1
|
Luo Y, Jin M, Lou L, Yang S, Li C, Li X, Zhou M, Cai C. Role of arachidonic acid lipoxygenase pathway in Asthma. Prostaglandins Other Lipid Mediat 2021; 158:106609. [PMID: 34954219 DOI: 10.1016/j.prostaglandins.2021.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Abstract
The arachidonic acid (AA) metabolism pathways play a key role in immunological response and inflammation diseases, such as asthma, etc. AA in cell membranes can be metabolized by lipoxygenases (LOXs) to a screen of bioactive substances that include leukotrienes (LTs), lipoxins (LXs), and eicosatetraenoic acids (ETEs), which are considered closely related to the pathophysiology of respiratory allergic disease. Studies also verified that drugs regulating AA LOXs pathway have better rehabilitative intervention for asthma. This review aims to summarize the physiological and pathophysiological importance of AA LOXs metabolism pathways in asthma and to discuss its prospects of therapeutic strategies.
Collapse
Affiliation(s)
- Yacan Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Minli Jin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Lejing Lou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Song Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Chengye Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Meixi Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Chang Cai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| |
Collapse
|
2
|
Kolmert J, Piñeiro-Hermida S, Hamberg M, Gregory JA, López IP, Fauland A, Wheelock CE, Dahlén SE, Pichel JG, Adner M. Prominent release of lipoxygenase generated mediators in a murine house dust mite-induced asthma model. Prostaglandins Other Lipid Mediat 2018; 137:20-29. [PMID: 29763661 DOI: 10.1016/j.prostaglandins.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/06/2018] [Accepted: 05/09/2018] [Indexed: 01/08/2023]
Abstract
The profile of activation of lipid mediator (LM) pathways in asthmatic airway inflammation remains unclear. This experimental study quantified metabolite levels of ω3-, ω6- and ω9-derived polyunsaturated fatty acids in bronchoalveolar lavage fluid (BALF) after 4-weeks of repeated house dust mite (HDM) exposure in a murine (C57BL/6) asthma model. The challenge induced airway hyperresponsiveness, pulmonary eosinophil infiltration, but with low and unchanged mast cell numbers. Of the 112 screened LMs, 26 were increased between 2 to >25-fold in BALF with HDM treatment (p < 0.05, false discovery rate = 5%). While cysteinyl-leukotrienes were the most abundant metabolites at baseline, their levels did not increase after HDM treatment, whereas elevation of PGD2, LTB4 and multiple 12/15-lipoxygenase products, such as 5,15-DiHETE, 15-HEDE and 15-HEPE were observed. We conclude that this model has identified a global lipoxygenase activation signature, not linked to mast cells, but with aspects that mimic chronic allergic airway inflammation in asthma.
Collapse
Affiliation(s)
- Johan Kolmert
- Unit for Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sergio Piñeiro-Hermida
- Lung Cancer and Respiratory Diseases Unit, Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Joshua A Gregory
- Unit for Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Icíar P López
- Lung Cancer and Respiratory Diseases Unit, Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Alexander Fauland
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Unit for Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - José G Pichel
- Lung Cancer and Respiratory Diseases Unit, Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Mikael Adner
- Unit for Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Torricelli AAM, Matsuda M, Novaes P, Braga ALF, Saldiva PHN, Alves MR, Monteiro MLR. Effects of ambient levels of traffic-derived air pollution on the ocular surface: analysis of symptoms, conjunctival goblet cell count and mucin 5AC gene expression. ENVIRONMENTAL RESEARCH 2014; 131:59-63. [PMID: 24657517 DOI: 10.1016/j.envres.2014.02.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 06/03/2023]
Abstract
PURPOSE To quantify ocular symptoms, goblet cells (GC) and mucin 5AC (MUC5AC) gene expression on the conjunctiva of healthy subjects exposed to ambient levels of traffic-derived air pollution and to estimate its correlation with NO2 and particulate matter smaller than 2.5 μm (PM2.5) levels. METHODS Twenty-one taxi drivers or traffic controllers were assessed with the Ocular Surface Disease Index (OSDI) questionnaire and conjunctival impression cytology. MUC5AC mRNA levels were determined based on the cytology of the right eye, and GC density was assessed based on the cytology of the left eye. Mean individual levels of 24-h NO2 and PM2.5 exposure were assessed the day before examination. Possible associations between NO2 or PM2.5 levels, OSDI scores, GC densities and MUC5AC mRNA levels were verified. RESULTS The subjects were exposed to mean PM2.5 levels of 35±12 μg/m(3) and mean NO2 levels of 189±47 μg/m(3). OSDI scores were low (7.4±8) and GC densities were 521±257 and 782±322 cell/mm(2) on the bulbar and tarsal conjunctivas, respectively. The mean GC-derived MUC5AC mRNA expression was 14±7 fM/μg of total RNA. A significant and positive correlation was observed between MUC5AC mRNA levels and tarsal GC density (p=0.018). A trend toward association between PM2.5 levels and tarsal GC cell density (p=0.052) was found. CONCLUSION Exposure to ambient levels of air pollution impacts conjunctival GC density. An increase in MUC5AC mRNA levels may be part of an adaptive ocular surface response to long-term exposure to air pollution.
Collapse
Affiliation(s)
- André Augusto Miranda Torricelli
- Division of Ophthalmology and the Laboratory for Investigation in Ophthalmology (LIM-33), University of São Paulo Medical School, Av. Dr. Arnaldo 455, 5th floor, 01246-903 São Paulo, Brazil.
| | - Monique Matsuda
- Division of Ophthalmology and the Laboratory for Investigation in Ophthalmology (LIM-33), University of São Paulo Medical School, Av. Dr. Arnaldo 455, 5th floor, 01246-903 São Paulo, Brazil
| | - Priscila Novaes
- Division of Ophthalmology and the Laboratory for Investigation in Ophthalmology (LIM-33), University of São Paulo Medical School, Av. Dr. Arnaldo 455, 5th floor, 01246-903 São Paulo, Brazil
| | - Alfésio Luiz Ferreira Braga
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, University of São Paulo Medical School, São Paulo, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, University of São Paulo Medical School, São Paulo, Brazil
| | - Milton Ruiz Alves
- Division of Ophthalmology and the Laboratory for Investigation in Ophthalmology (LIM-33), University of São Paulo Medical School, Av. Dr. Arnaldo 455, 5th floor, 01246-903 São Paulo, Brazil
| | - Mário Luiz Ribeiro Monteiro
- Division of Ophthalmology and the Laboratory for Investigation in Ophthalmology (LIM-33), University of São Paulo Medical School, Av. Dr. Arnaldo 455, 5th floor, 01246-903 São Paulo, Brazil
| |
Collapse
|
4
|
James A, Daham K, Backman L, Brunnström A, Tingvall T, Kumlin M, Edenius C, Dahlén SE, Dahlén B, Claesson HE. The influence of aspirin on release of eoxin C4, leukotriene C4 and 15-HETE, in eosinophilic granulocytes isolated from patients with asthma. Int Arch Allergy Immunol 2013; 162:135-42. [PMID: 23921438 DOI: 10.1159/000351422] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/12/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The effect of aspirin on the release of key arachidonic acid metabolites in activated eosinophils from subjects with aspirin-intolerant asthma (AIA) has not been investigated previously, despite the characteristic eosinophilia in AIA. METHODS Peripheral blood eosinophils were isolated from four groups of subjects: healthy volunteers (HV; n = 8), mild asthma (MA; n = 8), severe asthma (SA; n = 9) and AIA (n = 7). In the absence or presence of lysine-aspirin, eosinophils were stimulated with arachidonic acid or calcium ionophore to trigger the 15-lipoxygenase-1 (15-LO) and 5-lipoxygenase (5-LO) pathways, respectively. 15(S)-hydroxy-eicosatetraenoic acid (15-HETE) and eoxin C4 (EXC4) were measured as 15-LO products and leukotriene (LT)C4 as a product of the 5-LO pathway. RESULTS Activated eosinophils from patients with SA and AIA produced approximately five times more 15-HETE than eosinophils from HV or MA patients. In the presence of lysine-aspirin, eosinophils from AIA, MA and SA patients generated higher levels of 15-HETE than in the absence of lysine-aspirin. Furthermore, in the presence of lysine-aspirin, formation of EXC4 was also significantly increased in eosinophils from AIA patients, and LTC4 synthesis was increased both in AIA and SA patients. CONCLUSIONS Taken together, this study shows an increased release of the recently discovered lipid mediator EXC4, as well as the main indicator of 15-LO activity, 15-HETE, in activated eosinophils from severe and aspirin-intolerant asthmatics, and also elevated EXC4 and LTC4 formation in eosinophils from AIA patients after cellular activation in the presence of lysine-aspirin. The findings support a pathophysiological role of the 15-LO pathway in SA and AIA.
Collapse
Affiliation(s)
- Anna James
- The Centre for Allergy Research, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Caffery B, Heynen ML, Joyce E, Jones L, Ritter R, Senchyna M. MUC1 expression in Sjogren's syndrome, KCS, and control subjects. Mol Vis 2010; 16:1720-7. [PMID: 20806091 PMCID: PMC2927371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 08/19/2010] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To quantify and compare human mucin 1 (MUC1) protein and mRNA expression in tears and conjunctival epithelial cells collected from Sjogren's syndrome (SS), non-Sjogren's keratoconjunctivitus sicca (KCS) and non-dry eyed (NDE) control subjects. METHODS Seventy-six subjects were recruited for this study: 25 SS (confirmed via American-European Consensus Criteria 2002), 25 KCS (confirmed by symptoms and Schirmer scores < or = 10 mm) and 26 NDE. Tears were collected using an eye-wash technique. Impression cytology was used to gather protein and mRNA from conjunctival epithelial cells. Soluble and membrane bound MUC1 were quantified via western blotting and MUC1 mRNA was quantified by real time qPCR. RESULTS The SS group demonstrated significantly higher concentrations of soluble MUC1 (0.12 +/- 0.11 [SS]; 0.013 +/- 0.02 [KCS; p=0.001]; 0.0023 +/- 0.0024 [NDE; p<0.001]) and MUC1 mRNA (3.18 +/- 1.44 [SS]; 1.79 +/- 1.18 [KCS; p<0.05]; 1.60 +/- 0.74 [NDE; p<0.05]) compared to both KCS and NDE groups. Soluble MUC1 expression was also higher in the KCS group compared to the NDE group (p=0.02), where as MUC1 mRNA expression was similar in both KCS and NDE groups. Membrane bound MUC1 expression differed only between the SS and NDE groups (0.005 +/- -0.003 [SS]; 0.003 +/- 0.002 [NDE; p=0.002]). CONCLUSIONS These results demonstrate that SS subjects express greater quantities of MUC1 protein and mRNA compared to both KCS and control subjects. Increased soluble MUC1 expression was also found in KCS subjects compared to controls. Membrane bound MUC1 was present in higher concentration in SS versus NDE only. These significant changes in MUC1 expression may represent compensatory or protective responses to chronic insult to the ocular surface.
Collapse
Affiliation(s)
- Barbary Caffery
- Center for Contact Lens Research, School of Optometry, University of Waterloo, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
7
|
Caffery B, Joyce E, Heynen ML, Jones L, Ritter R, Gamache DA, Senchyna M. MUC16 expression in Sjogren's syndrome, KCS, and control subjects. Mol Vis 2008; 14:2547-55. [PMID: 19122828 PMCID: PMC2613075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Accepted: 12/22/2008] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate the expression of MUC16 protein in tears and conjunctival cell membranes and MUC16 mRNA in conjunctival cells of Sjogren's syndrome (SS), keratoconjunctivitus sicca (KCS) and non-dry eyed (NDE) subjects. The relationship of tear flow and soluble MUC16 concentration was also measured. METHODS Seventy-six subjects were recruited for this study: 25 SS (confirmed via American-European Consensus Criteria 2002), 25 KCS (confirmed by symptoms and Schirmer scores < or =10 mm) and 26 NDE. Tear flow was measured by the Schirmer test without anesthesia for 5 min. Tears were collected using an eye-wash technique. Protein and mRNA were isolated from conjunctival epithelial cells collected via impression cytology. Soluble and membrane bound MUC16 were quantified via western blotting and MUC16 mRNA was quantified by real time qPCR. RESULTS The SS group demonstrated significantly higher concentrations of soluble MUC16 (7.28 [SS] +/- 3.97 versus 3.35 [KCS] +/- 4.54 [p=0.004] and versus 1.61 [NDE] +/- 1.22 [p<0.001]) and MUC16 mRNA (4.66 [SS] +/- 5.06 versus 1.84 [KCS] +/- 2.26 [p=0.01] and 1.52 [NDE] +/- 1.04 [p=0.003]) compared to both KCS and NDE groups, respectively. No differences in soluble MUC16 or MUC16 mRNA were found between the KCS and NDE groups. Membrane bound MUC16 was similar in all three groups. No significant correlation was found between mean Schirmer values and any measure of MUC16 expression. CONCLUSIONS These results demonstrate that SS subjects display a significant increase in both soluble MUC16 and MUC16 mRNA concentrations compared to other forms of aqueous deficient dry eye and non dry-eyed individuals. There was no correlation between tear flow and soluble MUC16 concentration.
Collapse
Affiliation(s)
- Barbara Caffery
- Center for Contact Lens Research, School of Optometry, University of Waterloo, Ontario, Canada
| | - Elizabeth Joyce
- Center for Contact Lens Research, School of Optometry, University of Waterloo, Ontario, Canada
| | - Miriam L. Heynen
- Center for Contact Lens Research, School of Optometry, University of Waterloo, Ontario, Canada
| | - Lyndon Jones
- Center for Contact Lens Research, School of Optometry, University of Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
8
|
Boat TF, Cheng PI, Klinger JD, Liedtke CM, Tandler B. Proteinases release mucin from airways goblet cells. CIBA FOUNDATION SYMPOSIUM 2008; 109:72-88. [PMID: 6394245 DOI: 10.1002/9780470720905.ch6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mucin-release effect of proteinases on airways epithelium was assessed in vitro. Using explants of rabbit tracheal mucosa-submucosa we determined that elastase and alkaline proteinase from Pseudomonas aeruginosa, pancreatic trypsin and elastase and the microbial proteinases subtilisin, thermolysin and pronase, all stimulate mucin release from goblet cells. On the other hand Streptomyces caespitosus proteinase pancreatic chymotrypsin and collagenase fail to trigger mucin release. Bovine trachea and human nasal polyp epithelium also release mucins in response to proteinases. Mucin release activity is dependent on proteolytic activity of enzymes which have a fairly broad, but generally similar, substrate specificity. The cellular mechanism of action is not known. We propose that mucin secretion in response to proteinases represents a useful defence mechanism but also forms the basis for hypersecretory states and airways obstruction in chronic endobronchial inflammatory states.
Collapse
|
9
|
Andersson CK, Claesson HE, Rydell-Törmänen K, Swedmark S, Hällgren A, Erjefält JS. Mice lacking 12/15-lipoxygenase have attenuated airway allergic inflammation and remodeling. Am J Respir Cell Mol Biol 2008; 39:648-56. [PMID: 18511709 DOI: 10.1165/rcmb.2007-0443oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arachidonate 15-lipoxygenase (LO)-1 has been implicated in allergic inflammation and asthma. The overall effect of 15-LO in allergic inflammation in vivo is, however, unclear. This study investigates systemic allergen sensitization and local allergic airway inflammation and remodeling in mice lacking the murine 12/15-LO, the ortholog to human 15-LO-1. Upon systemic sensitization with intraperitoneal ovalbumin, 12/15-LO-/- mice produced elevated levels of allergen-specific immunoglobulin E compared with wild-type (Wt) controls. However, when challenged with repeated aerosolized allergen, sensitized 12/15-LO-/- mice had an impaired development of airway allergic inflammation compared with Wt controls, as indicated by reduced bronchoalveolar lavage fluid leukocytes (eosinophils, lymphocytes, macrophages) and Th2 cytokines (IL-4, IL-5, IL-13), as well as tissue eosinophils. Allergen-induced airway epithelial proliferation was also significantly attenuated in 12/15-LO-/- mice, whereas goblet cell hyperplasia was unaffected. However, 12/15-LO-/- mice had significantly reduced luminal mucus secretions compared with Wt controls. The repeated allergen challenges resulted in a dramatic increase of alpha-smooth muscle actin-positive alveolar cells in the peripheral airways, a phenomenon that was significantly less developed in 12/15-LO-/- mice. In conclusion, our data suggest that 12/15-LO-/- mice, although having a fully developed systemic sensitization, did not establish a fully developed allergic airway inflammation and associated manifestations of central and peripheral airway remodeling. These data suggest that 12/15-LO-derived metabolites play an important pathophysiologic role in allergen-induced inflammation and remodeling. Hence, pharmacologic targeting of the human 15-LO-1 may represent an attractive therapeutic strategy to control inflammation and remodeling in asthma.
Collapse
|
10
|
Gipson IK, Hori Y, Argüeso P. Character of ocular surface mucins and their alteration in dry eye disease. Ocul Surf 2007; 2:131-48. [PMID: 17216084 DOI: 10.1016/s1542-0124(12)70149-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
At the ocular surface, three types of mucins are present. The large gel-forming mucin MUC5AC is expressed by conjunctival goblet cells. Some cells of the lacrimal gland acini express the small soluble mucin MUC7. The corneal and conjunctival epithelia express the membrane-associated mucins MUCs 1, 4, and 16. With the characterization of the mucin gene repertoire of the ocular surface epithelia, studies of the function of specific mucins, their gene regulation, and their alteration in ocular surface disease have begun. Current information suggests that all the mucins are hydrophilic and play a role in maintenance of water on the surface of the eye. The large secreted mucins represent the "janitorial service" that moves over the surface of the eye to wrap up and remove debris. The membrane-associated mucins form the glycocalyx, which provides a continuous barrier across the surface of the eye that prevents pathogen penetrance and has signaling capabilities that influence epithelial activity. Factors regulating mucin gene expression include retinoic acid, serum, and dexamethasone. Alteration in both secreted and membrane-associated mucins occur in drying ocular surface diseases. In Sjogren syndrome, MUC5AC expression is reduced, and in non-Sjogren dry eye, glycosylation of MUC16 appears to be altered. The pattern of expression of enzymes that glycosylate mucins is altered in ocular cicatricial pemphigoid. Therapies being evaluated for dry eye, including cyclosporine A, P2Y2 agonists, gefarnate, 15-(S)-HETE, and corticosteroids, may be efficacious due to their effect on mucin gene expression and secretion.
Collapse
Affiliation(s)
- Ilene K Gipson
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
11
|
Hallstrand TS, Debley JS, Farin FM, Henderson WR. Role of MUC5AC in the pathogenesis of exercise-induced bronchoconstriction. J Allergy Clin Immunol 2007; 119:1092-8. [PMID: 17321575 PMCID: PMC2049009 DOI: 10.1016/j.jaci.2007.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/03/2007] [Accepted: 01/05/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND The pathogenesis of exercise-induced bronchoconstriction (EIB) involves the release of mediators from several airway cells in response to exercise challenge, but the mechanism leading to airflow obstruction during EIB is incompletely understood. OBJECTIVE To evaluate the role of secreted mucin in the pathogenesis of EIB. METHODS Induced sputum was collected at baseline and 30 minutes after exercise challenge in patients with asthma with EIB. The expression of gel-forming mucins and epidermal growth factor receptor ligands were assessed by quantitative polymerase chain reaction. Secreted mucin 5AC (MUC5AC), the eicosanoids cysteinyl leukotrienes (cysLTs) and 15S-hydroxyeicosatetraenoic acid (15S-HETE), and tachykinins neurokinin A (NKA) and substance P (SP) were measured in induced sputum supernatant. RESULTS Among the gel-forming mucins, MUC5AC was expressed at the highest level. The gene expression of MUC5AC increased after exercise challenge compared with baseline and was associated with EIB severity by regression analysis. The relative levels of MUC5AC in induced sputum increased from a geometric mean of 9.5 at baseline to 18.4 postexercise challenge. Associations between the levels of MUC5AC and cysLTs and between the levels of cysLTs and NKA postexercise challenge were identified by regression analysis. CONCLUSIONS These data indicate that (1) the predominant gel-forming mucin expressed in induced sputum of patients with asthma with EIB is MUC5AC; (2) an increase in MUC5AC gene expression and release of MUC5AC protein occurs after exercise challenge; and (3) MUC5AC release may occur through the cysLT-associated activation of sensory airway nerves.
Collapse
Affiliation(s)
- Teal S Hallstrand
- Department of Medicine, University of Washington, Seattle WA 98195-6522, USA.
| | | | | | | |
Collapse
|
12
|
Hauber HP, Foley SC, Hamid Q. Mucin overproduction in chronic inflammatory lung disease. Can Respir J 2007; 13:327-35. [PMID: 16983448 PMCID: PMC2683320 DOI: 10.1155/2006/901417] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mucus overproduction and hypersecretion are commonly observed in chronic inflammatory lung disease. Mucins are gel-forming glycoproteins that can be stimulated by a variety of mediators. The present review addresses the mechanisms involved in the upregulation of secreted mucins. Mucin induction by neutrophil elastase, bacteria, cytokines, growth factors, smoke and cystic fibrosis transmembrane conductance regulator malfunction are also discussed.
Collapse
Affiliation(s)
- Hans-Peter Hauber
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec
- Department of Medicine, Research Center Borstel, Borstel, Germany
| | - Susan C Foley
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec
| | - Qutayba Hamid
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec
- Correspondence: Dr Qutayba Hamid, Meakins-Christie Laboratories, 3626 St Urbain Street, Montreal, Quebec H2X 2P2. Telephone 514-398-3864 ext 00143, fax 514-398-7483, e-mail
| |
Collapse
|
13
|
Schmelzer KR, Wheelock ÅM, Dettmer K, Morin D, Hammock BD. The role of inflammatory mediators in the synergistic toxicity of ozone and 1-nitronaphthalene in rat airways. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1354-60. [PMID: 16966088 PMCID: PMC1570074 DOI: 10.1289/ehp.8373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ambient air is polluted with a mixture of pulmonary toxicants. Previous studies indicate that prior exposure to atmospheric oxidant pollutants such as ozone may significantly alter the response to other pollutants, such as 1-nitronaphthalene (1-NN) . 1-NN, a component of the particulate exhaust from diesel engines, has been found at low concentrations in ambient air. Using a metabolomic approach, we investigated inflammatory responses in arachidonic and linoleic acid biochemical cascades (35 metabolites) and the expression of 19 cytokines/chemokines at three time points (2, 6, and 24 hr) following exposure to 1-NN with and without prior long-term O3 exposure. Long-term O3 exposure is associated with biochemical changes that have been shown to render the lung resistant to further O3 exposure. This study indicates that airways of O3-tolerant rats exhibited a low level of chronic inflammation, rendering the lungs more susceptible to other environmental pollutants such as 1-NN. Specifically, a 12.5-mg/kg dose of 1-NN to O3-tolerant rats produced significantly higher levels of cysteinyl-leukotrienes in bronchiolar lavage fluid even when compared to a 50-mg/kg dose of 1-NN in rats exposed to filtered air. Collectively, these results indicate that the combination of exposures as encountered in polluted ambient air are considerably more injurious to the lung than would be anticipated from previous studies employing single exposures. The observed synergism between O3 and 1-NN may be causally related to a shift in a T-helper 1 to T-helper 2 immune response in the airways.
Collapse
Affiliation(s)
| | - Åsa M. Wheelock
- Department of Molecular Biosciences-School of Veterinary Medicine, University of California, Davis, California, USA
| | | | - Dexter Morin
- Department of Molecular Biosciences-School of Veterinary Medicine, University of California, Davis, California, USA
| | - Bruce D. Hammock
- Department of Entomology
- Cancer Research Center and
- Address correspondence to B.D. Hammock, Department of Entomology, One Shields Ave., University of California Davis, CA 95616 USA. Telephone: (530) 752-7519. Fax: (530) 752-1537. E-mail:
| |
Collapse
|
14
|
Damera G, Xia B, Sachdev GP. IL-4 induced MUC4 enhancement in respiratory epithelial cells in vitro is mediated through JAK-3 selective signaling. Respir Res 2006; 7:39. [PMID: 16551361 PMCID: PMC1435893 DOI: 10.1186/1465-9921-7-39] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Accepted: 03/21/2006] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Recent studies have identified MUC4 mucin as a ligand for activation of ErbB2, a receptor tyrosine kinase that modulates epithelial cell proliferation following epithelial damage in airways of asthmatics. In this study, we investigated the potential role of IL-4, one of the Th2 inflammatory cytokines persistent in asthmatic airways, in regulating MUC4 expression using a cell line NCI-H650. METHODS Real time PCR analysis was performed to determine concentration and time dependent effects of IL-4 upon MUC4 expression. Nuclear run on experiments were carried out to explore potential transcriptional modulation. Western blotting experiments using a monoclonal antibody specific to ASGP-2 domain of MUC4 were performed to analyze MUC4 glycoprotein levels in plasma membrane fractions. To analyze potential signal transduction cascades, IL-4 treated confluent cultures were co-incubated, separately with a pan-JAK inhibitor, a JAK-3 selective inhibitor or a MEK-1, 2 (MAPK) inhibitor at various concentrations before MUC4 transcript analysis. Corresponding transcription factor activation was tested by western blotting using a monoclonal p-STAT-6 antibody. RESULTS MUC4 levels increased in a concentration and time specific fashion reaching peak expression at 2.5 ng/ml and 8 h. Nuclear run on experiments revealed transcriptional enhancement. Corresponding increases in MUC4 glycoprotein levels were observed in plasma membrane fractions. Pan-JAK inhibitor revealed marked reduction in IL-4 stimulated MUC4 levels and JAK3 selective inhibitor down-regulated MUC4 mRNA expression in a concentration-dependent fashion. In accordance with the above observations, STAT-6 activation was detected within 5 minutes of IL-4 stimulus. No effect in MUC4 levels was observed on using a MAPK inhibitor. CONCLUSION These observations signify a potential role for IL-4 in MUC4 up-regulation in airway epithelia.
Collapse
Affiliation(s)
- Gautam Damera
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK – 73190, USA
| | - Baoyun Xia
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK – 73190, USA
| | - Goverdhan P Sachdev
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK – 73190, USA
- The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK – 73104, USA
| |
Collapse
|
15
|
Hori Y, Spurr-Michaud SJ, Russo CL, Argüeso P, Gipson IK. Effect of retinoic acid on gene expression in human conjunctival epithelium: secretory phospholipase A2 mediates retinoic acid induction of MUC16. Invest Ophthalmol Vis Sci 2005; 46:4050-61. [PMID: 16249480 PMCID: PMC1473963 DOI: 10.1167/iovs.05-0627] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE How vitamin A contributes to the maintenance of the wet-surfaced phenotype at the ocular surface is not well understood. This study sought to identify vitamin A-responsive genes in ocular surface epithelia using gene microarray analysis of cultures of a human conjunctival epithelial (HCjE) cell line grown with all-trans-retinoic acid (RA). The analysis showed that secretory phospholipase A(2) group IIA (sPLA(2)-IIA) was the gene most upregulated by RA, followed by the membrane-associated mucin MUC16 at a later time point. Since eicosanoids, the product of arachidonic acid generated by the PLA(2) family, have been shown to increase mucin production, this study sought to determine whether sPLA(2) mediates the RA induction of MUC16. METHODS HCjE cells were cultured with or without RA for 3, 6, 24, and 48 hours. Complementary RNA prepared from RNA of the HCjE cells was hybridized to human gene chips and analyzed using commercial software. Microarray data on mucin expression were validated by real-time PCR. To investigate whether sPLA(2) is associated with RA-induced MUC16 upregulation, HCjE cells were incubated with RA and the broad-spectrum PLA(2) inhibitor aristolochic acid (ArA) or the specific sPLA(2)-IIA inhibitor LY315920, followed by analysis of MUC16 mRNA and protein by real-time PCR and Western blot analysis. RESULTS After RA addition, 28 transcripts were upregulated and 6 downregulated by more than twofold (P < 0.01) at both 3 and 6 hours (early phase). Eighty gene transcripts were upregulated and 45 downregulated at both 24 and 48 hours (late phase). Group IIA sPLA(2), significantly upregulated by 24 hours, and MUC16 were the most upregulated RNAs by RA at 48 hours. sPLA(2) upregulation by RA was confirmed by Western blot analysis. When HCjE cells were incubated with RA plus ArA or specific inhibitor of sPLA(2)-IIA, LY315920, the RA-induced MUC16 mRNA was significantly reduced (P < 0.01). CONCLUSIONS The RA-associated upregulation of membrane-associated mucin MUC16 at late phase appears to be through sPLA(2)-IIA. Upregulation of this hydrophilic membrane-associated mucin may be one of the important mechanisms by which vitamin A facilitates maintenance of the wet-surfaced phenotype on the ocular surface.
Collapse
Affiliation(s)
- Yuichi Hori
- Schepens Eye Research Institute and the Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
16
|
Subbarayan V, Xu XC, Kim J, Yang P, Hoque A, Sabichi AL, Llansa N, Mendoza G, Logothetis CJ, Newman RA, Lippman SM, Menter DG. Inverse relationship between 15-lipoxygenase-2 and PPAR-gamma gene expression in normal epithelia compared with tumor epithelia. Neoplasia 2005; 7:280-93. [PMID: 15799828 PMCID: PMC1501140 DOI: 10.1593/neo.04457] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
15-Lipoxygenase-2 (15-LOX-2) synthesizes 15-S-hydroxyeicosatetraenoic acid (15-S-HETE), an endogenous ligand for the nuclear receptor, peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Several studies have described an inverse relationship between 15-LOX-2 and PPAR-gamma expression in normal versus tumor samples. To systematically determine if this is a ubiquitous phenomenon, we used a variety of epithelial and nonepithelial cells and some tissues to further evaluate the extent of this inverse relationship. The levels of mRNA or protein were measured by reverse transcriptase polymerase chain reaction or Western gray level intensity, whereas distribution was determined by in situ hybridization or immunofluorescence. 15-S-HETE was measured by liquid chromatography/tandem mass spectrometry. Normal epithelial cells/samples generally expressed high levels of 15-LOX-2 along with the enzyme product 15-S-HETE, but both levels were reduced in cancer cells/samples. In contrast, most cancer cells expressed high levels of PPAR-gamma mRNA and protein, which were absent from normal epithelial cells. Overall, the inverse relationship between these two genes was primarily restricted to epithelial samples. Forced expression of PPAR-gamma reduced 15-LOX-2 protein levels in normal cells, whereas forced expression of 15-LOX-2 in tumor cells suppressed PPAR-gamma protein levels. These results suggest that feedback mechanisms may contribute to the loss of 15-LOX-2 pathway components, which coincide with an increase in PPAR-gamma in many epithelial cancers.
Collapse
Affiliation(s)
- Vemparala Subbarayan
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Juergens UR, Engelen T, Racké K, Stöber M, Gillissen A, Vetter H. Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. Pulm Pharmacol Ther 2005; 17:281-7. [PMID: 15477123 DOI: 10.1016/j.pupt.2004.06.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 06/06/2004] [Accepted: 06/21/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND The therapeutic value of secretolytic agents in COPD and asthma is still disputed. For this reason, in a preclinical study we aimed to test the potential anti-inflammatory efficacy of 1,8-cineol (eucalyptol) in inhibiting polyclonal stimulated cytokine production by human unselected lymphocytes and LPS-stimulated monocytes. METHODS Cytokine production was determined following 20 h of incubation cells with 1,8-cineol simultaneously with the stimuli in culture supernatants by enzyme immunoassay. RESULTS Therapeutic concentrations of 1,8-cineol (1.5 microg/ml=10(-5)M) inhibited significantly (n=13-19, p=0.0001) cytokine production in lymphocytes of TNF-alpha > IL-1beta> IL-4> IL-5 by 92, 84, 70, and 65%, respectively. Cytokine production in monocytes of TNF-alpha > IL-1beta> IL-6> IL-8 was also significantly (n=7-16, p<0.001) inhibited by 99, 84, 76, and 65%, respectively. In the presence of 1,8-cineol (0.15 microg/ml=10(-6)M) production of TNF-alpha>IL-1beta by monocytes and of IL-1beta> TNF-alpha by lymph-ocytes was significantly inhibited by 77, 61 and by 36, 16%, respectively. 1,8-cineol (10(-6)M) had a larger impact on TNF-alpha and IL-1beta-production in monocytes compared to lymphocytes (p<0.03) and similar effects (p>0.59) at therapeutically relevant concentrations of 1,8-Cineol (10(-5)M). CONCLUSION These results characterize 1,8-cineol as strong inhibitor of TNF-alpha and IL-1beta and suggest smaller effects on chemotactic cytokines. This is increasing evidence for the role of 1,8-cineol to control airway mucus hypersecretion by cytokine inhibition, suggesting long-term treatment to reduce exacerbations in asthma, sinusitis and COPD.
Collapse
Affiliation(s)
- Uwe R Juergens
- Department of Pneumology, Allergology and Sleep Medicine, Medical Outpatient Clinic, Bonn University Hospital, Wilhelmestrasse 35-37, Bonn D-53111, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Gray T, Nettesheim P, Loftin C, Koo JS, Bonner J, Peddada S, Langenbach R. Interleukin-1beta-induced mucin production in human airway epithelium is mediated by cyclooxygenase-2, prostaglandin E2 receptors, and cyclic AMP-protein kinase A signaling. Mol Pharmacol 2004; 66:337-46. [PMID: 15266025 DOI: 10.1124/mol.66.2.337] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We reported recently that interleukin (IL)-1beta exposure resulted in a prolonged increase in MUC5AC mucin production in normal, well differentiated, human tracheobronchial epithelial (NHTBE) cell cultures, without significantly increasing MUC5AC mRNA (Am J Physiol 286:L320-L330, 2004). The goal of the present study was to elucidate the signaling pathways involved in IL-1beta-induced MUC5AC production. We found that IL-1beta increased cyclooxygenase-2 (COX-2) mRNA expression and prostaglandin (PG) E(2) production and that the COX-2 inhibitor celecoxib suppressed IL-1beta-induced MUC5AC production. Addition of exogenous PGE(2) to NHTBE cultures also increased MUC5AC production and IL-1beta-induced Muc5ac hypersecretion in tracheas from wild-type but not from COX-2-/- mice. NHTBE cells expressed all four E-prostanoid (EP) receptor subtypes and misoprostol, an EP2 and EP4 agonist, increased MUC5AC production, whereas sulprostone, an EP1 and EP3 agonist, did not. Furthermore, specific protein kinase A (PKA) inhibitors blocked IL-1beta and PGE(2)-induced MUC5AC production. However, neither inhibition of epidermal growth factor receptor (EGFR) activation with the tyrosine kinase inhibitor 4-(3-chloroanilino)-6,7-dimethoxyquinazoline HCl (AG-1478) or EGFR blocking antibody nor inhibition of extracellular signal-regulated kinase/P-38 mitogen activated protein kinases with specific inhibitors blocked IL-1beta stimulation of MUC5AC mucin production. We also observed that tumor necrosis factor (TNF)-alpha, platelet activating factor (PAF), and lipopolysaccharide (LPS) induced COX-2 and increased MUC5AC production that was blocked by celecoxib, suggesting a common signaling pathway of inflammatory mediator-induced MUC5AC production in NHTBE cells. We conclude that the induction of MUC5AC by IL-1beta, TNF-alpha, PAF, and LPS involves COX-2- generated PGE(2), activation of EP2 and/or EP4 receptor(s), and cAMP-PKA-mediated signaling.
Collapse
MESH Headings
- Bronchi/cytology
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclooxygenase 2
- Dinoprostone/metabolism
- Dose-Response Relationship, Drug
- Epithelium/drug effects
- Epithelium/metabolism
- ErbB Receptors/metabolism
- Humans
- Interleukin-1/pharmacology
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Lipopolysaccharides/pharmacology
- Membrane Proteins
- Mucins/biosynthesis
- Prostaglandin-Endoperoxide Synthases/genetics
- Prostaglandin-Endoperoxide Synthases/metabolism
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP3 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Signal Transduction/physiology
- Trachea/drug effects
- Trachea/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Thomas Gray
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Azar RG, Edelhauser HF. Evaluation of the effects of 15(S)-HETE on corneal epithelial cells: an electrophysiological and cytochemical study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:329-33. [PMID: 12613929 DOI: 10.1007/978-1-4615-0717-8_47] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Ramzy G Azar
- Emory Eye Center, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
20
|
Jumblatt JE, Cunningham L, Jumblatt MM. Effects of 15(S)-HETE on human conjunctival mucin secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:323-7. [PMID: 12613928 DOI: 10.1007/978-1-4615-0717-8_46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- James E Jumblatt
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | | | | |
Collapse
|
21
|
Gamache DA, Wei ZY, Weimer LK, Spellman JM, Yanni JM. Preservation of corneal integrity by the mucin secretagogue 15(S)-HETE in a rabbit model of desiccation-induced dry eye. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:335-40. [PMID: 12613930 DOI: 10.1007/978-1-4615-0717-8_48] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Daniel A Gamache
- Pharmaceutical Products Research, Alcon Research, Ltd., Fort Worth, Texas, USA
| | | | | | | | | |
Collapse
|
22
|
Juergens UR, Dethlefsen U, Steinkamp G, Gillissen A, Repges R, Vetter H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir Med 2003; 97:250-6. [PMID: 12645832 DOI: 10.1053/rmed.2003.1432] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Airway hypersecretion is mediated by increased release of inflammatory mediators and can be improved by inhibition of mediator production. We have recently reported that 1.8-cineol (eucalyptol) which is known as the major monoterpene of eucalyptus oil suppressed arachidonic acid metabolism and cytokine production in human monocytes. Therefore, the aim of this study was to evaluate the anti-inflammatory efficacy of 1.8-cineol by determining its prednisolone equivalent potency in patients with severe asthma. Thirty-two patients with steroid-dependent bronchial asthma were enrolled in a double-blind, placebo-controlled trial. After determining the effective oral steroid dosage during a 2 month run-in phase, subjects were randomly allocated to receive either 200 mg 1.8-cineol t. i.d. or placebo in small gut soluble capsules for 12 weeks. Oral glucocorticosteroids were reduced by 2.5 mg increments every 3 weeks. The primary end point of this investigation was to establish the oral glucocorticosteroid-sparing capacity of 1.8-cineol in severe asthma. Reductions in daily prednisolone dosage of 36% with active treatment (range 2.5-10 mg, mean: 3.75 mg) vs. a decrease of only 7% (2.5-5 mg, mean: 0.91 mg) in the placebo group (P = 0.006) were tolerated. Twelve of 16 cineol vs. four out of 16 placebo patients achieved a reduction of oral steroids (P = 0.012). Long-term systemic therapy with 1.8-cineol has asignificant steroid-saving effect in steroid-depending asthma. This is the first evidence suggesting an anti-inflammatory activity of the monoterpene 1.8-cineol in asthma and a new rational for its use as mucolytic agent in upper and lower airway diseases.
Collapse
Affiliation(s)
- U R Juergens
- Department of Pneumology, Medical Outpatient Clinic, Bonn University Hospital, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Zhu J, Kilty I, Granger H, Gamble E, Qiu YS, Hattotuwa K, Elston W, Liu WL, Oliva A, Pauwels RA, Kips JC, De Rose V, Barnes N, Yeadon M, Jenkinson S, Jeffery PK. Gene expression and immunolocalization of 15-lipoxygenase isozymes in the airway mucosa of smokers with chronic bronchitis. Am J Respir Cell Mol Biol 2002; 27:666-77. [PMID: 12444026 DOI: 10.1165/rcmb.4820] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
15-lipoxygenase (15-LO) has been implicated in the inflammation of chronic bronchitis (CB), but it is unclear which of its isoforms, 15-LOa or 15-LOb, is primarily involved. To detect 15-LO gene (mRNA) and protein expression, we have applied in situ hybridization (ISH) and immunohistochemistry (IHC), respectively, to bronchial biopsies obtained from 7 healthy nonsmokers (HNS), 5 healthy smokers (HS), and 8 smokers with CB, and additionally include the airways of lungs resected from 11 asymptomatic smokers (AS) and 11 smokers with CB. Compared with HNS, biopsies in CB demonstrated increased numbers of 15-LOa mRNA+ cells (median: HNS = 31.3/mm(2) versus CB = 84.9/mm(2), P < 0.01) and protein+ cells (HNS = 2.9/mm(2) versus CB = 32.1/mm(2), P < 0.01). The HS group also showed a significant increase in protein+ cells (HNS = 2.9/mm(2) versus HS = 14/mm(2), P < 0.05). In the resected airways, 15-LOa protein+ cells in the submucosal glands of the CB group were more numerous than in the AS group (AS = 33/mm(2) versus CB = 208/mm(2); P < 0.001). 15-LOa mRNA+ and protein+ cells consistently outnumbered 15-LOb by approximately 7- and 5-fold, respectively (P < 0.01). Quantitative reverse transcriptase polymerase chain reaction of complementary biopsies confirmed the increased levels of 15-LOa in CB compared with that in either HNS or HS (P < 0.05). There was no difference between the subject groups with respect to 15-LOb expression. The numbers of cells expressing mRNA for 15-LOa in CB showed a positive association with those expressing interleukin (IL)-4 mRNA (r = 0.80; P < 0.01). We conclude that the upregulation of 15-LO activity in the airways of HS and of smokers with CB primarily involves the 15-LOa isoform: the functional consequences of its association the upregulation of IL-4 in chronic bronchitis requires further study.
Collapse
Affiliation(s)
- Jie Zhu
- Lung Pathology, Department of Gene Therapy, Imperial College at the Royal Brompton Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chanez P, Bonnans C, Chavis C, Vachier I. 15-lipoxygenase: a Janus enzyme? Am J Respir Cell Mol Biol 2002; 27:655-8. [PMID: 12444024 DOI: 10.1165/rcmb.f253] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Pascal Chanez
- Clinique des Maladies Respiratoires, INSERM U454-IFR 3, CHU-Montpellier, France.
| | | | | | | |
Collapse
|
25
|
Jumblatt JE, Cunningham LT, Li Y, Jumblatt MM. Characterization of human ocular mucin secretion mediated by 15(S)-HETE. Cornea 2002; 21:818-24. [PMID: 12410044 DOI: 10.1097/00003226-200211000-00018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The eicosanoid 15-(S)-hydroxy-5,8,11,13-eicosatetraenoic acid [15(S)-HETE] is reported to stimulate mucin production in both airway and ocular surface epithelia. The current study was undertaken to evaluate the effects of 15(S)-HETE on secretion of specific ocular mucins by human conjunctiva. METHODS Segments of human bulbar conjunctival tissue were incubated with 15(S)-HETE (1-1000 nM) for 30 minutes at 37 degrees C. Secretion of human ocular mucins MUC1, MUC2, MUC4, and MUC5AC into the incubation media was measured by dot-blot immunoassay using antibodies directed to unique mucin polypeptide epitopes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting were used to verify the specificity of anti-mucin antibody binding and to investigate the presence of MUC1 mucin in human tears. RESULTS 15(S)-HETE (10(-8)-10(-6) M) stimulated secretion of conjunctival mucins in a concentration-dependent manner. Significant increases in total mucin secretion were observed at 10(-7) M 15(S)-HETE with a maximum response (>50% increase above controls) at 10(-6) M. Results of immunoassays showed that 15(S)-HETE differentially stimulates secretion of MUC1 mucin with no detectable effects on MUC2, MUC4, or MUC5AC release. Western analysis of tear samples from human volunteers indicated that MUC1 is a component of the preocular tear film. CONCLUSIONS The results demonstrate that 15(S)-HETE is a selective secretogogue for MUC1 in isolated human conjunctival tissue. Although the biochemical mechanism(s) and cellular origins of MUC1 secretion remain to be established, the ubiquitous expression of MUC1 in corneal and conjunctival epithelia and its presence in human tears suggest that secreted MUC1 may contribute to the mucin layer that coats and protects the ocular surface.
Collapse
Affiliation(s)
- James E Jumblatt
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | |
Collapse
|
26
|
Gamache DA, Wei ZY, Weimer LK, Miller ST, Spellman JM, Yanni JM. Corneal protection by the ocular mucin secretagogue 15(S)-HETE in a rabbit model of desiccation-induced corneal defect. J Ocul Pharmacol Ther 2002; 18:349-61. [PMID: 12222765 DOI: 10.1089/10807680260218515] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mucin secretagogue 15(S)-HETE was found to stimulate glycoprotein secretion in human ocular tissue at submicromolar concentrations in the present studies. Therefore, the ability of topically applied 15(S)-HETE to preserve corneal integrity was investigated in a rabbit model of desiccation-induced corneal defect. Desiccation-induced corneal injury was elicited in anesthetized rabbits by maintaining one eye open with a speculum. Corneal staining and corneal thickness changes were determined immediately following desiccation. 15(S)-HETE dose-dependently reduced corneal damage (ED50 = 120 nM) during a two-hour desiccation. Corneal staining was unchanged relative to control using a 1 microM dose of 15(S)-HETE. Through four hours of desiccation, 15(S)-HETE (500 nM) decreased corneal staining by 71% and completely prevented corneal thinning. 15(S)-HETE (1 microM) was significantly more efficacious than an artificial tear product over the 4-hour desiccation period. There was no evidence of tachyphylaxis following repeated topical ocular dosing of 15(S)-HETE. These studies demonstrate that 15(S)-HETE stimulates ocular mucin secretion in vitro and effectively protects the cornea in a rabbit model of desiccation-induced injury. The results suggest that the ocular mucin secretagogue 15(S)-HETE may have therapeutic utility in dry eye patients, alleviating corneal injury and restoring corneal integrity.
Collapse
Affiliation(s)
- Daniel A Gamache
- Pharmaceutical Products Research, Alcon Research, Ltd, Fort Worth, TX, 76134, USA
| | | | | | | | | | | |
Collapse
|
27
|
Kuhn H, Walther M, Kuban RJ. Mammalian arachidonate 15-lipoxygenases structure, function, and biological implications. Prostaglandins Other Lipid Mediat 2002; 68-69:263-90. [PMID: 12432923 DOI: 10.1016/s0090-6980(02)00035-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lipoxygenases (LOXs) constitute a heterogeneous family of lipid peroxidizing enzymes capable of oxygenating polyunsaturated fatty acids to their corresponding hydroperoxy derivatives. In mammals, LOXs are classified with respect to their positional specificity of arachidonic acid oxygenation into 5-, 8-, 12-, and 15-LOXs. Arachidonate 15-LOXs may be sub-classified into a reticulocyte-type (type-1) and an epidermis-type (type-2) enzyme. Since the leukocyte-type 12-LOXs are very similar to the reticulocyte-type 15-LOXs, these enzymes are designated 12/15-LOXs. Several LOX isoforms, in particular the reticulocyte-type 15-LOX and the human 5-LOX, are well characterized with respect to their structural and functional properties On the other hand, the biological role of most LOX-isozymes including the reticulocyte-type 15-LOC is far from clear. This review is intended to summarize the recent developments in 15-LOX research with particular emphasis to molecular enzymology and regulation of gene expression. In addition, the major hypotheses on the physiological and patho-physiological roles of 15-LOXs will be discussed briefly.
Collapse
Affiliation(s)
- Hartmut Kuhn
- Institute of Biochemistry, University Clinics Charité, Humboldt University, Berlin, Germany.
| | | | | |
Collapse
|
28
|
Abstract
Mucins, which are complex glycoproteins that provide the viscoelastic properties of mucus that are essential for the protection of the airways, are characterized by a variable-number tandem repeats (VNTR) region that may undergo alternate splicing during transcription. Such transcripts may yield multiple proteins via diverse post-translational modifications involving glycosylation (within each VNTR). Fifteen distinct mucin genes have been identified, with several mapping to chromosomal clusters (ie, 7q22 and 11p15.5), possibly having evolved by gene duplication. The deduced protein sequences can be subdivided into both membrane-associated mucins and secreted mucins. Membrane-associated mucins consist of cytoplasmic, transmembrane, and extracellular domains. The membrane-associated mucins MUC1, MUC4, and MUC11 have been localized to the lung. In addition to VNTRs, secreted mucins possess repeated cysteine-rich D-domains (which are important in polymerization). Secreted mucins that are localized to the lung include MUC2 (in cells with and without secretory granules), MUC5AC (in surface and submucosal mucous cells), MUC5B and MUC8 (in submucosal mucous cells), and MUC7 (in submucosal serous cells). Currently, little is known about the regulation of mucins in COPD patients. Recent studies with acrolein and cigarette smoke have suggested that MUC5AC is inducible (accompanied by epidermal growth factor [EGF] ligand formation and the activation of EGF receptor-dependent pathways), whereas MUC5B is constitutively expressed (increasing through gland enlargement). Similarly, little is known about the genetic determinants that control mucus hypersecretion, but preliminary findings in animal models suggest that intrastrain differences in acrolein-induced mucin formation are amenable to genetic analysis. As our understanding of the functional genomics of mucin biology increases, further clinical targets and therapeutic strategies are likely to emerge.
Collapse
Affiliation(s)
- George D Leikauf
- Molecular Toxicology Division, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
This review describes production and effects of reactive oxygen species (ROS) on airway function. ROS are important in many physiological processes but can also have detrimental effects on airway cells and tissues when produced in high quantities or during the absence of sufficient amounts of anti-oxidants. Therefore, these mediators play a prominent role in the pathogenesis of various inflammatory airway disorders, including asthma. Effects of ROS on airway function in asthma have been studied with isolated airway cells and tissues and with animal models and patients. With the use of inhibitors, transgenic animals and measurements of the release of ROS within the airways, it became clear that oxidative stress contributes to the initiation and worsening of inflammatory respiratory disorders.
Collapse
Affiliation(s)
- P A Henricks
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands.
| | | |
Collapse
|
30
|
Abstract
Several pathologic changes occur in the airway epithelium in asthma, but the relationship between these changes and the initiation and progression of asthma remains poorly understood. One possibility is that changes in the structure and function of the epithelium induced by environmental exposure in genetically susceptible subjects represent primary pivotal events that occur early in the pathogenesis of asthma. Alternatively, these epithelial changes may occur simply as a consequence of pivotal early events in other systems, such as immune deviation in childhood to a helper T cell type 2 (Th2) subtype of CD4(+) cells. Epithelial desquamation in asthma represents a pathologic change that is frequently cited as important for the mechanisms of airway remodeling and airway hyperresponsiveness. Desquamation of the epithelium may not represent true pathology, however, but may instead be an artifact of tissue sampling and handling. Evidence is more firm for other pathologic changes in the epithelium. For example, goblet cell numbers are increased in asthma, leading to increases in stored mucins in the epithelium and in secreted mucins in sputum. The functional consequences of these changes include sputum production and airway narrowing, which lead to asthma exacerbations. Currently available data suggest that an important mechanism for goblet cell hyperplasia in asthma is the action of Th2 cytokines. Improved understanding of epithelial goblet cell abnormalities in asthma will hopefully lead to novel therapies for mucin hypersecretion, which is an important cause of morbidity and mortality.
Collapse
Affiliation(s)
- J V Fahy
- Pulmonary and Critical Care Division, Department of Medicine and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94143, USA.
| |
Collapse
|
31
|
Benayoun L, Letuve S, Druilhe A, Boczkowski J, Dombret MC, Mechighel P, Megret J, Leseche G, Aubier M, Pretolani M. Regulation of peroxisome proliferator-activated receptor gamma expression in human asthmatic airways: relationship with proliferation, apoptosis, and airway remodeling. Am J Respir Crit Care Med 2001; 164:1487-94. [PMID: 11704601 DOI: 10.1164/ajrccm.164.8.2101070] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Airway inflammation and alterations in cellular turnover are histopathologic features of asthma. We show that the expression of peroxisome proliferator-activated receptor gamma (PPAR gamma), a nuclear hormone receptor involved in cell activation, differentiation, proliferation, and/or apoptosis, is augmented in the bronchial submucosa, the airway epithelium, and the smooth muscle of steroid-untreated asthmatics, as compared with control subjects. This is associated with enhanced proliferation and apoptosis of airway epithelial and submucosal cells, as assessed by the immunodetection of the nuclear antigen Ki67, and of the cleaved form of caspase-3, respectively, and with signs of airway remodeling, including thickness of the subepithelial membrane (SBM) and collagen deposition. PPAR gamma expression in the epithelium correlates positively with SBM thickening and collagen deposition, whereas PPAR gamma expressing cells in the submucosa relate both to SBM thickening and to the number of proliferating cells. The intensity of PPAR gamma expression in the bronchial submucosa, the airway epithelium, and the smooth muscle is negatively related to FEV(1) values. Inhaled steroids alone, or associated with oral steroids, downregulate PPAR gamma expression in all the compartments, cell proliferation, SBM thickness, and collagen deposition, whereas they increase apoptotic cell numbers in the epithelium and the submucosa. Our findings have demonstrated that PPAR gamma (1) is a new indicator of airway inflammation and remodeling in asthma; (2) may be involved in extracellular matrix remodeling and submucosal cell proliferation; (3) is a target for steroid therapy.
Collapse
Affiliation(s)
- L Benayoun
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 408, Faculté de Médecine Xavier Bichat, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Profita M, Sala A, Riccobono L, Pace E, Paternò A, Zarini S, Siena L, Mirabella A, Bonsignore G, Vignola AM. 15(S)-HETE modulates LTB(4) production and neutrophil chemotaxis in chronic bronchitis. Am J Physiol Cell Physiol 2000; 279:C1249-58. [PMID: 11003605 DOI: 10.1152/ajpcell.2000.279.4.c1249] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated the levels of 15(S)-hydroxyeicosatetraenoic acid [15(S)-HETE] and the expression of 15-lipoxygenase (15-LO) mRNA in induced sputum obtained from 10 control and 15 chronic bronchitis subjects. 15(S)-HETE was evaluated by reverse phase high-performance liquid chromatography separation followed by specific RIA. 15-LO mRNA expression was determined by primed in situ labeling. The levels of both soluble and cell-associated 15(S)-HETE resulted significantly higher in chronic bronchitis than in control subjects. The percentage of cells expressing 15-LO mRNA was significantly higher in chronic bronchitis than in control subjects (P < 0.01). Double staining for specific cell type markers and 15-LO mRNA showed macrophages and neutrophils positive for 15-LO, whereas similar staining of peripheral blood neutrophils did not show evidence for 15-LO expression, suggesting that expression of 15-LO in neutrophils takes place on migration into the airways. Because 15(S)-HETE inversely correlated with the percentage of neutrophils in sputum of chronic bronchitis subjects, we studied the effect of 15(S)-HETE on leukotriene B(4) (LTB(4)) production in vitro and evaluated the concentration of LTB(4) in induced sputum and the contribution of LTB(4) to the chemotactic activity of induced sputum samples ex vivo. The results obtained indicate that macrophages and neutrophils present within the airways of chronic bronchitis subjects express 15-LO mRNA; increased basal levels of 15(S)-HETE may contribute to modulate, through the inhibition of 5-lipoxygenase metabolites production, neutrophil infiltration and airway inflammation associated with chronic bronchitis.
Collapse
Affiliation(s)
- M Profita
- Istituto di Fisiopatologia Respiratoria, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Profita M, Sala A, Riccobono L, Paternò A, Mirabella A, Bonanno A, Guerrera D, Pace E, Bonsignore G, Bousquet J, Vignola AM. 15-Lipoxygenase expression and 15(S)-hydroxyeicoisatetraenoic acid release and reincorporation in induced sputum of asthmatic subjects. J Allergy Clin Immunol 2000; 105:711-6. [PMID: 10756220 DOI: 10.1067/mai.2000.105122] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recent evidence shows that 15(S)-hydroxy-eicoisatetraenoic acid (15[S]-HETE) can be released and rapidly reincorporated into cellular lipids. These mechanisms exert several immunoregulatory functions that may be relevant in airway inflammation. OBJECTIVE Our purpose was to evaluate the levels of both soluble and cell-associated 15(S)-HETE and to examine 15-lipoxygenase (15-LO) messenger RNA (mRNA) expression in sputum samples obtained from 10 control and 18 asthmatic subjects. METHODS Levels of 15(S)-HETE were measured by reverse-phase HPLC separation followed by RIA in supernatants and in cell membrane-extracted phospholipids after acid hydrolysis. 15-LO mRNA was evaluated by primed in situ hybridization (PRINS). Combined immunocytochemistry and PRINS was used to identify the phenotype of cells bearing 15-LO transcripts. RESULTS Levels of both soluble and cell-associated 15(S)-HETE were higher in asthmatic than in control subjects (P <.0001). The percentage of cells expressing 15-LO mRNA was higher in asthmatic than in control subjects (P <.01). On double staining for specific cell-type markers and 15-LO mRNA, macrophages were the major source for 15-LO. CONCLUSION This study shows that the induced sputum technique allows the evaluation of 15-LO activity and that soluble, cell-associated 15(S)-HETE and 15-LO levels are higher in asthmatic than in control subjects. In addition, this study indicates that, in induced sputum, airway macrophages are the major source of 15(S)-HETE in asthma.
Collapse
Affiliation(s)
- M Profita
- Istituto di Fisiopatologia Respiratoria, Consiglio delle Ricerche, and the Istituto di Medicina Generale e Pneumologia, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Alpert SE, Walenga RW, Mandal A, Bourbon N, Kester M. 15-HETE-substituted diglycerides selectively regulate PKC isotypes in human tracheal epithelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L457-64. [PMID: 10484452 DOI: 10.1152/ajplung.1999.277.3.l457] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human tracheal epithelial (TE) cells selectively incorporate their major lipoxygenase product, 15-hydroxyeicosatetraenoic acid (15-HETE), into the sn-2 position of phosphatidylinositol (PI) (S. E. Alpert and R. W. Walenga. Am. J. Respir. Cell Mol. Biol. 8: 273-281, 1993). Here we investigated whether 15-HETE-PI is a substrate for receptor-mediated generation of 15-HETE-substituted diglycerides (DGs) and whether these 15-HETE-DGs directly activate and/or alter conventional diacylglycerol-induced activation of protein kinase C (PKC) isotypes in these cells. Primary human TE monolayers incubated with 0.5 microM 15-[3H]-HETE or 15-[14C]HETE for 1-2 h were stimulated with 1 nM to 1 microM platelet-activating factor (PAF) for 30 s to 6 min, and the radiolabel in the medium, cellular phospholipids, and neutral lipids was assessed by high-performance liquid and thin-layer chromatography. PAF mobilized radiolabel from PI in a dose-dependent manner (22 +/- 5% decrease after 1 microM PAF) without a concomitant release of free intra- or extracellular 15-HETE. 14C-labeled DGs were present in unstimulated TE monolayers incubated with 15-[14C]HETE, and the major 14C band, identified as sn-1,2-15-[14C]HETE-DG, increased transiently in response to PAF. Western blots of freshly isolated and cultured human TE cells revealed PKC isotypes alpha, betaI, betaII, delta, epsilon, and zeta. In vitro, cell-generated sn-1, 2-15-[14C]HETE-DG selectively activated immunoprecipitated PKC-alpha and inhibited diacylglycerol-induced activation of PKC-alpha, -delta, -betaI, and -betaII. Our observations indicate that 15-HETE-DGs can modulate the activity of PKC isotypes in human TE cells and suggest an intracellular autocrine role for 15-HETE in human airway epithelia.
Collapse
Affiliation(s)
- S E Alpert
- Pediatric Pulmonary Division, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
35
|
Borchers MT, Wesselkamper S, Wert SE, Shapiro SD, Leikauf GD. Monocyte inflammation augments acrolein-induced Muc5ac expression in mouse lung. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L489-97. [PMID: 10484456 DOI: 10.1152/ajplung.1999.277.3.l489] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acrolein, an unsaturated aldehyde found in smog and tobacco smoke, can induce airway hyperreactivity, inflammation, and mucus hypersecretion. To determine whether changes in steady-state mucin gene expression (Muc2 and Muc5ac) are associated with inflammatory cell accumulation and neutrophil elastase activity, FVB/N mice were exposed to acrolein (3.0 parts/million; 6 h/day, 5 days/wk for 3 wk). The levels of Muc2 and Muc5ac mRNA were determined by RT-PCR, and the presence of Muc5ac protein was detected by immunohistochemistry. Total and differential cell counts were determined from bronchoalveolar lavage (BAL) fluid, and neutrophil elastase activity was measured in the BAL fluid supernatant. Lung Muc5ac mRNA was increased on days 12 and 19, and Muc5ac protein was detected in mucous granules and on the surface of the epithelium on day 19. Lung Muc2 mRNA was not detected at measurable levels in either control or exposed mice. Acrolein exposure caused a significant and persistent increase in macrophages and a rapid but transient increase in neutrophils in BAL fluid. Recoverable neutrophil elastase activity was not significantly altered at any time after acrolein exposure. To further examine the role of macrophage accumulation in mucin gene expression, additional strains of mice (including a strain genetically deficient in macrophage metalloelastase) were exposed to acrolein for 3 wk, and Muc5ac mRNA levels and macrophage accumulation were measured. The magnitude of macrophage accumulation coincided with increased Muc5ac mRNA levels, indicating that excessive macrophage accumulation augments acrolein-induced Muc5ac synthesis and secretion after repeated exposure. These findings support a role for chronic monocytic inflammation in the pathogenesis of mucus hypersecretion observed in chronic bronchitis.
Collapse
Affiliation(s)
- M T Borchers
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati 45267, Ohio, USA
| | | | | | | | | |
Collapse
|
36
|
Conrad DJ. The arachidonate 12/15 lipoxygenases. A review of tissue expression and biologic function. Clin Rev Allergy Immunol 1999; 17:71-89. [PMID: 10436860 DOI: 10.1007/bf02737598] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
12/15-Lipoxygenase is a highly regulated lipid-peroxidating enzyme whose expression and arachidonic acid metabolites are implicated in several important inflammatory conditions including airway and glomerular inflammation as well as atherosclerosis. Tissue expression of the original 12/15-lipoxygenase is well characterized in reticulocytes, eosinophils, airway epithelial cells, and monocytes/macrophages and is likely in other cell systems and tissues under specific conditions. The physiologic role of this family of enzymes is dependent on the context in which it is expressed. In general, the arachidonic acid metabolites antagonize inflammatory responses and counteract the proinflammatory effects of the 5-lipoxygenase pathway. However, certain diHETEs are associaled with pro-inflammatory effects, specifically neutrophilic and eosiniphilic chemotaxis. The direct action of these enzymes on complex lipids and cellular membranes also links them to such significant process as reticulocyte maturation, LDL oxidation in atherosclerosis and pulmonary host defenses. The availability of new specific inhibitors and murine lines that lack expression of the homologous 12-lipoxygenase will allow confirmation of many of these effects with in vivo models of inflammation.
Collapse
Affiliation(s)
- D J Conrad
- Department of Medicine, San Diego Veterans Administration Medical Center, University of California, CA, USA
| |
Collapse
|
37
|
Roy P, Kulkarni AP. Co-oxidation of acrylonitrile by soybean lipoxygenase and partially purified human lung lipoxygenase. Xenobiotica 1999; 29:511-31. [PMID: 10379988 DOI: 10.1080/004982599238515] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. Human lung lipoxygenase (HLLO) was partially purified by concanavalin-A (Con-A) affinity chromatography that provided an easy and rapid one-step procedure for the removal (> or = 96%) of haemoglobin from cytosol. 2. HLLO exhibited dioxygenase activity towards arachidonic acid (AA) and linoleic acid (LA). The dioxygenase activity towards LA varied approximately 12-fold (48-591 nmol/min/mg protein) among different human lung samples examined. 3. Reverse-phase HPLC analysis of AA metabolites indicated the predominance of 15-lipoxygenase in human lung cytosol. 4. HLLO exhibited co-oxidase activity towards benzidine (BZD) and several other model compounds. The co-oxidase activity towards BZD was significantly inhibited by several lipoxygenase inhibitors. 5. HLLO and soybean lipoxygenase (SLO), used as a model enzyme, metabolized acrylonitrile (ACN) to 2-cyanoethylene oxide (CEO) and ultimately to cyanide. 6. HLLO was a approximately 6-fold better catalyst than SLO in converting ACN to cyanide. The generation of cyanide by HLLO was dependent on the concentration of enzyme and the reaction was inhibited by the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) and the anti-oxidant butylated hydroxytoluene (BHT). 7. Under optimal assay conditions, the covalent binding of HLLO-generated reactive intermediate(s) from [14C]ACN to protein and DNA (nmol equivalent bound/15 min/mg HLLO/mg bovine serum albumin or calf thymus DNA) was observed at approximately 1.20+/-0.13 and 2.20+/-0.50 respectively. Both protein and DNA binding were inhibited by NDGA, butylated hydroxyanisole (BHA) and BHT.
Collapse
Affiliation(s)
- P Roy
- Florida Toxicology Research Center, Department of Environmental and Occupational Health, College of Public Health, University of South Florida, Tampa 33612-3805, USA
| | | |
Collapse
|
38
|
Jayawickreme SP, Gray T, Nettesheim P, Eling T. Regulation of 15-lipoxygenase expression and mucus secretion by IL-4 in human bronchial epithelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:L596-603. [PMID: 10198357 DOI: 10.1152/ajplung.1999.276.4.l596] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our laboratory has recently shown that mucus differentiation of cultured normal human tracheobronchial epithelial (NHTBE) cells is accompanied by the increased expression of 15-lipoxygenase (15-LO). We used differentiated NHTBE cells to investigate the regulation of 15-LO expression and mucus secretion by inflammatory cytokines. Interleukin (IL)-4 and IL-13 dramatically enhanced the expression of 15-LO, whereas tumor necrosis factor-alpha, IL-1beta, and interferon (IFN)-gamma had no effect. These cytokines did not increase the expression of cyclooxygenase-2, with the exception of a modest induction by IL-1beta. The IL-4-induced 15-LO expression was concentration dependent, and mRNA and protein expression increased within 3 and 6 h, respectively, after IL-4 treatment. In metabolism studies with intact cells, 15-hydroxyeicosatetraenoic acid (15-HETE) and 13-hydroxyoctadecadienoic acid (13-HODE) were the major metabolites formed from exogenous arachidonic acid and linoleic acid. No prostaglandins were detected. IL-4 treatment dramatically increased the formation of 13-HODE and 15-HETE compared with that in untreated NHTBE cells, and several additional 15-LO metabolites were observed. Pretreatment of NHTBE cells with IFN-gamma or dexamethasone did not inhibit the IL-4-induced expression of 15-LO except at high concentrations (100 ng/ml of IFN-gamma and 10 microM dexamethasone). IL-4 treatment inhibited mucus secretion and attenuated the expression of the mucin genes MUC5AC and MUC5B at 12-24 h after treatment. Addition of 15-HETE precursor and 13-HODE precursor to the cultures did not alter mucin secretion or mucin gene expression. On the basis of the data presented, we conclude that the increase in 15-LO expression by IL-4 and attenuation of mucus secretion may be independent biological events.
Collapse
Affiliation(s)
- S P Jayawickreme
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
39
|
Borchers MT, Carty MP, Leikauf GD. Regulation of human airway mucins by acrolein and inflammatory mediators. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:L549-55. [PMID: 10198352 DOI: 10.1152/ajplung.1999.276.4.l549] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bronchitis, asthma, and cystic fibrosis, marked by inflammation and mucus hypersecretion, can be caused or exacerbated by airway pathogens or irritants including acrolein, an aldehyde present in tobacco smoke. To determine whether acrolein and inflammatory mediators alter mucin gene expression, steady-state mRNA levels of two airway mucins, MUC5AC and MUC5B, were measured (by RT-PCR) in human lung carcinoma cells (NCI-H292). MUC5AC mRNA levels increased after >/=0.01 nM acrolein, 10 microM prostaglandin E2 or 15-hydroxyeicosatetraenoic acid, 1.0 nM tumor necrosis factor-alpha (TNF-alpha), or 10 nM phorbol 12-myristate 13-acetate (a protein kinase C activator). In contrast, MUC5B mRNA levels, although easily detected, were unaffected by these agonists, suggesting that irritants and associated inflammatory mediators increase mucin biosynthesis by inducing MUC5AC message levels, whereas MUC5B is constitutively expressed. When transcription was inhibited, TNF-alpha exposure increased MUC5AC message half-life compared with control level, suggesting that transcript stabilization is a major mechanism controlling increased MUC5AC message levels. Together, these findings imply that irritants like acrolein can directly and indirectly (via inflammatory mediators) increase airway mucin transcripts in epithelial cells.
Collapse
Affiliation(s)
- M T Borchers
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0056, USA
| | | | | |
Collapse
|
40
|
|
41
|
Hill EM, Eling T, Nettesheim P. Changes in expression of 15-lipoxygenase and prostaglandin-H synthase during differentiation of human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol 1998; 18:662-9. [PMID: 9569236 DOI: 10.1165/ajrcmb.18.5.2985] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The purpose of our studies was to examine differentiation-dependent expression of 15-lipoxygenase (15-LO) and prostaglandin H synthase (PGHS) isoforms in cultured normal human tracheobronchial epithelial cells. In the presence of retinoic acid (RA) the cultures differentiated into a mucociliary epithelium. When cultured in RA-depleted media, the cultures differentiated into a squamous epithelium. In the absence of RA the cultures did not express 15-LO or either of the PGHS isoforms. The PGHS-1 isoform was not expressed in RA-sufficient cultures, but both PGHS-2 messenger RNA (mRNA) and protein were strongly expressed, and prostaglandin E2 (PGE2) was produced during the predifferentiation phase. No PGHS-2 expression or PGE2 could be detected in fully differentiated mucociliary cultures. 15-LO showed the opposite expression pattern: neither mRNA nor protein were detected during the predifferentiation stage, but both were strongly expressed once mucous differentiation had occurred. Cytosolic phospholipase A2 protein was expressed throughout all stages of growth and differentiation. The cultures generated no 15-LO metabolites when incubated with 10 microM to 50 microM arachidonic acid (AA) and stimulated with ionophore. However, lysates prepared from such cultures generated 15-hydroxyeicosatetraenoic acid (15-HETE) and 12-HETE from AA, indicating that the cells contained active enzyme. When cultures expressing 15-LO protein were incubated with 10 microM linoleic acid (LA) instead of AA, and were stimulated with ionophore, they generated 13-hydroxy-9,11-octadecadienoic acid. LA rather than AA appeared to be the preferred substrate for the 15-LO enzyme. Our studies indicated that the expression of 15-LO and PGHS-2 is differentiation dependent in airway epithelial cells.
Collapse
Affiliation(s)
- E M Hill
- Laboratories of Molecular Carcinogenesis and Pulmonary Pathobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | | |
Collapse
|
42
|
Miele L, Cordella-Miele E, Xing M, Frizzell R, Mukherjee AB. Cystic fibrosis gene mutation (deltaF508) is associated with an intrinsic abnormality in Ca2+-induced arachidonic acid release by epithelial cells. DNA Cell Biol 1997; 16:749-59. [PMID: 9212168 DOI: 10.1089/dna.1997.16.749] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mechanism(s) of chronic airway inflammation in cystic fibrosis (CF) remains poorly understood. We studied Ca2+-induced release of arachidonic acid (AA), a precursor of proinflammatory lipid mediators, in epithelial cell lines with the deltaF508 mutation in CF transmembrane conductance regulator (CFTR) gene and in those lacking this mutation or cells in which this mutation was corrected by a functional CFTR gene transfer. We found that: (i) the mutant cells manifested an abnormally high Ca2+-induced AA release as compared to controls, (ii) AA release appeared to be catalyzed by a phospholipase A2 (PLA2) but not by phospholipase C followed by diacylglycerol lipase, and (iii) either correction of the CFTR-mutation or inhibition of PLA2 activity rectified this AA release abnormality. Taken together, our results suggest that CFTR mutation is associated with an intrinsic abnormality in AA release by epithelial cells carrying the deltaF508 mutation and suggest that the mechanism of chronic airway inflammation in CF, at least in part, involves this abnormality. These results also partly explain the effectiveness of high-dose ibuprofen therapy in arresting the progression of destructive lung disease in CF. Furthermore, they raise the possibility that correction of abnormal AA release by inhibiting PLA2 activity may improve the therapeutic benefits of ibuprofen.
Collapse
Affiliation(s)
- L Miele
- Section on Developmental Genetics, Heritable Disorders Branch, NICHD, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- S Yamamoto
- Department of Biochemistry, Tokushima University School of Medicine, Japan
| | | | | |
Collapse
|
44
|
Kühn H. Biosynthesis, metabolization and biological importance of the primary 15-lipoxygenase metabolites 15-hydro(pero)XY-5Z,8Z,11Z,13E-eicosatetraenoic acid and 13-hydro(pero)XY-9Z,11E-octadecadienoic acid. Prog Lipid Res 1996; 35:203-26. [PMID: 9082450 DOI: 10.1016/s0163-7827(96)00008-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- H Kühn
- Institute of Biochemistry, University Clinics Charité, Humboldt University, Berlin, Germany
| |
Collapse
|
45
|
Robinson NE, Derksen FJ, Olszewski MA, Buechner-Maxwell VA. The pathogenesis of chronic obstructive pulmonary disease of horses. THE BRITISH VETERINARY JOURNAL 1996; 152:283-306. [PMID: 8762605 DOI: 10.1016/s0007-1935(96)80101-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Present evidence suggests that chronic obstructive pulmonary disease (COPD) of horses is a delayed hypersensitivity response to inhaled antigens, particularly the thermophilic moulds and actinomycetes that grow in damp hay. Within several hours of exposing COPD-susceptible horses to such hay, neutrophils invade the lung and accumulate in the lumens of airways, particularly bronchioles. The inflammatory response is accompanied by increased levels of histamine in bronchoalveolar lavage fluid, increased plasma levels of the inflammatory mediators thromboxane and 15-hydroxyeicosatetraenoic acid (15-HETE), and a decrease in the production of prostaglandin (PG) E2 by the airway mucosa. During acute exacerbations of COPD, airways exhibit nonspecific hyperresponsiveness and become obstructed as a result of bronchospasm and the accumulation of mucus and exudates. Bronchospasm is due largely to activation of smooth muscle muscarinic receptors by acetylcholine (ACh). Because the in vitro response of smooth muscle to ACh is unaltered, the increase in airway smooth muscle tone is probably a result of activation of airway reflexes by inflammatory mediators and decreases in inhibitory mechanisms such as the intrapulmonary nonadrenergic noncholinergic nervous system and the production of PGE2 in affected horses. The diffuse airway obstruction leads to uneven distribution of ventilation, ventilation/perfusion mismatching, and hypoxaemia. As a result of the increased respiratory drive caused by hypoxaemia and the presence of airway obstruction, horses adopt a characteristic breathing strategy in which very high peak flows at the start of exhalation rapidly diminish as exhalation proceeds.
Collapse
Affiliation(s)
- N E Robinson
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA
| | | | | | | |
Collapse
|
46
|
Kühn H, Thiele BJ. Arachidonate 15-lipoxygenase. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1995; 12:157-70. [PMID: 8777563 DOI: 10.1016/0929-7855(95)00016-j] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- H Kühn
- Institute of Biochemistry, University Clinics (Charitá), Humboldt University, Berlin, Germany
| | | |
Collapse
|
47
|
Yoshimoto T, Yamamoto S. Arachidonate 12-lipoxygenase. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1995; 12:195-212. [PMID: 8777566 DOI: 10.1016/0929-7855(95)00019-m] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- T Yoshimoto
- Department of Pharmacology, Kanazawa University School of Medicine, Japan.
| | | |
Collapse
|
48
|
Wu T, Rieves RD, Logun C, Shelhamer JH. Platelet-activating factor stimulates eicosanoid production in cultured feline tracheal epithelial cells. Lung 1995; 173:89-103. [PMID: 7715256 DOI: 10.1007/bf02981469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of platelet-activating factor (PAF) on eicosanoid generation and release in cultured feline tracheal epithelial cells was investigated by measuring a wide range of lipoxygenase and cyclooxygenase pathway products. Subconfluent epithelial cell cultures were stimulated by PAF and eicosanoid production was determined by high performance liquid chromatography (HPLC) of [3H]-labeled arachidonic acid (AA) metabolites and by radioimmunoassay (RIA) following HPLC separation. The HPLC chromatograms revealed that PAF augmented the release of prostaglandin (PG)E2, PGF2 alpha, 12-hydroxyeicosatetraenoic acid (HETE), and AA. Among these eicosanoids, PGE2 predominated under baseline conditions and following PAF exposure. RIAs of the nonradiolabeled HPLC elution corresponding to various eicosanoid standards demonstrated that PAF increased the production of 6-keto-PGF1 alpha, thromboxane B2 (TXB2), PGD2, 5-HETE, and 15-HETE, as well as PGE2, PGF2 alpha, and 12-HETE. The PAF-induced eicosanoid augmentation was dose-dependent and occurred within 1 hour with a prompt decline following termination of PAF exposure. This stimulating effect of PAF on eicosanoid release was blocked by two PAF receptor antagonists, Ro 19-3704 and WEB 2086. The PAF-induced increase in eicosanoid release was similar in magnitude to the increase caused by calcium ionophore (Ca-ionophore) A23187, a potent known stimulus for eicosanoid release. Cells of different culture durations (3 and 6 days) showed similar capacity for eicosanoid production. We conclude that PAF stimulates the production of cyclooxygenase and lipoxygenase pathway products from airway epithelial cells via PAF receptors, and that these epithelium-derived eicosanoids may be responsible for some of the PAF-induced respiratory physiological and pathophysiological effects.
Collapse
Affiliation(s)
- T Wu
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
49
|
Affiliation(s)
- A J Wardlaw
- Department of Allergy and Clinical Immunology, National Heart & Lung Institute, London, England, United Kingdom
| | | | | |
Collapse
|
50
|
Holtzman MJ, Zhang V, Hussain H, Roswit WT, Wilson JD. Prostaglandin H synthase and lipoxygenase gene families in the epithelial cell barrier. Ann N Y Acad Sci 1994; 744:58-77. [PMID: 7825863 DOI: 10.1111/j.1749-6632.1994.tb52724.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Epithelial barrier cells (in skin, gut, and airway) are both active modulators and important targets of the inflammatory response, and some of these cellular events may be regulated at a molecular level by products of phospholipid-arachidonic acid metabolism. Accordingly, we have defined some of the characteristics of gene expression and enzyme regulation for distinct members of the PGH synthase and lipoxygenase gene families in normal and inflamed epithelial tissues and in epithelial cells isolated from mucosal and epidermal tissue (Table 1). A unifying scheme for our findings includes the following enzymatic systems: (i) a PGH synthase-1/PG isomerase pathway responsible for constitutive generation of prostaglandins (e.g., PGE2) and maintenance of physiologic epithelial function; (ii) a PGH synthase-2/PG isomerase and synthase pathway capable of producing additional prostaglandins (e.g., excess PGE2 and/or PGF2 alpha and PGD2) especially after stimulation by growth factors and cytokines; and (iii) a family of arachidonate 12- and 15-lipoxygenases that may serve to generate hydroxy acids (e.g., 12- and 15-HETE) as mediators of basal epithelial function and that (after overexpression and oxidant activation) may also catalyze membrane peroxidation that contributes to epithelial damage during inflammation. The regulatory mechanisms inherent in the control of this scheme provide a biochemical rationale for balancing constitutive and inducible oxygenation activities and maintaining epithelial barrier function.
Collapse
Affiliation(s)
- M J Holtzman
- Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | |
Collapse
|