraulob
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Eric Mathieu
- Biomaterials and Bioengineering, Université de Strasbourg, INSERM UMR1121, 11 rue Humann, 67000, Strasbourg, France
| | - Joseph Hemmerlé
- Biomaterials and Bioengineering, Université de Strasbourg, INSERM UMR1121, 11 rue Humann, 67000, Strasbourg, France
| | - Hans Clevers
- Hubrecht Institute, University Medical Center Utrecht, and University Utrecht, Utrecht, The Netherlands
| | - Bon-Kyoung Koo
- Hubrecht Institute, University Medical Center Utrecht, and University Utrecht, Utrecht, The Netherlands
| | - Pascal Dollé
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Faculté de Médecine, Université de Strasbourg, FMTS, 4 Rue Kirschleger, 67000, Strasbourg, France
| | - Agnès Bloch-Zupan
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000, Strasbourg, France. .,Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O Rares, Filière TETECOU, ERN CRANIO, 1 place de l'Hôpital, 67000, Strasbourg, France. .,Eastman Dental Institute, University College London, London, UK.
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000, Strasbourg, France.
| |
Collapse
|
38
|
SMOC2, an intestinal stem cell marker, is an independent prognostic marker associated with better survival in colorectal cancers. Sci Rep 2020; 10:14591. [PMID: 32884102 PMCID: PMC7471277 DOI: 10.1038/s41598-020-71643-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
We aimed to investigate the expression profile of SPARC-related modular calcium-binding protein 2 (SMOC2) during colorectal cancer (CRC) progression and assess its prognostic impact in CRC patients. In our study, we showed that SMOC2 transcript level was higher in CRC samples than in normal mucosa (P = 0.017); this level was not associated with candidate cancer stem cell markers (CD44, CD166, CD133, and CD24) or intestinal stem cell markers (LGR5, ASCL2, and EPHB2) except for OLFM4 (P = 0.04). Immunohistochemical analysis showed that SMOC2-positive cells were confined to the crypt bases in the normal intestinal mucosa, hyperplastic polyps, and sessile serrated adenomas, whereas traditional serrated adenomas and conventional adenomas exhibited focal or diffuse distribution patterns. In total, 28% of 591 CRCs were positive for SMOC2, but SMOC2 positivity had negative correlations with lymphatic invasion (P = 0.002), venous invasion (P = 0.002), and tumor stage (P < 0.001). However, a positive association with nuclear β-catenin expression was seen. Furthermore, while upregulated SMOC2 expression was maintained during the adenoma-carcinoma transition, it decreased in cancer cells at the invasive front but did not decline further during lymph node metastasis. SMOC2 positivity showed no correlations with molecular abnormalities, including microsatellite instability, CpG island methylator phenotype, and mutations of KRAS and BRAF. In addition, we showed comprehensively that SMOC2 positivity is an independent prognostic marker for better clinical outcomes in a large cohort of CRC patients (P = 0.006). In vitro studies also demonstrated that induced SMOC2 expression in DLD1 cells exerts a suppressive role in tumor growth as well as in migration, colony, and sphere formation abilities. Taken together, our results suggest SMOC2 as a candidate tumor suppressor in CRC progression.
Collapse
|
39
|
Feng D, Gerarduzzi C. Emerging Roles of Matricellular Proteins in Systemic Sclerosis. Int J Mol Sci 2020; 21:E4776. [PMID: 32640520 PMCID: PMC7369781 DOI: 10.3390/ijms21134776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis is a rare chronic heterogenous disease that involves inflammation and vasculopathy, and converges in end-stage development of multisystem tissue fibrosis. The loss of tight spatial distribution and temporal expression of proteins in the extracellular matrix (ECM) leads to progressive organ stiffening, which is a hallmark of fibrotic disease. A group of nonstructural matrix proteins, known as matricellular proteins (MCPs) are implicated in dysregulated processes that drive fibrosis such as ECM remodeling and various cellular behaviors. Accordingly, MCPs have been described in the context of fibrosis in sclerosis (SSc) as predictive disease biomarkers and regulators of ECM synthesis, with promising therapeutic potential. In this present review, an informative summary of major MCPs is presented highlighting their clear correlations to SSc- fibrosis.
Collapse
Affiliation(s)
- Daniel Feng
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Casimiro Gerarduzzi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
40
|
Zhou J, Zhang W, Wei C, Zhang Z, Yi D, Peng X, Peng J, Yin R, Zheng Z, Qi H, Wei Y, Wen T. Weighted correlation network bioinformatics uncovers a key molecular biosignature driving the left-sided heart failure. BMC Med Genomics 2020; 13:93. [PMID: 32620106 PMCID: PMC7333416 DOI: 10.1186/s12920-020-00750-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Left-sided heart failure (HF) is documented as a key prognostic factor in HF. However, the relative molecular mechanisms underlying left-sided HF is unknown. The purpose of this study is to unearth significant modules, pivotal genes and candidate regulatory components governing the progression of left-sided HF by bioinformatical analysis. METHODS A total of 319 samples in GSE57345 dataset were used for weighted gene correlation network analysis (WGCNA). ClusterProfiler package in R was used to conduct functional enrichment for genes uncovered from the modules of interest. Regulatory networks of genes were built using Cytoscape while Enrichr database was used for identification of transcription factors (TFs). The MCODE plugin was used for identifying hub genes in the modules of interest and their validation was performed based on GSE1869 dataset. RESULTS A total of six significant modules were identified. Notably, the blue module was confirmed as the most crucially associated with left-sided HF, ischemic heart disease (ISCH) and dilated cardiomyopathy (CMP). Functional enrichment conveyed that genes belonging to this module were mainly those driving the extracellular matrix-associated processes such as extracellular matrix structural constituent and collagen binding. A total of seven transcriptional factors, including Suppressor of Zeste 12 Protein Homolog (SUZ12) and nuclear factor erythroid 2 like 2 (NFE2L2), adrenergic receptor (AR), were identified as possible regulators of coexpression genes identified in the blue module. A total of three key genes (OGN, HTRA1 and MXRA5) were retained after validation of their prognostic value in left-sided HF. The results of functional enrichment confirmed that these key genes were primarily involved in response to transforming growth factor beta and extracellular matrix. CONCLUSION We uncovered a candidate gene signature correlated with HF, ISCH and CMP in the left ventricle, which may help provide better prognosis and therapeutic decisions and in HF, ISCH and CMP patients.
Collapse
Affiliation(s)
- Jiamin Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Chunying Wei
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Zhiliang Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Dasong Yi
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Jingtian Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Ran Yin
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Hongmei Qi
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Yunfeng Wei
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China.
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China.
| |
Collapse
|
41
|
Secreted modular calcium-binding proteins in pathophysiological processes and embryonic development. Chin Med J (Engl) 2020; 132:2476-2484. [PMID: 31613820 PMCID: PMC6831058 DOI: 10.1097/cm9.0000000000000472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective: Secreted modular calcium-binding proteins (SMOCs) are extracellular glycoproteins of the secreted protein, acidic, and rich in cysteine-related modular calcium-binding protein family and include two isoforms, SMOC1 and SMOC2, in humans. Functionally, SMOCs bind to calcium for various cell functions. In this review, we provided a summary of the most recent advancements in and findings of SMOC1 and SMOC2 in development, homeostasis, and disease states. Data sources: All publications in the PubMed database were searched and retrieved (up to July 24, 2019) using various combinations of keywords searching, including SMOC1, SMOC2, and diseases. Study selection: All original studies and review articles of SMOCs in human diseases and embryo development written in English were retrieved and included. Results: SMOC1 and SMOC2 regulate embryonic development, cell homeostasis, and disease pathophysiology. They play an important role in the regulation of cell cycle progression, cell attachment to the extracellular matrix, tissue fibrosis, calcification, angiogenesis, birth defects, and cancer development. Conclusions: SMOC1 and SMOC2 are critical regulators of many cell biological processes and potential therapeutic targets for the control of human cancers and birth defects.
Collapse
|
42
|
Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res 2020; 80:2705-2717. [PMID: 32193287 DOI: 10.1158/0008-5472.can-18-2098] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM. These factors do not serve classical structural roles, but rather regulate matrix proteins and cell-matrix interactions to influence normal cellular functions. In the tumor microenvironment, it is becoming increasingly clear that aberrantly expressed MCPs can support multiple hallmarks of carcinogenesis by interacting with various cellular components that are coupled to an array of downstream signals. Moreover, MCPs also reorganize the biomechanical properties of the ECM to accommodate metastasis and tumor colonization. This realization is stimulating new research on MCPs as reliable and accessible biomarkers in cancer, as well as effective and selective therapeutic targets.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
43
|
Characterization of Matricellular Protein Expression Signatures in Mechanistically Diverse Mouse Models of Kidney Injury. Sci Rep 2019; 9:16736. [PMID: 31723159 PMCID: PMC6854083 DOI: 10.1038/s41598-019-52961-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022] Open
Abstract
Fibrosis is the most common pathophysiological manifestation of Chronic Kidney Disease (CKD). It is defined as excessive deposition of extracellular matrix (ECM) proteins. Embedded within the ECM are a family of proteins called Matricellular Proteins (MCPs), which are typically expressed during chronic pathologies for ECM processing. As such, identifying potential MCPs in the pathological secretome of a damaged kidney could serve as diagnostic/therapeutic targets of fibrosis. Using published RNA-Seq data from two kidney injury mouse models of different etiologies, Folic Acid (FA) and Unilateral Ureteral Obstruction (UUO), we compared and contrasted the expression profile of various members from well-known MCP families during the Acute and Fibrotic injury phases. As a result, we identified common and distinct MCP expression signatures between both injury models. Bioinformatic analysis of their differentially expressed MCP genes revealed similar top annotation clusters from Molecular Function and Biological Process networks, which are those commonly involved in fibrosis. Using kidney lysates from FA- and UUO-injured mice, we selected MCP genes from our candidate list to confirm mRNA expression by Western Blot, which correlated with injury progression. Understanding the expressions of MCPs will provide important insight into the processes of kidney repair, and may validate MCPs as biomarkers and/or therapeutic targets of CKD.
Collapse
|
44
|
Baranyi U, Winter B, Gugerell A, Hegedus B, Brostjan C, Laufer G, Messner B. Primary Human Fibroblasts in Culture Switch to a Myofibroblast-Like Phenotype Independently of TGF Beta. Cells 2019; 8:cells8070721. [PMID: 31337073 PMCID: PMC6678602 DOI: 10.3390/cells8070721] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 01/01/2023] Open
Abstract
Fibroblasts are the prevalent cell type and main source for extracellular matrix (ECM) in connective tissue. Depending on their origin, fibroblasts play a central role in non-pathological tissue remodeling and disease like fibrosis. This study examined the effect of established culture conditions of primary human fibroblasts, from different origins on the myofibroblast-like phenotype formation. We isolated primary human fibroblasts from aortic adventitia, lung, juvenile- and adult skin and investigated the expression levels of CD90, alpha smooth muscle actin (αSMA) and procollagen I under different concentrations of fetal calf serum (FCS) and ascorbic acid (AA) in culture media by immunoblot and immunofluorescence assays. Furthermore, we determined the viability using XTT and migration/wound healing in scratch assays. Collagen 1 secretion was quantified by specific ELISA. Primary human fibroblasts show in part a myofibroblast-like phenotype even without addition of FCS. Supplemented AA reduces migration of cultured fibroblasts with no or low concentrations of FCS. Furthermore, AA and higher concentrations of FCS in culture media lead to higher levels of collagen 1 secretion instead of procollagen I accumulation. This study provides evidence for a partial switch of primary human fibroblasts of different origin to a myofibroblast-like phenotype under common culture conditions.
Collapse
Affiliation(s)
- Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Birgitta Winter
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Alfred Gugerell
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Department of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Balazs Hegedus
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Günther Laufer
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
45
|
Laugier L, Frade AF, Ferreira FM, Baron MA, Teixeira PC, Cabantous S, Ferreira LRP, Louis L, Rigaud VOC, Gaiotto FA, Bacal F, Pomerantzeff P, Bocchi E, Kalil J, Santos RHB, Cunha-Neto E, Chevillard C. Whole-Genome Cardiac DNA Methylation Fingerprint and Gene Expression Analysis Provide New Insights in the Pathogenesis of Chronic Chagas Disease Cardiomyopathy. Clin Infect Dis 2019; 65:1103-1111. [PMID: 28575239 PMCID: PMC5849099 DOI: 10.1093/cid/cix506] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023] Open
Abstract
Background Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and affects 10 million people worldwide. Approximately 12000 deaths attributable to Chagas disease occur annually due to chronic Chagas disease cardiomyopathy (CCC), an inflammatory cardiomyopathy presenting with heart failure and arrythmia; 30% of infected subjects develop CCC years after infection. Genetic mechanisms play a role in differential progression to CCC, but little is known about the role of epigenetic modifications in pathological gene expression patterns in CCC patients’ myocardium. DNA methylation is the most common modification in the mammalian genome. Methods We investigated the impact of genome-wide cardiac DNA methylation on global gene expression in myocardial samples from end-stage CCC patients, compared to control samples from organ donors. Results In total, 4720 genes were differentially methylated between CCC patients and controls, of which 399 were also differentially expressed. Several of them were related to heart function or to the immune response and had methylation sites in their promoter region. Reporter gene and in silico transcription factor binding analyses indicated promoter methylation modified expression of key genes. Among those, we found potassium channel genes KCNA4 and KCNIP4, involved in electrical conduction and arrythmia, SMOC2, involved in matrix remodeling, as well as enkephalin and RUNX3, potentially involved in the increased T-helper 1 cytokine-mediated inflammatory damage in heart. Conclusions Results support that DNA methylation plays a role in the regulation of expression of pathogenically relevant genes in CCC myocardium, and identify novel potential disease pathways and therapeutic targets in CCC.
Collapse
Affiliation(s)
- Laurie Laugier
- Aix Marseille Université, Génétique et Immunologie des Maladies Parasitaires, Unité Mixte de Recherche S906, INSERM U906, Marseille, France
| | - Amanda Farage Frade
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT.,Department of Bioengineering, Brazil University, and
| | - Frederico Moraes Ferreira
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT.,Health Sciences, University of Santo Amaro, São Paulo, Brazil
| | - Monique Andrade Baron
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT
| | - Priscila Camillo Teixeira
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT
| | - Sandrine Cabantous
- Aix Marseille Université, Génétique et Immunologie des Maladies Parasitaires, Unité Mixte de Recherche S906, INSERM U906, Marseille, France
| | - Ludmila Rodrigues Pinto Ferreira
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT.,Health Sciences, University of Santo Amaro, São Paulo, Brazil
| | - Laurence Louis
- Aix Marseille Université, Génétique médicale et génomique fonctionnelle (Plateforme Génomique et Transcriptomique), Unité Mixte de Recherche S910, INSERM U910, Marseille, France; Divisions of
| | - Vagner Oliveira Carvalho Rigaud
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT
| | | | | | | | - Edimar Bocchi
- Heart Failure Unit, Heart Institute, University of São Paulo School of Medicine, and
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT.,Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, Brazil
| | | | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT.,Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, Brazil
| | - Christophe Chevillard
- Aix Marseille Université, Génétique et Immunologie des Maladies Parasitaires, Unité Mixte de Recherche S906, INSERM U906, Marseille, France
| |
Collapse
|
46
|
Yuting Y, Lifeng F, Qiwei H. Secreted modular calcium-binding protein 2 promotes high fat diet (HFD)-induced hepatic steatosis through enhancing lipid deposition, fibrosis and inflammation via targeting TGF-β1. Biochem Biophys Res Commun 2018; 509:48-55. [PMID: 30581002 DOI: 10.1016/j.bbrc.2018.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022]
Abstract
The molecular mechanism revealing the pathogenesis of non-alcoholic fatty liver disease (NAFLD), one of the most common liver diseases, remains to be investigated. In the study, we found that secreted modular calcium-binding protein 2 (SMOC2), which belongs to the secreted protein acidic and rich in cysteine (SPARC) family of matricellular proteins, functioned as a positive modulator of NAFLD. SMOC2 expression was markedly up-regulated in human liver samples with NAFLD, and in hepatic tissues of mice fed with HFD. SMOC2 knockout in mice significantly attenuated metabolic disorders, insulin resistance, glucose intolerance and lipid deposition in mice challenged with HFD. Moreover, liver fibrosis induced by HFD was clearly ameliorated by SMOC2 deficiency mainly through inhibiting transforming growth factor (TGF)-β1 expression. Additionally, hepatic inflammatory response triggered by HFD was also improved in SMOC2-knockout mice via inactivating nuclear factor-κB (NF-κB). Mechanically, SMOC2 could interact with TGF-β1, and SMOC2 overexpression markedly increased TGF-β1 in mouse primary hepatocytes, which played an essential role in regulating hepatic steatosis. In conclusion, we provided proof that blocking SMOC2 might be a promising strategy for preventing NAFLD through the interaction with TGF-β1.
Collapse
Affiliation(s)
- Yun Yuting
- Department of Gastroenterology, Inner Mongolia People's Hospital, Hohhot City, 010020, China
| | - Feng Lifeng
- Department of Hepatobiliary Surgery, Shaanxi Shangluo Central Hospital, Shangluo, 726000, China
| | - Hao Qiwei
- Department of General Surgery II Ward, Second Hospital of Yulin City, Yulin, 719000, China.
| |
Collapse
|
47
|
Zent J, Guo LW. Signaling Mechanisms of Myofibroblastic Activation: Outside-in and Inside-Out. Cell Physiol Biochem 2018; 49:848-868. [PMID: 30184544 DOI: 10.1159/000493217] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Myofibroblasts are central mediators of fibrosis. Typically derived from resident fibroblasts, myofibroblasts represent a heterogeneous population of cells that are principally defined by acquired contractile function and high synthetic ability to produce extracellular matrix (ECM). Current literature sheds new light on the critical role of ECM signaling coupled with mechanotransduction in driving myofibroblastic activation. In particular, transforming growth factor β1 (TGF-β1) and extra domain A containing fibronectin (EDA-FN) are thought to be the primary ECM signaling mediators that form and also induce positive feedback loops. The outside-in and inside-out signaling circuits are transmitted and integrated by TGF-β receptors and integrins at the cell membrane, ultimately perpetuating the abundance and activities of TGF-β1 and EDA-FN in the ECM. In this review, we highlight these conceptual advances in understanding myofibroblastic activation, in hope of revealing its therapeutic anti-fibrotic implications.
Collapse
Affiliation(s)
- Joshua Zent
- Medical Scientist Training Program, the Ohio State University, Columbus, Columbus, Ohio, USA
| | - Lian-Wang Guo
- Department of Surgery, Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, the Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
48
|
Nastase MV, Zeng-Brouwers J, Wygrecka M, Schaefer L. Targeting renal fibrosis: Mechanisms and drug delivery systems. Adv Drug Deliv Rev 2018; 129:295-307. [PMID: 29288033 DOI: 10.1016/j.addr.2017.12.019] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/10/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
Renal fibrosis is the common outcome of many chronic kidney diseases (CKD) independent of the underlying etiology. Despite a host of promising experimental data, currently available strategies only ameliorate or delay the progression of CKD but do not reverse fibrosis. One of the major impediments of translating novel antifibrotic strategies from bench to bedside is due to the intricacies of the drug delivery process. In this review, we briefly describe mechanisms of renal fibrosis and methods of drug transfer into the kidney. Various tools used in gene therapy to administer nucleic acids in vivo are discussed. Furthermore, we review the modes of action of protein- or peptide-based drugs with target-specific antibodies and cytokines incorporated in hydrogels. Additionally, we assess an intriguing new method to deliver drugs specifically to tubular epithelial cells via conjugation with ligands binding to the megalin receptor. Finally, plant-derived compounds with antifibrotic properties are also summarized.
Collapse
Affiliation(s)
- Madalina V Nastase
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; National Institute for Chemical-Pharmaceutical Research and Development, 112 Vitan Avenue, 031299 Bucharest, Romania
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
49
|
Trivedi P, Kumar RK, Iyer A, Boswell S, Gerarduzzi C, Dadhania VP, Herbert Z, Joshi N, Luyendyk JP, Humphreys BD, Vaidya VS. Targeting Phospholipase D4 Attenuates Kidney Fibrosis. J Am Soc Nephrol 2017; 28:3579-3589. [PMID: 28814511 DOI: 10.1681/asn.2016111222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/11/2017] [Indexed: 01/13/2023] Open
Abstract
Phospholipase D4 (PLD4), a single-pass transmembrane glycoprotein, is among the most highly upregulated genes in murine kidneys subjected to chronic progressive fibrosis, but the function of PLD4 in this process is unknown. Here, we found PLD4 to be overexpressed in the proximal and distal tubular epithelial cells of murine and human kidneys after fibrosis. Genetic silencing of PLD4, either globally or conditionally in proximal tubular epithelial cells, protected mice from the development of fibrosis. Mechanistically, global knockout of PLD4 modulated innate and adaptive immune responses and attenuated the upregulation of the TGF-β signaling pathway and α1-antitrypsin protein (a serine protease inhibitor) expression and downregulation of neutrophil elastase (NE) expression induced by obstructive injury. In vitro, treatment with NE attenuated TGF-β-induced accumulation of fibrotic markers. Furthermore, therapeutic targeting of PLD4 using specific siRNA protected mice from folic acid-induced kidney fibrosis and inhibited the increase in TGF-β signaling, decrease in NE expression, and upregulation of mitogen-activated protein kinase signaling. Immunoprecipitation/mass spectrometry and coimmunoprecipitation experiments confirmed that PLD4 binds three proteins that interact with neurotrophic receptor tyrosine kinase 1, a receptor also known as TrkA that upregulates mitogen-activated protein kinase. PLD4 inhibition also prevented the folic acid-induced upregulation of this receptor in mouse kidneys. These results suggest inhibition of PLD4 as a novel therapeutic strategy to activate protease-mediated degradation of extracellular matrix and reverse fibrosis.
Collapse
Affiliation(s)
- Priyanka Trivedi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ramya K Kumar
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ashwin Iyer
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sarah Boswell
- Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts
| | - Casimiro Gerarduzzi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Vivekkumar P Dadhania
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts
| | - Zach Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikita Joshi
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Benjamin D Humphreys
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Vishal S Vaidya
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; .,Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|