1
|
Alexanian M, Padmanabhan A, Nishino T, Travers JG, Ye L, Pelonero A, Lee CY, Sadagopan N, Huang Y, Auclair K, Zhu A, An Y, Ekstrand CA, Martinez C, Teran BG, Flanigan WR, Kim CKS, Lumbao-Conradson K, Gardner Z, Li L, Costa MW, Jain R, Charo I, Combes AJ, Haldar SM, Pollard KS, Vagnozzi RJ, McKinsey TA, Przytycki PF, Srivastava D. Chromatin remodelling drives immune cell-fibroblast communication in heart failure. Nature 2024; 635:434-443. [PMID: 39443808 PMCID: PMC11698514 DOI: 10.1038/s41586-024-08085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Chronic inflammation and tissue fibrosis are common responses that worsen organ function, yet the molecular mechanisms governing their cross-talk are poorly understood. In diseased organs, stress-induced gene expression changes fuel maladaptive cell state transitions1 and pathological interaction between cellular compartments. Although chronic fibroblast activation worsens dysfunction in the lungs, liver, kidneys and heart, and exacerbates many cancers2, the stress-sensing mechanisms initiating transcriptional activation of fibroblasts are poorly understood. Here we show that conditional deletion of the transcriptional co-activator Brd4 in infiltrating Cx3cr1+ macrophages ameliorates heart failure in mice and significantly reduces fibroblast activation. Analysis of single-cell chromatin accessibility and BRD4 occupancy in vivo in Cx3cr1+ cells identified a large enhancer proximal to interleukin-1β (IL-1β, encoded by Il1b), and a series of CRISPR-based deletions revealed the precise stress-dependent regulatory element that controls Il1b expression. Secreted IL-1β activated a fibroblast RELA-dependent (also known as p65) enhancer near the transcription factor MEOX1, resulting in a profibrotic response in human cardiac fibroblasts. In vivo, antibody-mediated IL-1β neutralization improved cardiac function and tissue fibrosis in heart failure. Systemic IL-1β inhibition or targeted Il1b deletion in Cx3cr1+ cells prevented stress-induced Meox1 expression and fibroblast activation. The elucidation of BRD4-dependent cross-talk between a specific immune cell subset and fibroblasts through IL-1β reveals how inflammation drives profibrotic cell states and supports strategies that modulate this process in heart disease and other chronic inflammatory disorders featuring tissue remodelling.
Collapse
Affiliation(s)
- Michael Alexanian
- Gladstone Institutes, San Francisco, CA, USA.
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA.
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| | - Arun Padmanabhan
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Tomohiro Nishino
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Joshua G Travers
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lin Ye
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Angelo Pelonero
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Clara Youngna Lee
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Nandhini Sadagopan
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Yu Huang
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Kirsten Auclair
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Ada Zhu
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Yuqian An
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Christina A Ekstrand
- CoLabs initiative, University of California, San Francisco, CA, USA
- ImmunoX initiative, University of California, San Francisco, CA, USA
| | - Cassandra Martinez
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Barbara Gonzalez Teran
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Will R Flanigan
- Gladstone Institutes, San Francisco, CA, USA
- UC Berkeley-UCSF Joint Program in Bioengineering, Berkeley, CA, USA
| | - Charis Kee-Seon Kim
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Koya Lumbao-Conradson
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zachary Gardner
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Li
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mauro W Costa
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
| | - Rajan Jain
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Alexis J Combes
- CoLabs initiative, University of California, San Francisco, CA, USA
- ImmunoX initiative, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Saptarsi M Haldar
- Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
- Amgen Research, Cardiometabolic Disorders, South San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
- Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Ronald J Vagnozzi
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pawel F Przytycki
- Gladstone Institutes, San Francisco, CA, USA
- Faculty of Computing & Data Sciences, Boston University, Boston, MA, USA
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology at Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Sun L, Luan J, Wang J, Li X, Zhang W, Ji X, Liu L, Wang R, Xu B. GEPREP: A comprehensive data atlas of RNA-seq-based gene expression profiles of exercise responses. JOURNAL OF SPORT AND HEALTH SCIENCE 2024:100992. [PMID: 39341494 DOI: 10.1016/j.jshs.2024.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Physical activity can regulate and affect gene expression in multiple tissues and cells. Recently, with the development of next-generation sequencing, a large number of RNA-sequencing (RNA-seq)-based gene expression profiles about physical activity have been shared in public resources; however, they are poorly curated and underutilized. To tackle this problem, we developed a data atlas of such data through comprehensive data collection, curation, and organization. METHODS The data atlas, termed gene expression profiles of RNA-seq-based exercise responses (GEPREP), was built on a comprehensive collection of high-quality RNA-seq data on exercise responses. The metadata of each sample were manually curated. Data were uniformly processed and batch effects corrected. All the information was well organized in an easy-to-use website for free search, visualization, and download. RESULTS GEPREP now includes 69 RNA-seq datasets of pre- and post-exercise, comprising 26 human datasets (1120 samples) and 43 mouse datasets (1006 samples). Specifically, there were 977 (87.2 %) human samples of skeletal muscle and 143 (12.8 %) human samples of blood. There were also samples across 9 mice tissues with skeletal muscle (359, 35.7 %) and brain (280, 27.8 %) accounting for the main fractions. Metadata-including subject, exercise interventions, sampling sites, and post-processing methods-are also included. The metadata and gene expression profiles are freely accessible at http://www.geprep.org.cn/. CONCLUSION GEPREP is a comprehensive data atlas of RNA-seq-based gene expression profiles responding to exercise. With its reliable annotations and user-friendly interfaces, it has the potential to deepen our understanding of exercise physiology.
Collapse
Affiliation(s)
- Lei Sun
- School of Information Engineering, Yangzhou University, Yangzhou 225127, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
| | - Jinwen Luan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jinbiao Wang
- School of Information Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaoli Li
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wenqian Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaohui Ji
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
3
|
Gao H, Li Z, Gan L, Chen X. The Role and Potential Mechanisms of Rehabilitation Exercise Improving Cardiac Remodeling. J Cardiovasc Transl Res 2024; 17:923-934. [PMID: 38558377 DOI: 10.1007/s12265-024-10498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
Rehabilitation exercise is a crucial non-pharmacological intervention for the secondary prevention and treatment of cardiovascular diseases, effectively ameliorating cardiac remodeling in patients. Exercise training can mitigate cardiomyocyte apoptosis, reduce extracellular matrix deposition and fibrosis, promote angiogenesis, and regulate inflammatory response to improve cardiac remodeling. This article presents a comprehensive review of recent research progress, summarizing the pivotal role and underlying mechanism of rehabilitation exercise in improving cardiac remodeling and providing valuable insights for devising effective rehabilitation treatment programs. Graphical Abstract.
Collapse
Affiliation(s)
- Haizhu Gao
- Colleague of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Zhongxin Li
- Colleague of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Lijun Gan
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, No.89 Guhuai Road, Jining, 272029, Shandong, China
| | - Xueying Chen
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, No.89 Guhuai Road, Jining, 272029, Shandong, China.
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
4
|
Hastings MH, Castro C, Freeman R, Abdul Kadir A, Lerchenmüller C, Li H, Rhee J, Roh JD, Roh K, Singh AP, Wu C, Xia P, Zhou Q, Xiao J, Rosenzweig A. Intrinsic and Extrinsic Contributors to the Cardiac Benefits of Exercise. JACC Basic Transl Sci 2024; 9:535-552. [PMID: 38680954 PMCID: PMC11055208 DOI: 10.1016/j.jacbts.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 05/01/2024]
Abstract
Among its many cardiovascular benefits, exercise training improves heart function and protects the heart against age-related decline, pathological stress, and injury. Here, we focus on cardiac benefits with an emphasis on more recent updates to our understanding. While the cardiomyocyte continues to play a central role as both a target and effector of exercise's benefits, there is a growing recognition of the important roles of other, noncardiomyocyte lineages and pathways, including some that lie outside the heart itself. We review what is known about mediators of exercise's benefits-both those intrinsic to the heart (at the level of cardiomyocytes, fibroblasts, or vascular cells) and those that are systemic (including metabolism, inflammation, the microbiome, and aging)-highlighting what is known about the molecular mechanisms responsible.
Collapse
Affiliation(s)
- Margaret H. Hastings
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Claire Castro
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca Freeman
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Azrul Abdul Kadir
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carolin Lerchenmüller
- Department of Cardiology, University Hospital Heidelberg, German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Haobo Li
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James Rhee
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason D. Roh
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kangsan Roh
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anand P. Singh
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Chao Wu
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Peng Xia
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qiulian Zhou
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Anthony Rosenzweig
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Dobreva G, Heineke J. Inter- and Intracellular Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:271-294. [PMID: 38884717 DOI: 10.1007/978-3-031-44087-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiovascular diseases, both congenital and acquired, are the leading cause of death worldwide, associated with significant health consequences and economic burden. Due to major advances in surgical procedures, most patients with congenital heart disease (CHD) survive into adulthood but suffer from previously unrecognized long-term consequences, such as early-onset heart failure. Therefore, understanding the molecular mechanisms resulting in heart defects and the lifelong complications due to hemodynamic overload are of utmost importance. Congenital heart disease arises in the first trimester of pregnancy, due to defects in the complex morphogenetic patterning of the heart. This process is coordinated through a complicated web of intercellular communication between the epicardium, the endocardium, and the myocardium. In the postnatal heart, similar crosstalk between cardiomyocytes, endothelial cells, and fibroblasts exists during pathological hemodynamic overload that emerges as a consequence of a congenital heart defect. Ultimately, communication between cells triggers the activation of intracellular signaling circuits, which allow fine coordination of cardiac development and function. Here, we review the inter- and intracellular signaling mechanisms in the heart as they were discovered mainly in genetically modified mice.
Collapse
Affiliation(s)
- Gergana Dobreva
- ECAS (European Center for Angioscience), Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, Mannheim, Germany.
- German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany.
| | - Joerg Heineke
- German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany.
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
6
|
Liu X, Burke RM, Lighthouse JK, Baker CD, Dirkx RA, Kang B, Chakraborty Y, Mickelsen DM, Twardowski J, Mello SS, Ashton JM, Small EM. p53 Regulates the Extent of Fibroblast Proliferation and Fibrosis in Left Ventricle Pressure Overload. Circ Res 2023; 133:271-287. [PMID: 37409456 PMCID: PMC10361635 DOI: 10.1161/circresaha.121.320324] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Cardiomyopathy is characterized by the pathological accumulation of resident cardiac fibroblasts that deposit ECM (extracellular matrix) and generate a fibrotic scar. However, the mechanisms that control the timing and extent of cardiac fibroblast proliferation and ECM production are not known, hampering the development of antifibrotic strategies to prevent heart failure. METHODS We used the Tcf21 (transcription factor 21)MerCreMer mouse line for fibroblast-specific lineage tracing and p53 (tumor protein p53) gene deletion. We characterized cardiac physiology and used single-cell RNA-sequencing and in vitro studies to investigate the p53-dependent mechanisms regulating cardiac fibroblast cell cycle and fibrosis in left ventricular pressure overload induced by transaortic constriction. RESULTS Cardiac fibroblast proliferation occurs primarily between days 7 and 14 following transaortic constriction in mice, correlating with alterations in p53-dependent gene expression. p53 deletion in fibroblasts led to a striking accumulation of Tcf21-lineage cardiac fibroblasts within the normal proliferative window and precipitated a robust fibrotic response to left ventricular pressure overload. However, excessive interstitial and perivascular fibrosis does not develop until after cardiac fibroblasts exit the cell cycle. Single-cell RNA sequencing revealed p53 null fibroblasts unexpectedly express lower levels of genes encoding important ECM proteins while they exhibit an inappropriately proliferative phenotype. in vitro studies establish a role for p53 in suppressing the proliferative fibroblast phenotype, which facilitates the expression and secretion of ECM proteins. Importantly, Cdkn2a (cyclin-dependent kinase inhibitor 2a) expression and the p16Ink4a-retinoblastoma cell cycle control pathway is induced in p53 null cardiac fibroblasts, which may eventually contribute to cell cycle exit and fulminant scar formation. CONCLUSIONS This study reveals a mechanism regulating cardiac fibroblast accumulation and ECM secretion, orchestrated in part by p53-dependent cell cycle control that governs the timing and extent of fibrosis in left ventricular pressure overload.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ryan M. Burke
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Janet K. Lighthouse
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Wegmans School of Pharmacy, Department of Pharmaceutical Sciences, St. John Fisher College, Rochester, NY, USA
| | - Cameron D. Baker
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ronald A. Dirkx
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Brian Kang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Yashoswini Chakraborty
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Deanne M. Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jennifer Twardowski
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Stephano S. Mello
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - John M. Ashton
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M. Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642
| |
Collapse
|
7
|
Ghigo A, Ameri P. p53 at the Intersection of Cardiac Fibroblast Proliferation and Activation: Answers and Questions. Circ Res 2023; 133:288-290. [PMID: 37471487 DOI: 10.1161/circresaha.123.323209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Affiliation(s)
- Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone," University of Torino, Italy (A.G.)
| | - Pietro Ameri
- Department of Internal Medicine, University of Genova, Italy (P.A.)
- Cardiovascular Disease Unit, Cardiac, Thoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino - IRCCS Italian Cardiology Network, Genova, Italy (P.A.)
| |
Collapse
|
8
|
Srivastava S, Gajwani P, Jousma J, Miyamoto H, Kwon Y, Jana A, Toth PT, Yan G, Ong SG, Rehman J. Nuclear translocation of mitochondrial dehydrogenases as an adaptive cardioprotective mechanism. Nat Commun 2023; 14:4360. [PMID: 37468519 DOI: 10.1038/s41467-023-40084-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Chemotherapy-induced cardiac damage remains a leading cause of death amongst cancer survivors. Anthracycline-induced cardiotoxicity is mediated by severe mitochondrial injury, but little is known about the mechanisms by which cardiomyocytes adaptively respond to the injury. We observed the translocation of selected mitochondrial tricarboxylic acid (TCA) cycle dehydrogenases to the nucleus as an adaptive stress response to anthracycline-cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes and in vivo. The expression of nuclear-targeted mitochondrial dehydrogenases shifts the nuclear metabolic milieu to maintain their function both in vitro and in vivo. This protective effect is mediated by two parallel pathways: metabolite-induced chromatin accessibility and AMP-kinase (AMPK) signaling. The extent of chemotherapy-induced cardiac damage thus reflects a balance between mitochondrial injury and the protective response initiated by the nuclear pool of mitochondrial dehydrogenases. Our study identifies nuclear translocation of mitochondrial dehydrogenases as an endogenous adaptive mechanism that can be leveraged to attenuate cardiomyocyte injury.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Priyanka Gajwani
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Jordan Jousma
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Hiroe Miyamoto
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Youjeong Kwon
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Arundhati Jana
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Peter T Toth
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
- Research Resources Center, University of Illinois, Chicago, IL, USA
| | - Gege Yan
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL, USA.
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
9
|
Trager LE, Lyons M, Kuznetsov A, Sheffield C, Roh K, Freeman R, Rhee J, Guseh JS, Li H, Rosenzweig A. Beyond cardiomyocytes: Cellular diversity in the heart's response to exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2022:S2095-2546(22)00125-9. [PMID: 36549585 PMCID: PMC10362490 DOI: 10.1016/j.jshs.2022.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Cardiomyocytes comprise ∼70% to 85% of the total volume of the adult mammalian heart but only about 25% to 35% of its total number of cells. Advances in single cell and single nuclei RNA sequencing have greatly facilitated investigation into and increased appreciation of the potential functions of non-cardiomyocytes in the heart. While much of this work has focused on the relationship between non-cardiomyocytes, disease, and the heart's response to pathological stress, it will also be important to understand the roles that these cells play in the healthy heart, cardiac homeostasis, and the response to physiological stress such as exercise. The present review summarizes recent research highlighting dynamic changes in non-cardiomyocytes in response to the physiological stress of exercise. Of particular interest are changes in fibrotic pathways, the cardiac vasculature, and immune or inflammatory cells. In many instances, limited data are available about how specific lineages change in response to exercise or whether the changes observed are functionally important, underscoring the need for further research.
Collapse
Affiliation(s)
- Lena E Trager
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; University of Minnesota Medical School, Minneapolis, MI 55455, USA
| | - Margaret Lyons
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandra Kuznetsov
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cedric Sheffield
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kangsan Roh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca Freeman
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - James Rhee
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - J Sawalla Guseh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Haobo Li
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
El Assar M, Álvarez-Bustos A, Sosa P, Angulo J, Rodríguez-Mañas L. Effect of Physical Activity/Exercise on Oxidative Stress and Inflammation in Muscle and Vascular Aging. Int J Mol Sci 2022; 23:ijms23158713. [PMID: 35955849 PMCID: PMC9369066 DOI: 10.3390/ijms23158713] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Functional status is considered the main determinant of healthy aging. Impairment in skeletal muscle and the cardiovascular system, two interrelated systems, results in compromised functional status in aging. Increased oxidative stress and inflammation in older subjects constitute the background for skeletal muscle and cardiovascular system alterations. Aged skeletal muscle mass and strength impairment is related to anabolic resistance, mitochondrial dysfunction, increased oxidative stress and inflammation as well as a reduced antioxidant response and myokine profile. Arterial stiffness and endothelial function stand out as the main cardiovascular alterations related to aging, where increased systemic and vascular oxidative stress and inflammation play a key role. Physical activity and exercise training arise as modifiable determinants of functional outcomes in older persons. Exercise enhances antioxidant response, decreases age-related oxidative stress and pro-inflammatory signals, and promotes the activation of anabolic and mitochondrial biogenesis pathways in skeletal muscle. Additionally, exercise improves endothelial function and arterial stiffness by reducing inflammatory and oxidative damage signaling in vascular tissue together with an increase in antioxidant enzymes and nitric oxide availability, globally promoting functional performance and healthy aging. This review focuses on the role of oxidative stress and inflammation in aged musculoskeletal and vascular systems and how physical activity/exercise influences functional status in the elderly.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, 28905 Getafe, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alejandro Álvarez-Bustos
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Patricia Sosa
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, 28905 Getafe, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
- Correspondence: ; Tel.: +34-91-683-93-60 (ext. 6411)
| |
Collapse
|
11
|
Burgos Villar KN, Liu X, Small EM. Transcriptional regulation of cardiac fibroblast phenotypic plasticity. CURRENT OPINION IN PHYSIOLOGY 2022; 28:100556. [PMID: 36777260 PMCID: PMC9915012 DOI: 10.1016/j.cophys.2022.100556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cardiac fibroblasts play critical roles in the maintenance of cardiac structure and the response to cardiac insult. Extracellular matrix deposition by activated resident cardiac fibroblasts, called myofibroblasts, is an essential wound healing response. However, persistent fibroblast activation contributes to pathological fibrosis and cardiac chamber stiffening, which can cause diastolic dysfunction, heart failure, and initiate lethal arrhythmias. The dynamic and phenotypically plastic nature of cardiac fibroblasts is governed in part by the transcriptional regulation of genes encoding extracellular matrix molecules. Understanding how fibroblasts integrate various biomechanical cues into a precise transcriptional response may uncover therapeutic strategies to prevent fibrosis. Here, we provide an overview of the recent literature on transcriptional control of cardiac fibroblast plasticity and fibrosis, with a focus on canonical and non-canonical TGF-β signaling, biomechanical regulation of Hippo/YAP and Rho/MRTF signaling, and metabolic and epigenetic control of fibroblast activation.
Collapse
Affiliation(s)
- Kimberly N. Burgos Villar
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA,Department of Pathology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Xiaoyi Liu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA,Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14642, USA
| | - Eric M. Small
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA,Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14642, USA,Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14642, USA,Correspondence:
| |
Collapse
|
12
|
Bugg D, Bailey LRJ, Bretherton RC, Beach KE, Reichardt IM, Robeson KZ, Reese AC, Gunaje J, Flint G, DeForest CA, Stempien-Otero A, Davis J. MBNL1 drives dynamic transitions between fibroblasts and myofibroblasts in cardiac wound healing. Cell Stem Cell 2022; 29:419-433.e10. [PMID: 35176223 PMCID: PMC8929295 DOI: 10.1016/j.stem.2022.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Dynamic fibroblast to myofibroblast state transitions underlie the heart's fibrotic response. Because transcriptome maturation by muscleblind-like 1 (MBNL1) promotes differentiated cell states, this study investigated whether tactical control of MBNL1 activity could alter myofibroblast activity and fibrotic outcomes. In healthy mice, cardiac fibroblast-specific overexpression of MBNL1 transitioned the fibroblast transcriptome to that of a myofibroblast and after injury promoted myocyte remodeling and scar maturation. Both fibroblast- and myofibroblast-specific loss of MBNL1 limited scar production and stabilization, which was ascribed to negligible myofibroblast activity. The combination of MBNL1 deletion and injury caused quiescent fibroblasts to expand and adopt features of cardiac mesenchymal stem cells, whereas transgenic MBNL1 expression blocked fibroblast proliferation and drove the population into a mature myofibroblast state. These data suggest MBNL1 is a post-transcriptional switch, controlling fibroblast state plasticity during cardiac wound healing.
Collapse
Affiliation(s)
- Darrian Bugg
- Department of Lab Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Logan R J Bailey
- Molecular & Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Ross C Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Kylie E Beach
- Department of Lab Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Kalen Z Robeson
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Anna C Reese
- Department of Lab Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jagadambika Gunaje
- Department of Lab Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Galina Flint
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Lab Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
13
|
Qiu Y, Pan X, Chen Y, Xiao J. Hallmarks of exercised heart. J Mol Cell Cardiol 2021; 164:126-135. [PMID: 34914934 DOI: 10.1016/j.yjmcc.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022]
Abstract
The benefits of exercise in humans on the heart have been well recognized for many years. Long-term endurance exercise training can induce physiologic cardiac hypertrophy with normal or enhanced heart function, and provide protective benefits in preventing heart failure. The heart-specific responses that occur during exercise are complex and highly variable. This review mainly focuses on the current understanding of the structural and functional cardiac adaptations to exercise as well as molecular pathways and signaling proteins responsible for these changes. Here, we summarize eight tentative hallmarks that represent common denominators of the exercised heart. These hallmarks are: cardiomyocyte growth, cardiomyocyte fate reprogramming, angiogenesis and lymphangiogenesis, mitochondrial remodeling, epigenetic alteration, enhanced endothelial function, quiescent cardiac fibroblast, and improved cardiac metabolism. A major challenge is to explore the underlying molecular mechanisms for cardio-protective effects of exercise, and to identify therapeutic targets for heart diseases.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xue Pan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yiwen Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
14
|
Tao Z, Jarrell DK, Robinson A, Cosgriff‐Hernandez EM, Jacot JG. A Prevascularized Polyurethane-Reinforced Fibrin Patch Improves Regenerative Remodeling in a Rat Right Ventricle Replacement Model. Adv Healthc Mater 2021; 10:e2101018. [PMID: 34626079 DOI: 10.1002/adhm.202101018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/16/2021] [Indexed: 01/14/2023]
Abstract
Congenital heart defects (CHDs) affect 1 in 120 newborns in the United States. Surgical repair of structural heart defects often leads to arrhythmia and increased risk of heart failure. The laboratory has previously developed an acellular fibrin patch reinforced with a biodegradable poly(ether ester urethane) urea mesh that result in improved heart function when tested in a rat right ventricle wall replacement model compared to fixed pericardium. However, this patch does not drive significant neotissue formation. The patch materials are modified here and this patch is prevascularized with human umbilical vein endothelial cells and c-Kit+ human amniotic fluid stem cells. Rudimentary capillary-like networks form in the fibrin after culture of cell-encapsulated patches for 3 d in vitro. Prevascularized patches and noncell loaded patch controls are implanted onto full-thickness heart wall defects created in the right ventricle of athymic nude rats. Two months after surgery, defect repair with prevascularized patches results in improved heart function and the patched heart area exhibited greater vascularization and muscularization, less fibrosis, and increased M2 macrophage infiltration compared to acellular patches.
Collapse
Affiliation(s)
- Ze‐Wei Tao
- Department of Bioengineering University of Colorado Anschutz Medical Campus 12705 E Montview Blvd Suite 100 Aurora CO 80045 USA
- BIOLIFE4D JLABS@TMC 2450 Holcombe Blvd Houston TX 77021 USA
| | - Dillon K. Jarrell
- Department of Bioengineering University of Colorado Anschutz Medical Campus 12705 E Montview Blvd Suite 100 Aurora CO 80045 USA
| | - Andrew Robinson
- Department of Biomedical Engineering University of Texas At Austin 107 W Dean Keeton Street Stop C0800 Austin TX 78712 USA
| | | | - Jeffrey G. Jacot
- Department of Bioengineering University of Colorado Anschutz Medical Campus 12705 E Montview Blvd Suite 100 Aurora CO 80045 USA
- Department of Pediatrics Children's Hospital Colorado 13123 E 16th Ave Aurora CO 80045 USA
| |
Collapse
|
15
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
16
|
Walker CJ, Schroeder ME, Aguado BA, Anseth KS, Leinwand LA. Matters of the heart: Cellular sex differences. J Mol Cell Cardiol 2021; 160:42-55. [PMID: 34166708 PMCID: PMC8571046 DOI: 10.1016/j.yjmcc.2021.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Nearly all cardiovascular diseases show sexual dimorphisms in prevalence, presentation, and outcomes. Until recently, most clinical trials were carried out in males, and many animal studies either failed to identify the sex of the animals or combined data obtained from males and females. Cellular sex in the heart is relatively understudied and many studies fail to report the sex of the cells used for in vitro experiments. Moreover, in the small number of studies in which sex is reported, most of those studies use male cells. The observation that cells from males and females are inherently different is becoming increasingly clear - either due to acquired differences from hormones and other factors or due to intrinsic differences in genotype (XX or XY). Because of the likely contribution of cellular sex differences in cardiac health and disease, here, we explore differences in mammalian male and female cells in the heart, including the less-studied non-myocyte cell populations. We discuss how the heart's microenvironment impacts male and female cellular phenotypes and vice versa, including how secretory profiles are dependent on cellular sex, and how hormones contribute to sexually dimorphic phenotypes and cellular functions. Intracellular mechanisms that contribute to sex differences, including gene expression and epigenetic remodeling, are also described. Recent single-cell sequencing studies have revealed unexpected sex differences in the composition of cell types in the heart which we discuss. Finally, future recommendations for considering cellular sex differences in the design of bioengineered in vitro disease models of the heart are provided.
Collapse
Affiliation(s)
- Cierra J Walker
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80303, United States of America; Interdisciplinary Quantitative Biology, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Megan E Schroeder
- Chemical and Biological Engineering Department, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Brian A Aguado
- Chemical and Biological Engineering Department, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Kristi S Anseth
- Chemical and Biological Engineering Department, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America; Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, United States of America.
| |
Collapse
|
17
|
Shi SY, Luo X, Yamawaki TM, Li CM, Ason B, Furtado MB. Recent Advances in Single-Cell Profiling and Multispecific Therapeutics: Paving the Way for a New Era of Precision Medicine Targeting Cardiac Fibroblasts. Curr Cardiol Rep 2021; 23:82. [PMID: 34081224 PMCID: PMC8175296 DOI: 10.1007/s11886-021-01517-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Cardiac fibroblast activation contributes to fibrosis, maladaptive remodeling and heart failure progression. This review summarizes the latest findings on cardiac fibroblast activation dynamics derived from single-cell transcriptomic analyses and discusses how this information may aid the development of new multispecific medicines. RECENT FINDINGS Advances in single-cell gene expression technologies have led to the discovery of distinct fibroblast subsets, some of which are more prevalent in diseased tissue and exhibit temporal changes in response to injury. In parallel to the rapid development of single-cell platforms, the advent of multispecific therapeutics is beginning to transform the biopharmaceutical landscape, paving the way for the selective targeting of diseased fibroblast subpopulations. Insights gained from single-cell technologies reveal critical cardiac fibroblast subsets that play a pathogenic role in the progression of heart failure. Combined with the development of multispecific therapeutic agents that have enabled access to previously "undruggable" targets, we are entering a new era of precision medicine.
Collapse
Affiliation(s)
- Sally Yu Shi
- Department of Cardiometabolic Disorders, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Xin Luo
- Genome Analysis Unit, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Tracy M. Yamawaki
- Genome Analysis Unit, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Chi-Ming Li
- Genome Analysis Unit, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Brandon Ason
- Department of Cardiometabolic Disorders, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Milena B. Furtado
- Department of Cardiometabolic Disorders, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| |
Collapse
|
18
|
Harnessing the cardiovascular benefits of exercise: are Nrf2 activators useful? SPORTS MEDICINE AND HEALTH SCIENCE 2021; 3:70-79. [PMID: 35782161 PMCID: PMC9219337 DOI: 10.1016/j.smhs.2021.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 01/07/2023] Open
Abstract
The ability of physical activity to ameliorate cardiovascular disease and improve cardiovascular health is well accepted, but many aspects of the molecular mechanisms underlying these benefits are incompletely understood. Exercise increases the levels of reactive oxygen species (ROS) through various mechanisms. This triggers the activation of Nrf2, a redox-sensitive transcription factor activated by increases in oxidative stress. Activation of Nrf2 mitigates oxidative stress by increasing the nuclear transcription of many antioxidant genes while also mediating additional beneficial effects through the cytoprotective nature of Nrf2 signaling. Understanding the transcriptional patterns of Nrf2 caused by exercise can help in the design of pharmacological mimicry of the process in patients who are unable to exercise for various reasons.
Collapse
|
19
|
Targets identified from exercised heart: killing multiple birds with one stone. NPJ Regen Med 2021; 6:23. [PMID: 33837221 PMCID: PMC8035363 DOI: 10.1038/s41536-021-00128-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a major cause of mortality worldwide, which are mainly driven by factors such as aging, sedentary lifestyle, and excess alcohol use. Exercise targets several molecules and protects hearts against many of these physiological and pathological stimuli. Accordingly, it is widely recognized as an effective therapeutic strategy for CVD. To investigate the molecular mechanism of exercise in cardiac protection, we identify and describe several crucial targets identified from exercised hearts. These targets include insulin-like growth factor 1 (IGF1)-phosphatidylinositol 3 phosphate kinase (PI3K)/protein kinase B (AKT), transcription factor CCAAT/enhancer-binding protein β (C/EBPβ), cardiac microRNAs (miRNAs, miR-222 and miR-17-3p etc.), exosomal-miRNAs (miR-342, miR-29, etc.), Sirtuin 1 (SIRT1), and nuclear factor erythroid 2‑related factor/metallothioneins (Nrf2/Mts). Targets identified from exercised hearts can alleviate injury via multiple avenues, including: (1) promoting cardiomyocyte proliferation; (2) facilitating cardiomyocyte growth and physiologic hypertrophy; (3) elevating the anti-apoptotic capacity of cardiomyocytes; (4) improving vascular endothelial function; (5) inhibiting pathological remodeling and fibrosis; (6) promoting extracellular vesicles (EVs) production and exosomal-molecules transfer. Exercise is one treatment (‘stone’), which is cardioprotective via multiple avenues (‘birds’), and is considered ‘killing multiple birds with one stone’ in this review. Further, we discuss the potential application of EV cargos in CVD treatment. We provide an outline of targets identified from the exercised heart and their mechanisms, as well as novel ideas for CVD treatment, which may provide novel direction for preclinical trials in cardiac rehabilitation.
Collapse
|
20
|
Burke RM, Dirkx RA, Quijada P, Lighthouse JK, Mohan A, O'Brien M, Wojciechowski W, Woeller CF, Phipps RP, Alexis JD, Ashton JM, Small EM. Prevention of Fibrosis and Pathological Cardiac Remodeling by Salinomycin. Circ Res 2021; 128:1663-1678. [PMID: 33825488 DOI: 10.1161/circresaha.120.317791] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ryan M Burke
- Aab Cardiovascular Research Institute, Department of Medicine (R.M.B., R.A.D., P.Q., J.K.L., A.M., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - Ronald A Dirkx
- Aab Cardiovascular Research Institute, Department of Medicine (R.M.B., R.A.D., P.Q., J.K.L., A.M., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - Pearl Quijada
- Aab Cardiovascular Research Institute, Department of Medicine (R.M.B., R.A.D., P.Q., J.K.L., A.M., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, Department of Medicine (R.M.B., R.A.D., P.Q., J.K.L., A.M., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - Amy Mohan
- Aab Cardiovascular Research Institute, Department of Medicine (R.M.B., R.A.D., P.Q., J.K.L., A.M., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - Meghann O'Brien
- Genomics Research Center (M.O., W.W., J.M.A.), University of Rochester School of Medicine and Dentistry, NY
| | - Wojciech Wojciechowski
- Genomics Research Center (M.O., W.W., J.M.A.), University of Rochester School of Medicine and Dentistry, NY
| | - Collynn F Woeller
- Environmental Medicine (C.F.W., R.P.P.), University of Rochester School of Medicine and Dentistry, NY.,Department of Medicine (C.F.W., R.P.P., J.D.A., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - Richard P Phipps
- Environmental Medicine (C.F.W., R.P.P.), University of Rochester School of Medicine and Dentistry, NY.,Department of Medicine (C.F.W., R.P.P., J.D.A., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - Jeffrey D Alexis
- Department of Medicine (C.F.W., R.P.P., J.D.A., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - John M Ashton
- Genomics Research Center (M.O., W.W., J.M.A.), University of Rochester School of Medicine and Dentistry, NY
| | - Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine (R.M.B., R.A.D., P.Q., J.K.L., A.M., E.M.S.), University of Rochester School of Medicine and Dentistry, NY.,Department of Medicine (C.F.W., R.P.P., J.D.A., E.M.S.), University of Rochester School of Medicine and Dentistry, NY.,Pharmacology and Physiology (E.M.S.), University of Rochester School of Medicine and Dentistry, NY.,Biomedical Engineering, University of Rochester, NY (E.M.S.)
| |
Collapse
|
21
|
Shah H, Hacker A, Langburt D, Dewar M, McFadden MJ, Zhang H, Kuzmanov U, Zhou YQ, Hussain B, Ehsan F, Hinz B, Gramolini AO, Heximer SP. Myocardial Infarction Induces Cardiac Fibroblast Transformation within Injured and Noninjured Regions of the Mouse Heart. J Proteome Res 2021; 20:2867-2881. [PMID: 33789425 DOI: 10.1021/acs.jproteome.1c00098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heart failure (HF) is associated with pathological remodeling of the myocardium, including the initiation of fibrosis and scar formation by activated cardiac fibroblasts (CFs). Although early CF-dependent scar formation helps prevent cardiac rupture by maintaining the heart's structural integrity, ongoing deposition of the extracellular matrix in the remote and infarct regions can reduce tissue compliance, impair cardiac function, and accelerate progression to HF. In our study, we conducted mass spectrometry (MS) analysis to identify differentially altered proteins and signaling pathways between CFs isolated from 7 day sham and infarcted murine hearts. Surprisingly, CFs from both the remote and infarct regions of injured hearts had a wide number of similarly altered proteins and signaling pathways that were consistent with fibrosis and activation into pathological myofibroblasts. Specifically, proteins enriched in CFs isolated from MI hearts were involved in pathways pertaining to cell-cell and cell-matrix adhesion, chaperone-mediated protein folding, and collagen fibril organization. These results, together with principal component analyses, provided evidence of global CF activation postinjury. Interestingly, however, direct comparisons between CFs from the remote and infarct regions of injured hearts identified 15 differentially expressed proteins between MI remote and MI infarct CFs. Eleven of these proteins (Gpc1, Cthrc1, Vmac, Nexn, Znf185, Sprr1a, Specc1, Emb, Limd2, Pawr, and Mcam) were higher in MI infarct CFs, whereas four proteins (Gstt1, Gstm1, Tceal3, and Inmt) were higher in MI remote CFs. Collectively, our study shows that MI injury induced global changes to the CF proteome, with the magnitude of change reflecting their relative proximity to the site of injury.
Collapse
Affiliation(s)
- Haisam Shah
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Alison Hacker
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Dylan Langburt
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Michael Dewar
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Meghan J McFadden
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Hangjun Zhang
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Uros Kuzmanov
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Yu-Qing Zhou
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Bilal Hussain
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Fahad Ehsan
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada M5G 1G6
| | - Anthony O Gramolini
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Scott P Heximer
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
22
|
Ebeid DE, Khalafalla FG, Broughton KM, Monsanto MM, Esquer CY, Sacchi V, Hariharan N, Korski KI, Moshref M, Emathinger J, Cottage CT, Quijada PJ, Nguyen JH, Alvarez R, Völkers M, Konstandin MH, Wang BJ, Firouzi F, Navarrete JM, Gude NA, Goumans MJ, Sussman MA. Pim1 maintains telomere length in mouse cardiomyocytes by inhibiting TGFβ signalling. Cardiovasc Res 2021; 117:201-211. [PMID: 32176281 PMCID: PMC7797214 DOI: 10.1093/cvr/cvaa066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022] Open
Abstract
AIMS Telomere attrition in cardiomyocytes is associated with decreased contractility, cellular senescence, and up-regulation of proapoptotic transcription factors. Pim1 is a cardioprotective kinase that antagonizes the aging phenotype of cardiomyocytes and delays cellular senescence by maintaining telomere length, but the mechanism remains unknown. Another pathway responsible for regulating telomere length is the transforming growth factor beta (TGFβ) signalling pathway where inhibiting TGFβ signalling maintains telomere length. The relationship between Pim1 and TGFβ has not been explored. This study delineates the mechanism of telomere length regulation by the interplay between Pim1 and components of TGFβ signalling pathways in proliferating A549 cells and post-mitotic cardiomyocytes. METHODS AND RESULTS Telomere length was maintained by lentiviral-mediated overexpression of PIM1 and inhibition of TGFβ signalling in A549 cells. Telomere length maintenance was further demonstrated in isolated cardiomyocytes from mice with cardiac-specific overexpression of PIM1 and by pharmacological inhibition of TGFβ signalling. Mechanistically, Pim1 inhibited phosphorylation of Smad2, preventing its translocation into the nucleus and repressing expression of TGFβ pathway genes. CONCLUSION Pim1 maintains telomere lengths in cardiomyocytes by inhibiting phosphorylation of the TGFβ pathway downstream effectors Smad2 and Smad3, which prevents repression of telomerase reverse transcriptase. Findings from this study demonstrate a novel mechanism of telomere length maintenance and provide a potential target for preserving cardiac function.
Collapse
Affiliation(s)
- David E Ebeid
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Farid G Khalafalla
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Kathleen M Broughton
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Megan M Monsanto
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Carolina Y Esquer
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Veronica Sacchi
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Nirmala Hariharan
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Kelli I Korski
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Maryam Moshref
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Jacqueline Emathinger
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Christopher T Cottage
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Pearl J Quijada
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Jonathan H Nguyen
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Roberto Alvarez
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mirko Völkers
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mathias H Konstandin
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Bingyan J Wang
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Fareheh Firouzi
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Julian M Navarrete
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Natalie A Gude
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Marie-Jose Goumans
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A Sussman
- Department of Biology, San Diego State University, North Life Sciences, 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
23
|
Burke RM, Burgos Villar KN, Small EM. Fibroblast contributions to ischemic cardiac remodeling. Cell Signal 2021; 77:109824. [PMID: 33144186 PMCID: PMC7718345 DOI: 10.1016/j.cellsig.2020.109824] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022]
Abstract
The heart can respond to increased pathophysiological demand through alterations in tissue structure and function 1 . This process, called cardiac remodeling, is particularly evident following myocardial infarction (MI), where the blockage of a coronary artery leads to widespread death of cardiac muscle. Following MI, necrotic tissue is replaced with extracellular matrix (ECM), and the remaining viable cardiomyocytes (CMs) undergo hypertrophic growth. ECM deposition and cardiac hypertrophy are thought to represent an adaptive response to increase structural integrity and prevent cardiac rupture. However, sustained ECM deposition leads to the formation of a fibrotic scar that impedes cardiac compliance and can induce lethal arrhythmias. Resident cardiac fibroblasts (CFs) are considered the primary source of ECM molecules such as collagens and fibronectin, particularly after becoming activated by pathologic signals. CFs contribute to multiple phases of post-MI heart repair and remodeling, including the initial response to CM death, immune cell (IC) recruitment, and fibrotic scar formation. The goal of this review is to describe how resident fibroblasts contribute to the healing and remodeling that occurs after MI, with an emphasis on how fibroblasts communicate with other cell types in the healing infarct scar 1 –6 .
Collapse
Affiliation(s)
- Ryan M Burke
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America
| | - Kimberly N Burgos Villar
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, United States of America.
| |
Collapse
|
24
|
Jarrell DK, Vanderslice EJ, VeDepo MC, Jacot JG. Engineering Myocardium for Heart Regeneration-Advancements, Considerations, and Future Directions. Front Cardiovasc Med 2020; 7:586261. [PMID: 33195474 PMCID: PMC7588355 DOI: 10.3389/fcvm.2020.586261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022] Open
Abstract
Heart disease is the leading cause of death in the United States among both adults and infants. In adults, 5-year survival after a heart attack is <60%, and congenital heart defects are the top killer of liveborn infants. Problematically, the regenerative capacity of the heart is extremely limited, even in newborns. Furthermore, suitable donor hearts for transplant cannot meet the demand and require recipients to use immunosuppressants for life. Tissue engineered myocardium has the potential to replace dead or fibrotic heart tissue in adults and could also be used to permanently repair congenital heart defects in infants. In addition, engineering functional myocardium could facilitate the development of a whole bioartificial heart. Here, we review and compare in vitro and in situ myocardial tissue engineering strategies. In the context of this comparison, we consider three challenges that must be addressed in the engineering of myocardial tissue: recapitulation of myocardial architecture, vascularization of the tissue, and modulation of the immune system. In addition to reviewing and analyzing current progress, we recommend specific strategies for the generation of tissue engineered myocardial patches for heart regeneration and repair.
Collapse
Affiliation(s)
- Dillon K Jarrell
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ethan J Vanderslice
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mitchell C VeDepo
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeffrey G Jacot
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
25
|
Kurian J, Yuko AE, Kasatkin N, Rigaud VOC, Busch K, Harlamova D, Wagner M, Recchia FA, Wang H, Mohsin S, Houser SR, Khan M. Uncoupling protein 2-mediated metabolic adaptations define cardiac cell function in the heart during transition from young to old age. Stem Cells Transl Med 2020; 10:144-156. [PMID: 32964621 PMCID: PMC7780806 DOI: 10.1002/sctm.20-0123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular replacement in the heart is restricted to postnatal stages with the adult heart largely postmitotic. Studies show that loss of regenerative properties in cardiac cells seems to coincide with alterations in metabolism during postnatal development and maturation. Nevertheless, whether changes in cellular metabolism are linked to functional alternations in cardiac cells is not well studied. We report here a novel role for uncoupling protein 2 (UCP2) in regulation of functional properties in cardiac tissue derived stem‐like cells (CTSCs). CTSC were isolated from C57BL/6 mice aged 2 days (nCTSC), 2 month (CTSC), and 2 years old (aCTSC), subjected to bulk‐RNA sequencing that identifies unique transcriptome significantly different between CTSC populations from young and old heart. Moreover, results show that UCP2 is highly expressed in CTSCs from the neonatal heart and is linked to maintenance of glycolysis, proliferation, and survival. With age, UCP2 is reduced shifting energy metabolism to oxidative phosphorylation inversely affecting cellular proliferation and survival in aged CTSCs. Loss of UCP2 in neonatal CTSCs reduces extracellular acidification rate and glycolysis together with reduced cellular proliferation and survival. Mechanistically, UCP2 silencing is linked to significant alteration of mitochondrial genes together with cell cycle and survival signaling pathways as identified by RNA‐sequencing and STRING bioinformatic analysis. Hence, our study shows UCP2‐mediated metabolic profile regulates functional properties of cardiac cells during transition from neonatal to aging cardiac states.
Collapse
Affiliation(s)
- Justin Kurian
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Antonia E Yuko
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Nicole Kasatkin
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Vagner O C Rigaud
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Kelsey Busch
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Daria Harlamova
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Marcus Wagner
- Cardiovascular Research Institute (CVRC), Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Fabio A Recchia
- Cardiovascular Research Institute (CVRC), Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Sadia Mohsin
- Cardiovascular Research Institute (CVRC), Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Steven R Houser
- Cardiovascular Research Institute (CVRC), Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Bretherton R, Bugg D, Olszewski E, Davis J. Regulators of cardiac fibroblast cell state. Matrix Biol 2020; 91-92:117-135. [PMID: 32416242 PMCID: PMC7789291 DOI: 10.1016/j.matbio.2020.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Fibroblasts are the primary regulator of cardiac extracellular matrix (ECM). In response to disease stimuli cardiac fibroblasts undergo cell state transitions to a myofibroblast phenotype, which underlies the fibrotic response in the heart and other organs. Identifying regulators of fibroblast state transitions would inform which pathways could be therapeutically modulated to tactically control maladaptive extracellular matrix remodeling. Indeed, a deeper understanding of fibroblast cell state and plasticity is necessary for controlling its fate for therapeutic benefit. p38 mitogen activated protein kinase (MAPK), which is part of the noncanonical transforming growth factor β (TGFβ) pathway, is a central regulator of fibroblast to myofibroblast cell state transitions that is activated by chemical and mechanical stress signals. Fibroblast intrinsic signaling, local and global cardiac mechanics, and multicellular interactions individually and synergistically impact these state transitions and hence the ECM, which will be reviewed here in the context of cardiac fibrosis.
Collapse
Affiliation(s)
- Ross Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Darrian Bugg
- Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States
| | - Emily Olszewski
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States; Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, United States; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, United States.
| |
Collapse
|
27
|
Hernández-Camacho JD, Vicente-García C, Parsons DS, Navas-Enamorado I. Zinc at the crossroads of exercise and proteostasis. Redox Biol 2020; 35:101529. [PMID: 32273258 PMCID: PMC7284914 DOI: 10.1016/j.redox.2020.101529] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Zinc is an essential element for all forms of life, and one in every ten human proteins is a zinc protein. Zinc has catalytic, structural and signalling functions and its correct homeostasis affects many cellular processes. Zinc deficiency leads to detrimental consequences, especially in tissues with high demand such as skeletal muscle. Zinc cellular homeostasis is tightly regulated by different transport and buffer protein systems. Specifically, in skeletal muscle, zinc has been found to affect myogenesis and muscle regeneration due to its effects on muscle cell activation, proliferation and differentiation. In relation to skeletal muscle, exercise has been shown to modulate zinc serum and urinary levels and could directly affect cellular zinc transport. The oxidative stress induced by exercise may provide the basis for the mild zinc deficiency observed in athletes and could have severe consequences on health and sport performance. Proteostasis is induced during exercise and zinc plays an essential role in several of the associated pathways. Zinc deficiency could be a crucial issue in sport performance for athletes. Exercise could modulate zinc serum and cellular homeostasis. Zinc is part of proteostatic systems critical during exercise.
Collapse
Affiliation(s)
- Juan Diego Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, 41013, Spain; CIBERER, Instituto de Salud Carlos III, Madrid, 28000, Spain
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, 41013, Spain
| | | | | |
Collapse
|
28
|
Abstract
Cardiac fibrosis is a pathological condition that occurs after injury and during aging. Currently, there are limited means to effectively reduce or reverse fibrosis. Key to identifying methods for curbing excess deposition of extracellular matrix is a better understanding of the cardiac fibroblast, the cell responsible for collagen production. In recent years, the diversity and functions of these enigmatic cells have been gradually revealed. In this review, I outline current approaches for identifying and classifying cardiac fibroblasts. An emphasis is placed on new insights into the heterogeneity of these cells as determined by lineage tracing and single-cell sequencing in development, adult, and disease states. These recent advances in our understanding of the fibroblast provide a platform for future development of novel therapeutics to combat cardiac fibrosis.
Collapse
Affiliation(s)
- Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA;
| |
Collapse
|
29
|
Chen S, Zhang Y, Lighthouse JK, Mickelsen DM, Wu J, Yao P, Small EM, Yan C. A Novel Role of Cyclic Nucleotide Phosphodiesterase 10A in Pathological Cardiac Remodeling and Dysfunction. Circulation 2019; 141:217-233. [PMID: 31801360 DOI: 10.1161/circulationaha.119.042178] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Heart failure is a leading cause of death worldwide. Cyclic nucleotide phosphodiesterases (PDEs), through degradation of cyclic nucleotides, play critical roles in cardiovascular biology and disease. Our preliminary screening studies have revealed PDE10A upregulation in the diseased heart. However, the roles of PDE10A in cardiovascular biology and disease are largely uncharacterized. The current study is aimed to investigate the regulation and function of PDE10A in cardiac cells and in the progression of cardiac remodeling and dysfunction. METHODS We used isolated adult mouse cardiac myocytes and fibroblasts, as well as preclinical mouse models of hypertrophy and heart failure. The PDE10A selective inhibitor TP-10, and global PDE10A knock out mice were used. RESULTS We found that PDE10A expression remains relatively low in normal and exercised heart tissues. However, PDE10A is significantly upregulated in mouse and human failing hearts. In vitro, PDE10A deficiency or inhibiting PDE10A with selective inhibitor TP-10, attenuated cardiac myocyte pathological hypertrophy induced by Angiotensin II, phenylephrine, and isoproterenol, but did not affect cardiac myocyte physiological hypertrophy induced by IGF-1 (insulin-like growth factor 1). TP-10 also reduced TGF-β (transforming growth factor-β)-stimulated cardiac fibroblast activation, proliferation, migration and extracellular matrix synthesis. TP-10 treatment elevated both cAMP and cGMP levels in cardiac myocytes and cardiac fibroblasts, consistent with PDE10A as a cAMP/cGMP dual-specific PDE. In vivo, global PDE10A deficiency significantly attenuated myocardial hypertrophy, cardiac fibrosis, and dysfunction induced by chronic pressure overload via transverse aorta constriction or chronic neurohormonal stimulation via Angiotensin II infusion. Importantly, we demonstrated that the pharmacological effect of TP-10 is specifically through PDE10A inhibition. In addition, TP-10 is able to reverse pre-established cardiac hypertrophy and dysfunction. RNA-Sequencing and bioinformatics analysis further identified a PDE10A-regualted transcriptome involved in cardiac hypertrophy, fibrosis, and cardiomyopathy. CONCLUSIONS Taken together, our study elucidates a novel role for PDE10A in the regulation of pathological cardiac remodeling and development of heart failure. Given that PDE10A has been proven to be a safe drug target, PDE10A inhibition may represent a novel therapeutic strategy for preventing and treating cardiac diseases associated with cardiac remodeling.
Collapse
Affiliation(s)
- Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY.,Department of Pharmacology and Physiology (S.C.), University of Rochester School of Medicine and Dentistry, NY
| | - Yishuai Zhang
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY
| | - Deanne M Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY.,Department of Biochemistry and Biophysics (P.Y.), University of Rochester School of Medicine and Dentistry, NY
| | - Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine (S.C., Y.Z., J.K.L., D.M.M., J.W., P.Y., E.M.S., C.Y.), University of Rochester School of Medicine and Dentistry, NY
| |
Collapse
|
30
|
Brand CS, Lighthouse JK, Trembley MA. Protective transcriptional mechanisms in cardiomyocytes and cardiac fibroblasts. J Mol Cell Cardiol 2019; 132:1-12. [PMID: 31042488 DOI: 10.1016/j.yjmcc.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Heart failure is the leading cause of morbidity and mortality worldwide. Several lines of evidence suggest that physical activity and exercise can pre-condition the heart to improve the response to acute cardiac injury such as myocardial infarction or ischemia/reperfusion injury, preventing the progression to heart failure. It is becoming more apparent that cardioprotection is a concerted effort between multiple cell types and converging signaling pathways. However, the molecular mechanisms of cardioprotection are not completely understood. What is clear is that the mechanisms underlying this protection involve acute activation of transcriptional activators and their corresponding gene expression programs. Here, we review the known stress-dependent transcriptional programs that are activated in cardiomyocytes and cardiac fibroblasts to preserve function in the adult heart after injury. Focus is given to prominent transcriptional pathways such as mechanical stress or reactive oxygen species (ROS)-dependent activation of myocardin-related transcription factors (MRTFs) and transforming growth factor beta (TGFβ), and gene expression that positively regulates protective PI3K/Akt signaling. Together, these pathways modulate both beneficial and pathological responses to cardiac injury in a cell-specific manner.
Collapse
Affiliation(s)
- Cameron S Brand
- Department of Pharmacology, School of Medicine, University of California - San Diego, 9500 Gilman Drive, Biomedical Sciences Building, La Jolla, CA 92093, USA.
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14624, USA.
| | - Michael A Trembley
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|