1
|
Protty MB, Tyrrell VJ, Hajeyah AA, Morgan B, Costa D, Li Y, Choudhury A, Mitra R, Bosanquet D, Reed A, Denisenko IK, Nagata K, Shindou H, Cravatt BF, Poole AW, Shimizu T, Yousef Z, Collins PW, O'Donnell VB. Aspirin modulates generation of procoagulant phospholipids in cardiovascular disease, by regulating LPCAT3. J Lipid Res 2025; 66:100727. [PMID: 39674322 PMCID: PMC11754521 DOI: 10.1016/j.jlr.2024.100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024] Open
Abstract
Enzymatically oxygenated phospholipids (eoxPL) from lipoxygenases (LOX) or cyclooxygenase (COX) are prothrombotic. Their generation in arterial disease, and their modulation by cardiovascular therapies is unknown. Furthermore, the Lands cycle acyl-transferases that catalyze their formation are unidentified. eoxPL were measured in platelets and leukocytes from an atherosclerotic cardiovascular disease (ASCVD) cohort and retrieved human arterial thrombi from three anatomical sites. The impact of age, gender, and aspirin was characterized in platelets from healthy subjects administered low-dose aspirin. The role of lysophosphatidylcholine acyltransferase 3 (LPCAT3) in eoxPL biosynthesis was tested using an inhibitor and a cell-free assay. Platelets from ASCVD patients generated lower levels of COX-derived eoxPL but elevated 12-LOX-diacyl forms, than platelets from healthy controls. This associated with aspirin and was recapitulated in healthy subjects by aspirin supplementation. P2Y12 inhibition had no impact on eoxPL. LPCAT3 inhibition selectively prevented 12-LOX-derived diacyl-eoxPL generation. LPCAT3 activity was not directly altered by aspirin. P2Y12 inhibition or aspirin had little impact on eoxPL in leukocytes. Complex aspirin-dependent gender and seasonal effects on platelet eoxPL generation were seen in healthy subjects. Limb or coronary (ST-elevation myocardial infarction, STEMI) thrombi displayed a platelet eoxPL signature while carotid thrombi had a white cell profile. EoxPL are altered in ASCVD by a commonly used cardiovascular therapy, and LPCAT3 was identified as the acyltransferase generating aspirin-sensitive 12-LOX diacyl forms. These changes to the phospholipid composition of blood cells in humans at risk of thrombosis may be clinically significant where the procoagulant membrane plays a central role in driving elevated thrombotic risk.
Collapse
Affiliation(s)
- Majd B Protty
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.
| | | | - Ali A Hajeyah
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Bethan Morgan
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Daniela Costa
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Yong Li
- Bristol Platelet Group, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Anirban Choudhury
- Morriston Cardiac Centre, Swansea Bay University Health Board, Swansea, UK
| | - Rito Mitra
- Department of Cardiology, University Hospital of Wales, Cardiff, UK
| | - David Bosanquet
- Department of Vascular Surgery, Aneurin Bevan University Health Board, Cwmbran, UK
| | - Alex Reed
- Department of Chemistry, The Scripps Research Institute, San Diego, CA
| | | | | | - Hideo Shindou
- National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Alastair W Poole
- Bristol Platelet Group, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Takao Shimizu
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Zaheer Yousef
- Department of Cardiology, University Hospital of Wales, Cardiff, UK
| | - Peter W Collins
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | | |
Collapse
|
2
|
Markova I, Hüttl M, Gayova N, Miklankova D, Cerna K, Kavanova M, Skaroupkova P, Cacanyiova S, Malinska H. Visceral Adipose Tissue Inflammation and Vascular Complications in a Rat Model with Severe Dyslipidemia: Sex Differences and PAI-1 Tissue Involvement. Biomolecules 2024; 15:19. [PMID: 39858414 PMCID: PMC11763299 DOI: 10.3390/biom15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
We investigated the sex-dependent effects of inflammatory responses in visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT), as well as hematological status, in relation to cardiovascular disorders associated with prediabetes. Using male and female hereditary hypertriglyceridemic (HHTg) rats-a nonobese prediabetic model featuring dyslipidemia, hepatic steatosis, and insulin resistance-we found that HHTg females exhibited more pronounced hypertriglyceridemia than males, while HHTg males had higher non-fasting glucose levels. Additionally, HHTg females had higher platelet counts, larger platelet volumes, and lower antithrombin inhibitory activity. Regarding low-grade chronic inflammation, HHTg males exhibited increased serum leptin and leukocyte levels, while females had increased serum interleukin-6 (IL-6). Both sexes had increased circulating plasminogen activator inhibitor-1 (PAI-1), higher PAI-1 gene expression in VAT and PVAT, and elevated intercellular adhesion molecule-1 (ICAM-1) gene expression in the aorta, contributing to endothelial dysfunction in the HHTg strain. However, HHTg females had lower tumor necrosis factor alpha (TNFα) gene expression in the aorta. Severe dyslipidemia in this prediabetic model was associated with hypercoagulation and low-grade chronic inflammation. The increase in PAI-1 expression in both VAT and PVAT seems to indicate a link between inflammation and vascular dysfunction. Despite the more pronounced dyslipidemia and procoagulation status in females, their milder inflammatory response may reflect an association between reduced cardiovascular damage and prediabetes.
Collapse
Affiliation(s)
- Irena Markova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.M.); (M.H.); (N.G.); (D.M.); (K.C.); (P.S.)
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.M.); (M.H.); (N.G.); (D.M.); (K.C.); (P.S.)
| | - Natalie Gayova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.M.); (M.H.); (N.G.); (D.M.); (K.C.); (P.S.)
| | - Denisa Miklankova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.M.); (M.H.); (N.G.); (D.M.); (K.C.); (P.S.)
| | - Kristyna Cerna
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.M.); (M.H.); (N.G.); (D.M.); (K.C.); (P.S.)
| | - Martina Kavanova
- Department of Laboratory Methods, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic;
| | - Petra Skaroupkova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.M.); (M.H.); (N.G.); (D.M.); (K.C.); (P.S.)
| | - Sona Cacanyiova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia;
| | - Hana Malinska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.M.); (M.H.); (N.G.); (D.M.); (K.C.); (P.S.)
| |
Collapse
|
3
|
Nowak K, Zabczyk M, Natorska J, Zalewski J, Undas A. Elevated plasma protein carbonylation increases the risk of ischemic cerebrovascular events in patients with atrial fibrillation: association with a prothrombotic state. J Thromb Thrombolysis 2024; 57:1206-1215. [PMID: 38965130 PMCID: PMC11496363 DOI: 10.1007/s11239-024-03003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Plasma protein carbonylation that reflects oxidative stress has been demonstrated to be associated with the prothrombotic fibrin clot phenotype. However, the role of protein carbonyls (PC) in predicting ischemic stroke in atrial fibrillation (AF) is largely unknown. This study aimed to investigate whether PC increase the risk of stroke in anticoagulated AF patients during follow-up. METHODS In 243 AF patients on anticoagulation (median age 69 years; median CHA2DS2-VASc of 4), we measured plasma PC using the assay by Becatti, along with plasma clot permeability (Ks), clot lysis time (CLT), thrombin generation, and fibrinolytic proteins, including plasminogen activator inhibitor type 1 (PAI-1) and thrombin activatable fibrinolysis inhibitor (TAFI). Ischemic stroke, major bleeding, and mortality were recorded during a median follow-up of 53 months. RESULTS Plasma PC levels (median, 3.16 [2.54-3.99] nM/mg protein) at baseline showed positive associations with age (P < 0.001), CHA2DS2-VASc (P = 0.003), and N-terminal B-type natriuretic peptide (P = 0.001), but not with type of AF or comorbidities except for heart failure (P = 0.007). PC levels were correlated with CLT (r = 0.342, P < 0.001), endogenous thrombin potential (r = 0.217, P = 0.001) and weakly with Ks (r = -0.145, P = 0.024), but not with fibrinogen, PAI-1, or TAFI levels. Stroke was recorded in 20 patients (1.9%/year), who had at baseline 36% higher PC levels (P < 0.001). Elevated PC (P = 0.003) at baseline were independently associated with stroke risk. CONCLUSION Our findings suggest that in patients with AF enhanced protein carbonylation is associated with increased "residual" risk of stroke despite anticoagulation, which is at least in part due to unfavorably altered fibrin clot phenotype.
Collapse
Affiliation(s)
- Karol Nowak
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80 St, 31-202, Kraków, Poland
- Department of Coronary Artery Disease and Heart Failure, John Paul II Hospital, Pradnicka 80 St, 31-202, Kraków, Poland
| | - Michal Zabczyk
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80 St, 31-202, Kraków, Poland
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Pradnicka 80 St, 31-202, Kraków, Poland
| | - Joanna Natorska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80 St, 31-202, Kraków, Poland
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Pradnicka 80 St, 31-202, Kraków, Poland
| | - Jaroslaw Zalewski
- Department of Coronary Artery Disease and Heart Failure, John Paul II Hospital, Pradnicka 80 St, 31-202, Kraków, Poland
- Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80 St, 31-202, Kraków, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80 St, 31-202, Kraków, Poland.
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Pradnicka 80 St, 31-202, Kraków, Poland.
| |
Collapse
|
4
|
Santos M, Melo T, Maurício T, Ferreira H, Domingues P, Domingues R. The non-enzymatic oxidation of phosphatidylethanolamine and phosphatidylserine and their intriguing roles in inflammation dynamics and diseases. FEBS Lett 2024; 598:2174-2189. [PMID: 39097985 DOI: 10.1002/1873-3468.14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
Phosphatidylethanolamine (PE) and phosphatidylserine (PS), along with phosphatidylcholine (PC), are key phospholipids (PL) in cell membranes and lipoproteins, prone to oxidative modifications. Their oxidized forms, OxPE and OxPS, play significant roles in inflammation and immune response. This review explores their structural oxidative changes under non-enzymatic conditions and their roles in physiological and pathological contexts, influencing inflammation, and immunity. Specific oxidations of PE and PS significantly alter their physicochemical properties, leading to enhanced biological functions, reduced activity, or inactivation. OxPE may show pro-inflammatory actions, similar to well-documented OxPC, while the OxPS pro-inflammatory effects are less noted. However, OxPS and OxPE have also shown an antagonistic effect against lipopolysaccharides (LPS), suggesting a protective role against exacerbated immune responses, similar to OxPC. Further research is needed to deepen our understanding of these less-studied OxPL classes. The role of OxPE and OxPS in disease pathogenesis remains largely unexplored, with limited studies linking them to Alzheimer's disease, diabetes, rheumatoid arthritis, traumatic brain injury, and skin inflammation. These findings highlight the potential of OxPE and OxPS as biomarkers for disease diagnosis, monitoring, and therapeutic targeting.
Collapse
Affiliation(s)
- Matilde Santos
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tânia Melo
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tatiana Maurício
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Helena Ferreira
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Pedro Domingues
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Rosário Domingues
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| |
Collapse
|
5
|
Bozbas E, Zhou R, Soyama S, Allen-Redpath K, Mitchell JL, Fisk HL, Calder PC, Jones C, Gibbins JM, Fischer R, Hester S, Yaqoob P. Dietary n-3 polyunsaturated fatty acids alter the number, fatty acid profile and coagulatory activity of circulating and platelet-derived extracellular vesicles: a randomized, controlled crossover trial. Am J Clin Nutr 2024; 119:1175-1186. [PMID: 38484976 PMCID: PMC11130656 DOI: 10.1016/j.ajcnut.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are proposed to play a role in the development of cardiovascular diseases (CVDs) and are considered emerging markers of CVDs. n-3 PUFAs are abundant in oily fish and fish oil and are reported to reduce CVD risk, but there has been little research to date examining the effects of n-3 PUFAs on the generation and function of EVs. OBJECTIVES We aimed to investigate the effects of fish oil supplementation on the number, generation, and function of EVs in subjects with moderate risk of CVDs. METHODS A total of 40 participants with moderate risk of CVDs were supplemented with capsules containing either fish oil (1.9 g/d n-3 PUFAs) or control oil (high-oleic safflower oil) for 12 wk in a randomized, double-blind, placebo-controlled crossover intervention study. The effects of fish oil supplementation on conventional CVD and thrombogenic risk markers were measured, along with the number and fatty acid composition of circulating and platelet-derived EVs (PDEVs). PDEV proteome profiles were evaluated, and their impact on coagulation was assessed using assays including fibrin clot formation, thrombin generation, fibrinolysis, and ex vivo thrombus formation. RESULTS n-3 PUFAs decreased the numbers of circulating EVs by 27%, doubled their n-3 PUFA content, and reduced their capacity to support thrombin generation by >20% in subjects at moderate risk of CVDs. EVs derived from n-3 PUFA-enriched platelets in vitro also resulted in lower thrombin generation, but did not alter thrombus formation in a whole blood ex vivo assay. CONCLUSIONS Dietary n-3 PUFAs alter the number, composition, and function of EVs, reducing their coagulatory activity. This study provides clear evidence that EVs support thrombin generation and that this EV-dependent thrombin generation is reduced by n-3 PUFAs, which has implications for prevention and treatment of thrombosis. CLINICAL TRIAL REGISTRY This trial was registered at clinicaltrials.gov as NCT03203512.
Collapse
Affiliation(s)
- Esra Bozbas
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Ruihan Zhou
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Shin Soyama
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Keith Allen-Redpath
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Joanne L Mitchell
- Institute for Cardiovascular and Metabolic Research and School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Helena L Fisk
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Chris Jones
- Institute for Cardiovascular and Metabolic Research and School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research and School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Svenja Hester
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Parveen Yaqoob
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom.
| |
Collapse
|
6
|
Zhang Z, Rodriguez M, Zheng Z. Clot or Not? Reviewing the Reciprocal Regulation Between Lipids and Blood Clotting. Arterioscler Thromb Vasc Biol 2024; 44:533-544. [PMID: 38235555 PMCID: PMC10922732 DOI: 10.1161/atvbaha.123.318286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Both hyperlipidemia and thrombosis contribute to the risks of atherosclerotic cardiovascular diseases, which are the leading cause of death and reduced quality of life in survivors worldwide. The accumulation of lipid-rich plaques on arterial walls eventually leads to the rupture or erosion of vulnerable lesions, triggering excessive blood clotting and leading to adverse thrombotic events. Lipoproteins are highly dynamic particles that circulate in blood, carry insoluble lipids, and are associated with proteins, many of which are involved in blood clotting. A growing body of evidence suggests a reciprocal regulatory relationship between blood clotting and lipid metabolism. In this review article, we summarize the observations that lipoproteins and lipids impact the hemostatic system, and the clotting-related proteins influence lipid metabolism. We also highlight the gaps that need to be filled in this area of research.
Collapse
Affiliation(s)
- Ziyu Zhang
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Maya Rodriguez
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin 53226, USA
- College of Arts and Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA
| | - Ze Zheng
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
7
|
Fu L, Liu L, Zhang L, Hu Y, Zeng Y, Ran Q, Zhou Y, Zhou P, Chen J, Loor JJ, Wang G, Dong X. Inoculation of Newborn Lambs with Ruminal Solids Derived from Adult Goats Reprograms the Development of Gut Microbiota and Serum Metabolome and Favors Growth Performance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:983-998. [PMID: 38189273 PMCID: PMC10797616 DOI: 10.1021/acs.jafc.3c04632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Microbial transplantation in early life was a strategy to optimize the health and performance of livestock animals. This study aimed to investigate the effect of active ruminal solids microorganism supplementation on newborn lamb gut microbiota and serum metabolism. Twenty-four Youzhou dark newborn lambs were randomly divided into three groups: (1) newborn lambs fed with sterilized goat milk inoculated with sterilized normal saline (CON), supernatant from ruminal solids (SRS), or autoclaved supernatant from ruminal solids (ASRS). Results showed that SRS increased gut bacterial richness and community, downregulating the Firmicutes/Bacteroidetes ratio, and increased the abundance of some probiotics (Bacteroidetes, Spirochaetota, and Fibrobacterota), while reducing the abundance of Fusobacteriota, compared to the CON group. SRS also improved the plasma metabolic function, such as arachidonic acid metabolism, primary bile acid biosynthesis, and tryptophan metabolism and then actively promoted the levels of ALP and HLD. Our study indicated that inoculation with active ruminal solids significantly affected the intestinal microbial communities and metabolic characteristics, and these changes can improve the growing health of the newborn lamb. These findings provided an experimental and theoretical basis for the application of ruminal solid-attached microorganisms in the nutritional management of lambs reared for human consumption.
Collapse
Affiliation(s)
- Lin Fu
- Chongqing Academy
of Animal Sciences, Chongqing 402460, China
| | - Li Liu
- Chongqing Chemical Industry Vocational College, Chongqing 401228, China
- Chongqing Industry Polytechnic College, Chongqing 401127, China
| | - Li Zhang
- Chongqing Academy
of Animal Sciences, Chongqing 402460, China
| | - Yonghui Hu
- Wushan Animal Husbandry
Technology Promotion Station, Chongqing 404700, China
| | - Yu Zeng
- Chongqing Academy
of Animal Sciences, Chongqing 402460, China
| | - Qifan Ran
- Chongqing Academy
of Animal Sciences, Chongqing 402460, China
| | - Yan Zhou
- Chongqing Academy
of Animal Sciences, Chongqing 402460, China
| | - Peng Zhou
- Chongqing Academy
of Animal Sciences, Chongqing 402460, China
| | - Juncai Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Juan J. Loor
- Mammalian
NutriPhysioGenomics, Department of Animal Sciences and Division of
Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Gaofu Wang
- Chongqing Academy
of Animal Sciences, Chongqing 402460, China
| | - Xianwen Dong
- Chongqing Academy
of Animal Sciences, Chongqing 402460, China
| |
Collapse
|
8
|
Godzien J, Lopez-Lopez A, Sieminska J, Jablonowski K, Pietrowska K, Kisluk J, Mojsak M, Dzieciol-Anikiej Z, Barbas C, Reszec J, Kozlowski M, Moniuszko M, Kretowski A, Niklinski J, Ciborowski M. Exploration of oxidized phosphocholine profile in non-small-cell lung cancer. Front Mol Biosci 2024; 10:1279645. [PMID: 38288337 PMCID: PMC10824250 DOI: 10.3389/fmolb.2023.1279645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction: Lung cancer is one of the most frequently studied types of cancer and represents the most common and lethal neoplasm. Our previous research on non-small cell lung cancer (NSCLC) has revealed deep lipid profile reprogramming and redox status disruption in cancer patients. Lung cell membranes are rich in phospholipids that are susceptible to oxidation, leading to the formation of bioactive oxidized phosphatidylcholines (oxPCs). Persistent and elevated levels of oxPCs have been shown to induce chronic inflammation, leading to detrimental effects. However, recent reports suggest that certain oxPCs possess anti-inflammatory, pro-survival, and endothelial barrier-protective properties. Thus, we aimed to measure the levels of oxPCs in NSCLC patients and investigate their potential role in lung cancer. Methods: To explore the oxPCs profiles in lung cancer, we performed in-depth, multi-level metabolomic analyses of nearly 350 plasma and lung tissue samples from 200 patients with NSCLC, including adenocarcinoma (ADC) and squamous cell carcinoma (SCC), the two most prevalent NSCLC subtypes and COPD patients as a control group. First, we performed oxPC profiling of plasma samples. Second, we analyzed tumor and non-cancerous lung tissues collected during the surgical removal of NSCLC tumors. Because of tumor tissue heterogeneity, subsequent analyses covered the surrounding healthy tissue and peripheral and central tumors. To assess whether the observed phenotypic changes in the patients were associated with measured oxPC levels, metabolomics data were augmented with data from medical records. Results: We observed a predominance of long-chain oxPCs in plasma samples and of short-chain oxPCs in tissue samples from patients with NSCLC. The highest concentration of oxPCs was observed in the central tumor region. ADC patients showed higher levels of oxPCs compared to the control group, than patients with SCC. Conclusion: The detrimental effects associated with the accumulation of short-chain oxPCs suggest that these molecules may have greater therapeutic utility than diagnostic value, especially given that elevated oxPC levels are a hallmark of multiple types of cancer.
Collapse
Affiliation(s)
- Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Angeles Lopez-Lopez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Julia Sieminska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Kacper Jablonowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pietrowska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kisluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata Mojsak
- Independent Laboratory of Molecular Imaging, Medical University of Bialystok, Bialystok, Poland
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Miroslaw Kozlowski
- Department of Thoracic Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
Cui FP, Miao Y, Liu AX, Deng YL, Liu C, Zhang M, Zeng JY, Li YF, Liu HY, Liu CJ, Zeng Q. Associations of exposure to disinfection by-products with blood coagulation parameters among women: Results from the Tongji reproductive and environmental (TREE) study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115741. [PMID: 38029584 DOI: 10.1016/j.ecoenv.2023.115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Experimental studies have shown that disinfection byproducts (DBPs) induce coagulotoxicity, but human evidence is scarce. OBJECTIVE This study aimed to explore the relationships of DBP exposures with blood coagulation parameters. METHODS Among 858 women from the Tongji Reproductive and Environmental (TREE) study, urinary dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were detected as internal biomarkers of DBP exposures. We measured activated partial thromboplastin time (APTT), fibrinogen (Fbg), international normalized ratio (INR), prothrombin time (PT), and thrombin time (TT) as blood coagulation parameters. Multivariable linear regression models were utilized to estimate the relationships between urinary DCAA and TCAA and blood coagulation parameters. The effect modifications by demographic and lifestyle characteristics were further explored. RESULTS Elevated tertiles of urinary DCAA concentrations were associated with increased PT and INR (11.29%, 95% CI: 1.66%, 20.92% and 0.99%, 95% CI: 0.08%, 1.90% for the third vs. first tertile, respectively; both P for trends < 0.05). Stratification analysis showed that the positive associations were only observed among younger (< 30 years), leaner (body mass index < 24.0 kg/m2), and non-passive smoking women. Moreover, elevated tertiles of urinary TCAA concentrations in positive associations with PT and INR were observed among younger women (17.89%, 95% CI: 2.50%, 33.29% and 1.82%, 95% CI: 0.34%, 3.30% for the third vs. first tertile, respectively; both P for trends < 0.05) but not among older women (both P for interactions < 0.05). CONCLUSION Higher levels of urinary DCAA and TCAA are associated with prolonged clotting time among women.
Collapse
Affiliation(s)
- Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - A-Xue Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hai-Yi Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chang-Jiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
10
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Role of Omega-6 Fatty Acid Metabolism in Cardiac Surgery Postoperative Bleeding Risk. Crit Care Explor 2022; 4:e0763. [PMID: 36248314 PMCID: PMC9555905 DOI: 10.1097/cce.0000000000000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cardiac surgery is frequently associated with significant postoperative bleeding. Platelet-dysfunction is the main cardiopulmonary bypass (CPB)-induced hemostatic defect. Not only the number of platelets decreases, but also the remaining are functionally impaired. Although lipid metabolism is crucial for platelet function, little is known regarding platelet metabolic changes associated with CPB-dysfunction. Our aim is to explore possible contribution of metabolic perturbations for platelet dysfunction after cardiac surgery. DESIGN Prospective cohort study. SETTING Tertiary academic cardiothoracic-surgery ICU. PATIENTS Thirty-three patients submitted to elective surgical aortic valve replacement. INTERVENTIONS Samples from patients were collected at three time points (preoperative, 6- and 24-hr postoperative). Untargeted metabolic analysis using high-performance liquid chromatography-tandem mass spectrometry was performed to compare patients with significant postoperative bleeding with patients without hemorrhage. Principal component analyses, Wilcoxon matched-pairs signed-rank tests, adjusted to FDR, and pairwise comparison were used to identify pathways of interest. Enrichment and pathway metabolomic complemented the analyses. MEASUREMENTS AND MAIN RESULTS We identified a platelet-related signature based on an overrepresentation of changes in known fatty acid metabolism pathways involved in platelet function. We observed that arachidonic acid (AA) levels and other metabolites from the pathway were reduced at 6 and 24 hours, independently from antiagreggation therapy and platelet count. Concentrations of preoperative AA were inversely correlated with postoperative chest tube blood loss but were not correlated with platelet count in the preoperative, at 6 or at 24 hours. Patients with significant postoperative blood-loss had considerably lower values of AA and higher transfusion rates. Values of postoperative interleukin-6 were strongly correlated with AA variability. CONCLUSIONS AND RELEVANCE Our observations suggest that an inflammatory-related perturbation of AA metabolism is a signature of cardiac surgery with CPB and that preoperative levels of AA may be more relevant than platelet count to anticipate and prevent postoperative blood loss in patients submitted to cardiac surgery with CPB.
Collapse
|
12
|
Upchurch CM, Yeudall S, Pavelec CM, Merk D, Greulich J, Manjegowda M, Raghavan SS, Bochkis IM, Scott MM, Perez-Reyes E, Leitinger N. Targeting oxidized phospholipids by AAV-based gene therapy in mice with established hepatic steatosis prevents progression to fibrosis. SCIENCE ADVANCES 2022; 8:eabn0050. [PMID: 35857497 PMCID: PMC9286512 DOI: 10.1126/sciadv.abn0050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/03/2022] [Indexed: 05/06/2023]
Abstract
Oxidized phosphatidylcholines (OxPCs) are implicated in chronic tissue damage. Hyperlipidemic LDL-R--deficient mice transgenic for an OxPC-recognizing IgM fragment (scFv-E06) are protected against nonalcoholic fatty liver disease (NAFLD). To examine the effect of OxPC elimination at different stages of NAFLD progression, we used cre-dependent, adeno-associated virus serotype 8-mediated expression of the single-chain variable fragment of E06 (AAV8-scFv-E06) in hepatocytes of albumin-cre mice. AAV8-induced expression of scFv-E06 at the start of FPC diet protected mice from developing hepatic steatosis. Independently, expression of scFv-E06 in mice with established steatosis prevented the progression to hepatic fibrosis. Mass spectrometry-based oxophospho-lipidomics identified individual OxPC species that were reduced by scFv-E06 expression. In vitro, identified OxPC species dysregulated mitochondrial metabolism and gene expression in hepatocytes and hepatic stellate cells. We demonstrate that individual OxPC species independently affect disease initiation and progression from hepatic steatosis to steatohepatitis, and that AAV-mediated expression of scFv-E06 is an effective therapeutic intervention.
Collapse
Affiliation(s)
- Clint M. Upchurch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Scott Yeudall
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Caitlin M. Pavelec
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Dennis Merk
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jan Greulich
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Mohan Manjegowda
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Shyam S. Raghavan
- Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA
| | - Irina M. Bochkis
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Michael M. Scott
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| |
Collapse
|
13
|
Abstract
Oxidized phospholipids that result from tissue injury operate as immunomodulatory signals that, depending on the context, lead to proinflammatory or anti-inflammatory responses. In this Perspective, we posit that cells of the innate immune system use the presence of oxidized lipids as a generic indicator of threat to the host. Similarly to how pathogen-associated molecular patterns represent general indicators of microbial encounters, oxidized lipids may be the most common molecular feature of an injured tissue. Therefore, microbial detection in the absence of oxidized lipids may indicate encounters with avirulent microorganisms. By contrast, microbial detection and detection of oxidized lipids would indicate encounters with replicating microorganisms, thereby inducing a heightened inflammatory and defensive response. Here we review recent studies supporting this idea. We focus on the biology of oxidized phosphocholines, which have emerged as context-dependent regulators of immunity. We highlight emerging functions of oxidized phosphocholines in dendritic cells and macrophages that drive unique inflammasome and migratory activities and hypermetabolic states. We describe how these lipids hyperactivate dendritic cells to stimulate antitumour CD8+ T cell immunity and discuss the potential implications of the newly described activities of oxidized phosphocholines in host defence.
Collapse
Affiliation(s)
- Dania Zhivaki
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Gong Y, Ni X, Jin C, Li X, Wang Y, Wang O, Li M, Xing X, Wu Z, Jiang Y, Xia W. Serum Metabolomics Reveals Dysregulation and Diagnostic Potential of Oxylipins in Tumor-induced Osteomalacia. J Clin Endocrinol Metab 2022; 107:1383-1391. [PMID: 34904633 DOI: 10.1210/clinem/dgab885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Excessive production of fibroblast growth factor 23 (FGF23) by a tumor is considered the main pathogenesis in tumor-induced osteomalacia (TIO). Despite its importance to comprehensive understanding of pathogenesis and diagnosis, the regulation of systemic metabolism in TIO remains unclear. OBJECTIVE We aimed to systematically characterize the metabolome alteration associated with TIO. METHODS By means of liquid chromatography-tandem mass spectrometry-based metabolomics, we analyzed the metabolic profile from 96 serum samples (32 from TIO patients at initial diagnosis, pairwise samples after tumor resection, and 32 matched healthy control (HC) subjects). In order to screen and evaluate potential biomarkers, statistical analyses, pathway enrichment and receiver operating characteristic (ROC) were performed. RESULTS Metabolomic profiling revealed distinct alterations between TIO and HC cohorts. Differential metabolites were screened and conducted to functional clustering and annotation. A significantly enriched pathway was found involving arachidonic acid metabolism. A combination of 5 oxylipins, 4-HDoHE, leukotriene B4, 5-HETE, 17-HETE, and 9,10,13-TriHOME, demonstrated a high sensitivity and specificity panel for TIO prediction screened by random forest algorithm (AUC = 0.951; 95% CI, 0.827-1). Supported vector machine modeling and partial least squares modeling were conducted to validate the predictive capabilities of the diagnostic panel. CONCLUSION Metabolite profiling of TIO showed significant alterations compared with HC. A high-sensitivity and high-specificity panel with 5 oxylipins was tested as diagnostic predictor. For the first time, we provide the global profile of metabolomes and identify potential diagnostic biomarkers of TIO. The present work may offer novel insights into the pathogenesis of TIO.
Collapse
Affiliation(s)
- Yiyi Gong
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Medical Research Center, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaolin Ni
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chenxi Jin
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiang Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yujie Wang
- Medical Research Center, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhihong Wu
- Medical Research Center, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
15
|
Protty MB, Jenkins PV, Collins PW, O'Donnell VB. The role of procoagulant phospholipids on the surface of circulating blood cells in thrombosis and haemostasis. Open Biol 2022; 12:210318. [PMID: 35440201 PMCID: PMC9019515 DOI: 10.1098/rsob.210318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/21/2022] [Indexed: 01/09/2023] Open
Abstract
Phospholipids (PLs) are found in all cell types and are required for structural support and cell activation signalling pathways. In resting cells, PLs are asymmetrically distributed throughout the plasma membrane with native procoagulant aminophospholipids (aPLs) being actively maintained in the inner leaflet of the membrane. Upon platelet activation, aPLs rapidly externalize to the outer leaflet and are essential for supporting the coagulation cascade by providing binding sites for factors in the cell-based model. More recent work has uncovered a role for enzymatically oxidized PLs (eoxPLs) in facilitating coagulation, working in concert with native aPLs. Despite this, the role of aPLs and eoxPLs in thrombo-inflammatory conditions, such as arterial and venous thrombosis, has not been fully elucidated. In this review, we describe the biochemical structures, distribution and regulation of aPL externalization and summarize the literature on eoxPL generation in circulating blood cells. We focus on the currently understood role of these lipids in mediating coagulation reactions in vitro, in vivo and in human thrombotic disease. Finally, we highlight gaps in our understanding in how these lipids vary in health and disease, which may place them as future therapeutic targets for the management of thrombo-inflammatory conditions.
Collapse
Affiliation(s)
- Majd B. Protty
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - P. Vince Jenkins
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Peter W. Collins
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | | |
Collapse
|
16
|
Rahman MM, Islam F, Afsana Mim S, Khan MS, Islam MR, Haque MA, Mitra S, Emran TB, Rauf A. Multifunctional Therapeutic Approach of Nanomedicines against Inflammation in Cancer and Aging. JOURNAL OF NANOMATERIALS 2022; 2022:1-19. [DOI: 10.1155/2022/4217529] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Cancer is a fatal disorder that affects people across the globe, yet existing therapeutics are ineffective. The development of submicrometer transport for optimizing the biodistribution of systemically provided medications is the focus of nanomedicine. Nanoparticle- (NP-) based treatments may enable the development of novel therapeutic approaches to combat this deadly disorder. In multifunctional, multimodal imaging, and drug delivery carriers, NPs generally play a major role. They have emerged as potential strategies for the invention of innovative therapeutic procedures in the last decade. The exponential growth of nanotechnologies in recent years has increased public awareness of the application of these innovative therapeutic approaches. Many tumor-targeted nanomedicines have been studied in cancer therapy, and there is clear evidence for a significant improvement in the therapeutic index of antineoplastic drugs. Age-related factors such as metabolic and physiological alterations in old age and inadequate animal models are currently understudied in nanomedicine and pharmacology. This review highlighted the most important targeting approaches, as well as public awareness, therapeutic advancements, and future prospects in age-related metabolic variations, and tumor-targeted nanomedicine studies.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sadia Afsana Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Shajib Khan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Anamul Haque
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
17
|
O'Donnell VB. New appreciation for an old pathway: the Lands Cycle moves into new arenas in health and disease. Biochem Soc Trans 2022; 50:1-11. [PMID: 35225335 PMCID: PMC9022965 DOI: 10.1042/bst20210579] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
The Lands Pathway is a fundamental biochemical process named for its discovery by William EM Lands and revealed in a series of seminal papers published in the Journal of Biological Chemistry between 1958-65. It describes the selective placement in phospholipids of acyl chains, by phospholipid acyltransferases. This pathway has formed a core component of our knowledge of phospholipid and also diglyceride metabolism in mammalian tissues for over 60 years now. Our understanding of how the Lands pathways are enzymatically mediated via large families of related gene products that display both substrate and tissue specificity has grown exponentially since. Recent studies building on this are starting to reveal key roles for the Lands pathway in specific scenarios, in particular inflammation, immunity and inflammation. This review will cover the Lands cycle from historical perspectives first, then present new information on how this important cycle forms a central regulatory node connecting fatty acyl and phospholipid metabolism and how its altered regulation may present new opportunities for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Valerie B. O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4SN, U.K
| |
Collapse
|
18
|
Contursi A, Schiavone S, Dovizio M, Hinz C, Fullone R, Tacconelli S, Tyrrell VJ, Grande R, Lanuti P, Marchisio M, Zucchelli M, Ballerini P, Lanas A, O'Donnell VB, Patrignani P. Platelets induce free and phospholipid-esterified 12-hydroxyeicosatetraenoic acid generation in colon cancer cells by delivering 12-lipoxygenase. J Lipid Res 2021; 62:100109. [PMID: 34428433 PMCID: PMC8456051 DOI: 10.1016/j.jlr.2021.100109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/26/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022] Open
Abstract
Platelets promote tumor metastasis by inducing promalignant phenotypes in cancer cells and directly contributing to cancer-related thrombotic complications. Platelet-derived extracellular vesicles (EVs) can promote epithelial-mesenchymal transition (EMT) in cancer cells, which confers high-grade malignancy. 12S-hydroxyeicosatetraenoic acid (12-HETE) generated by platelet-type 12-lipoxygenase (12-LOX) is considered a key modulator of cancer metastasis through unknown mechanisms. In platelets, 12-HETE can be esterified into plasma membrane phospholipids (PLs), which drive thrombosis. Using cocultures of human platelets and human colon adenocarcinoma cells (line HT29) and LC-MS/MS, we investigated the impact of platelets on cancer cell biosynthesis of 12S-HETE and its esterification into PLs and whether platelet ability to transfer its molecular cargo might play a role. To this aim, we performed coculture experiments with CFSE[5-(and-6)-carboxyfluorescein diacetate, succinimidyl ester]-loaded platelets. HT29 cells did not generate 12S-HETE or express 12-LOX. However, they acquired the capacity to produce 12S-HETE mainly esterified in plasmalogen phospholipid forms following the uptake of platelet-derived medium-sized EVs (mEVs) expressing 12-LOX. 12-LOX was detected in plasma mEV of patients with adenomas/adenocarcinomas, implying their potential to deliver the protein to cancer cells in vivo. In cancer cells exposed to platelets, endogenous but not exogenous 12S-HETE contributed to changes in EMT gene expression, mitigated by three structurally unrelated 12-LOX inhibitors. In conclusion, we showed that platelets induce the generation of primarily esterified 12-HETE in colon cancer cells following mEV-mediated delivery of 12-LOX. The modification of cancer cell phospholipids by 12-HETE may functionally impact cancer cell biology and represent a novel target for anticancer agent development.
Collapse
Affiliation(s)
- Annalisa Contursi
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Simone Schiavone
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Melania Dovizio
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Christine Hinz
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Rosa Fullone
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Victoria J Tyrrell
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Rosalia Grande
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Medicine and Aging Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Marco Marchisio
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Medicine and Aging Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Mirco Zucchelli
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Patrizia Ballerini
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, Chieti, Italy
| | - Angel Lanas
- University Hospital LB, Aragon Health Research Institute (IISAragon), CIBERehd, University of Zaragoza, Zaragoza, Spain
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
19
|
Bahja J, Dymond MK. Does membrane curvature elastic energy play a role in mediating oxidative stress in lipid membranes? Free Radic Biol Med 2021; 171:191-202. [PMID: 34000382 DOI: 10.1016/j.freeradbiomed.2021.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
The effects of oxidative stress on cells are associated with a wide range of pathologies. Oxidative stress is predominantly initiated by the action of reactive oxygen species and/or lipoxygenases on polyunsaturated fatty acid containing lipids. The downstream products are oxidised phospholipids, bioactive aldehydes and a range of Schiff base by-products between aldehydes and lipids, or other biomacromolecules. In this review we assess the impact of oxidative stress on lipid membranes, focusing on the changes that occur to the curvature preference (lipid spontaneous curvature) and elastic properties of membranes, since these biophysical properties modulate phospholipid homeostasis. Studies show that the lipid products of oxidative stress reduce stored curvature elastic energy in membranes. Based upon this observation, we hypothesize that the effects of oxidative stress on lipid membranes will be reduced by compounds that increase stored curvature elastic energy. We find a strong correlation appears across literature studies that we have reviewed, such that many compounds like vitamin E, Curcumin, Coenzyme Q10 and vitamin A show behaviour consistent with this hypothesis. Finally, we consider whether age-related changes in lipid composition represent the homeostatic response of cells to compensate for the accumulation of in vivo lipid oxidation products.
Collapse
Affiliation(s)
- Julia Bahja
- Centre for Stress and Age-Related Disease, University of Brighton, Lewes Rd, Brighton, BN2 4GL, UK
| | - Marcus K Dymond
- Centre for Stress and Age-Related Disease, University of Brighton, Lewes Rd, Brighton, BN2 4GL, UK.
| |
Collapse
|
20
|
Smith AJ, Alcock SG, Davidson LS, Emmins JH, Hiller Bardsley JC, Holloway P, Malfois M, Marshall AR, Pizzey CL, Rogers SE, Shebanova O, Snow T, Sutter JP, Williams EP, Terrill NJ. I22: SAXS/WAXS beamline at Diamond Light Source - an overview of 10 years operation. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:939-947. [PMID: 33950002 PMCID: PMC8127364 DOI: 10.1107/s1600577521002113] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/23/2021] [Indexed: 05/04/2023]
Abstract
Beamline I22 at Diamond Light Source is dedicated to the study of soft-matter systems from both biological and materials science. The beamline can operate in the range 3.7 keV to 22 keV for transmission SAXS and 14 keV to 20 keV for microfocus SAXS with beam sizes of 240 µm × 60 µm [full width half-maximum (FWHM) horizontal (H) × vertical (V)] at the sample for the main beamline, and approximately 10 µm × 10 µm for the dedicated microfocusing platform. There is a versatile sample platform for accommodating a range of facilities and user-developed sample environments. The high brilliance of the insertion device source on I22 allows structural investigation of materials under extreme environments (for example, fluid flow at high pressures and temperatures). I22 provides reliable access to millisecond data acquisition timescales, essential to understanding kinetic processes such as protein folding or structural evolution in polymers and colloids.
Collapse
Affiliation(s)
- A. J. Smith
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - S. G. Alcock
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - L. S. Davidson
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. H. Emmins
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. C. Hiller Bardsley
- King’s College London, Guy’s Campus, Great Maze Pond, London SE1 1UL, United Kingdom
| | - P. Holloway
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - M. Malfois
- ALBA Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - A. R. Marshall
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - C. L. Pizzey
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - S. E. Rogers
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - O. Shebanova
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - T. Snow
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. P. Sutter
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - E. P. Williams
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - N. J. Terrill
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
21
|
Obermayer G, Afonyushkin T, Göderle L, Puhm F, Schrottmaier W, Taqi S, Schwameis M, Ay C, Pabinger I, Jilma B, Assinger A, Mackman N, Binder CJ. Natural IgM antibodies inhibit microvesicle-driven coagulation and thrombosis. Blood 2021; 137:1406-1415. [PMID: 33512411 DOI: 10.1182/blood.2020007155] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Thrombosis and its associated complications are a major cause of morbidity and mortality worldwide. Microvesicles (MVs), a class of extracellular vesicles, are increasingly recognized as mediators of coagulation and biomarkers of thrombotic risk. Thus, identifying factors targeting MV-driven coagulation may help in the development of novel antithrombotic treatments. We have previously identified a subset of circulating MVs that is characterized by the presence of oxidation-specific epitopes and bound by natural immunoglobulin M (IgM) antibodies targeting these structures. This study investigated whether natural IgM antibodies, which are known to have important anti-inflammatory housekeeping functions, inhibit the procoagulatory properties of MVs. We found that the extent of plasma coagulation is inversely associated with the levels of both free and MV-bound endogenous IgM. Moreover, the oxidation epitope-specific natural IgM antibody LR04, which recognizes malondialdehyde adducts, reduced MV-dependent plasmatic coagulation and whole blood clotting without affecting thrombocyte aggregation. Intravenous injection of LR04 protected mice from MV-induced pulmonary thrombosis. Of note, LR04 competed the binding of coagulation factor X/Xa to MVs, providing a mechanistic explanation for its anticoagulatory effect. Thus, our data identify natural IgM antibodies as hitherto unknown modulators of MV-induced coagulation in vitro and in vivo and their prognostic and therapeutic potential in the management of thrombosis.
Collapse
Affiliation(s)
- Georg Obermayer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Taras Afonyushkin
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Laura Göderle
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Florian Puhm
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Soreen Taqi
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Schwameis
- Department of Clinical Pharmacology
- Department of Emergency Medicine, and
| | - Cihan Ay
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Ingrid Pabinger
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | | | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
22
|
Ding WY, Protty MB, Davies IG, Lip GYH. Relationship between lipoproteins, thrombosis and atrial fibrillation. Cardiovasc Res 2021; 118:716-731. [PMID: 33483737 PMCID: PMC8859639 DOI: 10.1093/cvr/cvab017] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
The prothrombotic state in atrial fibrillation (AF) occurs as a result of multifaceted interactions, known as Virchow’s triad of hypercoagulability, structural abnormalities, and blood stasis. More recently, there is emerging evidence that lipoproteins are implicated in this process, beyond their traditional role in atherosclerosis. In this review, we provide an overview of the various lipoproteins and explore the association between lipoproteins and AF, the effects of lipoproteins on haemostasis, and the potential contribution of lipoproteins to thrombogenesis in AF. There are several types of lipoproteins based on size, lipid composition, and apolipoprotein category, namely: chylomicrons, very low-density lipoprotein, low-density lipoprotein (LDL), intermediate-density lipoprotein, and high-density lipoprotein. Each of these lipoproteins may contain numerous lipid species and proteins with a variety of different functions. Furthermore, the lipoprotein particles may be oxidized causing an alteration in their structure and content. Of note, there is a paradoxical inverse relationship between total cholesterol and LDL cholesterol (LDL-C) levels, and incident AF. The mechanism by which this occurs may be related to the stabilizing effect of cholesterol on myocardial membranes, along with its role in inflammation. Overall, specific lipoproteins may interact with haemostatic pathways to promote excess platelet activation and thrombin generation, as well as inhibiting fibrinolysis. In this regard, LDL-C has been shown to be an independent risk factor for thromboembolic events in AF. The complex relationship between lipoproteins, thrombosis and AF warrants further research with an aim to improve our knowledge base and contribute to our overall understanding of lipoprotein-mediated thrombosis.
Collapse
Affiliation(s)
- Wern Yew Ding
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Majd B Protty
- Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom.,Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
23
|
Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, Sule G, Gockman K, Madison JA, Zuo M, Yadav V, Wang J, Woodard W, Lezak SP, Lugogo NL, Smith SA, Morrissey JH, Kanthi Y, Knight JS. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med 2020; 12:eabd3876. [PMID: 33139519 PMCID: PMC7724273 DOI: 10.1126/scitranslmed.abd3876] [Citation(s) in RCA: 429] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/14/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023]
Abstract
Patients with COVID-19 are at high risk for thrombotic arterial and venous occlusions. Lung histopathology often reveals fibrin-based blockages in the small blood vessels of patients who succumb to the disease. Antiphospholipid syndrome is an acquired and potentially life-threatening thrombophilia in which patients develop pathogenic autoantibodies targeting phospholipids and phospholipid-binding proteins (aPL antibodies). Case series have recently detected aPL antibodies in patients with COVID-19. Here, we measured eight types of aPL antibodies in serum samples from 172 patients hospitalized with COVID-19. These aPL antibodies included anticardiolipin IgG, IgM, and IgA; anti-β2 glycoprotein I IgG, IgM, and IgA; and anti-phosphatidylserine/prothrombin (aPS/PT) IgG and IgM. We detected aPS/PT IgG in 24% of serum samples, anticardiolipin IgM in 23% of samples, and aPS/PT IgM in 18% of samples. Antiphospholipid autoantibodies were present in 52% of serum samples using the manufacturer's threshold and in 30% using a more stringent cutoff (≥40 ELISA-specific units). Higher titers of aPL antibodies were associated with neutrophil hyperactivity, including the release of neutrophil extracellular traps (NETs), higher platelet counts, more severe respiratory disease, and lower clinical estimated glomerular filtration rate. Similar to IgG from patients with antiphospholipid syndrome, IgG fractions isolated from patients with COVID-19 promoted NET release from neutrophils isolated from healthy individuals. Furthermore, injection of IgG purified from COVID-19 patient serum into mice accelerated venous thrombosis in two mouse models. These findings suggest that half of patients hospitalized with COVID-19 become at least transiently positive for aPL antibodies and that these autoantibodies are potentially pathogenic.
Collapse
Affiliation(s)
- Yu Zuo
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shanea K Estes
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex A Gandhi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui Shi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Rheumatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gautam Sule
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kelsey Gockman
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacqueline A Madison
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melanie Zuo
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vinita Yadav
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jintao Wang
- Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Wrenn Woodard
- Michigan Clinical Research Unit, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean P Lezak
- Michigan Clinical Research Unit, University of Michigan, Ann Arbor, MI 48109, USA
| | - Njira L Lugogo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephanie A Smith
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
- Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Oxidative Stress and Preeclampsia-Associated Prothrombotic State. Antioxidants (Basel) 2020; 9:antiox9111139. [PMID: 33212799 PMCID: PMC7696949 DOI: 10.3390/antiox9111139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Preeclampsia (PE) is a common obstetric disease characterized by hypertension, proteinuria, and multi-system dysfunction. It endangers both maternal and fetal health. Although hemostasis is critical for preventing bleeding complications during pregnancy, delivery, and post-partum, PE patients often develop a severe prothrombotic state, potentially resulting in life-threatening thrombosis and thromboembolism. The cause of this thrombotic complication is multi-factorial, involving endothelial cells, platelets, adhesive ligands, coagulation, and fibrinolysis. Increasing evidence has shown that hemostatic cells and factors undergo oxidative modifications during the systemic inflammation found in PE patients. However, it is largely unknown how these oxidative modifications of hemostasis contribute to development of the PE-associated prothrombotic state. This knowledge gap has significantly hindered the development of predictive markers, preventive measures, and therapeutic agents to protect women during pregnancy. Here we summarize reports in the literature regarding the effects of oxidative stress and antioxidants on systemic hemostasis, with emphasis on the condition of PE.
Collapse
|
25
|
Gabbs M, Zahradka P, Taylor CG, Aukema HM. Time Course and Sex Effects of α-Linolenic Acid-Rich and DHA-Rich Supplements on Human Plasma Oxylipins: A Randomized Double-Blind Crossover Trial. J Nutr 2020; 151:513-522. [PMID: 33097936 PMCID: PMC7948207 DOI: 10.1093/jn/nxaa294] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Differences in health effects of dietary α-linolenic acid (ALA) and DHA are mediated at least in part by differences in their effects on oxylipins. OBJECTIVES Time course and sex differences of plasma oxylipins in response to ALA- compared with DHA-rich supplements were examined. METHODS Healthy men and women, aged 19-34 y and BMI 18-28 kg/m2, were provided with capsules containing ∼4 g/d of ALA or DHA in a randomized double-blind crossover study with >6-wk wash-in and wash-out phases. Plasma PUFA and oxylipin (primary outcome) concentrations at days 0, 1, 3, 7, 14, and 28 of supplementation were analyzed by GC and HPLC-MS/MS, respectively. Sex differences, supplementation and time effects, and days to plateau were analyzed. RESULTS ALA supplementation doubled ALA concentrations, but had no effects on ALA oxylipins after 28 d, whereas DHA supplementation tripled both DHA and its oxylipins. Increases in DHA oxylipins were detected as early as day 1, and a plateau was reached by days 5-7 for 11 of 12 individual DHA oxylipins and for total DHA oxylipins. Nine individual DHA oxylipins reached a plateau in females with DHA supplementation, compared with only 4 in males. A similar time course and sex difference pattern occurred with EPA and its oxylipins with DHA supplementation. DHA compared with ALA supplementation also resulted in higher concentrations of 4 individual arachidonic acids, 1 linoleic acid, and 1 dihomo-γ-linolenic acid oxylipin, despite not increasing the concentrations of these fatty acids, further demonstrating that oxylipins do not always reflect their precursor PUFA. CONCLUSIONS DHA compared with a similar dose of ALA has greater effects on both n-3 and n-6 oxylipins in young, healthy adults, with differences in response to DHA supplementation occurring earlier and being greater in females. These findings can help explain differences in dietary effects of ALA and DHA.This study was registered at clinicaltrials.gov as NCT02317588.
Collapse
Affiliation(s)
- Melissa Gabbs
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada,Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada,Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada,Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
26
|
Rosas M, Slatter DA, Obaji SG, Webber JP, Alvarez-Jarreta J, Thomas CP, Aldrovandi M, Tyrrell VJ, Jenkins PV, O’Donnell VB, Collins PW. The procoagulant activity of tissue factor expressed on fibroblasts is increased by tissue factor-negative extracellular vesicles. PLoS One 2020; 15:e0240189. [PMID: 33031441 PMCID: PMC7544082 DOI: 10.1371/journal.pone.0240189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue factor (TF) is critical for the activation of blood coagulation. TF function is regulated by the amount of externalised phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the surface of the cell in which it is expressed. We investigated the role PS and PE in fibroblast TF function. Fibroblasts expressed 6-9 x 104 TF molecules/cell but had low specific activity for FXa generation. We confirmed that this was associated with minimal externalized PS and PE and characterised for the first time the molecular species of PS/PE demonstrating that these differed from those found in platelets. Mechanical damage of fibroblasts, used to simulate vascular injury, increased externalized PS/PE and led to a 7-fold increase in FXa generation that was inhibited by annexin V and an anti-TF antibody. Platelet-derived extracellular vesicles (EVs), that did not express TF, supported minimal FVIIa-dependent FXa generation but substantially increased fibroblast TF activity. This enhancement in fibroblast TF activity could also be achieved using synthetic liposomes comprising 10% PS without TF. In conclusion, despite high levels of surface TF expression, healthy fibroblasts express low levels of external-facing PS and PE limiting their ability to generate FXa. Addition of platelet-derived TF-negative EVs or artificial liposomes enhanced fibroblast TF activity in a PS dependent manner. These findings contribute information about the mechanisms that control TF function in the fibroblast membrane.
Collapse
Affiliation(s)
- Marcela Rosas
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - David A. Slatter
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Samya G. Obaji
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Jason P. Webber
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jorge Alvarez-Jarreta
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Christopher P. Thomas
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Maceler Aldrovandi
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Victoria J. Tyrrell
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Peter V. Jenkins
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Valerie B. O’Donnell
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Peter W. Collins
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
27
|
Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, Sule G, Gockman K, Madison JA, Zuo M, Yadav V, Wang J, Woodard W, Lezak SP, Lugogo NL, Smith SA, Morrissey JH, Kanthi Y, Knight JS. Prothrombotic antiphospholipid antibodies in COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32587992 DOI: 10.1101/2020.06.15.20131607] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with coronavirus disease 19 (COVID-19) are at high risk for thrombotic arterial and venous occlusions. At the same time, lung histopathology often reveals fibrin-based occlusion in the small vessels of patients who succumb to the disease. Antiphospholipid syndrome (APS) is an acquired and potentially life-threatening thrombophilia in which patients develop pathogenic autoantibodies (aPL) targeting phospholipids and phospholipid-binding proteins. Case series have recently detected aPL in patients with COVID-19. Here, we measured eight types of aPL [anticardiolipin IgG/IgM/IgA, anti-beta-2 glycoprotein I IgG/IgM/IgA, and anti- phosphatidylserine/prothrombin (aPS/PT) IgG/IgM] in the sera of 172 patients hospitalized with COVID-19. We detected aPS/PT IgG in 24%, anticardiolipin IgM in 23%, and aPS/PT IgM in 18%. Any aPL was present in 52% of patients using the manufacturer's threshold and in 30% using a more stringent cutoff (≥40 units). Higher levels of aPL were associated with neutrophil hyperactivity (including the release of neutrophil extracellular traps/NETs), higher platelet count, more severe respiratory disease, and lower glomerular filtration rate. Similar to patients with longstanding APS, IgG fractions isolated from patients with COVID-19 promoted NET release from control neutrophils. Furthermore, injection of these COVID-19 IgG fractions into mice accelerated venous thrombosis. Taken together, these studies suggest that a significant percentage of patients with COVID-19 become at least transiently positive for aPL and that these aPL are potentially pathogenic.
Collapse
|
28
|
Cebo M, Fu X, Gawaz M, Chatterjee M, Lämmerhofer M. Enantioselective ultra-high performance liquid chromatography-tandem mass spectrometry method based on sub-2µm particle polysaccharide column for chiral separation of oxylipins and its application for the analysis of autoxidized fatty acids and platelet releasates. J Chromatogr A 2020; 1624:461206. [DOI: 10.1016/j.chroma.2020.461206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
|
29
|
Dietary n-6 and n-3 PUFA alter the free oxylipin profile differently in male and female rat hearts. Br J Nutr 2020; 122:252-261. [PMID: 31405389 DOI: 10.1017/s0007114519001211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxylipins are bioactive lipid mediators synthesised from PUFA. The most well-known oxylipins are the eicosanoids derived from arachidonic acid (ARA), and many of them influence cardiac physiology in health and disease. Oxylipins are also formed from other n-3 and n-6 PUFA such as α-linolenic acid (ALA), EPA, DHA and linoleic acid (LA), but fundamental data on the heart oxylipin profile, and the effect of diet and sex on this profile, are lacking. Therefore, weanling female and male Sprague-Dawley rats were given American Institute of Nutrition (AIN)-93G-based diets modified in oil composition to provide higher levels of ALA, EPA, DHA, LA and LA + ALA, compared with control diets. After 6 weeks, free oxylipins in rat hearts were increased primarily by their precursor PUFA, except for EPA oxylipins, which were increased not only by dietary EPA but also by dietary ALA or DHA. Dietary DHA had a greater effect than ALA or EPA on reducing ARA oxylipins. An exception to the dietary n-3 PUFA-lowering effects on ARA oxylipins was observed for several ARA-derived PG metabolites that were higher in rats given EPA diets. Higher dietary LA increased LA oxylipins, but it had no effect on ARA oxylipins. Overall, heart oxylipins were higher in female rats, but this depended on dietary treatment: the female oxylipin:male oxylipin ratio was higher in rats provided the ALA compared with the DHA diet, with other diet groups having ratios in between. In conclusion, individual PUFA and sex have unique and interactive effects on the rat heart free oxylipin profile.
Collapse
|
30
|
Oskolkova OV, Bochkov VN. Gain of function mechanisms triggering biological effects of oxidized phospholipids. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Chatterjee M. Platelet lipidome: Dismantling the "Trojan horse" in the bloodstream. J Thromb Haemost 2020; 18:543-557. [PMID: 31868994 DOI: 10.1111/jth.14721] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
The platelet-lipid chapter in the story of atherothrombosis is an old one, recapitulated and revised in many contexts. For decades several stimulating facets have been added to it, both unraveling and increasing the perplexity of platelet-lipid interplay and its pathophysiological consequences. The recent paradigm shift in our perspective has evolved with lipidomic analysis of the intraplatelet compartment and platelet releasate. These investigations have disclosed that platelets are in constant interaction with circulatory lipids, often reflected in their lipid repertoire. In addition, they offer a shielded intracellular space for oxidative lipid metabolism generating "toxic" metabolites that escape degradation by plasma lipases and antioxidant defense, circulate undetected by conventional plasma lipid profile, and deposited at atherosclerotic lesions or thrombus. Lipidomics divulges this silent invader in platelet vehicles, thereby providing potential biomarkers of pathologic manifestations and therapeutic targets to be exploited, which is surmised in this review.
Collapse
Affiliation(s)
- Madhumita Chatterjee
- Department of Cardiology and Angiology, Internal Medicine III, University Clinic Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Cebo M, Schlotterbeck J, Gawaz M, Chatterjee M, Lämmerhofer M. Simultaneous targeted and untargeted UHPLC-ESI-MS/MS method with data-independent acquisition for quantification and profiling of (oxidized) fatty acids released upon platelet activation by thrombin. Anal Chim Acta 2020; 1094:57-69. [DOI: 10.1016/j.aca.2019.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/06/2019] [Indexed: 12/19/2022]
|
33
|
Otoki Y, Metherel AH, Pedersen T, Yang J, Hammock BD, Bazinet RP, Newman JW, Taha AY. Acute Hypercapnia/Ischemia Alters the Esterification of Arachidonic Acid and Docosahexaenoic Acid Epoxide Metabolites in Rat Brain Neutral Lipids. Lipids 2020; 55:7-22. [PMID: 31691988 PMCID: PMC7220815 DOI: 10.1002/lipd.12197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022]
Abstract
In the brain, approximately 90% of oxylipins are esterified to lipids. However, the significance of this esterification process is not known. In the present study, we (1) validated an aminopropyl solid phase extraction (SPE) method for separating esterified lipids using 100 and 500 mg columns and (2) applied the method to quantify the distribution of esterified oxylipins within phospholipids (PL) and neutral lipids (NL) (i.e. triacylglycerol and cholesteryl ester) in rats subjected to head-focused microwave fixation (controls) or CO2 -induced hypercapnia/ischemia. We hypothesized that oxylipin esterification into these lipid pools will be altered following CO2 -induced hypercapnia/ischemia. Lipids were extracted from control (n = 8) and CO2 -asphyxiated (n = 8) rat brains and separated on aminopropyl cartridges to yield PL and NL. The separated lipid fractions were hydrolyzed, purified with hydrophobic-lipophilic-balanced SPE columns, and analyzed with ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry. Method validation showed that the 500 mg (vs 100 mg) aminopropyl columns yielded acceptable separation and recovery of esterified fatty acid epoxides but not other oxylipins. Two epoxides of arachidonic acid (ARA) were significantly increased, and three epoxides of docosahexaenoic acid (DHA) were significantly decreased in brain NL of CO2 -asphyxiated rats compared to controls subjected to head-focused microwave fixation. PL-bound fatty acid epoxides were highly variable and did not differ significantly between the groups. This study demonstrates that hypercapnia/ischemia alters the concentration of ARA and DHA epoxides within NL, reflecting an active turnover process regulating brain fatty acid epoxide concentrations.
Collapse
Affiliation(s)
- Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
- Food and Biodynamic Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Adam H. Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, M5S 1A8, Canada
| | - Theresa Pedersen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
- Comprehensive Cancer Center, Medical Center, University of California, Davis, CA 95616, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
- Comprehensive Cancer Center, Medical Center, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California–Davis, Davis, CA 95616, USA
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, M5S 1A8, Canada
| | - John W. Newman
- West Coast Metabolomics Center, Genome Center, University of California–Davis, Davis, CA 95616, USA
- Department of Nutrition, University of California–Davis, Davis, CA 95616, USA
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California–Davis, Davis, CA 95616, USA
| |
Collapse
|
34
|
Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O’Donnell VB. The Biosynthesis of Enzymatically Oxidized Lipids. Front Endocrinol (Lausanne) 2020; 11:591819. [PMID: 33329396 PMCID: PMC7711093 DOI: 10.3389/fendo.2020.591819] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Enzymatically oxidized lipids are a specific group of biomolecules that function as key signaling mediators and hormones, regulating various cellular and physiological processes from metabolism and cell death to inflammation and the immune response. They are broadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acid oxygenated PUFA "oxylipins", endocannabinoids, oxidized phospholipids) or cholesterol derivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis is accomplished by families of enzymes that include lipoxygenases (LOX), cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). In contrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation and are broadly considered to be harmful. Here, we provide an overview of the biochemistry and enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we present biosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids and steroid hormones. Last, we address gaps in knowledge and suggest directions for future work.
Collapse
Affiliation(s)
- Ali A. Hajeyah
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Ali A. Hajeyah,
| | - William J. Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Andrew J. Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
35
|
Phospholipid membranes drive abdominal aortic aneurysm development through stimulating coagulation factor activity. Proc Natl Acad Sci U S A 2019; 116:8038-8047. [PMID: 30944221 PMCID: PMC6475397 DOI: 10.1073/pnas.1814409116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a disease of the abdominal aorta where inflammation causes damage and can ultimately lead to rupture. When this happens, uncontrolled internal bleeding can lead to death within minutes. Many aneurysms are not detected until they rupture, and for those that are, treatments to stop them progressing are limited. Here we used biophysics and genetically modified mice to show that a new family of lipids (fats) made by circulating blood cells promote AAA formation in the vessel wall because they directly regulate blood clotting. An approach that prevents AAA development was identified, based on intravenous administration of lipids. The studies provide insights into how AAA develops and may lead to novel therapies for this disease. Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease with high mortality and limited treatment options. How blood lipids regulate AAA development is unknown. Here lipidomics and genetic models demonstrate a central role for procoagulant enzymatically oxidized phospholipids (eoxPL) in regulating AAA. Specifically, through activating coagulation, eoxPL either promoted or inhibited AAA depending on tissue localization. Ang II administration to ApoE−/− mice increased intravascular coagulation during AAA development. Lipidomics revealed large numbers of eoxPL formed within mouse and human AAA lesions. Deletion of eoxPL-generating enzymes (Alox12 or Alox15) or administration of the factor Xa inhibitor rivaroxaban significantly reduced AAA. Alox-deficient mice displayed constitutively dysregulated hemostasis, including a consumptive coagulopathy, characterized by compensatory increase in prothrombotic aminophospholipids (aPL) in circulating cell membranes. Intravenously administered procoagulant PL caused clotting factor activation and depletion, induced a bleeding defect, and significantly reduced AAA development. These data suggest that Alox deletion reduces AAA through diverting coagulation away from the vessel wall due to eoxPL deficiency, instead activating clotting factor consumption and depletion in the circulation. In mouse whole blood, ∼44 eoxPL molecular species formed within minutes of clot initiation. These were significantly elevated with ApoE−/− deletion, and many were absent in Alox−/− mice, identifying specific eoxPL that modulate AAA. Correlation networks demonstrated eoxPL belonged to subfamilies defined by oxylipin composition. Thus, procoagulant PL regulate AAA development through complex interactions with clotting factors. Modulation of the delicate balance between bleeding and thrombosis within either the vessel wall or circulation was revealed that can either drive or prevent disease development.
Collapse
|
36
|
O'Donnell VB, Aldrovandi M, Murphy RC, Krönke G. Enzymatically oxidized phospholipids assume center stage as essential regulators of innate immunity and cell death. Sci Signal 2019; 12:12/574/eaau2293. [PMID: 30914483 DOI: 10.1126/scisignal.aau2293] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzymatically oxidized phospholipids (eoxPLs) are formed through regulated processes by which eicosanoids or prostaglandins are attached to phospholipids (PLs) in immune cells. These eoxPLs comprise structurally diverse families of biomolecules with potent bioactivities, and they have important immunoregulatory roles in both health and disease. The formation of oxPLs through enzymatic pathways and their signaling capabilities are emerging concepts. This paradigm is changing our understanding of eicosanoid, prostaglandin, and PL biology in health and disease. eoxPLs have roles in cellular events such as ferroptosis, apoptosis, and blood clotting and diseases such as arthritis, diabetes, and cardiovascular disease. They are increasingly recognized as endogenous bioactive mediators and potential targets for drug development. This review will describe recent evidence that places eoxPLs and their biosynthetic pathways center stage in immunoregulation.
Collapse
Affiliation(s)
- Valerie B O'Donnell
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK.
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU) 91054, Erlangen, Germany
| |
Collapse
|
37
|
Upchurch C, Leitinger N. Biologically Active Lipids in Vascular Biology. FUNDAMENTALS OF VASCULAR BIOLOGY 2019. [DOI: 10.1007/978-3-030-12270-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Zelaya H, Rothmeier AS, Ruf W. Tissue factor at the crossroad of coagulation and cell signaling. J Thromb Haemost 2018; 16:1941-1952. [PMID: 30030891 DOI: 10.1111/jth.14246] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Indexed: 12/16/2022]
Abstract
The tissue factor (TF) pathway plays a central role in hemostasis and thrombo-inflammatory diseases. Although structure-function relationships of the TF initiation complex are elucidated, new facets of the dynamic regulation of TF's activities in cells continue to emerge. Cellular pathways that render TF non-coagulant participate in signaling of distinct TF complexes with associated proteases through the protease-activated receptor (PAR) family of G protein-coupled receptors. Additional co-receptors, including the endothelial protein C receptor (EPCR) and integrins, confer signaling specificity by directing subcellular localization and trafficking. We here review how TF is switched between its role in coagulation and cell signaling through thiol-disulfide exchange reactions in the context of physiologically relevant lipid microdomains. Inflammatory mediators, including reactive oxygen species, activators of the inflammasome, and the complement cascade play pivotal roles in TF procoagulant activation on monocytes, macrophages and endothelial cells. We furthermore discuss how TF, intracellular ligands, co-receptors and associated proteases are integrated in PAR-dependent cell signaling pathways controlling innate immunity, cancer and metabolic inflammation. Knowledge of the precise interactions of TF in coagulation and cell signaling is important for understanding effects of new anticoagulants beyond thrombosis and identification of new applications of these drugs for potential additional therapeutic benefits.
Collapse
Affiliation(s)
- H Zelaya
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- National Scientific and Technical Research Council (CONICET) and National University of Tucumán, Tucumán, Argentina
| | - A S Rothmeier
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - W Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- German Center for Cardiovascular Research (DZHK), Partnersite Rhein-Main, Mainz, Germany
| |
Collapse
|
39
|
Kuhn H, Humeniuk L, Kozlov N, Roigas S, Adel S, Heydeck D. The evolutionary hypothesis of reaction specificity of mammalian ALOX15 orthologs. Prog Lipid Res 2018; 72:55-74. [PMID: 30237084 DOI: 10.1016/j.plipres.2018.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hartmut Kuhn
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Lia Humeniuk
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Nikita Kozlov
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Sophie Roigas
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Susan Adel
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine, Division of Hepathology and Gastroenterology, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Dagmar Heydeck
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|