1
|
Khoshnevisan R, Hassanzadeh S, Klein C, Rohlfs M, Grimbacher B, Molavi N, Zamanifar A, Khoshnevisan A, Jafari M, Bagherpour B, Behnam M, Najafi S, Sherkat R. B-cells absence in patients diagnosed as inborn errors of immunity: a registry-based study. Immunogenetics 2024; 76:189-202. [PMID: 38683392 DOI: 10.1007/s00251-024-01342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Hypogammaglobulinemia without B-cells is a subgroup of inborn errors of immunity (IEI) which is characterized by a significant decline in all serum immunoglobulin isotypes, coupled with a pronounced reduction or absence of B-cells. Approximately 80 to 90% of individuals exhibit genetic variations in Bruton's agammaglobulinemia tyrosine kinase (BTK), whereas a minority of cases, around 5-10%, are autosomal recessive agammaglobulinemia (ARA). Very few cases are grouped into distinct subcategories. We evaluated phenotypically and genetically 27 patients from 13 distinct families with hypogammaglobinemia and no B-cells. Genetic analysis was performed via whole-exome and Sanger sequencing. The most prevalent genetic cause was mutations in BTK. Three novel mutations in the BTK gene include c.115 T > C (p. Tyr39His), c.685-686insTTAC (p.Asn229llefs5), and c.163delT (p.Ser55GlnfsTer2). Our three ARA patients include a novel homozygous stop-gain mutation in the immunoglobulin heavy constant Mu chain (IGHM) gene, a novel frameshift mutation of the B-cell antigen receptor complex-associated protein (CD79A) gene, a novel bi-allelic stop-gain mutation in the transcription factor 3 (TCF3) gene. Three patients with agammaglobulinemia have an autosomal dominant inheritance pattern, which includes a missense variant in PIK3CD, a novel missense variant in PIK3R1 and a homozygous silent mutation in the phosphoinositide-3-kinase regulatory subunit (RASGRP1) gene. This study broadens the genetic spectrum of hypogammaglobulinemia without B-cells and presented a few novel variants within the Iranian community, which may also have implications in other Middle Eastern populations. Notably, disease control was better in the second affected family member in families with multiple cases.
Collapse
Affiliation(s)
- Razieh Khoshnevisan
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shakiba Hassanzadeh
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Christoph Klein
- Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Meino Rohlfs
- Dept. of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Bodo Grimbacher
- RESIST-Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Clinic for Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signaling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Newsha Molavi
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aryana Zamanifar
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Khoshnevisan
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahbube Jafari
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Bagherpour
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdiyeh Behnam
- Medical Genetics Laboratory of Genome, Isfahan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Somayeh Najafi
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Korzhenevich J, Janowska I, van der Burg M, Rizzi M. Human and mouse early B cell development: So similar but so different. Immunol Lett 2023; 261:1-12. [PMID: 37442242 DOI: 10.1016/j.imlet.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Early B cell development in the bone marrow ensures the replenishment of the peripheral B cell pool. Immature B cells continuously develop from hematopoietic stem cells, in a process guided by an intricate network of transcription factors as well as chemokine and cytokine signals. Humans and mice possess somewhat similar regulatory mechanisms of B lymphopoiesis. The continuous discovery of monogenetic defects that impact early B cell development in humans substantiates the similarities and differences with B cell development in mice. These differences become relevant when targeted therapeutic approaches are used in patients; therefore, predicting potential immunological adverse events is crucial. In this review, we have provided a phenotypical classification of human and murine early progenitors and B cell stages, based on surface and intracellular protein expression. Further, we have critically compared the role of key transcription factors (Ikaros, E2A, EBF1, PAX5, and Aiolos) and chemo- or cytokine signals (FLT3, c-kit, IL-7R, and CXCR4) during homeostatic and aberrant B lymphopoiesis in both humans and mice.
Collapse
Affiliation(s)
- Jakov Korzhenevich
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, 2333, ZA Leiden, The Netherlands
| | - Marta Rizzi
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria; Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
3
|
Sun Y, Li X, Wang T, Li W. Core Fucosylation Regulates the Function of Pre-BCR, BCR and IgG in Humoral Immunity. Front Immunol 2022; 13:844427. [PMID: 35401499 PMCID: PMC8990897 DOI: 10.3389/fimmu.2022.844427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
Most of the membrane molecules involved in immune response are glycosylated. N-glycans linked to asparagine (Asn) of immune molecules contribute to the protein conformation, surface expression, stability, and antigenicity. Core fucosylation catalyzed by core fucosyltransferase (FUT8) is the most common post-translational modification. Core fucosylation is essential for evoking a proper immune response, which this review aims to communicate. First, FUT8 deficiency suppressed the interaction between μHC and λ5 during pre-BCR assembly is given. Second, we described the effects of core fucosylation in B cell signal transduction via BCR. Third, we investigated the role of core fucosylation in the interaction between helper T (TH) cells and B cells. Finally, we showed the role of FUT8 on the biological function of IgG. In this review, we discussed recent insights into the sites where core fucosylation is critical for humoral immune responses.
Collapse
Affiliation(s)
- Yuhan Sun
- College of Basic Medical Science, Dalian Medical University, Dalian, China
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Xueying Li
- Research Institute for Microbial Diseases and World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Tiantong Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Wenzhe Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China
- *Correspondence: Wenzhe Li,
| |
Collapse
|
4
|
Demirdag YY, Gupta S. Update on Infections in Primary Antibody Deficiencies. Front Immunol 2021; 12:634181. [PMID: 33643318 PMCID: PMC7905085 DOI: 10.3389/fimmu.2021.634181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/07/2021] [Indexed: 11/14/2022] Open
Abstract
Bacterial respiratory tract infections are the hallmark of primary antibody deficiencies (PADs). Because they are also among the most common infections in healthy individuals, PADs are usually overlooked in these patients. Careful evaluation of the history, including frequency, chronicity, and presence of other infections, would help suspect PADs. This review will focus on infections in relatively common PADs, discussing diagnostic challenges, and some management strategies to prevent infections.
Collapse
Affiliation(s)
- Yesim Yilmaz Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
5
|
Della Mina E, Guérin A, Tangye SG. Molecular requirements for human lymphopoiesis as defined by inborn errors of immunity. Stem Cells 2021; 39:389-402. [PMID: 33400834 DOI: 10.1002/stem.3327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSCs) are the progenitor cells that give rise to the diverse repertoire of all immune cells. As they differentiate, HSCs yield a series of cell states that undergo gradual commitment to become mature blood cells. Studies of hematopoiesis in murine models have provided critical insights about the lineage relationships among stem cells, progenitors, and mature cells, and these have guided investigations of the molecular basis for these distinct developmental stages. Primary immune deficiencies are caused by inborn errors of immunity that result in immune dysfunction and subsequent susceptibility to severe and recurrent infection(s). Over the last decade there has been a dramatic increase in the number and depth of the molecular, cellular, and clinical characterization of such genetically defined causes of immune dysfunction. Patients harboring inborn errors of immunity thus represent a unique resource to improve our understanding of the multilayered and complex mechanisms underlying lymphocyte development in humans. These breakthrough discoveries not only enable significant advances in the diagnosis of such rare and complex conditions but also provide substantial improvement in the development of personalized treatments. Here, we will discuss the clinical, cellular, and molecular phenotypes, and treatments of selected inborn errors of immunity that impede, either intrinsically or extrinsically, the development of B- or T-cells at different stages.
Collapse
Affiliation(s)
- Erika Della Mina
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Antoine Guérin
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Stuart G Tangye
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| |
Collapse
|
6
|
Calzoni E, Castagnoli R, Giliani SC. Human inborn errors of immunity caused by defects of receptor and proteins of cellular membrane. Minerva Pediatr 2020; 72:393-407. [PMID: 32960006 DOI: 10.23736/s0026-4946.20.06000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inborn errors of immunity are diseases of the immune system resulting from mutations that alter the expression of encoded proteins or molecules. Total updated number of these disorders is currently 406, with 430 different identified gene defects involved. Studies of the underlying mechanisms have contributed in better understanding the pathophysiology of the diseases, but also the complexity of the biology of innate and adaptive immune system and its interaction with microbes. In this review we present and briefly discuss Inborn Errors of Immunity caused by defects in genes encoding for receptors and protein of cellular membrane, including cytokine receptors, T cell antigen receptor (TCR) complex, cellular surface receptors or receptors signaling causing predominantly antibody deficiencies, co-stimulatory receptors and others. These alterations impact many biological processes of immune-system cells, including development, proliferation, activation and down-regulation of the immunological response, and result in a variety of diseases that present with distinct clinical features or with overlapping signs and symptoms.
Collapse
Affiliation(s)
- Enrica Calzoni
- Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy -
| | - Riccardo Castagnoli
- Pediatric Clinic, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Silvia C Giliani
- Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
7
|
Fekrvand S, Yazdani R, Olbrich P, Azizi G, Shirzadi R, Modaresi M, Sohani M, Delavari S, Kalantari A, Shariat M, Shafiei A, Lu N, Hassanpour G, Rahimi Hajiabadi M, Ashournia P, Razaghian A, Asgharyan M, Shahraki-Ghadimi Z, Rouhani R, Hoda Fallah F, Rezaei N, Abolhassani H, Aghamohammadi A. Evaluation of respiratory complications in patients with X-linked and autosomal recessive agammaglobulinemia. Pediatr Allergy Immunol 2020; 31:405-417. [PMID: 32058651 DOI: 10.1111/pai.13228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Congenital agammaglobulinemia is the first primary immunodeficiency disorder characterized by a defect in B lymphocyte development and subsequently decreased immunoglobulin levels. These patients are prone to suffer from recurrent infections mostly involving the respiratory tract. In this study, we aimed to describe in detail respiratory tract complications as the most prominent clinical feature among agammaglobulinemic patients. METHODS A total number of 115 patients were included. Demographic, clinical, and genetic data were collected from the patients' medical records. Among the available patients, pulmonary function tests (PFTs) and/or high-resolution computed tomography (HRCT) were performed. RESULTS Respiratory tract complications (85.2%) especially pneumonia (62.6%) were the most prominent clinical features in our cohort. Among patients with abnormal PFT results (N = 19), a mixed respiratory pattern was observed in 36.8%. HRCT was carried out in 29 patients; Bhalla scoring-based evaluation of these patients indicated excellent (44.8%), followed by good (34.5%) and mild (20.7%) results. Bronchiectasis was found in 13 patients undergoing HRCT (44.8%). We found significant inverse correlations between the Bhalla score and incidence rate of pneumonia, as well as the presence of bronchiectasis. Patients with abnormal PFT results had statistically significant higher bronchiectasis frequency and lower Bhalla scores compared to those with normal results. Forty-one patients were deceased, and here, respiratory failure was the most common cause of death (45.5%). CONCLUSION High prevalence of respiratory tract infections among agammaglobulinemic patients and subsequent progression to permanent lung damage highlights the importance of implementing respiratory evaluation as part of routine follow-up program of agammaglobulinemic patients. Physicians should be aware of this and regularly monitor the respiratory function of these patients to allow for timely diagnosis and treatment initiation aiming to improve patients' prognosis and quality of life.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Peter Olbrich
- Sección de Infectología e Inmunopatología, Unidad de Pediatría, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Rohola Shirzadi
- Department of Pediatric Pulmonary and Sleep Medicine, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Modaresi
- Department of Pediatric Pulmonary and Sleep Medicine, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Sohani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Arash Kalantari
- Department of Immunology and Allergy, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Shariat
- Department of Allergy and Clinical Immunology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shafiei
- The Department of Immunology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Na Lu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Rahimi Hajiabadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Parisa Ashournia
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Anahita Razaghian
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Marzieh Asgharyan
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Shahraki-Ghadimi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Roja Rouhani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Hoda Fallah
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Network for Immunology in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Iran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at the Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
8
|
Autosomal recessive agammaglobulinemic patient with a novel large deletion in IGHM presenting with mild clinical phenotype. Clin Immunol 2020; 210:108295. [DOI: 10.1016/j.clim.2019.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/20/2022]
|
9
|
Yazdani R, Abolhassani H, Kiaee F, Habibi S, Azizi G, Tavakol M, Chavoshzadeh Z, Mahdaviani SA, Momen T, Gharagozlou M, Movahedi M, Hamidieh AA, Behniafard N, Nabavi M, Bemanian MH, Arshi S, Molatefi R, Sherkat R, Shirkani A, Amin R, Aleyasin S, Faridhosseini R, Jabbari-Azad F, Mohammadzadeh I, Ghaffari J, Shafiei A, Kalantari A, Mansouri M, Mesdaghi M, Babaie D, Ahanchian H, Khoshkhui M, Soheili H, Eslamian MH, Cheraghi T, Dabbaghzadeh A, Tavassoli M, Kalmarzi RN, Mortazavi SH, Kashef S, Esmaeilzadeh H, Tafaroji J, Khalili A, Zandieh F, Sadeghi-Shabestari M, Darougar S, Behmanesh F, Akbari H, Zandkarimi M, Abolnezhadian F, Fayezi A, Moghtaderi M, Ahmadiafshar A, Shakerian B, Sajedi V, Taghvaei B, Safari M, Heidarzadeh M, Ghalebaghi B, Fathi SM, Darabi B, Bazregari S, Bazargan N, Fallahpour M, Khayatzadeh A, Javahertrash N, Bashardoust B, Zamani M, Mohsenzadeh A, Ebrahimi S, Sharafian S, Vosughimotlagh A, Tafakoridelbari M, Rahim M, Ashournia P, Razaghian A, Rezaei A, Samavat A, Mamishi S, Khazaei HA, Mohammadi J, Negahdari B, Parvaneh N, Rezaei N, Lougaris V, Giliani S, Plebani A, Ochs HD, Hammarström L, Aghamohammadi A. Comparison of Common Monogenic Defects in a Large Predominantly Antibody Deficiency Cohort. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:864-878.e9. [DOI: 10.1016/j.jaip.2018.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
|
10
|
Mahdaviani SA, Rezaei N. Pulmonary Manifestations of Predominantly Antibody Deficiencies. PULMONARY MANIFESTATIONS OF PRIMARY IMMUNODEFICIENCY DISEASES 2019. [PMCID: PMC7123456 DOI: 10.1007/978-3-030-00880-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Predominantly antibody deficiencies (PADs) are the most frequent forms of primary immunodeficiency diseases (PIDs). Commonly accompanied with complications involving several body systems, immunoglobulin substitution therapy along with prophylactic antibiotics remained the cornerstone of treatment for PADs and related complications. Patients with respiratory complications should be prescribed an appropriate therapy as soon as possible and have to be adhering to more and longer medical therapies. Recent studies identified a gap for screening protocols to monitor respiratory manifestations in patients with PADs. In the present chapter, the pulmonary manifestations of different PADs for each have been discussed. The chapter is mainly focused on X-linked agammaglobulinemia, common variable immunodeficiency, activated PI3K-δ syndrome, LRBA deficiency, CD19 complex deficiencies, CD20 deficiency, other monogenic defects associated with hypogammaglobulinemia, immunoglobulin class switch recombination deficiencies affecting B-cells, transient hypogammaglobulinemia of infancy, and selective IgA deficiency.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies Children’s Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
11
|
Smith T, Cunningham-Rundles C. Primary B-cell immunodeficiencies. Hum Immunol 2018; 80:351-362. [PMID: 30359632 DOI: 10.1016/j.humimm.2018.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/05/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022]
Abstract
Primary B-cell immunodeficiencies refer to diseases resulting from impaired antibody production due to either molecular defects intrinsic to B-cells or a failure of interaction between B-cells and T-cells. Patients typically have recurrent infections and can vary with presentation and complications depending upon where the defect has occurred in B-cell development or the degree of functional impairment. In this review, we describe B-cell specific immune defects categorized by presence or absence of peripheral B-cells, immunoglobulins isotypes and evidence of antibody impairment.
Collapse
Affiliation(s)
- Tukisa Smith
- Division of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6574, United States; The Rockefeller University, Laboratory of Biochemical Genetics and Metabolism, 1230 York Avenue, Box 179, New York, NY 10065, United States.
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6574, United States.
| |
Collapse
|
12
|
Autosomal recessive agammaglobulinemia due to defect in μ heavy chain caused by a novel mutation in the IGHM gene. Genes Immun 2017; 18:197-199. [DOI: 10.1038/gene.2017.14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/02/2017] [Accepted: 06/22/2017] [Indexed: 11/08/2022]
|
13
|
Abolhassani H, Vitali M, Lougaris V, Giliani S, Parvaneh N, Parvaneh L, Mirminachi B, Cheraghi T, Khazaei H, Mahdaviani SA, Kiaei F, Tavakolinia N, Mohammadi J, Negahdari B, Rezaei N, Hammarstrom L, Plebani A, Aghamohammadi A. Cohort of Iranian Patients with Congenital Agammaglobulinemia: Mutation Analysis and Novel Gene Defects. Expert Rev Clin Immunol 2016; 12:479-86. [DOI: 10.1586/1744666x.2016.1139451] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Lougaris V, Vitali M, Baronio M, Moratto D, Tampella G, Biasini A, Badolato R, Plebani A. Autosomal Recessive Agammaglobulinemia: The Third Case of Igβ Deficiency Due to a Novel Non-sense Mutation. J Clin Immunol 2014; 34:425-7. [DOI: 10.1007/s10875-014-0033-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/27/2014] [Indexed: 01/09/2023]
|
15
|
Primary immunodeficiencies: a rapidly evolving story. J Allergy Clin Immunol 2013; 131:314-23. [PMID: 23374262 DOI: 10.1016/j.jaci.2012.11.051] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/06/2012] [Accepted: 11/29/2012] [Indexed: 12/28/2022]
Abstract
The characterization of primary immunodeficiencies (PIDs) in human subjects is crucial for a better understanding of the biology of the immune response. New achievements in this field have been possible in light of collaborative studies; attention paid to new phenotypes, infectious and otherwise; improved immunologic techniques; and use of exome sequencing technology. The International Union of Immunological Societies Expert Committee on PIDs recently reported on the updated classification of PIDs. However, new PIDs are being discovered at an ever-increasing rate. A series of 19 novel primary defects of immunity that have been discovered after release of the International Union of Immunological Societies report are discussed here. These new findings highlight the molecular pathways that are associated with clinical phenotypes and suggest potential therapies for affected patients.
Collapse
|
16
|
Casanova JL, Abel L. The genetic theory of infectious diseases: a brief history and selected illustrations. Annu Rev Genomics Hum Genet 2013; 14:215-43. [PMID: 23724903 PMCID: PMC4980761 DOI: 10.1146/annurev-genom-091212-153448] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Until the mid-nineteenth century, life expectancy at birth averaged 20 years worldwide, owing mostly to childhood fevers. The germ theory of diseases then gradually overcame the belief that diseases were intrinsic. However, around the turn of the twentieth century, asymptomatic infection was discovered to be much more common than clinical disease. Paradoxically, this observation barely challenged the newly developed notion that infectious diseases were fundamentally extrinsic. Moreover, interindividual variability in the course of infection was typically explained by the emerging immunological (or somatic) theory of infectious diseases, best illustrated by the impact of vaccination. This powerful explanation is, however, best applicable to reactivation and secondary infections, particularly in adults; it can less easily account for interindividual variability in the course of primary infection during childhood. Population and clinical geneticists soon proposed a complementary hypothesis, a germline genetic theory of infectious diseases. Over the past century, this idea has gained some support, particularly among clinicians and geneticists, but has also encountered resistance, particularly among microbiologists and immunologists. We present here the genetic theory of infectious diseases and briefly discuss its history and the challenges encountered during its emergence in the context of the apparently competing but actually complementary microbiological and immunological theories. We also illustrate its recent achievements by highlighting inborn errors of immunity underlying eight life-threatening infectious diseases of children and young adults. Finally, we consider the far-reaching biological and clinical implications of the ongoing human genetic dissection of severe infectious diseases.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065;
| | | |
Collapse
|
17
|
Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol 2013; 131:959-71. [PMID: 23465663 DOI: 10.1016/j.jaci.2013.01.046] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 02/06/2023]
Abstract
B cells develop from hematopoietic precursor cells in an ordered maturation and selection process. Extensive studies with many different mouse mutants provided fundamental insights into this process. However, the characterization of genetic defects causing primary immunodeficiencies was essential in understanding human B-cell biology. Defects in pre-B-cell receptor components or in downstream signaling proteins, such as Bruton tyrosine kinase and B-cell linker protein, arrest development at the pre-B-cell stage. Defects in survival-regulating proteins, such as B-cell activator of the TNF-α family receptor (BAFF-R) or caspase recruitment domain-containing protein 11 (CARD11), interrupt maturation and prevent differentiation of transitional B cells into marginal zone and follicular B cells. Mature B-cell subsets, immune responses, and memory B-cell and plasma cell development are disturbed by mutations affecting Toll-like receptor signaling, B-cell antigen receptor coreceptors (eg, CD19), or enzymes responsible for immunoglobulin class-switch recombination. Transgenic mouse models helped to identify key regulatory mechanisms, such as receptor editing and clonal anergy, preventing the activation of B cells expressing antibodies recognizing autoantigens. Nevertheless, the combination of susceptible genetic backgrounds with the rescue of self-reactive B cells by T cells allows the generation of autoreactive clones found in patients with many autoimmune diseases and even in those with primary immunodeficiencies. The rapid progress of functional genomic research is expected to foster the development of new tools that specifically target dysfunctional B lymphocytes to treat autoimmunity, B-cell malignancies, and immunodeficiency.
Collapse
Affiliation(s)
- Kathrin Pieper
- Centre of Chronic Immunodeficiency, University Medical Centre Freiburg, Faculty of Biology, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | |
Collapse
|
18
|
Montella S, Maglione M, Giardino G, Di Giorgio A, Palamaro L, Mirra V, Ursini MV, Salerno M, Pignata C, Caffarelli C, Santamaria F. Hyper IgM syndrome presenting as chronic suppurative lung disease. Ital J Pediatr 2012; 38:45. [PMID: 22992442 PMCID: PMC3484017 DOI: 10.1186/1824-7288-38-45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 09/14/2012] [Indexed: 12/11/2022] Open
Abstract
The Hyper-immunoglobulin M syndromes (HIGM) are a heterogeneous group of genetic disorders resulting in defects of immunoglobulin class switch recombination. Affected patients show humoral immunodeficiency and high susceptibility to opportunistic infections. Elevated serum IgM levels are the hallmark of the disease, even though in few rare cases they may be in the normal range. Hyper IgM is associated with low to undetectable levels of serum IgG, IgA, and IgE. In some cases, alterations in different genes may be identified. Mutations in five genes have so far been associated to the disease, which can be inherited with an X-linked (CD40 ligand, and nuclear factor-kB essential modulator defects) or an autosomal recessive (CD40, activation-induced cytidine deaminase, and uracil-DNA glycosylase mutation) pattern. The patient herein described presented with recurrent upper and lower respiratory infections and evidence of suppurative lung disease at the conventional chest imaging. The presence of low serum IgG and IgA levels, elevated IgM levels, and a marked reduction of in vivo switched memory B cells led to a clinical and functional diagnosis of HIGM although the genetic cause was not identified.
Collapse
Affiliation(s)
- Silvia Montella
- Department of Pediatrics, Federico II University, via Pansini 5, Naples, 80131, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Palamaro L, Giardino G, Santamaria F, Romano R, Fusco A, Montella S, Salerno M, Ursini MV, Pignata C. Interleukin 12 receptor deficiency in a child with recurrent bronchopneumonia and very high IgE levels. Ital J Pediatr 2012; 38:46. [PMID: 22992471 PMCID: PMC3485094 DOI: 10.1186/1824-7288-38-46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 09/14/2012] [Indexed: 12/13/2022] Open
Abstract
Interleukin-12 (IL-12) is involved in cellular immune responses against intracellular pathogens by promoting the generation of T naive in T helper 1 (Th1) cells and by increasing interferon-gamma (IFN-gamma) production from T and natural killer (NK) cells. A defective induction of a Th1 response may lead to a higher risk of infections, and, in particular, infections due to typical and atypical Mycobacteria. We report on the case of a girl with suffering from recurrent bronchopneumonia associated with very high serum IgE levels, who exhibited a profound impairment of the Th1 generation associated with a novel mutation in the exon 5 of the IL-12R β1 gene (R156H). Our data suggest that in children with severe and recurrent infections, even in the absence of a mycobacterial infection, functional and/or genetic alterations of the molecular mechanisms governing Th1/Th2 homeostasis might be responsible for an atypical immunodeficiency and, therefore, should be investigated in these patients.
Collapse
Affiliation(s)
| | | | | | - Rosa Romano
- Department of Pediatrics, “Federico II” University, Naples, Italy
| | - Anna Fusco
- Department of Pediatrics, “Federico II” University, Naples, Italy
| | - Silvia Montella
- Department of Pediatrics, “Federico II” University, Naples, Italy
| | | | | | - Claudio Pignata
- Department of Pediatrics, “Federico II” University, Naples, Italy
- Unit of Immunology, Department of Pediatrics, “Federico II” University, Via S. Pansini 5-80131, Naples, 80127, Italy
| |
Collapse
|
20
|
Abstract
B-cell defects constitute the majority of primary immunodeficiencies. Although a heterogeneous group of diseases, all are characterized by the reduction in or absence of immunoglobulins and/or specific antimicrobial antibodies. Substitution of immunoglobulin G (IgG) is therefore the mainstay of treatment. While from the late 1970s, the intravenous route of administration was the most common, in the past decades, subcutaneous immunoglobulin replacement therapy has become more popular among patients and physicians. Independently of the optimal route of administration, dosage and IgG trough level remain subjects of debate. Higher IgG trough levels seem to improve the protection against recurrent infections and thus better prevent complications such as bronchiectasis. Some patients, however, achieve protection with IgG trough levels on the lower IgG limit of healthy persons. Therefore, an individual protective IgG trough level needs to be defined for each patient. Use of additional prophylactic antibiotics and immunosuppressive drugs differs amongst specialized immunodeficiency centres and clearly requires future investigation in multi-centre trials. Haematopoietic stem cell transplantation (HSCT) is to date indicated as curative treatment in certain patients with B-cell defects associated with cell deficiencies, for example in two class-switch recombination defects and in selected severe forms of common variable immunodeficiency.
Collapse
Affiliation(s)
- Miriam Hoernes
- Division of Immunology, Haematology and BMT, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, University Children's Hospital Zurich, Zürich, Switzerland
| | | | | |
Collapse
|
21
|
Li W, Liu Q, Pang Y, Jin J, Wang H, Cao H, Li Z, Wang X, Ma B, Chi Y, Wang R, Kondo A, Gu J, Taniguchi N. Core fucosylation of μ heavy chains regulates assembly and intracellular signaling of precursor B cell receptors. J Biol Chem 2011; 287:2500-8. [PMID: 22084235 DOI: 10.1074/jbc.m111.303123] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
α1,6-Fucosyltransferase (Fut8) knock-out (Fut8(-/-)) mice showed an abnormality in pre-B cell generation. Membrane assembly of pre-BCR is a crucial checkpoint for pre-B cell differentiation and proliferation in both humans and mice. The assembly of pre-BCR on the cell surface was substantially blocked in the Fut8-knockdown pre-B cell line, 70Z/3-KD cells, and then completely restored by re-introduction of the Fut8 gene to 70Z/3-KD (70Z/3-KD-re) cells. Moreover, loss of α1,6-fucosylation (also called core fucosylation) of μHC was associated with the suppression of the interaction between μHC and λ5. In contrast to Fut8(+/+) CD19(+)CD43(-) cells, the subpopulation expressing the μHC·λ5 complex in the Fut8(-/-) CD19(+)CD43(-) cell fraction was decreased. The pre-BCR-mediated tyrosine phosphorylation of CD79a and activation of Btk were attenuated in Fut8-KD cells, and restored in 70Z/3-KD-re cells. The frequency of CD19(low)CD43(-) cells (pre-B cell enriched fraction) was also reduced in Fut8(-/-) bone marrow cells, and then the levels of IgM, IgG, and IgA of 12-week-old Fut8(-/-) mice sera were significantly lower than those of Fut8(+/+) mice. Our results suggest that the core fucosylation of μHC mediates the assembly of pre-BCR to regulate pre-BCR intracellular signaling and pre-B cell proliferation.
Collapse
Affiliation(s)
- Wenzhe Li
- Institute of Immunology, College of Life Science and Technology, Dalian University, 10-Xuefu Avenue, Dalian Economical and Technological Development Zone, Liaoning 116622, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Expression of a BCR is critical for B-cell development and survival. We have identified 4 patients with agammaglobulinemia and markedly reduced but detectable B cells in the peripheral circulation. These B cells have an unusual phenotype characterized by increased expression of CD19 but no BCR. The cells are positive for CD20, CD22, and CD38, but not for Annexin 5 or activation markers, including CD69, CD83, or CD86. EBV lines derived from these B cells lack functionally rearranged immunoglobulin heavy-chain transcripts, as shown by PCR-rapid amplification of cDNA ends (PCR-RACE). Analysis of BM from 2 of the patients showed a severe reduction in the number of pro-B cells as well as pre-B cells. Functionally rearranged heavy-chain transcripts were identified, indicating that machinery to rearrange immunoglobulin genes was intact. Flow cytometry of B-lineage cells suggested accelerated acquisition of maturation markers in early B-cell precursors and increased phosphorylation of signal transduction molecules. Further, expression of TdT, a molecule that is normally down-regulated by a functional pre-BCR complex, was decreased. We hypothesize that the accelerated maturation, increased expression of CD19, and lack of a BCR were due to the constitutive activation of the BCR signal transduction pathway in these patients.
Collapse
|
23
|
Primary immunodeficiency diseases associated with increased susceptibility to viral infections and malignancies. J Allergy Clin Immunol 2011; 127:1329-41.e2; quiz 1342-3. [DOI: 10.1016/j.jaci.2011.02.047] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 01/19/2023]
|
24
|
Zhang ZY, Zhao XD, Jiang LP, Liu EM, Wang M, Yu J, Liu P, Yang XQ. Clinical characteristics and molecular analysis of 21 Chinese children with congenital agammaglobulinemia. Scand J Immunol 2011; 72:454-9. [PMID: 21039741 DOI: 10.1111/j.1365-3083.2010.02457.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Congenital agammaglobulinemia is a humoral primary immunodeficiency and affected patients have extremely low levels of peripheral B cells and profound deficiency of all immunoglobulin isotypes. Mutations of the Bruton's tyrosine kinase (BTK) gene are responsible for most of the congenital agammaglobulinemia. In this study, the phenotypes of congenital agammaglobulinemia were investigated in 21 male children from 21 unrelated Chinese families. Sixteen different mutations of BTK gene were identified in 18 patients, and three patients did not have BTK gene mutations. Nine mutations had been reported previously including one gross deletion (c.722_2041del), one missense mutation (c.1764G>T), three non-sense mutations (c.194C>A, c.895C>T and c.1821G>A) and four invariant splice-site mutations (c.971+2T>C, c.1481+2T>A, c.1482-2A>G, c.1699-2A>G). Seven novel mutations were identified (c.373_441del, c. 504delG, c.537delC, c.851delA, c.1637G>A, c.1879T>C and c. 1482_1882 del). Ten of the eighteen mutations of BTK gene were located in the TK domain, four in the PH domain, three in the SH3 domain and one spanned the TH, SH3, SH2 and TK domain. Candidate genes of autosomal-recessive agammaglobulinemia, including IGHM, CD79a, CD79b and IGLL1, were screened in three patients without mutations in the BTK gene. A compound heterozygosity mutation in the IGHM gene (c.1956G>A, c.175_176insC) was identified in one patient. The results of our study further support that molecular genetic testing represents an important tool for early confirmed diagnosis of congenital agammaglobulinemia and may allow accurate carrier detection and prenatal diagnosis.
Collapse
Affiliation(s)
- Z-Y Zhang
- Division of Immunology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lopez-Granados E. Epigenetic Control of Lymphocyte Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 711:26-35. [DOI: 10.1007/978-1-4419-8216-2_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
26
|
Ménoret S, Iscache AL, Tesson L, Rémy S, Usal C, Osborn MJ, Cost GJ, Brüggemann M, Buelow R, Anegon I. Characterization of immunoglobulin heavy chain knockout rats. Eur J Immunol 2010; 40:2932-41. [PMID: 21038471 DOI: 10.1002/eji.201040939] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The rat is a species frequently used in immunological studies but, until now, there were no models with introduced gene-specific mutations. In a recent study, we described for the first time the generation of novel rat lines with targeted mutations using zinc-finger nucleases. In this study, we compare immune development in two Ig heavy-chain KO lines; one with truncated Cμ and a new line with removed JH segments. Rats homozygous for IgM mutation generate truncated Cμ mRNA with a de novo stop codon and no Cγ mRNA. JH-deletion rats showed undetectable mRNA for all H-chain transcripts. No serum IgM, IgG, IgA and IgE were detected in these rat lines. In both lines, lymphoid B-cell numbers were reduced >95% versus WT animals. In rats homozygous for IgM mutation, no Ab-mediated hyperacute allograft rejection was encountered. Similarities in B-cell differentiation seen in Ig KO rats and ES cell-derived Ig KO mice are discussed. These Ig and B-cell-deficient rats obtained using zinc-finger nucleases-technology should be useful as biomedical research models and a powerful platform for transgenic animals expressing a human Ab repertoire.
Collapse
|
27
|
Conley ME, Dobbs AK, Farmer DM, Kilic S, Paris K, Grigoriadou S, Coustan-Smith E, Howard V, Campana D. Primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol 2009; 27:199-227. [PMID: 19302039 DOI: 10.1146/annurev.immunol.021908.132649] [Citation(s) in RCA: 281] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sophisticated genetic tools have made possible the identification of the genes responsible for most well-described immunodeficiencies in the past 15 years. Mutations in Btk, components of the pre-B cell and B cell receptor (lambda5, Igalpha, Igbeta), or the scaffold protein BLNK account for approximately 90% of patients with defects in early B cell development. Hyper-IgM syndromes result from mutations in CD40 ligand, CD40, AID, or UNG in 70-80% of affected patients. Rare defects in ICOS or CD19 can result in a clinical picture that is consistent with common variable immunodeficiency, and as many as 10% of patients with this disorder have heterozygous amino acid substitutions in TACI. For all these disorders, there is considerable clinical heterogeneity in patients with the same mutation. Identifying the genetic and environmental factors that influence the clinical phenotype may enhance patient care and our understanding of normal B cell development.
Collapse
Affiliation(s)
- Mary Ellen Conley
- Department of Pediatrics, University of Tennessee College of Medicine, Memphis, Tennessee 38163, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
This article reviews the primary immunodeficiencies that result in hypogammaglobulinemia or predominantly antibody deficiency disorders. This group makes up the largest proportion of patients with primary immunodeficiency. Significant advances have been made in understanding the molecular basis and clinical characteristics of patients with the more severe forms of antibody deficiency in the last 6 years. Recognition of these disorders remains poor with significant diagnostic delay. The milder forms of antibody deficiency disorders, especially those with normal total serum immunoglobulin G levels, remain poorly characterized and understood. Further work remains to be done in understanding and recognizing these syndromes to benefit patient care and foster further knowledge of the immune system.
Collapse
Affiliation(s)
- Patrick F K Yong
- Department of Clinical Immunology, Kings College Hospital, London SE5 9RS, UK
| | | | | |
Collapse
|
29
|
Autosomal recessive agammaglobulinemia: novel insights from mutations in Ig-beta. Curr Allergy Asthma Rep 2008; 8:404-8. [PMID: 18682105 DOI: 10.1007/s11882-008-0078-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Agammaglobulinemia is a rare primary immuno-deficiency characterized by an early block of B-cell development in the bone marrow resulting in the absence of peripheral B cells and low/absent immunoglobulin serum levels. Mutations in the Bruton tyrosine kinase and in components of the pre-B-cell receptor (pre-BCR), such as mu heavy chain, surrogate light chain, and Igalpha have been found in 85% to 90% of patients affected by this disease. Here we review the recent advances in the characterization of molecular defects underlying an early block in B-cell development, focusing on the novel finding of the first two patients with agammaglobulinemia caused by mutations in Igbeta, the transmembrane protein that associates with Igalpha as part of the pre-BCR complex. Characterization of novel genetic defects involving components of the pre-BCR is crucial for a better understanding of the biology of early B-cell development and may have therapeutic and prognostic implications.
Collapse
|
30
|
Abstract
Primary immunodeficiency diseases are rare disorders characterized by quantitative or qualitative defects in cells or components in the immune system, resulting in a high degree of susceptibility to various types of infections. During differentiation, stem cells undergo a series of discrete steps, governed by a large number of different genes. Mutations/deletions in these genes will result in a block in differentiation of the affected cell lineage(s), leading to immunodeficiency. To date, more than 150 different types of disorders have been described. In this review, we will focus on novel findings in antibody deficiency syndromes.
Collapse
Affiliation(s)
- Qiang Pan-Hammarström
- Div. of Clinical Immunology, Dept. of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
31
|
van Zelm MC, Geertsema C, Nieuwenhuis N, de Ridder D, Conley ME, Schiff C, Tezcan I, Bernatowska E, Hartwig NG, Sanders EA, Litzman J, Kondratenko I, van Dongen JJ, van der Burg M. Gross deletions involving IGHM, BTK, or Artemis: a model for genomic lesions mediated by transposable elements. Am J Hum Genet 2008; 82:320-32. [PMID: 18252213 DOI: 10.1016/j.ajhg.2007.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/01/2007] [Accepted: 10/02/2007] [Indexed: 01/27/2023] Open
Abstract
Most genetic disruptions underlying human disease are microlesions, whereas gross lesions are rare with gross deletions being most frequently found (6%). Similar observations have been made in primary immunodeficiency genes, such as BTK, but for unknown reasons the IGHM and DCLRE1C (Artemis) gene defects frequently represent gross deletions ( approximately 60%). We characterized the gross deletion breakpoints in IGHM-, BTK-, and Artemis-deficient patients. The IGHM deletion breakpoints did not show involvement of recombination signal sequences or immunoglobulin switch regions. Instead, five IGHM, eight BTK, and five unique Artemis breakpoints were located in or near sequences derived from transposable elements (TE). The breakpoints of four out of five disrupted Artemis alleles were located in highly homologous regions, similar to Ig subclass deficiencies and Vh deletion polymorphisms. Nevertheless, these observations suggest a role for TEs in mediating gross deletions. The identified gross deletion breakpoints were mostly located in TE subclasses that were specifically overrepresented in the involved gene as compared to the average in the human genome. This concerned both long (LINE1) and short (Alu, MIR) interspersed elements, as well as LTR retrotransposons (ERV). Furthermore, a high total TE content (>40%) was associated with an increased frequency of gross deletions. Both findings were further investigated and confirmed in a total set of 20 genes disrupted in human disease. Thus, to our knowledge for the first time, we provide evidence that a high TE content, irrespective of the type of element, results in the increased incidence of gross deletions as gene disruption underlying human disease.
Collapse
|
32
|
Schäffer AA, Salzer U, Hammarström L, Grimbacher B. Deconstructing common variable immunodeficiency by genetic analysis. Curr Opin Genet Dev 2007; 17:201-12. [PMID: 17467261 DOI: 10.1016/j.gde.2007.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 04/12/2007] [Indexed: 11/25/2022]
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency. Patients have recurrent bacterial infections and an increased risk of developing autoimmune diseases, lung damage, and selected cancers. Since 2003, four genes have been shown to be mutated in CVID patients: ICOS, TNFRSF13B (encoding TACI), TNFRSF13C (encoding BAFF-R) and CD19. Heterozygous mutations in TNFRSF13B are also associated with CVID, whereas the other three genes are purely recessive. Recent genetic linkage studies have also identified possible loci for dominant CVID genes on chromosomes 4q, 5p and 16q. These findings markedly improved the genetic diagnosis of CVID and point towards new strategies for future genetic studies. In addition, some CVID genes might be relevant to more common diseases such as asthma and stroke.
Collapse
Affiliation(s)
- Alejandro A Schäffer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Heath and Human Services, 8600 Rockvile Pike, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
33
|
Ferrari S, Zuntini R, Lougaris V, Soresina A, Sourková V, Fiorini M, Martino S, Rossi P, Pietrogrande MC, Martire B, Spadaro G, Cardinale F, Cossu F, Pierani P, Quinti I, Rossi C, Plebani A. Molecular analysis of the pre-BCR complex in a large cohort of patients affected by autosomal-recessive agammaglobulinemia. Genes Immun 2007; 8:325-33. [PMID: 17410177 DOI: 10.1038/sj.gene.6364391] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autosomal-recessive agammaglobulinemia is a rare and heterogeneous disorder, characterized by early-onset infections, profound hypogammaglobulinemia of all immunoglobulin isotypes and absence of circulating B lymphocytes. To investigate the molecular basis of the disease, 23 patients with early-onset disease and no mutations in Bruton tyrosine kinase, the gene responsible for X-linked agammaglobulinemia, were selected and analyzed by direct sequencing of candidate genes. Two novel mutations in the mu heavy chain (muHC) gene (IGHM) were identified in three patients belonging to two unrelated families. A fourth patient carries a previously described G>A nucleotide substitution at the -1 position of an alternative splice site in IGHM; here, we demonstrate that this mutation is indeed responsible for aberrant splicing. Comparison of bone marrow cytofluorimetric profiles in two patients carrying different mutations in the IGHM gene suggests a genotype-phenotype correlation with the stage at which B-cell development is blocked. Several new single nucleotide polymorphisms (SNPs) both in the muHC and in the lambda5-like/VpreB-coding genes were identified. Two unrelated patients carry compound heterozygous variations in the VpreB1 gene that may be involved in disease ethiology.
Collapse
Affiliation(s)
- S Ferrari
- Medical Genetics Unit and CRBa, S. Orsola-Malpighi University Hospital, via Massarenti 9, 40138 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kristufek D, Aspalter RM, Eibl MM, Wolf HM. Characterization of novel Bruton's tyrosine kinase gene mutations in Central European patients with agammaglobulinemia. Mol Immunol 2007; 44:1639-43. [PMID: 17045652 DOI: 10.1016/j.molimm.2006.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 08/04/2006] [Indexed: 01/08/2023]
Abstract
X-linked agammaglobulinemia (XLA) is an immunodeficiency disorder caused by mutations in the gene coding for Bruton's tyrosine kinase (BTK). In this study we investigated 10 male patients with XLA-compatible phenotype (agammaglobulinemia and undetectable B cells in peripheral blood) from 9 unrelated Central European families. We identified seven different mutations, six of which were novel. One previously described point mutation caused a premature stop codon (p.C464X), two point mutations resulted in amino acid exchanges (p.W588R; p.G419E), and two point mutations affected splice sites (c.305-1G>A; c.391+1G>A). We further detected one deletion (c.1921_1927del CGTCCCA) and one large duplication. The duplication resulted from Alu element-induced unequal homologous recombination, which was only detectable by extended analysis of cDNA, while direct sequencing of genomic DNA gave a false negative result. Western blot analysis revealed that the patients with the p.W588R and the p.G419E amino acid substitutions, respectively, produced full length BTK, but in clearly diminished amounts. The patient with the 7bp deletion expressed low amounts of protein which might represent truncated BTK. All other genomic alterations resulted in complete loss of BTK protein. In two patients from unrelated families BTK protein expression was normal and no Btk gene mutation was detected. The results of this study further substantiate the importance of using elaborate molecular analysis with different detection techniques to obtain an explicit molecular diagnosis in patients with suspected XLA.
Collapse
Affiliation(s)
- Doris Kristufek
- Immunology Outpatient Clinic, Schwarzspanierstr. 15/1/9, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
35
|
Carneiro-Sampaio M, Coutinho A. Immunity to microbes: lessons from primary immunodeficiencies. Infect Immun 2007; 75:1545-55. [PMID: 17283094 PMCID: PMC1865715 DOI: 10.1128/iai.00787-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Magda Carneiro-Sampaio
- Children's Hospital, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas Carvalho Aguiar 647, 05403-900 São Paulo, Brazil.
| | | |
Collapse
|
36
|
Pan-Hammarström Q, Zhao Y, Hammarström L. Class switch recombination: a comparison between mouse and human. Adv Immunol 2007; 93:1-61. [PMID: 17383538 DOI: 10.1016/s0065-2776(06)93001-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Humans and mice separated more than 60 million years ago. Since then, evolution has led to a multitude of changes in their genomic sequences. The divergence of genes has resulted in differences both in the innate and adaptive immune systems. In this chapter, we focus on species difference with regard to immunoglobulin class switch recombination (CSR). We have compared the immunoglobulin constant region gene loci from human and mouse, with an emphasis on the switch regions, germ line transcription promoters, and 3' enhancers. We have also compared pathways/factors that are involved in CSR. Although there are remarkable similarities in the cellular machinery involved in CSR, there are also a number of unique features in each species.
Collapse
Affiliation(s)
- Qiang Pan-Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | | | | |
Collapse
|
37
|
Espeli M, Rossi B, Mancini SJC, Roche P, Gauthier L, Schiff C. Initiation of pre-B cell receptor signaling: Common and distinctive features in human and mouse. Semin Immunol 2006; 18:56-66. [PMID: 16337808 DOI: 10.1016/j.smim.2005.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
B cell development in the bone marrow is a highly regulated process and expression of a functional pre-BCR represents a crucial checkpoint, common to human and mouse. In this review, we discuss pre-BCR analogies and differences between the two species leading to pre-B cell differentiation and proliferation. In addition, the mechanisms triggering pre-BCR activation are reviewed, taking into account the recent report of heparan sulfates and galectin 1 as stromal cell-derived pre-BCR ligands. Finally, ligand-induced pre-BCR activation models are proposed on the bases of the differences reported for pre-BCR and IL7 dependencies in the two species.
Collapse
Affiliation(s)
- Marion Espeli
- Centre d'Immunologie de Marseille-Luminy (CIML), CNRS-INSERM-University Méditerranée, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
38
|
Weiler CR, Bankers-Fulbright JL. Common variable immunodeficiency: test indications and interpretations. Mayo Clin Proc 2005; 80:1187-200. [PMID: 16178499 DOI: 10.4065/80.9.1187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency disorder that can present with multiple phenotypes, all of which are characterized by hypogammaglobulinemia, in a person at any age. A specific genetic defect that accounts for all CVID phenotypes has not been identified, and it is likely that several distinct genetic disorders with similar clinical presentations are responsible for the observed variation. In this review, we summarize the known genetic mutations that give rise to hypogammaglobulinemia and how these gene products affect normal or abnormal B-cell development and function, with particular emphasis on CVID. Additionally, we describe specific phenotypic and genetic laboratory tests that can be used to diagnose CVID and provide guidelines for test interpretation and subsequent therapeutic intervention.
Collapse
Affiliation(s)
- Catherine R Weiler
- Department of Internal Medicine and Division of Allergic Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
39
|
Grimbacher B, Schäffer AA, Peter HH. The genetics of hypogammaglobulinemia. Curr Allergy Asthma Rep 2004; 4:349-58. [PMID: 15283873 DOI: 10.1007/s11882-004-0083-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Etiologies for human hypogammaglobulinemias are diverse and include genetic and nongenetic causes. Although recent reviews focus on the complex genetics of common variable immunodeficiency, in this review, we survey different causes of hypogammaglobulinemias and discuss possible mechanisms.
Collapse
Affiliation(s)
- Bodo Grimbacher
- Division of Rheumatology and Clinical Immunology, Medical School, University of Freiburg, Germany.
| | | | | |
Collapse
|
40
|
Picard C, Puel A, Bustamante J, Ku CL, Casanova JL. Primary immunodeficiencies associated with pneumococcal disease. Curr Opin Allergy Clin Immunol 2004; 3:451-9. [PMID: 14612669 DOI: 10.1097/00130832-200312000-00006] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Streptococcus pneumoniae may cause disease in patients with a variety of primary immunodeficiencies. However, no previous review has dealt with the issue of which primary immunodeficiencies predispose affected individuals to pneumococcal disease. We thus reviewed the medical literature on cases of S. pneumoniae infection in patients with primary immunodeficiency diseases, with a particular emphasis on invasive pneumococcal disease. RECENT FINDINGS Primary immunodeficiency diseases comprise over 100 conditions, each associated with a variety of infections. Patients at high risk for pneumococcal disease include most if not all B-cell defects (whether due to an intrinsic B-cell anomaly or an impaired T-cell help), deficiencies of early components of the classical pathway of complement and C3 deficiency, congenital asplenia, anhidrotic ectodermal dysplasia with immunodeficiency (caused by impaired NF-kappaB activation), and interleukin-1 receptor associated kinase-4 deficiency. Patients with other complement deficiencies (alternative and third pathway) and hyperimmunoglobulin E syndrome show a lower risk, whereas patients with other known primary immunodeficiencies, such as phagocytic disorders, do not appear to be particularly vulnerable to S. pneumoniae. SUMMARY Antibody- and complement-mediated opsonization, splenic macrophages and interleukin-1 receptor associated kinase-4- and nuclear factor kappaB-mediated immune responses are crucial for protective immunity to S. pneumoniae. This information is useful, not only in increasing our understanding of human immunity to S. pneumoniae, but also in the diagnostic investigation of patients with pneumococcal disease.
Collapse
Affiliation(s)
- Capucine Picard
- Pediatric Immunology-Hematology Unit, Necker-Enfants Malades Hospital, University of Paris René Descartes, Paris, France, EU.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Mutations in a variety of genes can cause congenital agammaglobulinemia and a failure of B cell development. The currently known genes encode components of the pre-B cell receptor or proteins that are activated by cross-linking of the pre-B cell receptor. Defects in these genes result in a block in B cell differentiation at the pro-B to pre-B cell transition. A patient with a translocation involving a previously unknown gene, LRRC8, demonstrated a block at exactly the same point in B cell differentiation (see the related article beginning on page 1707). It will be interesting to determine whether the protein encoded by this gene interacts with the pre-B cell receptor signal transduction pathway or is involved in a new pathway.
Collapse
Affiliation(s)
- Mary Ellen Conley
- Department of Immunology, St. Judes Children's Research Hospital, Memphis, Tennessee 38105, USA.
| |
Collapse
|
42
|
Abstract
The recent identification of the genes involved in many primary immunodeficiency disorders has led to a significant increase in our understanding of the pathogenesis of these defects. Many of these disorders share a clinical phenotype with common features such as recurrent infections, chronic inflammation, and autoimmunity. Although some of these immune defects have mild presentations and better outcomes, others result in severe infections and significant morbidity and mortality. For these, early diagnosis and treatment are critical. This review provides an overview of the genetic defects and clinical features of primary immune deficiencies due to defects in lymphocytes.
Collapse
Affiliation(s)
- Steven J Simonte
- Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
43
|
Abstract
AbstractHematological complications occur frequently in patients with both primary and secondary immunodeficiency disorders. Anemia, thrombocytopenia or leukopenias may bring these individuals to the attention of hematologists. Conversely, evidence suggesting a lymphoproliferative disorder may be the cause for referral. This session will provide an update on the diagnosis and treatment of immunodeficiency diseases ranging from isolated defects in antibody production to the severe combined immunodeficiencies (SCID).Immunodeficiency diseases have traditionally been defined as defects in the development and function of T and B cells, the primary effector cells of specific cellular and humoral immunity. However, it has become increasingly evident that innate immune mechanisms contribute greatly to host defense, either through acting alone or by enhancing specific T and B cell responses.In Section I, Dr. Lewis Lanier reviews the burgeoning information on the extensive families of activating and inhibitory immunoreceptors that are expressed on NK cells, dendritic cells, T and B cells, and phagocytic cells. He provides an overview on the biological functions of these receptors in host defense.In Section II, Dr. Mary Ellen Conley defines the spectrum of antibody deficiency disorders, the most frequently occurring types of primary immunodeficiencies. She covers the different defects in B-cell development and function that lead to antibody deficiencies, and includes diagnosis and therapy of these disorders.In Section III, Dr. Jennifer Puck discusses the diagnosis and treatment of the different types of SCID. She describes the genetic basis for SCID, and the benefits, pitfalls, and complications of gene therapy and bone marrow transplantation in SCID patients.
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Recent clinical studies in patients with genetically proven X-linked or autosomal recessive agammaglobulinemia provide some guidelines that should influence our management of patients with suspected immunodeficiency. RECENT FINDINGS Males who are at a high risk of having X-linked agammaglobulinemia because they have an affected brother or uncle are often not evaluated for immunodeficiency until they are hospitalized for infection. Some of those who are evaluated are not started on gammaglobulin therapy immediately. More than 10% of patients with X-linked agammaglobulinemia are hospitalized for infection at less than 6 months of age, indicating that patients with known X-linked agammaglobulinemia should be started on therapy by 2-3 months of age. In patients with sporadic X-linked agammaglobulinemia, the incidence of chronic lung disease correlates with the age at diagnosis, highlighting the importance of early diagnosis. Although almost all patients who are diagnosed as having the condition at more than 12 months of age have a history of recurrent otitis, 93% are not evaluated for immunodeficiency until they are hospitalized for infection. Because the physical exam provides a clue to the diagnosis of the condition--unusually small or absent cervical lymph nodes and tonsils--it should be possible to make an early diagnosis in a greater percentage of patients. Patients with autosomal recessive agammaglobulinemia have an earlier onset of disease compared with patients with X-linked agammaglobulinemia and they are more likely to have severe complications of the disease. SUMMARY There is plenty of room for improvement in the diagnosis and management of patients with defects in early B cell development.
Collapse
Affiliation(s)
- Mary Ellen Conley
- Department of Pediatrics, University of Tennessee College of Medicine, Memphis, 38105, USA.
| |
Collapse
|