1
|
Rosenberg CA, Rodrigues MA, Bill M, Ludvigsen M. Comparative analysis of feature-based ML and CNN for binucleated erythroblast quantification in myelodysplastic syndrome patients using imaging flow cytometry data. Sci Rep 2024; 14:9349. [PMID: 38654058 PMCID: PMC11039460 DOI: 10.1038/s41598-024-59875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Myelodysplastic syndrome is primarily characterized by dysplasia in the bone marrow (BM), presenting a challenge in consistent morphology interpretation. Accurate diagnosis through traditional slide-based analysis is difficult, necessitating a standardized objective technique. Over the past two decades, imaging flow cytometry (IFC) has proven effective in combining image-based morphometric analyses with high-parameter phenotyping. We have previously demonstrated the effectiveness of combining IFC with a feature-based machine learning algorithm to accurately identify and quantify rare binucleated erythroblasts (BNEs) in dyserythropoietic BM cells. However, a feature-based workflow poses challenges requiring software-specific expertise. Here we employ a Convolutional Neural Network (CNN) algorithm for BNE identification and differentiation from doublets and cells with irregular nuclear morphology in IFC data. We demonstrate that this simplified AI workflow, coupled with a powerful CNN algorithm, achieves comparable BNE quantification accuracy to manual and feature-based analysis with substantial time savings, eliminating workflow complexity. This streamlined approach holds significant clinical value, enhancing IFC accessibility for routine diagnostic purposes.
Collapse
Affiliation(s)
- Carina A Rosenberg
- Department of Hematology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, C115, 8200, Aarhus C, Denmark.
| | | | - Marie Bill
- Department of Hematology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, C115, 8200, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, C115, 8200, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Xi C, Palani C, Takezaki M, Shi H, Horuzsko A, Pace BS, Zhu X. Simvastatin-Mediated Nrf2 Activation Induces Fetal Hemoglobin and Antioxidant Enzyme Expression to Ameliorate the Phenotype of Sickle Cell Disease. Antioxidants (Basel) 2024; 13:337. [PMID: 38539870 PMCID: PMC10968127 DOI: 10.3390/antiox13030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 06/04/2024] Open
Abstract
Sickle cell disease (SCD) is a pathophysiological condition of chronic hemolysis, oxidative stress, and elevated inflammation. The transcription factor Nrf2 is a master regulator of oxidative stress. Here, we report that the FDA-approved oral agent simvastatin, an inhibitor of hydroxymethyl-glutaryl coenzyme A reductase, significantly activates the expression of Nrf2 and antioxidant enzymes. Simvastatin also induces fetal hemoglobin expression in SCD patient primary erythroid progenitors and a transgenic mouse model. Simvastatin alleviates SCD symptoms by decreasing hemoglobin S sickling, oxidative stress, and inflammatory stress in erythroblasts. Particularly, simvastatin increases cellular levels of cystine, the precursor for the biosynthesis of the antioxidant reduced glutathione, and decreases the iron content in SCD mouse spleen and liver tissues. Mechanistic studies suggest that simvastatin suppresses the expression of the critical histone methyltransferase enhancer of zeste homolog 2 to reduce both global and gene-specific histone H3 lysine 27 trimethylation. These chromatin structural changes promote the assembly of transcription complexes to fetal γ-globin and antioxidant gene regulatory regions in an antioxidant response element-dependent manner. In summary, our findings suggest that simvastatin activates fetal hemoglobin and antioxidant protein expression, modulates iron and cystine/reduced glutathione levels to improve the phenotype of SCD, and represents a therapeutic strategy for further development.
Collapse
Affiliation(s)
- Caixia Xi
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.X.); (C.P.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA (A.H.)
| | - Chithra Palani
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.X.); (C.P.)
| | - Mayuko Takezaki
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.X.); (C.P.)
| | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA (A.H.)
| | - Anatolij Horuzsko
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA (A.H.)
| | - Betty S. Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.X.); (C.P.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA (A.H.)
| | - Xingguo Zhu
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA; (C.X.); (C.P.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA (A.H.)
| |
Collapse
|
3
|
Palani CD, Zhu X, Alagar M, Attucks OC, Pace BS. Bach1 inhibitor HPP-D mediates γ-globin gene activation in sickle erythroid progenitors. Blood Cells Mol Dis 2024; 104:102792. [PMID: 37633023 DOI: 10.1016/j.bcmd.2023.102792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Sickle cell disease (SCD) is the most common β-hemoglobinopathy caused by various mutations in the adult β-globin gene resulting in sickle hemoglobin production, chronic hemolytic anemia, pain, and progressive organ damage. The best therapeutic strategies to manage the clinical symptoms of SCD is the induction of fetal hemoglobin (HbF) using chemical agents. At present, among the Food and Drug Administration-approved drugs to treat SCD, hydroxyurea is the only one proven to induce HbF protein synthesis, however, it is not effective in all people. Therefore, we evaluated the ability of the novel Bach1 inhibitor, HPP-D to induce HbF in KU812 cells and primary sickle erythroid progenitors. HPP-D increased HbF and decreased Bach1 protein levels in both cell types. Furthermore, chromatin immunoprecipitation assay showed reduced Bach1 and increased NRF2 binding to the γ-globin promoter antioxidant response elements. We also observed increased levels of the active histone marks H3K4Me1 and H3K4Me3 supporting an open chromatin configuration. In primary sickle erythroid progenitors, HPP-D increased γ-globin transcription and HbF positive cells and reduced sickled erythroid progenitors under hypoxia conditions. Collectively, our data demonstrate that HPP-D induces γ-globin gene transcription through Bach1 inhibition and enhanced NRF2 binding in the γ-globin promoter antioxidant response elements.
Collapse
Affiliation(s)
- Chithra D Palani
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Xingguo Zhu
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Manickam Alagar
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | | | - Betty S Pace
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
4
|
Ito S, Yamatani F, Arai Y, Manabe E, Tsujino T. Dimethyl Fumarate Ameliorated Cardiorenal Anemia Syndrome and Improved Overall Survival in Dahl/Salt-Sensitive Rats. J Pharmacol Exp Ther 2023; 387:299-305. [PMID: 37857438 DOI: 10.1124/jpet.123.001692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Cardiovascular disease, chronic kidney disease, and anemia are known to adversely affect each other. Inflammation is commonly involved in these diseases. Cardiorenal anemia syndrome (CRAS) is the name given to this mutually harmful condition. Dimethyl fumarate (DMF) is a Food and Drug Administration-approved antioxidant and anti-inflammatory agent. The purpose of this study was to investigate the effects of DMF on Dahl/salt-sensitive (DS) rats as a CRAS model. Six-week-old DS rats were divided into three groups: the control group, the high-salt (HS) group, and the HS+DMF group. The HS and HS+DMF groups were fed a high-salt diet (8% NaCl) from 6 weeks of age. In the HS+DMF group, DMF (90 mg/kg per day) was orally administered from 6 to 15 weeks of age. Systolic blood pressure was measured every 2 weeks. The heart and renal injuries were assessed with histopathological analysis. The heart and renal expression of mRNAs was assessed by reverse-transcription polymerase chain reaction. DMF significantly improved overall survival, which was shortened by HS in DS rats. Systolic blood pressure increased in the HS group compared with the control group, and DMF tended to suppress this change. DMF ameliorated the cardiac and renal abnormalities confirmed in the HS group by histopathological analysis. Furthermore, the changes in mRNA expressions associated with disease exacerbation in the HS group were suppressed by DMF. DMF also improved anemia. This study suggests that DMF improves overall survival in DS rats through organ-protective effects and is effective against cardiorenal anemia syndrome. SIGNIFICANCE STATEMENT: Dimethyl fumarate was found to improve overall survival in Dahl/salt-sensitive rats, associated with its ability to ameliorate anemia and induce cardioprotective and renoprotective effects through anti-inflammatory and antifibrotic effects.
Collapse
Affiliation(s)
- Satoyasu Ito
- The Second Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy (S.I., F.Y., Y.A., E.M., T.T.) and Department of Cardiovascular and Renal Medicine, School of Medicine (E.M., T.T.), Hyogo Medical University, Hyogo, Japan
| | - Fuyuka Yamatani
- The Second Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy (S.I., F.Y., Y.A., E.M., T.T.) and Department of Cardiovascular and Renal Medicine, School of Medicine (E.M., T.T.), Hyogo Medical University, Hyogo, Japan
| | - Yuri Arai
- The Second Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy (S.I., F.Y., Y.A., E.M., T.T.) and Department of Cardiovascular and Renal Medicine, School of Medicine (E.M., T.T.), Hyogo Medical University, Hyogo, Japan
| | - Eri Manabe
- The Second Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy (S.I., F.Y., Y.A., E.M., T.T.) and Department of Cardiovascular and Renal Medicine, School of Medicine (E.M., T.T.), Hyogo Medical University, Hyogo, Japan
| | - Takeshi Tsujino
- The Second Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy (S.I., F.Y., Y.A., E.M., T.T.) and Department of Cardiovascular and Renal Medicine, School of Medicine (E.M., T.T.), Hyogo Medical University, Hyogo, Japan
| |
Collapse
|
5
|
Cato LD, Li R, Lu HY, Yu F, Wissman M, Mkumbe BS, Ekwattanakit S, Deelen P, Mwita L, Sangeda R, Suksangpleng T, Riolueang S, Bronson PG, Paul DS, Kawabata E, Astle WJ, Aguet F, Ardlie K, de Lapuente Portilla AL, Kang G, Zhang Y, Nouraie SM, Gordeuk VR, Gladwin MT, Garrett ME, Ashley-Koch A, Telen MJ, Custer B, Kelly S, Dinardo CL, Sabino EC, Loureiro P, Carneiro-Proietti AB, Maximo C, Méndez A, Hammerer-Lercher A, Sheehan VA, Weiss MJ, Franke L, Nilsson B, Butterworth AS, Viprakasit V, Nkya S, Sankaran VG. Genetic regulation of fetal hemoglobin across global populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.24.23287659. [PMID: 36993312 PMCID: PMC10055601 DOI: 10.1101/2023.03.24.23287659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Human genetic variation has enabled the identification of several key regulators of fetal-to-adult hemoglobin switching, including BCL11A, resulting in therapeutic advances. However, despite the progress made, limited further insights have been obtained to provide a fuller accounting of how genetic variation contributes to the global mechanisms of fetal hemoglobin (HbF) gene regulation. Here, we have conducted a multi-ancestry genome-wide association study of 28,279 individuals from several cohorts spanning 5 continents to define the architecture of human genetic variation impacting HbF. We have identified a total of 178 conditionally independent genome-wide significant or suggestive variants across 14 genomic windows. Importantly, these new data enable us to better define the mechanisms by which HbF switching occurs in vivo. We conduct targeted perturbations to define BACH2 as a new genetically-nominated regulator of hemoglobin switching. We define putative causal variants and underlying mechanisms at the well-studied BCL11A and HBS1L-MYB loci, illuminating the complex variant-driven regulation present at these loci. We additionally show how rare large-effect deletions in the HBB locus can interact with polygenic variation to influence HbF levels. Our study paves the way for the next generation of therapies to more effectively induce HbF in sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Liam D. Cato
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rick Li
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Henry Y. Lu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Mariel Wissman
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Baraka S. Mkumbe
- Sickle Cell Program, Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Biochemistry, Muhimbili University of Health and Allied Science, Dar es Salaam, Tanzania
- Department of Artificial Intelligence and Innovative Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Supachai Ekwattanakit
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patrick Deelen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Liberata Mwita
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Raphael Sangeda
- Sickle Cell Program, Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Thidarat Suksangpleng
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suchada Riolueang
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Paola G. Bronson
- R&D Translational Biology, Biogen, Cambridge, Massachusetts, USA
| | - Dirk S. Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Emily Kawabata
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - William J. Astle
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Francois Aguet
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kristin Ardlie
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Guolian Kang
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yingze Zhang
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seyed Mehdi Nouraie
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Victor R. Gordeuk
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Sickle Cell Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark T. Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Melanie E. Garrett
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Allison Ashley-Koch
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Marilyn J. Telen
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Shannon Kelly
- Vitalant Research Institute, San Francisco, California, USA
- Division of Pediatric Hematology, UCSF Benioff Children's Hospital, Oakland, California, USA
| | - Carla Luana Dinardo
- Fundacao Pro-Sangue Hemocentro de Sao Paulo, Sao Paulo, Brazil
- Institute of Tropical Medicine, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ester C. Sabino
- Institute of Tropical Medicine, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | - Adriana Méndez
- Institute of Laboratory Medicine, Cantonal Hospital Aarau, 5000 Aarau, Switzerland
| | | | - Vivien A. Sheehan
- Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta & Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Lude Franke
- Oncode Institute, Amsterdam, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Björn Nilsson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
- Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Vip Viprakasit
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siana Nkya
- Sickle Cell Program, Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Biochemistry, Muhimbili University of Health and Allied Science, Dar es Salaam, Tanzania
- Tanzania Human Genetics Organisation, Tanzania
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Biochemistry, Muhimbili University of Health and Allied Science
| |
Collapse
|
6
|
Chauhan W, Zennadi R. Keap1-Nrf2 Heterodimer: A Therapeutic Target to Ameliorate Sickle Cell Disease. Antioxidants (Basel) 2023; 12:antiox12030740. [PMID: 36978988 PMCID: PMC10045360 DOI: 10.3390/antiox12030740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/04/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Sickle cell disease (SCD) is a monogenic inheritable disease characterized by severe anemia, increased hemolysis, and recurrent, painful vaso-occlusive crises due to the polymerization of hemoglobin S (HbS)-generated oxidative stress. Up until now, only four drugs are approved for SCD in the US. However, each of these drugs affects only a limited array of SCD pathologies. Importantly, curative therapies, such as gene therapy, or hematopoietic stem cell transplantation are not available for every patient because of their high costs, availability of donor matching, and their serious adverse effects. Therefore, there is an unmet medical need for novel therapeutic strategies that target broader SCD sequelae. SCD phenotypic severity can be alleviated by increasing fetal hemoglobin (HbF) expression. This results in the inhibition of HbS polymerization and thus sickling, and a reduction in oxidative stress. The efficacy of HbF is due to its ability to dilute HbS levels below the threshold required for polymerization and to influence HbS polymer stability in RBCs. Nuclear factor-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap1)-complex signaling is one of the most important cytoprotective signaling controlling oxidative stress. Nrf2 is present in most organs and, after dissociation from Keap1, it accumulates in the cytoplasm, then translocates to the nucleus where it binds to the antioxidant response element (ARE) sequences and increases the expression of various cytoprotective antioxidant genes. Keeping this in mind, various researchers have proposed a role of multiple agents, more importantly tert-Butylhydroquinone (tBHQ), curcumin, etc., (having electrophilic properties) in inhibiting keap1 activity, so that Nrf2 can translocate to the nucleus to activate the gamma globin gene, thus maintaining alpha-hemoglobin-stabilizing protein (AHSP) and HbF levels. This leads to reduced oxidative stress, consequently minimizing SCD-associated complications. In this review, we will discuss the role of the Keap-1–Nrf2 complex in hemoglobinopathies, especially in SCD, and how this complex might represent a better target for more effective treatment options.
Collapse
|
7
|
Belcher JD, Nataraja S, Abdulla F, Zhang P, Chen C, Nguyen J, Ruan C, Singh M, Demes S, Olson L, Stickens D, Stanwix J, Clarke E, Huang Y, Biddle M, Vercellotti GM. The BACH1 inhibitor ASP8731 inhibits inflammation and vaso-occlusion and induces fetal hemoglobin in sickle cell disease. Front Med (Lausanne) 2023; 10:1101501. [PMID: 37144034 PMCID: PMC10152901 DOI: 10.3389/fmed.2023.1101501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
In sickle cell disease (SCD), heme released during intravascular hemolysis promotes oxidative stress, inflammation, and vaso-occlusion. Conversely, free heme can also activate expression of antioxidant and globin genes. Heme binds to the transcription factor BACH1, which represses NRF2-mediated gene transcription. ASP8731, is a selective small molecule inhibitor of BACH1. We investigated the ability of ASP8731 to modulate pathways involved in SCD pathophysiology. In HepG2 liver cells, ASP8731 increased HMOX1 and FTH1 mRNA. In pulmonary endothelial cells, ASP8731 decreased VCAM1 mRNA in response to TNF-α and blocked a decrease in glutathione in response to hemin. Townes-SS mice were gavaged once per day for 4 weeks with ASP8731, hydroxyurea (HU) or vehicle. Both ASP8731 and HU inhibited heme-mediated microvascular stasis and in combination, ASP8731 significantly reduced microvascular stasis compared to HU alone. In Townes-SS mice, ASP8731 and HU markedly increased heme oxygenase-1 and decreased hepatic ICAM-1, NF-kB phospho-p65 protein expression in the liver, and white blood cell counts. In addition, ASP8731 increased gamma-globin expression and HbF+ cells (F-cells) as compared to vehicle-treated mice. In human erythroid differentiated CD34+ cells, ASP8731 increased HGB mRNA and increased the percentage of F-cells 2-fold in manner similar to HU. ASP8731 and HU when given together induced more HbF+ cells compared to either drug alone. In CD34+ cells from one donor that was non-responsive to HU, ASP8731 induced HbF+ cells ~2-fold. ASP8731 and HU also increased HBG and HBA, but not HBB mRNA in erythroid differentiated CD34+ cells derived from SCD patients. These data indicate that BACH1 may offer a new therapeutic target to treat SCD.
Collapse
Affiliation(s)
- John D. Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: John D. Belcher,
| | | | - Fuad Abdulla
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Ping Zhang
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Chunsheng Chen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Julia Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Conglin Ruan
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | | | - Shilpa Demes
- Astellas Pharma Global Development Inc., Northbrook, IL, United States
| | | | | | | | | | | | | | - Gregory M. Vercellotti
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
8
|
Pavan AR, Lopes JR, Dos Santos JL. The state of the art of fetal hemoglobin-inducing agents. Expert Opin Drug Discov 2022; 17:1279-1293. [PMID: 36302760 DOI: 10.1080/17460441.2022.2141708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Sickle cell anemia (SCA) is a hematological genetic disorder caused by a mutation in the gene of the β-globin. Pharmacological treatments will continue to be an important approach, including the strategy to induce fetal hemoglobin (HbF). AREAS COVERED Here, we analyzed the articles described in the literature regarding the drug discovery of HbF inducers. The main approaches for such strategy will be discussed, highlighting those most promising. EXPERT OPINION The comprehension of the mechanisms involved in the β-globin regulation is the main key to design new drugs to induce HbF. Among the strategies, gamma-globin regulation by epigenetic enzymes seems to be a promising approach to be pursued, although the comprehension of the selectivity role for those new drugs is crucial to reduce adverse effects. The low druggability of transcription factors and their vital role in embryonic human development are critical points that should be taken in account for drug design. The guanylate cyclase and the NO/cGMP signaling pathway seem to be promising not only for HbF induction, but also for the protective effects in the cardiovascular system. The association of drugs acting through different mechanisms to induce HbF seems to be promising for the discovery of new drugs.
Collapse
Affiliation(s)
- Aline Renata Pavan
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
| | - Juliana Romano Lopes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil.,School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| |
Collapse
|
9
|
Walker AL, Crosby D, Miller V, Weidert F, Ofori-Acquah S. Hydroxyurea Decouples Persistent F-Cell Elevation and Induction of γ-Globin. Exp Hematol 2022; 112-113:15-23.e1. [PMID: 35843392 DOI: 10.1016/j.exphem.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 11/04/2022]
Abstract
Mechanisms that control the fetal-to-adult hemoglobin switch are attractive therapeutic targets in sickle cell disease. In this study, we investigated developmental γ-globin silencing in the Townes humanized knock-in mouse model, which harbors a construct containing the human γ-, βA-, and βS-globin genes, and examined the utility of this model in evaluation of pharmacologic induction of fetal hemoglobin (HbF). We studied mouse pups on the day of delivery (P0) to 28 days after birth (P28). Regardless of the hemoglobin genotype (SS, AS, or AA), the proportion of F cells in peripheral blood was 100% at P0, declined sharply to 20% at P2, and was virtually undetectable at P14. Developmental γ-globin silencing in Townes mice was complete at P4 in association with significantly increased BCL11A expression in the primary erythropoietic organs of the mouse. Hydroxyurea given at P2 significantly sustained elevated percentages of F cells in mice at P14. However, the percentage of F cells declined at P14 for treatment begun at P4. A lack of augmentation of γ-globin mRNA in erythroid tissues suggests that the apparent increase in HbF in red cells caused by hydroxyurea was not due to sustained or re-activation of γ-globin transcription, but was instead a function of erythropoiesis suppression. Thus, we provide new details of the hemoglobin switch in the Townes murine model that recapitulates postnatal γ- to β-globin switch in humans and identify the myelosuppressive toxicity of hydroxyurea as a superseding factor in interpreting pharmacologic induction of HbF.
Collapse
Affiliation(s)
- Aisha L Walker
- Pittsburgh Heart Blood and Lung Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Department of Pediatrics, Emory University, Atlanta, GA.
| | - Danielle Crosby
- Pittsburgh Heart Blood and Lung Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Valerie Miller
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA
| | - Frances Weidert
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | - Solomon Ofori-Acquah
- Pittsburgh Heart Blood and Lung Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; School of Biomedical and Allied Health Sciences, Accra, Ghana
| |
Collapse
|
10
|
Bou-Fakhredin R, De Franceschi L, Motta I, Cappellini MD, Taher AT. Pharmacological Induction of Fetal Hemoglobin in β-Thalassemia and Sickle Cell Disease: An Updated Perspective. Pharmaceuticals (Basel) 2022; 15:ph15060753. [PMID: 35745672 PMCID: PMC9227505 DOI: 10.3390/ph15060753] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
A significant amount of attention has recently been devoted to the mechanisms involved in hemoglobin (Hb) switching, as it has previously been established that the induction of fetal hemoglobin (HbF) production in significant amounts can reduce the severity of the clinical course in diseases such as β-thalassemia and sickle cell disease (SCD). While the induction of HbF using lentiviral and genome-editing strategies has been made possible, they present limitations. Meanwhile, progress in the use of pharmacologic agents for HbF induction and the identification of novel HbF-inducing strategies has been made possible as a result of a better understanding of γ-globin regulation. In this review, we will provide an update on all current pharmacological inducer agents of HbF in β-thalassemia and SCD in addition to the ongoing research into other novel, and potentially therapeutic, HbF-inducing agents.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Verona, 37128 Verona, Italy;
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: (M.D.C.); (A.T.T.)
| | - Ali T. Taher
- Department of Internal Medicine, Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
- Correspondence: (M.D.C.); (A.T.T.)
| |
Collapse
|
11
|
Lopez NH, Li B, Palani C, Siddaramappa U, Takezaki M, Xu H, Zhi W, Pace BS. Salubrinal induces fetal hemoglobin expression via the stress-signaling pathway in human sickle erythroid progenitors and sickle cell disease mice. PLoS One 2022; 17:e0261799. [PMID: 35639781 PMCID: PMC9154101 DOI: 10.1371/journal.pone.0261799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited blood disorder caused by a mutation in the HBB gene leading to hemoglobin S production and polymerization under hypoxia conditions leading to vaso-occlusion, chronic hemolysis, and progressive organ damage. This disease affects ~100,000 people in the United States and millions worldwide. An effective therapy for SCD is fetal hemoglobin (HbF) induction by pharmacologic agents such as hydroxyurea, the only Food and Drug Administration-approved drug for this purpose. Therefore, the goal of our study was to determine whether salubrinal (SAL), a selective protein phosphatase 1 inhibitor, induces HbF expression through the stress-signaling pathway by activation of p-eIF2α and ATF4 trans-activation in the γ-globin gene promoter. Sickle erythroid progenitors treated with 24μM SAL increased F-cells levels 1.4-fold (p = 0.021) and produced an 80% decrease in reactive oxygen species. Western blot analysis showed SAL enhanced HbF protein by 1.6-fold (p = 0.0441), along with dose-dependent increases of p-eIF2α and ATF4 levels. Subsequent treatment of SCD mice by a single intraperitoneal injection of SAL (5mg/kg) produced peak plasma concentrations at 6 hours. Chronic treatments of SCD mice with SAL mediated a 2.3-fold increase in F-cells (p = 0.0013) and decreased sickle erythrocytes supporting in vivo HbF induction.
Collapse
Affiliation(s)
- Nicole H. Lopez
- Department of Biochemistry and Cancer Biology, Augusta University, Augusta, GA, United States of America
| | - Biaoru Li
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| | - Chithra Palani
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| | - Umapathy Siddaramappa
- Department of Medicine, Division of Hematology/Oncology Augusta University, Augusta GA, United States of America
| | - Mayuko Takezaki
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| | - Hongyan Xu
- Department of Biostatistics and Epidemiology, Augusta University, Augusta, GA, United States of America
| | - Wenbo Zhi
- Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States of America
| | - Betty S. Pace
- Department of Biochemistry and Cancer Biology, Augusta University, Augusta, GA, United States of America
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| |
Collapse
|
12
|
Abstract
INTRODUCTION Sickle cell disease and β thalassemia are the principal β hemoglobinopathies. The complex pathophysiology of sickle cell disease is initiated by sickle hemoglobin polymerization. In β thalassemia, insufficient β-globin synthesis results in excessive free α globin, ineffective erythropoiesis and severe anemia. Fetal hemoglobin (HbF) prevents sickle hemoglobin polymerization; in β thalassemia HbF compensates for the deficit of normal hemoglobin. When HbF constitutes about a third of total cell hemoglobin, the complications of sickle cell disease are nearly totally prevented. Similarly, sufficient HbF in β thalassemia diminishes or prevents ineffective erythropoiesis and hemolysis. AREAS COVERED This article examines the pathophysiology of β hemoglobinopathies, the physiology of HbF, intracellular distribution and the regulation of HbF expression. Inducing high levels of HbF by targeting its regulatory pathways pharmacologically or with cell-based therapeutics provides major clinical benefit and perhaps a "cure." EXPERT OPINION Erythrocytes must contain about 10 pg of HbF to "cure" sickle cell disease. If HbF is the only hemoglobin present, much higher levels are needed to "cure" β thalassemia. These levels of HbF can be obtained by different iterations of gene therapy. Small molecule drugs that can achieve even modest pancellular HbF concentrations are a major unmet need.
Collapse
Affiliation(s)
- Martin H Steinberg
- Professor of Medicine, Pediatrics, Pathology and Laboratory Medicine, Boston University School of Medicine.,Department of Medicine, Division of Hematology/Oncology, Center of Excellence for Sickle Cell Disease, Boston University School of Medicine, 72 East Concord St., Boston, MA, 02118, USA.,Department of Medicine, Boston University School of Medicine, 72 E. Concord St. Boston, MA 02118. ., Tel
| |
Collapse
|
13
|
Wrona D, Majkutewicz I, Świątek G, Dunacka J, Grembecka B, Glac W. Dimethyl Fumarate as the Peripheral Blood Inflammatory Mediators Inhibitor in Prevention of Streptozotocin-Induced Neuroinflammation in Aged Rats. J Inflamm Res 2022; 15:33-52. [PMID: 35027835 PMCID: PMC8749052 DOI: 10.2147/jir.s342280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Intracerebroventricular-(ICV)-streptozotocin-(STZ)-induced neuroinflammation is a model of Alzheimer’s disease (AD) compatible with the inflammation hypothesis of ageing (“inflammaging” state). Previously, we observed age-dependent (young vs aged) dimethyl fumarate (DMF)-induced anti-inflammatory and neuroprotective effects in the brain along with improvement in cognitive functions in rats with the ICV-STZ-induced model of AD. To evaluate whether DMF reduces neuroinflammation based on the peripheral inflammatory response inhibition, we determined peripheral inflammatory mediators in young and aged rats with the ICV-STZ-induced AD pathology following DMF therapy. Materials and Methods Young (4-month-old) and aged (22-month-old) rats were fed with 0.4% DMF rat chow for 21 consecutive days after ICV-STZ (3 mg/ventricle) injections. After behavioral testing, blood and spleens were collected to determine the numbers of leukocytes (WBC), lymphocytes and their subpopulations, haematological parameters, the concanavalin (Con)-A-induced production and plasma concentration of interferon (IFN)-γ, interleukin (IL)-6, IL-10 and corticosterone (COR). Results Age-dependent anti-inflammatory effect of the DMF treatment in rats with ICV-STZ injections manifested as decreased peripheral WBC and lymphocyte numbers, including TCD3+CD4+CD8−, TCD3+CD4−CD8+, B (CD45RA+) and NK (161a+), in aged rats. Furthermore, DMF lowered the blood and spleen lymphocyte production of pro-inflammatory IFN-γ and IL-6 in young and aged rats, whereas it enhanced the plasma level of anti-inflammatory IL-10 and lymphocyte’s ability to produce it in aged rats only. In parallel to changes in peripheral WBC numbers in the model of AD, DMF decreased the red blood cell number, haemoglobin concentration, haematocrit and mean platelet volume in aged, but not young, rats. In contrast to controls, DMF did not influence the COR response in STZ groups. Conclusion Besides preventing neuroinflammation, DMF acts on the pro-/anti-inflammatory balance in the periphery and causes an anti-inflammatory shift in T lymphocytes which could contribute to DMF’s therapeutic effects in the ICV-STZ-induced model of AD, in particular, in aged rats.
Collapse
Affiliation(s)
- Danuta Wrona
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Irena Majkutewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Grzegorz Świątek
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Joanna Dunacka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Wojciech Glac
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| |
Collapse
|
14
|
Pavan AR, Dos Santos JL. Advances in Sickle Cell Disease Treatments. Curr Med Chem 2021; 28:2008-2032. [PMID: 32520675 DOI: 10.2174/0929867327666200610175400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022]
Abstract
Sickle Cell Disease (SCD) is an inherited disorder of red blood cells that is caused by a single mutation in the β -globin gene. The disease, which afflicts millions of patients worldwide mainly in low income countries, is characterized by high morbidity, mortality and low life expectancy. The new pharmacological and non-pharmacological strategies for SCD is urgent in order to promote treatments able to reduce patient's suffering and improve their quality of life. Since the FDA approval of HU in 1998, there have been few advances in discovering new drugs; however, in the last three years voxelotor, crizanlizumab, and glutamine have been approved as new therapeutic alternatives. In addition, new promising compounds have been described to treat the main SCD symptoms. Herein, focusing on drug discovery, we discuss new strategies to treat SCD that have been carried out in the last ten years to discover new, safe, and effective treatments. Moreover, non-pharmacological approaches, including red blood cell exchange, gene therapy and hematopoietic stem cell transplantation will be presented.
Collapse
Affiliation(s)
- Aline Renata Pavan
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Jean Leandro Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
15
|
Li S, Vaziri ND, Swentek L, Takasu C, Vo K, Stamos MJ, Ricordi C, Ichii H. Prevention of Autoimmune Diabetes in NOD Mice by Dimethyl Fumarate. Antioxidants (Basel) 2021; 10:antiox10020193. [PMID: 33572792 PMCID: PMC7912218 DOI: 10.3390/antiox10020193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress plays critical roles in the pathogenesis of diabetes. This study tested the hypothesis that by protecting β-cells against oxidative stress and inflammation, an Nrf2 activator, dimethyl fumarate (DMF), may prevent or delay the onset of type 1 diabetes in non-obese diabetic (NOD) mice. Firstly, islet isolation was conducted to confirm the antioxidative effects of DMF oral administration on islet cells. Secondly, in a spontaneous diabetes model, DMF (25 mg/kg) was fed to mice once daily starting at the age of 8 weeks up to the age of 22 weeks. In a cyclophosphamide-induced accelerated diabetes model, DMF (25 mg/kg) was fed to mice twice daily for 2 weeks. In the islet isolation study, DMF administration improved the isolation yield, attenuated oxidative stress and enhanced GCLC and NQO1 expression in the islets. In the spontaneous model, DMF significantly reduced the onset of diabetes compared to the control group (25% vs. 54.2%). In the accelerated model, DMF reduced the onset of diabetes from 58.3% to 16.7%. The insulitis score in the islets of the DMF treatment group (1.6 ± 0.32) was significantly lower than in the control group (3.47 ± 0.21). The serum IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-12p70, IFN-γ, TNF-α, MCP-1 and CXCL16 levels in the DMF-treated group were lower than in the control group. In conclusion, DMF may protect islet cells and reduce the incidence of autoimmune diabetes in NOD mice by attenuating insulitis and proinflammatory cytokine production.
Collapse
Affiliation(s)
- Shiri Li
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
- Correspondence: (S.L.); (H.I.); Tel.: +1-714-456-5160 (S.L.); +1-714-456-8698 (H.I.)
| | | | - Lourdes Swentek
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
| | - Chie Takasu
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
| | - Kelly Vo
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
| | - Michael J. Stamos
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL 33136, USA;
| | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
- Correspondence: (S.L.); (H.I.); Tel.: +1-714-456-5160 (S.L.); +1-714-456-8698 (H.I.)
| |
Collapse
|
16
|
Gbotosho OT, Kapetanaki MG, Kato GJ. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Front Immunol 2021; 11:561917. [PMID: 33584641 PMCID: PMC7873693 DOI: 10.3389/fimmu.2020.561917] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hemolysis is a pathological feature of several diseases of diverse etiology such as hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the release of large quantities of hemoglobin into the blood circulation and the subsequent generation of harmful metabolites like labile heme. Protective mechanisms like haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1 enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules. The capacity of these protective systems is exceeded in hemolytic diseases, resulting in high residual levels of hemolysis products in the circulation, which pose a great oxidative and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia which impacts the phenotypic variability and disease severity. Not only is circulating heme a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle complications such as vaso-occlusion and acute lung injury. Exposure to extracellular heme in SCD can also augment the expression of placental growth factor (PlGF) and interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and pulmonary hypertension, and potentially the development of renal and cardiac dysfunction. This review focuses on heme-induced mechanisms that are implicated in disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and IL-6 related mechanisms and their role in SCD disease progression.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Maria G. Kapetanaki
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregory J. Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Timpani CA, Rybalka E. Calming the (Cytokine) Storm: Dimethyl Fumarate as a Therapeutic Candidate for COVID-19. Pharmaceuticals (Basel) 2020; 14:15. [PMID: 33375288 PMCID: PMC7824470 DOI: 10.3390/ph14010015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has rapidly spread worldwide and incidences of hospitalisation from respiratory distress are significant. While a vaccine is in the pipeline, there is urgency for therapeutic options to address the immune dysregulation, hyperinflammation and oxidative stress that can lead to death. Given the shared pathogenesis of severe cases of COVID-19 with aspects of multiple sclerosis and psoriasis, we propose dimethyl fumarate as a viable treatment option. Currently approved for multiple sclerosis and psoriasis, dimethyl fumarate is an immunomodulatory, anti-inflammatory and anti-oxidative drug that could be rapidly implemented into the clinic to calm the cytokine storm which drives severe COVID-19.
Collapse
Affiliation(s)
- Cara A. Timpani
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, St Albans, VIC 3021, Australia
| | - Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, St Albans, VIC 3021, Australia
| |
Collapse
|
18
|
Abstract
Fetal hemoglobin (HbF) can blunt the pathophysiology, temper the clinical course, and offer prospects for curative therapy of sickle cell disease. This review focuses on (1) HbF quantitative trait loci and the geography of β-globin gene haplotypes, especially those found in the Middle East; (2) how HbF might differentially impact the pathophysiology and many subphenotypes of sickle cell disease; (3) clinical implications of person-to-person variation in the distribution of HbF among HbF-containing erythrocytes; and (4) reactivation of HbF gene expression using both pharmacologic and cell-based therapeutic approaches. A confluence of detailed understanding of the molecular basis of HbF gene expression, coupled with the ability to precisely target by genomic editing most areas of the genome, is producing important preliminary therapeutic results that could provide new options for cell-based therapeutics with curative intent.
Collapse
Affiliation(s)
- Martin H Steinberg
- Division of Hematology/Oncology, Department of Medicine, Center of Excellence for Sickle Cell Disease, Center for Regenerative Medicine, Genome Science Institute, Boston University School of Medicine and Boston Medical Center, Boston, MA
| |
Collapse
|
19
|
Zhu H, Chen G, Wang Y, Lin X, Zhou J, Wang Z, Suo N. Dimethyl fumarate protects nucleus pulposus cells from inflammation and oxidative stress and delays the intervertebral disc degeneration. Exp Ther Med 2020; 20:269. [PMID: 33199994 PMCID: PMC7664592 DOI: 10.3892/etm.2020.9399] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Lower back pain is a common problem in middle-aged and elderly people, and intervertebral disc degeneration (IVDD) is often the main cause. The present study aimed to explore the effects of dimethyl fumarate (DMF) on inflammation and oxidative stress in the intervertebral disc. C57/BL6 mice were used to construct an IVDD model by tail suspension and daily intraperitoneal injections of 10 mg/kg DMF were administered to analyze the effects of DMF on IVDD. In addition, human nucleus pulposus (NP) cells were cultured and stimulated cells with recombinant human IL-1β and DMF to examine the effects of DMF on inflammation and oxidative stress in NP cells. DMF significantly increased the intervertebral disc height index of mice and inhibited the degradation of the extracellular matrix of mouse NP tissue. In addition, DMF also decreased the expression of inflammatory factors [including IL-6, IL-8, matrix metalloproteinase (MMP)3 and MMP13] in NP cells. In terms of oxidative stress, DMF significantly increased the antioxidative stress response in NP cells and reduced endoplasmic reticulum stress. DMF also increased the activity of the nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1 signaling pathway in NP cells and increased the phosphorylation of Akt. DMF also increased the anti-inflammatory and antioxidative ability of NP cells by promoting the activity of the Nrf2/HO-1 and PI3K/Akt signaling pathways, thus delaying IVDD.
Collapse
Affiliation(s)
- Hainian Zhu
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Gang Chen
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Yuhua Wang
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Xuchen Lin
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Jingyuan Zhou
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Zengshun Wang
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Nanangxiu Suo
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
20
|
Kourakis S, Timpani CA, de Haan JB, Gueven N, Fischer D, Rybalka E. Dimethyl Fumarate and Its Esters: A Drug with Broad Clinical Utility? Pharmaceuticals (Basel) 2020; 13:ph13100306. [PMID: 33066228 PMCID: PMC7602023 DOI: 10.3390/ph13100306] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Fumaric acid esters (FAEs) are small molecules with anti-oxidative, anti-inflammatory and immune-modulating effects. Dimethyl fumarate (DMF) is the best characterised FAE and is approved and registered for the treatment of psoriasis and Relapsing-Remitting Multiple Sclerosis (RRMS). Psoriasis and RRMS share an immune-mediated aetiology, driven by severe inflammation and oxidative stress. DMF, as well as monomethyl fumarate and diroximel fumarate, are commonly prescribed first-line agents with favourable safety and efficacy profiles. The potential benefits of FAEs against other diseases that appear pathogenically different but share the pathologies of oxidative stress and inflammation are currently investigated.
Collapse
Affiliation(s)
- Stephanie Kourakis
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 8001, Australia;
| | - Cara A. Timpani
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, Victoria University, St Albans, VIC 3021, Australia
| | - Judy B. de Haan
- Oxidative Stress Laboratory, Baker Heart and Diabetes Institute, Basic Science Domain, Melbourne, VIC 3004, Australia;
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3083, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Dirk Fischer
- Division of Developmental- and Neuropediatrics, University Children’s Hospital Basel, University of Basel, 4056 Basel, Switzerland;
| | - Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, Victoria University, St Albans, VIC 3021, Australia
- Correspondence: ; Tel.: +61-383-958-226
| |
Collapse
|
21
|
Kerpen K, Baptiste A, Yeshokumar AK. Multiple sclerosis in a young woman with sickle cell disease. Mult Scler Relat Disord 2020; 45:102427. [PMID: 32841868 DOI: 10.1016/j.msard.2020.102427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Comorbidities can impose diagnostic and treatment challenges in patients with multiple sclerosis (MS). Sickle cell disease (SCD) and MS are both inflammatory diseases featuring immune system dysregulation, and the reciprocal interaction of these diseases deserves investigation. METHODS/RESULTS We present the case of a 28-year-old woman with SCD who developed a sickle cell crisis and acute chest syndrome during corticosteroid treatment for a first MS attack. We then provide a review of the literature on co-management of SCD and MS. In patients with SCD experiencing an acute MS exacerbation, pre-treatment with red blood cell exchange transfusion before corticosteroids may reduce adverse vaso-occlusive events. Plasma exchange may also be considered. Finally, we discuss innovative pre-clinical research that suggests that natalizumab or dimethyl fumarate may ameliorate SCD symptoms while preventing MS relapses; human trials, however, are needed. CONCLUSION The co-occurrence of inflammatory disorders, in this case MS and SCD, requires providers to appropriately manage each condition with consideration of the other. Future studies may generate shared avenues for treatment.
Collapse
Affiliation(s)
- Kate Kerpen
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA
| | - Ayanna Baptiste
- NewYork-Presbyterian Brooklyn Methodist Hospital, Department of Hematology and Oncology, Brooklyn, NY, USA
| | - Anusha K Yeshokumar
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA.
| |
Collapse
|
22
|
Zhu X, Xi C, Ward A, Takezaki M, Shi H, Peterson KR, Pace BS. NRF2 mediates γ-globin gene regulation through epigenetic modifications in a β-YAC transgenic mouse model. Exp Biol Med (Maywood) 2020; 245:1308-1318. [PMID: 32715783 DOI: 10.1177/1535370220945305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT Sickle cell disease is an inherited hemoglobin disorder that affects over 100,000 people in the United States causing high morbidity and early mortality. Although new treatments were recently approved by the FDA, only one drug Hydroxyurea induces fetal hemoglobin expression to inhibit sickle hemoglobin polymerization in red blood cells. Our laboratory previously demonstrated the ability of the NRF2 activator, dimethyl fumarate to induce fetal hemoglobin in the sickle cell mouse model. In this study, we investigated molecular mechanisms of γ-globin gene activation by NRF2. We observed the ability of NRF2 to modulate chromatin structure in the human β-like globin gene locus of β-YAC transgenic mice during development. Furthermore, an NRF2/TET3 interaction regulates γ-globin gene DNA methylation. These findings provide potential new molecular targets for small molecule drug developed for treating sickle cell disease.
Collapse
Affiliation(s)
- Xingguo Zhu
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA.,Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Caixia Xi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Alexander Ward
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Mayuko Takezaki
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Betty S Pace
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA.,Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
23
|
Wagener FADTG, Pickkers P, Peterson SJ, Immenschuh S, Abraham NG. Targeting the Heme-Heme Oxygenase System to Prevent Severe Complications Following COVID-19 Infections. Antioxidants (Basel) 2020; 9:E540. [PMID: 32575554 PMCID: PMC7346191 DOI: 10.3390/antiox9060540] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is causing a pandemic resulting in high morbidity and mortality. COVID-19 patients suffering from acute respiratory distress syndrome (ARDS) are often critically ill and show lung injury and hemolysis. Heme is a prosthetic moiety crucial for the function of a wide variety of heme-proteins, including hemoglobin and cytochromes. However, injury-derived free heme promotes adhesion molecule expression, leukocyte recruitment, vascular permeabilization, platelet activation, complement activation, thrombosis, and fibrosis. Heme can be degraded by the anti-inflammatory enzyme heme oxygenase (HO) generating biliverdin/bilirubin, iron/ferritin, and carbon monoxide. We therefore postulate that free heme contributes to many of the inflammatory phenomena witnessed in critically ill COVID-19 patients, whilst induction of HO-1 or harnessing heme may provide protection. HO-activity not only degrades injurious heme, but its effector molecules possess also potent salutary anti-oxidative and anti-inflammatory properties. Until a vaccine against SARS-CoV-2 becomes available, we need to explore novel strategies to attenuate the pro-inflammatory, pro-thrombotic, and pro-fibrotic consequences of SARS-CoV-2 leading to morbidity and mortality. The heme-HO system represents an interesting target for novel "proof of concept" studies in the context of COVID-19.
Collapse
Affiliation(s)
- Frank A. D. T. G. Wagener
- Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525EX Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands;
| | | | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Nader G. Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
24
|
Abstract
Sickle cell disease (SCD) afflicts millions of people worldwide but is referred to as an orphan disease in the United States. Over the past several decades, there has been an increasing understanding of the pathophysiology of SCD and its complications. While most individuals with SCD in resource-rich countries survive into adulthood, the life expectancy of patients with SCD remains substantially shorter than for the general African-American population. SCD can be cured using hematopoietic stem cell transplantation and possibly gene therapy, but these treatment approaches are not available to most patients, the majority of whom reside in low- and middle-income countries. Until relatively recently, only one drug, hydroxyurea, was approved by the US Food and Drug Administration to ameliorate disease severity. Multiple other drugs (L-glutamine, crizanlizumab, and voxelotor) have recently been approved for the treatment of SCD, with several others at various stages of clinical testing. The availability of multiple agents to treat SCD raises questions related to the choice of appropriate drug therapy, combination of multiple agents, and affordability of recently approved products. The enthusiasm for new drug development provides opportunities to involve patients in low- and middle-income nations in the testing of potentially disease-modifying therapies and has the potential to contribute to capacity building in these environments. Demonstration that these agents, alone or in combination, can prevent or decrease end-organ damage would provide additional evidence for the role of drug therapies in improving outcomes in SCD.
Collapse
Affiliation(s)
- Parul Rai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kenneth I. Ataga
- Center for Sickle Cell Disease, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
25
|
Nrf2 activation in myeloid cells and endothelial cells differentially mitigates sickle cell disease pathology in mice. Blood Adv 2020; 3:1285-1297. [PMID: 31015205 DOI: 10.1182/bloodadvances.2018017574] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Sickle cell disease (SCD) is caused by a monogenic mutation of the β-globin gene and affects millions of people worldwide. SCD is associated with sustained hemolytic anemia, vasoocclusion, ischemia-reperfusion injury, oxidative tissue damage, inflammatory cell activation, and systemic endothelial dysfunction. The transcription factor Nrf2 coordinates the expression of a wide variety of genes encoding antioxidant, detoxification, and metabolic enzymes. Nrf2 participates in suppressing proinflammatory cytokines and organ protection in SCD. However, little is known regarding the mechanisms by which Nrf2 ameliorates SCD pathology or how some cells respond to Nrf2 stimuli to alleviate SCD pathology. Here, we asked whether monocytes/granulocytes and/or endothelial cells are particularly critical in alleviating the pathology of SCD. By targeting these cells with a Cre recombinase system, we generated SCD::Keap1F/F::LysM-Cre and Tie1-Cre mice with constitutive Nrf2 activation in monocytes/granulocytes and endothelial cells, respectively. Analyses of SCD::Keap1F/F::LysM-Cre and SCD::Keap1F/F::Tie1-Cre mice revealed significantly reduced inflammation, along with decreased white blood cell counts and lower Tnfα and Il1β expression in the lungs. Notably, SCD::Keap1F/F::LysM-Cre mice exhibited reduced heme distribution in the liver, consistent with a decrease in the damaged areas. Vascular function in SCD::Keap1F/F::Tie1-Cre mice was significantly improved, with a 50% decrease in vascular leakage and low expression of the adhesion molecules Vcam1 and P-selectin. Thus, Nrf2 activation in monocytes/granulocytes and endothelial cells contributes differentially and cooperatively to the improvement of SCD pathology.
Collapse
|
26
|
Rubio-Navarro A, Vázquez-Carballo C, Guerrero-Hue M, García-Caballero C, Herencia C, Gutiérrez E, Yuste C, Sevillano Á, Praga M, Egea J, Cannata P, Cortegano I, de Andrés B, Gaspar ML, Cadenas S, Michalska P, León R, Ortiz A, Egido J, Moreno JA. Nrf2 Plays a Protective Role Against Intravascular Hemolysis-Mediated Acute Kidney Injury. Front Pharmacol 2019; 10:740. [PMID: 31333462 PMCID: PMC6619398 DOI: 10.3389/fphar.2019.00740] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022] Open
Abstract
Massive intravascular hemolysis is associated with acute kidney injury (AKI). Nuclear factor erythroid-2-related factor 2 (Nrf2) plays a central role in the defense against oxidative stress by activating the expression of antioxidant proteins. We investigated the role of Nrf2 in intravascular hemolysis and whether Nrf2 activation protected against hemoglobin (Hb)/heme-mediated renal damage in vivo and in vitro. We observed renal Nrf2 activation in human hemolysis and in an experimental model of intravascular hemolysis promoted by phenylhydrazine intraperitoneal injection. In wild-type mice, Hb/heme released from intravascular hemolysis promoted AKI, resulting in decreased renal function, enhanced expression of tubular injury markers (KIM-1 and NGAL), oxidative and endoplasmic reticulum stress (ER), and cell death. These features were more severe in Nrf2-deficient mice, which showed decreased expression of Nrf2-related antioxidant enzymes, including heme oxygenase 1 (HO-1) and ferritin. Nrf2 activation with sulforaphane protected against Hb toxicity in mice and cultured tubular epithelial cells, ameliorating renal function and kidney injury and reducing cell stress and death. Nrf2 genotype or sulforaphane treatment did not influence the severity of hemolysis. In conclusion, our study identifies Nrf2 as a key molecule involved in protection against renal damage associated with hemolysis and opens novel therapeutic approaches to prevent renal damage in patients with severe hemolytic crisis. These findings provide new insights into novel aspects of Hb-mediated renal toxicity and may have important therapeutic implications for intravascular hemolysis-related diseases.
Collapse
Affiliation(s)
- Alfonso Rubio-Navarro
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Cristina Vázquez-Carballo
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Melania Guerrero-Hue
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Cristina García-Caballero
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Carmen Herencia
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | | | - Claudia Yuste
- Department of Nephrology, Hospital 12 de Octubre, Madrid, Spain
| | - Ángel Sevillano
- Department of Nephrology, Hospital 12 de Octubre, Madrid, Spain
| | - Manuel Praga
- Department of Nephrology, Hospital 12 de Octubre, Madrid, Spain
| | - Javier Egea
- Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain.,Hospital Santa Cristina, Madrid, Spain
| | - Pablo Cannata
- Pathology Department, Fundación Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Isabel Cortegano
- Immunology Department, Centro Nacional de Microbiologìa, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Belén de Andrés
- Immunology Department, Centro Nacional de Microbiologìa, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Luisa Gaspar
- Immunology Department, Centro Nacional de Microbiologìa, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Patrycja Michalska
- Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Rafael León
- Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Alberto Ortiz
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Juan Antonio Moreno
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
| |
Collapse
|
27
|
Nolfi-Donegan D, Pradhan-Sundd T, Pritchard KA, Hillery CA. Redox Signaling in Sickle Cell Disease. CURRENT OPINION IN PHYSIOLOGY 2019; 9:26-33. [PMID: 31240269 DOI: 10.1016/j.cophys.2019.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sickle cell disease (SCD) is characterized by chronic hemolysis and repeated episodes of vascular occlusion leading to progressive organ injury. SCD is characterized by unbalanced, simultaneous pro-oxidant and anti-oxidant processes at the molecular, cellular and tissue levels, with the majority of reactions tipped in favor of pro-oxidant pathways. In this brief review we discuss new findings regarding how oxidized hemin, hemolysis, mitochondrial dysfunction and the innate immune system generate oxidative stress while hemopexin, haptoglobin, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) may provide protection in human and murine SCD. We will also describe recent clinical trials showing beneficial effects of antioxidant therapy in SCD.
Collapse
Affiliation(s)
- Deirdre Nolfi-Donegan
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tirthadipa Pradhan-Sundd
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kirkwood A Pritchard
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Cheryl A Hillery
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
28
|
Telen MJ, Malik P, Vercellotti GM. Therapeutic strategies for sickle cell disease: towards a multi-agent approach. Nat Rev Drug Discov 2019; 18:139-158. [PMID: 30514970 PMCID: PMC6645400 DOI: 10.1038/s41573-018-0003-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For over 100 years, clinicians and scientists have been unravelling the consequences of the A to T substitution in the β-globin gene that produces haemoglobin S, which leads to the systemic manifestations of sickle cell disease (SCD), including vaso-occlusion, anaemia, haemolysis, organ injury and pain. However, despite growing understanding of the mechanisms of haemoglobin S polymerization and its effects on red blood cells, only two therapies for SCD - hydroxyurea and L-glutamine - are approved by the US Food and Drug Administration. Moreover, these treatment options do not fully address the manifestations of SCD, which arise from a complex network of interdependent pathophysiological processes. In this article, we review efforts to develop new drugs targeting these processes, including agents that reactivate fetal haemoglobin, anti-sickling agents, anti-adhesion agents, modulators of ischaemia-reperfusion and oxidative stress, agents that counteract free haemoglobin and haem, anti-inflammatory agents, anti-thrombotic agents and anti-platelet agents. We also discuss gene therapy, which holds promise of a cure, although its widespread application is currently limited by technical challenges and the expense of treatment. We thus propose that developing systems-oriented multi-agent strategies on the basis of SCD pathophysiology is needed to improve the quality of life and survival of people with SCD.
Collapse
Affiliation(s)
- Marilyn J Telen
- Division of Hematology, Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University, Durham, NC, USA.
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology and the Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
29
|
Zhu X, Oseghale AR, Nicole LH, Li B, Pace BS. Mechanisms of NRF2 activation to mediate fetal hemoglobin induction and protection against oxidative stress in sickle cell disease. Exp Biol Med (Maywood) 2019; 244:171-182. [PMID: 30674214 DOI: 10.1177/1535370219825859] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Sickle cell disease (SCD) is a group of inherited blood disorders caused by mutations in the human β-globin gene, leading to the synthesis of abnormal hemoglobin S, chronic hemolysis, and oxidative stress. Inhibition of hemoglobin S polymerization by fetal hemoglobin holds the greatest promise for treating SCD. The transcription factor NRF2, is the master regulator of the cellular oxidative stress response and activator of fetal hemoglobin expression. In animal models, various small chemical molecules activate NRF2 and ameliorate the pathophysiology of SCD. This review discusses the mechanisms of NRF2 regulation and therapeutic strategies of NRF2 activation to design the treatment options for individuals with SCD.
Collapse
Affiliation(s)
- Xingguo Zhu
- 1 Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Aluya R Oseghale
- 2 Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Lopez H Nicole
- 1 Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Biaoru Li
- 1 Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Betty S Pace
- 1 Department of Pediatrics, Augusta University, Augusta, GA 30912, USA.,2 Vascular Biology Center, Augusta University, Augusta, GA 30912, USA.,3 Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
30
|
Li B, Zhu X, Ward CM, Starlard-Davenport A, Takezaki M, Berry A, Ward A, Wilder C, Neunert C, Kutlar A, Pace BS. MIR-144-mediated NRF2 gene silencing inhibits fetal hemoglobin expression in sickle cell disease. Exp Hematol 2018; 70:85-96.e5. [PMID: 30412705 DOI: 10.1016/j.exphem.2018.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 12/30/2022]
Abstract
Inherited genetic modifiers and pharmacologic agents that enhance fetal hemoglobin (HbF) expression reverse the clinical severity of sickle cell disease (SCD). Recent efforts to develop novel strategies of HbF induction include discovery of molecular targets that regulate γ-globin gene transcription and translation. The purpose of this study was to perform genome-wide microRNA (miRNA) analysis to identify genes associated with HbF expression in patients with SCD. We isolated RNA from purified reticulocytes for microarray-based miRNA expression profiling. Using samples from patients with contrasting HbF levels, we observed an eightfold upregulation of miR-144-3p (miR-144) and miR-144-5p in the low-HbF group compared with those with high HbF. Additional analysis by reverse transcription quantitative polymerase chain reaction confirmed individual miR-144 expression levels of subjects in the two groups. Subsequent functional studies in normal and sickle erythroid progenitors showed NRF2 gene silencing by miR-144 and concomitant repression of γ-globin transcription; by contrast, treatment with miR-144 antagomir reversed its silencing effects in a dose-dependent manner. Because NRF2 regulates reactive oxygen species levels, additional studies investigated mechanisms of HbF regulation using a hemin-induced oxidative stress model. Treatment of KU812 cells with hemin produced an increase in NRF2 expression and HbF induction that reversed with miR-144 pretreatment. Chromatin immunoprecipitation assay confirmed NRF2 binding to the γ-globin antioxidant response element, which was inhibited by miR-144 mimic treatment. The genome-wide miRNA microarray and primary erythroid progenitor data support a miR-144/NRF2-mediated mechanism of γ-globin gene regulation in SCD.
Collapse
Affiliation(s)
- Biaoru Li
- Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Xingguo Zhu
- Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Christina M Ward
- Department of Biochemistry and Molecular Biology, Boston University, Boston, MA, USA
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Mayuko Takezaki
- Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Amber Berry
- Medical College of Georgia, Augusta, GA, USA
| | - Alexander Ward
- Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Caroline Wilder
- Department of Otolaryngology, Augusta University, Augusta, GA, USA
| | - Cindy Neunert
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Abdullah Kutlar
- Department of Medicine, Augusta University, Augusta, GA, USA
| | - Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA, USA; Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
31
|
Kasai S, Mimura J, Ozaki T, Itoh K. Emerging Regulatory Role of Nrf2 in Iron, Heme, and Hemoglobin Metabolism in Physiology and Disease. Front Vet Sci 2018; 5:242. [PMID: 30364139 PMCID: PMC6191506 DOI: 10.3389/fvets.2018.00242] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
Iron has played an important role in energy production since the beginning of life, as iron-catalyzed redox reactions are required for energy production. Oxygen, a highly efficient electron acceptor with high reduction potential, facilitates highly efficient energy production in eukaryotic cells. However, the increasing atmospheric oxygen concentration produces new threats to the organism, as oxygen reacts with iron and produces reactive oxygen species unless its levels are strictly regulated. As the size of multicellular organisms increases, these organisms must transport oxygen to the peripheral tissues and begin to employ red blood cells containing hemoglobin. This system is potentially a double-edged sword, as hemoglobin autoxidation occurs at a certain speed and releases free iron into the cytoplasm. Nrf2 belongs to the CNC transcription factor family, in which NF-E2p45 is the founding member. NF-E2p45 was first identified as a transcription factor that binds to the erythroid gene regulatory element NF-E2 located in the promoter region of the heme biosynthetic porphobilinogen deaminase gene. Human Nrf2 was also identified as a transcription factor that binds to the regulatory region of the β-globin gene. Despite these original findings, NF-E2p45 and Nrf2 knockout mice exhibit few erythroid phenotypes. Nrf2 regulates the expression of a wide range of antioxidant and detoxification enzymes. In this review article, we describe and discuss the roles of Nrf2 in various iron-mediated bioreactions and its possible coevolution with iron and oxygen.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Junsei Mimura
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Taku Ozaki
- Department of Biological Science, Iwate University, Morioka, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
32
|
Abstract
We have entered an era of exploding interest in therapeutics for sickle cell disease. The expansion in our understanding of sickle cell disease pathophysiology has enhanced the range of potential therapeutic targets. From induction of fetal hemoglobin to antiadhesion molecules, we are potentially on the cusp of making life-altering modifications for individuals with sickle cell disease. This disease population cannot afford to let the current momentum wane. Studies exploring combinations of therapies affecting multiple steps in the pathophysiology and exploring novel and clinically relevant outcomes are incumbent.
Collapse
|
33
|
Abstract
The primary β-globin gene mutation that causes sickle cell disease (SCD) has significant pathophysiological consequences that result in hemolytic events and the induction of the inflammatory processes that ultimately lead to vaso-occlusion. In addition to their role in the initiation of the acute painful vaso-occlusive episodes that are characteristic of SCD, inflammatory processes are also key components of many of the complications of the disease including autosplenectomy, acute chest syndrome, pulmonary hypertension, leg ulcers, nephropathy and stroke. We, herein, discuss the events that trigger inflammation in the disease, as well as the mechanisms, inflammatory molecules and cells that propagate these inflammatory processes. Given the central role that inflammation plays in SCD pathophysiology, many of the therapeutic approaches currently under pre-clinical and clinical development for the treatment of SCD endeavor to counter aspects or specific molecules of these inflammatory processes and it is possible that, in the future, we will see anti-inflammatory drugs being used either together with, or in place of, hydroxyurea in those SCD patients for whom hematopoietic stem cell transplants and evolving gene therapies are not a viable option.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas - UNICAMP, Cidade Universitária, Campinas-SP, Brazil
| | - John D Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
34
|
Li B, Zhu X, Hossain MA, Guy CR, Xu H, Bungert J, Pace BS. Fetal hemoglobin induction in sickle erythroid progenitors using a synthetic zinc finger DNA-binding domain. Haematologica 2018; 103:e384-e387. [PMID: 29622657 DOI: 10.3324/haematol.2017.185967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Biaoru Li
- Department of Pediatrics, Augusta University, GA
| | - Xingguo Zhu
- Department of Pediatrics, Augusta University, GA
| | - Mir A Hossain
- Department of Biochemistry and Molecular Biology, College of Medicine, Health Cancer Center, Center for Epigenetics, Genetics Institute, University of Florida, Gainesville, FL
| | - Cameron R Guy
- Department of Biochemistry and Molecular Biology, College of Medicine, Health Cancer Center, Center for Epigenetics, Genetics Institute, University of Florida, Gainesville, FL
| | - Hongyan Xu
- Department of Biostatistics and Epidemiology, Augusta University, GA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, Health Cancer Center, Center for Epigenetics, Genetics Institute, University of Florida, Gainesville, FL
| | - Betty S Pace
- Department of Pediatrics, Augusta University, GA .,Department of Biochemistry and Molecular Biology, Augusta University, GA, USA
| |
Collapse
|
35
|
Loss of NRF2 function exacerbates the pathophysiology of sickle cell disease in a transgenic mouse model. Blood 2017; 131:558-562. [PMID: 29255069 DOI: 10.1182/blood-2017-10-810531] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
The basic leucine zipper transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) plays a critical role in the cellular antioxidant response under oxidative stress conditions. In this study, we investigated the role of NRF2 in fetal hemoglobin expression and the pathophysiology of sickle cell disease (SCD) in a NRF2 knockout (SCD/NRF2-/-) transgenic mouse model. NRF2 loss impaired survival of SCD pups during gestation and in the first 2 months of life. Furthermore, fetal hemoglobin expression was inhibited during erythropoiesis in embryonic day 13.5 and embryonic day 18.5 fetal liver and adult spleen and bone marrow cells, respectively. Examination of peripheral red blood cells revealed an increase of reactive oxygen species (ROS) and sickling under hypoxic conditions. Loss of NRF2 function in SCD/NRF2-/- mice produced greater splenomegaly with red pulp expansion and obscured architecture. In addition, NRF2 knockout reduced the expression of its target antioxidant proteins, leading to increased levels of ROS, proinflammatory cytokines, and adhesion molecules in SCD mice. Genetic knockout of NRF2 demonstrates its role in developmentally regulated γ-globin gene expression and the ability to control oxidative stress and the phenotypic severity of SCD.
Collapse
|