1
|
Yakut S, Tarakçı Gençer B, Yalçın MH, Aydın S, Yüksel H. Investigation of the effects of silymarin and vitamin C on kidney damage and aquaporin-2 downregulation in lithium-induced nephrogenic diabetes insipidus in rats. Drug Chem Toxicol 2025:1-11. [PMID: 39809261 DOI: 10.1080/01480545.2025.2450475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Although lithium (LIT) therapy is key in managing bipolar disorder long-term, prolonged use significantly contributes to acquired Nephrogenic Diabetes Insipidus (NDI). This study examined whether combining Silymarin (SIL) with Vitamin C (Vit C) enhances protection against lithium-induced nephrotoxicity in rats, comparing their individual antioxidant effects as well. Rats subjected to Li exposure were provided with a standard commercial diet supplemented with 80 mmol LiCl per kilogram for 28 days. Concurrently, SIL and Vit C were administered orally at dosages of 200 and 100 mg/kg body weight, respectively, throughout the 28 days. The study assessed levels of reactive oxygen species (ROS), glutathione (GSH), and malondialdehyde (MDA), as well as the enzyme activity of superoxide dismutase (SOD), to evaluate the protective effects of SIL and Vit C against oxidative stress. Aquaporin-2 (AQP2) levels in kidney tissues were evaluated using immunohistochemistry and ELISA. Serum and urine parameters (sodium, potassium, creatinine, blood urea nitrogen [BUN], and urea) and serum lithium levels were also measured. Lithium-induced nephrotoxicity showed increased renal toxicity markers and decreased antioxidant enzyme activity. SIL administration significantly reduced markers of kidney tissue toxicity, increased antioxidant enzyme activities, regulated the aforementioned physiological parameters in blood and urine, and downregulated AQP2 expression in the kidney. However, Vit C administration did not demonstrate a significant protective effect against lithium-induced renal toxicity. These findings indicate that SIL effectively protects against lithium-induced nephrotoxicity, whereas Vitamin C does not exhibit this protective effect.
Collapse
Affiliation(s)
- Seda Yakut
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Berrin Tarakçı Gençer
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Fırat University, Elâzığ, Turkey
| | - Mehmet Hanifi Yalçın
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Fırat University, Elâzığ, Turkey
| | - Süleyman Aydın
- Department of Biochemistry, Faculty of Medicine, Fırat University, Elâzığ, Turkey
| | - Hayati Yüksel
- Department of Pathology, Faculty of Veterinary Medicine, Bingöl University, Bingöl, Turkey
| |
Collapse
|
2
|
Safety and Efficacy of Combined Low-Dose Lithium and Low-Dose Aspirin: A Pharmacological and Behavioral Proof-of-Concept Study in Rats. Pharmaceutics 2021; 13:pharmaceutics13111827. [PMID: 34834241 PMCID: PMC8619680 DOI: 10.3390/pharmaceutics13111827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Despite established efficacy in bipolar disorder patients, lithium (Li) therapy has serious side effects, particularly chronic kidney disease. We examined the safety and behavioral effects of combined chronic low-dose aspirin plus low-dose Li in rats to explore the toxicity and therapeutic potential of this treatment. Rats were fed regular or Li-containing food (0.1% [low-dose, LLD-Li] or 0.2% [standard-dose, STD-Li]) for six weeks. Low-dose aspirin (1 mg/kg) was administered alone or together with Li. Renal function and gastric mucosal integrity were assessed. The effects of the combination treatment were evaluated in depression-like and anxiety-like behavioral models. Co-treatment with aspirin did not alter plasma Li levels. Chronic STD-Li treatment resulted in significant polyuria and polydipsia, elevated blood levels of creatinine and cystatin C, and increased levels of kidney nephrin and podocin—all suggestive of impaired renal function. Aspirin co-treatment significantly damped STD-Li-induced impairments in kidney parameters. There were no gastric ulcers or blood loss in any treatment group. Combined aspirin and LLD-Li resulted in a significant increase in sucrose consumption, and in the time spent in the open arms of an elevated plus-maze compared with the LLD-Li only group, suggestive of antidepressant-like and anxiolytic-like effects, respectively. Thus, we demonstrate that low-dose aspirin mitigated the typical renal side effects of STD-Li dose and enhanced the beneficial behavioral effects of LLD-Li therapy without aggravating its toxicity.
Collapse
|
3
|
Sorting Nexin 27 Regulates the Lysosomal Degradation of Aquaporin-2 Protein in the Kidney Collecting Duct. Cells 2020; 9:cells9051208. [PMID: 32413996 PMCID: PMC7290579 DOI: 10.3390/cells9051208] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Sorting nexin 27 (SNX27), a PDZ (Postsynaptic density-95/Discs large/Zonula occludens 1) domain-containing protein, cooperates with a retromer complex, which regulates intracellular trafficking and the abundance of membrane proteins. Since the carboxyl terminus of aquaporin-2 (AQP2c) has a class I PDZ-interacting motif (X-T/S-X-Φ), the role of SNX27 in the regulation of AQP2 was studied. Co-immunoprecipitation assay of the rat kidney demonstrated an interaction of SNX27 with AQP2. Glutathione S-transferase (GST) pull-down assays revealed an interaction of the PDZ domain of SNX27 with AQP2c. Immunocytochemistry of HeLa cells co-transfected with FLAG-SNX27 and hemagglutinin (HA)-AQP2 also revealed co-localization throughout the cytoplasm. When the PDZ domain was deleted, punctate HA-AQP2 labeling was localized in the perinuclear region. The labeling was intensively overlaid by Lysotracker staining but not by GM130 labeling, a cis-Golgi marker. In rat kidneys and primary cultured inner medullary collecting duct cells, the subcellular redistribution of SNX27 was similar to AQP2 under 1-deamino-8-D-arginine vasopressin (dDAVP) stimulation/withdrawal. Cell surface biotinylation assay showed that dDAVP-induced AQP2 translocation to the apical plasma membrane was unaffected after SNX27 knockdown in mpkCCD cells. In contrast, the dDAVP-induced AQP2 protein abundance was significantly attenuated without changes in AQP2 mRNA expression. Moreover, the AQP2 protein abundance was markedly declined during the dDAVP withdrawal period after stimulation under SNX27 knockdown, which was inhibited by lysosome inhibitors. Autophagy was induced after SNX27 knockdown in mpkCCD cells. Lithium-induced nephrogenic diabetes insipidus in rats revealed a significant downregulation of SNX27 in the kidney inner medulla. Taken together, the PDZ domain-containing SNX27 interacts with AQP2 and depletion of SNX27 contributes to the autophagy-lysosomal degradation of AQP2.
Collapse
|
4
|
Harrois A, Anstey JR. Diabetes Insipidus and Syndrome of Inappropriate Antidiuretic Hormone in Critically Ill Patients. Crit Care Clin 2019; 35:187-200. [PMID: 30784603 DOI: 10.1016/j.ccc.2018.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetes insipidus and the syndrome of inappropriate antidiuretic hormone secretion lie at opposite ends of the spectrum of disordered renal handling of water. Whereas renal retention of water insidiously causes hypotonic hyponatremia in syndrome of inappropriate antidiuretic hormone secretion, diabetes insipidus may lead to free water loss, hypernatremia, and volume depletion. Hypernatremia and hyponatremia are associated with worse outcomes and longer intensive care stays. Moreover, pathologies causing polyuria and hyponatremia in patients in intensive care may be multiple, making diagnosis challenging. We provide an approach to the diagnosis and management of these conditions in intensive care patients.
Collapse
Affiliation(s)
- Anatole Harrois
- Intensive Care Unit, Royal Melbourne Hospital, 300 Grattan Street, Parkville, Victoria 3050, Australia; Department of Anesthesiology and Surgical Intensive Care, Hôpitaux Universitaires Paris Sud, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Sud, Université Paris Saclay, 78 rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France.
| | - James R Anstey
- Intensive Care Unit, Royal Melbourne Hospital, 300 Grattan Street, Parkville, Victoria 3050, Australia
| |
Collapse
|
5
|
Lin Y, Zhang T, Feng P, Qiu M, Liu Q, Li S, Zheng P, Kong Y, Levi M, Li C, Wang W. Aliskiren increases aquaporin-2 expression and attenuates lithium-induced nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 2017; 313:F914-F925. [PMID: 28228402 PMCID: PMC6148297 DOI: 10.1152/ajprenal.00553.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 11/22/2022] Open
Abstract
The direct renin inhibitor aliskiren has been shown to be retained and persist in medullary collecting ducts even after treatment is discontinued, suggesting a new mechanism of action for this drug. The purpose of the present study was to investigate whether aliskiren regulates renal aquaporin expression in the collecting ducts and improves urinary concentrating defect induced by lithium in mice. The mice were fed with either normal chow or LiCl diet (40 mmol·kg dry food-1·day-1 for 4 days and 20 mmol·kg dry food-1·day-1 for the last 3 days) for 7 days. Some mice were intraperitoneally injected with aliskiren (50 mg·kg body wt-1·day-1 in saline). Aliskiren significantly increased protein abundance of aquaporin-2 (AQP2) in the kidney inner medulla in mice. In inner medulla collecting duct cell suspension, aliskiren markedly increased AQP2 and phosphorylated AQP2 at serine 256 (pS256-AQP2) protein abundance, which was significantly inhibited both by adenylyl cyclase inhibitor MDL-12330A and by PKA inhibitor H89, indicating an involvement of the cAMP-PKA signaling pathway in aliskiren-induced increased AQP2 expression. Aliskiren treatment improved urinary concentrating defect in lithium-treated mice and partially prevented the decrease of AQP2 and pS256-AQP2 protein abundance in the inner medulla of the kidney. In conclusion, the direct renin inhibitor aliskiren upregulates AQP2 protein expression in inner medullary collecting duct principal cells and prevents lithium-induced nephrogenic diabetes insipidus likely via cAMP-PKA pathways.
Collapse
Affiliation(s)
- Yu Lin
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tiezheng Zhang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pinning Feng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; and
| | - Miaojuan Qiu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiaojuan Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Suchun Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Peili Zheng
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Moshe Levi
- Department of Medicine, Division of Hypertension and Renal Diseases, University of Colorado Denver, Aurora, Colorado
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China;
| |
Collapse
|
6
|
Poulsen SB, Kristensen TB, Brooks HL, Kohan DE, Rieg T, Fenton RA. Role of adenylyl cyclase 6 in the development of lithium-induced nephrogenic diabetes insipidus. JCI Insight 2017; 2:e91042. [PMID: 28405619 DOI: 10.1172/jci.insight.91042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Psychiatric patients treated with lithium (Li+) may develop nephrogenic diabetes insipidus (NDI). Although the etiology of Li+-induced NDI (Li-NDI) is poorly understood, it occurs partially due to reduced aquaporin-2 (AQP2) expression in the kidney collecting ducts. A mechanism postulated for this is that Li+ inhibits adenylyl cyclase (AC) activity, leading to decreased cAMP, reduced AQP2 abundance, and less membrane targeting. We hypothesized that Li-NDI would not develop in mice lacking AC6. Whole-body AC6 knockout (AC6-/-) mice and potentially novel connecting tubule/principal cell-specific AC6 knockout (AC6loxloxCre) mice had approximately 50% lower urine osmolality and doubled water intake under baseline conditions compared with controls. Dietary Li+ administration increased water intake and reduced urine osmolality in control, AC6-/-, and AC6loxloxCre mice. Consistent with AC6-/- mice, medullary AQP2 and pS256-AQP2 abundances were lower in AC6loxloxCre mice compared with controls under standard conditions, and levels were further reduced after Li+ administration. AC6loxloxCre and control mice had a similar increase in the numbers of proliferating cell nuclear antigen-positive cells in response to Li+. However, AC6loxloxCre mice had a higher number of H+-ATPase B1 subunit-positive cells under standard conditions and after Li+ administration. Collectively, AC6 has a minor role in Li-NDI development but may be important for determining the intercalated cell-to-principal cell ratio.
Collapse
Affiliation(s)
- Søren Brandt Poulsen
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,VA San Diego Healthcare System, San Diego, California, USA
| | | | - Heddwen L Brooks
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Timo Rieg
- VA San Diego Healthcare System, San Diego, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Robert A Fenton
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging. Sci Rep 2017; 7:40726. [PMID: 28098178 PMCID: PMC5241875 DOI: 10.1038/srep40726] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022] Open
Abstract
Lithium (Li) is a potent mood stabilizer and displays neuroprotective and neurogenic properties. Despite extensive investigations, the mechanisms of action have not been fully elucidated, especially in the juvenile, developing brain. Here we characterized lithium distribution in the juvenile mouse brain during 28 days of continuous treatment that result in clinically relevant serum concentrations. By using Time-of-Flight Secondary Ion Mass Spectrometry- (ToF-SIMS) based imaging we were able to delineate temporospatial lithium profile throughout the brain and concurrent distribution of endogenous lipids with high chemical specificity and spatial resolution. We found that Li accumulated in neurogenic regions and investigated the effects on hippocampal neurogenesis. Lithium increased proliferation, as judged by Ki67-immunoreactivity, but did not alter the number of doublecortin-positive neuroblasts at the end of the treatment period. Moreover, ToF-SIMS revealed a steady depletion of sphingomyelin in white matter regions during 28d Li-treatment, particularly in the olfactory bulb. In contrast, cortical levels of cholesterol and choline increased over time in Li-treated mice. This is the first study describing ToF-SIMS imaging for probing the brain-wide accumulation of supplemented Li in situ. The findings demonstrate that this technique is a powerful approach for investigating the distribution and effects of neuroprotective agents in the brain.
Collapse
|
8
|
Zheng P, Lin Y, Wang F, Luo R, Zhang T, Hu S, Feng P, Liang X, Li C, Wang W. 4-PBA improves lithium-induced nephrogenic diabetes insipidus by attenuating ER stress. Am J Physiol Renal Physiol 2016; 311:F763-F776. [PMID: 27385737 DOI: 10.1152/ajprenal.00225.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has been implicated in some types of glomerular and tubular disorders. The objectives of this study were to elucidate the role of ER stress in lithium-induced nephrogenic diabetes insipidus (NDI) and to investigate whether attenuation of ER stress by 4-phenylbutyric acid (4-PBA) improves urinary concentrating defect in lithium-treated rats. Wistar rats received lithium (40 mmol/kg food), 4-PBA (320 mg/kg body wt by gavage every day), or no treatment (control) for 2 wk, and they were dehydrated for 24 h before euthanasia. Lithium treatment resulted in increased urine output and decreased urinary osmolality, which was significantly improved by 4-PBA. 4-PBA also prevented reduced protein expression of aquaporin-2 (AQP2), pS256-AQP2, and pS261-AQP2 in the inner medulla of kidneys from lithium-treated rats after 24-h dehydration. Lithium treatment resulted in increased expression of ER stress markers in the inner medulla, which was associated with dilated cisternae and expansion of ER in the inner medullary collecting duct (IMCD) principal cells. Confocal immunofluorescence studies showed colocalization of a molecular chaperone, binding IgG protein (BiP), with AQP2 in principal cells. Immunohistochemistry demonstrated increased intracellular expression of BiP and decreased AQP2 expression in IMCD principal cells of kidneys from lithium-treated rats. 4-PBA attenuated expression of ER stress markers and recovered ER morphology. In IMCD suspensions isolated from lithium-treated rats, 4-PBA incubation was also associated with increased AQP2 expression and ameliorated ER stress. In conclusion, in experimental lithium-induced NDI, 4-PBA improved the urinary concentrating defect and increased AQP2 expression, likely via attenuating ER stress in IMCD principal cells.
Collapse
Affiliation(s)
- Peili Zheng
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu Lin
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Feifei Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Renfei Luo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tiezheng Zhang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pinning Feng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; and
| | - Xinling Liang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China;
| |
Collapse
|
9
|
Molecular mechanisms in lithium-associated renal disease: a systematic review. Int Urol Nephrol 2016; 48:1843-1853. [DOI: 10.1007/s11255-016-1352-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
|
10
|
Wilson JLL, Miranda CA, Knepper MA. Vasopressin and the regulation of aquaporin-2. Clin Exp Nephrol 2013; 17:751-64. [PMID: 23584881 PMCID: PMC3775849 DOI: 10.1007/s10157-013-0789-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/25/2013] [Indexed: 12/26/2022]
Abstract
Water excretion is regulated in large part through the regulation of osmotic water permeability of the renal collecting duct epithelium. Water permeability is controlled by vasopressin through regulation of the water channel, aquaporin-2 (AQP2). Two processes contribute: (1) regulation of AQP2 trafficking to the apical plasma membrane; and (2) regulation of the total amount of the AQP2 protein in the cells. Regulation of AQP2 abundance is defective in several water-balance disorders, including many polyuric disorders and the syndrome of inappropriate antidiuresis. Here we review vasopressin signaling in the renal collecting duct that is relevant to the two modes of water permeability regulation.
Collapse
Affiliation(s)
- Justin L L Wilson
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Dr., Bldg 10, Room 6N260, Bethesda, MD, 20892-1603, USA
| | | | | |
Collapse
|
11
|
Park EJ, Lim JS, Jung HJ, Kim E, Han KH, Kwon TH. The role of 70-kDa heat shock protein in dDAVP-induced AQP2 trafficking in kidney collecting duct cells. Am J Physiol Renal Physiol 2013; 304:F958-71. [DOI: 10.1152/ajprenal.00469.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It has been reported that several proteins [heat shock protein 70 (Hsp70 and Hsc70), annexin II, and tropomyosin 5b] interact with the Ser256 residue on the COOH terminus of aquaporin-2 (AQP2), where vasopressin-induced phosphorylation occurs for mediating AQP2 trafficking. However, it remains unknown whether these proteins, particularly Hsp70, play a role in AQP2 trafficking. Semiquantitative immunoblotting revealed that renal expression of AQP2 and Hsp70 was significantly increased in water-restricted or dDAVP-infused rats. In silico analysis of the 5′-flanking regions of AQP2, Hsp70-1, and Hsp70-2 genes revealed that transcriptional regulator binding elements associated with cAMP response were identified at both the Hsp70-1 and Hsp70-2 promoter regions, in addition to AQP2. Luciferase reporter assay demonstrated the significant increase of luminescence after dDAVP stimulation (10−8 M, 6 h) in the LLC-PK1 cells transfected with luciferase vector containing 1 kb of the 5′-flanking region of Hsp70-2 gene. Hsp70-2 protein expression was also increased in mpkCCDc14 cells treated by dDAVP in a concentration-dependent manner. Cell surface biotinylation analysis demonstrated that forskolin (10−5 M, 15 min)-induced AQP2 targeting to the apical plasma membrane was significantly attenuated in the mpkCCDc14 cells with Hsp70-2 knockdown. Moreover, forskolin-induced AQP2 phosphorylation (Ser256) was not significantly induced in the mpkCCDc14 cells with Hsp70-2 knockdown. In contrast, Hsp70-2 knockdown did not affect the dDAVP-induced AQP2 abundance. In addition, siRNA-directed knockdown of Hsp70 significantly decreased cell viability. The results suggest that Hsp70 is likely to play a role in AQP2 trafficking to the apical plasma membrane, partly through affecting AQP2 phosphorylation at Ser256 and cell viability.
Collapse
Affiliation(s)
- Eui-Jung Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| | - Jung-Suk Lim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| | - Hyun Jun Jung
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| | - Eunjung Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| | - Ki-Hwan Han
- Department of Anatomy, Ewha Womans University School of Medicine, Seoul, Korea
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| |
Collapse
|
12
|
Moeller HB, Rittig S, Fenton RA. Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr Rev 2013; 34:278-301. [PMID: 23360744 PMCID: PMC3610677 DOI: 10.1210/er.2012-1044] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The water channel aquaporin-2 (AQP2), expressed in the kidney collecting ducts, plays a pivotal role in maintaining body water balance. The channel is regulated by the peptide hormone arginine vasopressin (AVP), which exerts its effects through the type 2 vasopressin receptor (AVPR2). Disrupted function or regulation of AQP2 or the AVPR2 results in nephrogenic diabetes insipidus (NDI), a common clinical condition of renal origin characterized by polydipsia and polyuria. Over several years, major research efforts have advanced our understanding of NDI at the genetic, cellular, molecular, and biological levels. NDI is commonly characterized as hereditary (congenital) NDI, arising from genetic mutations in the AVPR2 or AQP2; or acquired NDI, due to for exmple medical treatment or electrolyte disturbances. In this article, we provide a comprehensive overview of the genetic, cell biological, and pathophysiological causes of NDI, with emphasis on the congenital forms and the acquired forms arising from lithium and other drug therapies, acute and chronic renal failure, and disturbed levels of calcium and potassium. Additionally, we provide an overview of the exciting new treatment strategies that have been recently proposed for alleviating the symptoms of some forms of the disease and for bypassing G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Hanne B Moeller
- Department of Biomedicine, Aarhus University, and Department of Pediatrics, Aarhus University Hospital, Wilhelm Meyers Alle 3, Building 1234, Aarhus 8000, Denmark.
| | | | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Glycogen synthase kinase-3 (GSK3) is an enzyme that is gaining prominence as a critical signaling molecule in the epithelial cells of renal tubules. This review will focus on recent findings exploring the role of GSK3 in renal collecting ducts, especially its role in urine concentration involving vasopressin signaling. RECENT FINDINGS Recent studies using inhibition or tissue-specific gene deletion of GSK3 revealed the mechanism by which GSK3 regulates aquaporin 2 water channels via adenylate cyclase or the prostaglandin-E2 pathway. In other studies, postnatal treatment with lithium, an inhibitor of GSK3, increased cell proliferation and led to microcyst formation in rat kidneys. These studies suggest that loss of GSK3 activity could interfere with renal water transport at two levels. In the short term, it could disrupt vasopressin signaling in collecting duct cells and in the long term it could alter the structure of the collecting ducts, making them less responsive to the hydro-osmotic effects of vasopressin. SUMMARY Ongoing studies reveal the crucial role played by GSK3 in the regulation of vasopressin action in the renal collecting ducts and suggest a possible use of GSK3 inhibitors in disease conditions associated with disrupted vasopressin signaling.
Collapse
|
14
|
Radin MJ, Yu MJ, Stoedkilde L, Miller RL, Hoffert JD, Frokiaer J, Pisitkun T, Knepper MA. Aquaporin-2 regulation in health and disease. Vet Clin Pathol 2012; 41:455-70. [PMID: 23130944 PMCID: PMC3562700 DOI: 10.1111/j.1939-165x.2012.00488.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aquaporin-2 (AQP2), the vasopressin-regulated water channel of the renal collecting duct, is dysregulated in numerous disorders of water balance in people and animals, including those associated with polyuria (urinary tract obstruction, hypokalemia, inflammation, and lithium toxicity) and with dilutional hyponatremia (syndrome of inappropriate antidiuresis, congestive heart failure, cirrhosis). Normal regulation of AQP2 by vasopressin involves 2 independent regulatory mechanisms: (1) short-term regulation of AQP2 trafficking to and from the apical plasma membrane, and (2) long-term regulation of the total abundance of the AQP2 protein in the cells. Most disorders of water balance are the result of dysregulation of processes that regulate the total abundance of AQP2 in collecting duct cells. In general, the level of AQP2 in a collecting duct cell is determined by a balance between production via translation of AQP2 mRNA and removal via degradation or secretion into the urine in exosomes. AQP2 abundance increases in response to vasopressin chiefly due to increased translation subsequent to increases in AQP2 mRNA. Vasopressin-mediated regulation of AQP2 gene transcription is poorly understood, although several transcription factor-binding elements in the 5' flanking region of the AQP2 gene have been identified, and candidate transcription factors corresponding to these elements have been discovered in proteomics studies. Here, we review progress in this area and discuss elements of vasopressin signaling in the collecting duct that may impinge on regulation of AQP2 in health and in the context of examples of polyuric diseases.
Collapse
Affiliation(s)
- M. Judith Radin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
| | - Ming-Jiun Yu
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, TAIWAN
| | - Lene Stoedkilde
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- The Water and Salt Research Center, University of Aarhus, DK-8000 C, Denmark
| | - R. Lance Miller
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason D. Hoffert
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jorgen Frokiaer
- The Water and Salt Research Center, University of Aarhus, DK-8000 C, Denmark
| | - Trairak Pisitkun
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Sanches TR, Volpini RA, Massola Shimizu MH, Bragança ACD, Oshiro-Monreal F, Seguro AC, Andrade L. Sildenafil reduces polyuria in rats with lithium-induced NDI. Am J Physiol Renal Physiol 2012; 302:F216-25. [PMID: 22031848 DOI: 10.1152/ajprenal.00439.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lithium (Li)-treated patients often develop urinary concentrating defect and polyuria, a condition known as nephrogenic diabetes insipidus (NDI). In a rat model of Li-induced NDI, we studied the effect that sildenafil (Sil), a phosphodiesterase 5 (PDE5) inhibitor, has on renal expression of aquaporin-2 (AQP2), urea transporter UT-A1, Na(+)/H(+) exchanger 3 (NHE3), Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), epithelial Na channel (ENaC; α-, β-, and γ-subunits), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase. We also evaluated cGMP levels in medullary collecting duct cells in suspension. For 4 wk, Wistar rats received Li (40 mmol/kg food) or no treatment (control), some receiving, in weeks 2-4, Sil (200 mg/kg food) or Li and Sil (Li+Sil). In Li+Sil rats, urine output and free water clearance were markedly lower, whereas urinary osmolality was higher, than in Li rats. The cGMP levels in the suspensions of medullary collecting duct cells were markedly higher in the Li+Sil and Sil groups than in the control and Li groups. Semiquantitative immunoblotting revealed the following: in Li+Sil rats, AQP2 expression was partially normalized, whereas that of UT-A1, γ-ENaC, and eNOS was completely normalized; and expression of NKCC2 and NHE3 was significantly higher in Li rats than in controls. Inulin clearance was normal in all groups. Mean arterial pressure and plasma arginine vasopressin did not differ among the groups. Sil completely reversed the Li-induced increase in renal vascular resistance. We conclude that, in experimental Li-induced NDI, Sil reduces polyuria, increases urinary osmolality, and decreases free water clearance via upregulation of renal AQP2 and UT-A1.
Collapse
Affiliation(s)
- Talita Rojas Sanches
- Nephrology Dept., Univ. of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 3° andar, sala 3310, CEP 01246-903, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
Kjaersgaard G, Madsen K, Marcussen N, Christensen S, Walter S, Jensen BL. Tissue injury after lithium treatment in human and rat postnatal kidney involves glycogen synthase kinase-3β-positive epithelium. Am J Physiol Renal Physiol 2011; 302:F455-65. [PMID: 22088436 DOI: 10.1152/ajprenal.00144.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It was hypothesized that lithium causes accelerated and permanent injury to the postnatally developing kidney through entry into epithelial cells of the distal nephron and inhibition of glycogen synthase kinase-3β (GSK-3β). GSK-3β immunoreactivity was associated with glomeruli, the thick ascending limb of Henle's loop, and collecting ducts in the developing and adult human and rat kidney. In rats, the abundance of inactive, phosphorylated GSK-3β (pGSK-3β) protein decreased during postnatal development. After feeding of dams with litters lithium [50 mmol Li/kg chow, postnatal (P) days 7-28], the offspring showed plasma lithium concentration of 1.0 mmol/l. Kidneys from lithium-treated rat pups exhibited dilated distal nephron segments with microcysts. Stereological analysis showed reduced cortex and outer medullary volumes. Lithium increased pGSK-3β and the proliferation marker proliferating cell nuclear antigen (PCNA) protein abundances in the cortex and medulla. After lithium treatment, pGSK-3β-immunopositive cells exhibited restricted distribution and were associated primarily with subsets of cells in dilated and microcystic segments of cortical collecting ducts. After 6 wk of lithium discontinuation, adult rats exhibited attenuated urine concentration capacity and diminished outer medullary volume. Histological sections of two nephrectomy samples and a biopsy from three long-term lithium-treated patients showed multiple cortical microcysts that originated from normally appearing tubules. Microcysts were lined by a cuboidal PCNA-, GSK-3β-, and pGSK-3β-immunopositive epithelium. The postnatal rat kidney may serve as an experimental model for the study of lithium-induced human kidney injury. The data are compatible with a causal relationship between epithelial entry of lithium into cells of the aldosterone-sensitive distal nephron, inactivation of GSK-3β, proliferation, and microcysts.
Collapse
Affiliation(s)
- Gitte Kjaersgaard
- Dept. of Cardiovascular and Renal Research, Institute of Molecular Medicine, Univ. of Southern Denmark, J. B. Winslowsvej 21, 3, DK-5000 Odense C, Denmark
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Urea transport proteins were initially proposed to exist in the kidney in the late 1980s when studies of urea permeability revealed values in excess of those predicted by simple lipid-phase diffusion and paracellular transport. Less than a decade later, the first urea transporter was cloned. Currently, the SLC14A family of urea transporters contains two major subgroups: SLC14A1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14A2, the UT-A group with six distinct isoforms described to date. In the kidney, UT-A1 and UT-A3 are found in the inner medullary collecting duct; UT-A2 is located in the thin descending limb, and UT-B is located primarily in the descending vasa recta; all are glycoproteins. These transporters are crucial to the kidney's ability to concentrate urine. UT-A1 and UT-A3 are acutely regulated by vasopressin. UT-A1 has also been shown to be regulated by hypertonicity, angiotensin II, and oxytocin. Acute regulation of these transporters is through phosphorylation. Both UT-A1 and UT-A3 rapidly accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long-term regulation involves altering protein abundance in response to changes in hydration status, low protein diets, adrenal steroids, sustained diuresis, or antidiuresis. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new animal models are being developed to study these transporters and search for active urea transporters. Here we introduce urea and describe the current knowledge of the urea transporter proteins, their regulation, and their role in the kidney.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
18
|
|
19
|
Moosavi SMS, Haghani M. Cooperative mechanisms of acute antidiuretic response to bendroflumethiazide in rats with lithium-induced nephrogenic diabetes insipidus. Can J Physiol Pharmacol 2010; 88:1191-201. [DOI: 10.1139/y10-098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The exact mechanism underlying thiazides-induced paradoxical antidiuresis in diabetes insipidus is still elusive, but it has been hypothesized that it is exerted either via Na+-depletion activating volume-homeostatic reflexes to decrease distal delivery, or direct stimulation of distal water reabsorption. This study examined how these two proposed mechanisms actually cooperate to induce an acute bendroflumethiazide (BFTZ)-antidiuretic effect in nephrogenic diabetes insipidus (NDI). Anaesthetized rats with lithium (Li)-induced NDI were prepared in order to measure their renal functional parameters, and in some of them, bilateral renal denervation (DNX) was induced. After a 30 min control clearance period, we infused either BFTZ into 2 groups, NDI+BFTZ and NDI/DNX+BFTZ, or its vehicle into a NDI+V group, and six 30 min experimental clearance periods were taken. During BFTZ infusion in the NDI+BFTZ group, transiently elevated Na+excretion was associated with rapidly increased urinary osmolality and decreased free water clearance, but Li clearance and urine flow declined in the later periods. However, in the NDI/DNX+BFTZ group, there was persistently elevated Na+excretion with unchanged Li clearance and urine flow during the experimental period, while alterations in free water clearance and urinary osmolality resembled those in the NDI+BFTZ group. In conclusion, BFTZ initially exerted two direct effects of natriuresis–diuresis and stimulating free water reabsorption at the distal nephron in NDI, which together elevated Na+excretion and urinary osmolality but kept the urine volume unchanged in the first hour. Thereafter, the resultant sodium depletion led to the activation of neural reflexes that reduced distal fluid delivery to compensate for BFTZ-induced natriuresis–diuresis which, in cooperation with the direct distal BFTZ-antidiuretic effect, resulted in excretion of urine with a low volume, high osmolality, and normal sodium.
Collapse
Affiliation(s)
- S. Mostafa Shid Moosavi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz 71365-1689, Iran
| | - Masoud Haghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz 71365-1689, Iran
| |
Collapse
|
20
|
Baggaley E, Nielsen S, Marples D. Dehydration-induced increase in aquaporin-2 protein abundance is blocked by nonsteroidal anti-inflammatory drugs. Am J Physiol Renal Physiol 2010; 298:F1051-8. [PMID: 20130117 DOI: 10.1152/ajprenal.90202.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is now well established that the antidiuretic response to vasopressin is modulated by changes in aquaporin-2 (AQP2) expression in response to hydration status. While vasopressin itself is one signal driving expression, other signals also play a part. In this study, we planned to investigate whether prostaglandins, known to modulate AQP2 trafficking, may play a role in this process. Male Wistar rats were kept in metabolic cages, with either free access to water and food, or were given 15 g of food gelled with water, such that they were fluid restricted or fluid loaded. The effects of oral administration of two structurally different NSAIDs, indomethacin and ibuprofen, and a COX-2-selective NSAID, meloxicam, on urine output and AQP2 expression were investigated in kidneys removed under terminal anesthesia. All the NSAIDs decreased AQP2 expression significantly in water-restricted rats but did not significantly alter PGE excretion. In water-loaded rats, the effects were less marked, and meloxicam had no significant effect. Consistent with this, ibuprofen prevented the increase in AQP2 expression seen in response to dehydration. These results demonstrate that NSAIDs decrease AQP2 protein abundance, particularly during adaptation during dehydration. This may be of particular significance in older and critically ill patients, who are prone to dehydration.
Collapse
Affiliation(s)
- Erin Baggaley
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
21
|
Elbe D, Savage R. How does this happen? Part I: mechanisms of adverse drug reactions associated with psychotropic medications. JOURNAL OF THE CANADIAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY = JOURNAL DE L'ACADEMIE CANADIENNE DE PSYCHIATRIE DE L'ENFANT ET DE L'ADOLESCENT 2010; 19:40-45. [PMID: 20119566 PMCID: PMC2809445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
OBJECTIVE To review the background and mechanisms behind how certain psychotropic medications cause adverse drug reactions. METHODS A literature review pertaining to several interesting and unusual adverse drug reactions attributed to selected psychotropic medications was conducted. These include: 1) QTc interval prolongation secondary to ziprasidone, pimozide, and other antipsychotic agents. 2) Nephrogenic diabetes insipidus and hypernatremia secondary to lithium. 3) Hypothyroidism secondary to lithium. 4) Erectile dysfunction secondary to selective serotonin and serotonin/norepinephrine reuptake inhibitors (SSRIs/SNRIs). RESULTS Biochemical mechanisms of how certain psychotropic medications cause adverse drug reactions were reviewed. Specific interventions and monitoring recommendations to prevent or reduce the impact of these adverse reactions are discussed briefly. CONCLUSION Knowledge of risk factors and mechanisms of adverse drug reactions with psychotropic medications can help to guide medication prescribing, monitoring and interventions to prevent or mitigate these reactions.
Collapse
Affiliation(s)
- Dean Elbe
- Child and Adolescent Psychiatry, Children's & Women's Health Centre of BC, Vancouver, British Columbia.
| | | |
Collapse
|
22
|
Rao R, Patel S, Hao C, Woodgett J, Harris R. GSK3beta mediates renal response to vasopressin by modulating adenylate cyclase activity. J Am Soc Nephrol 2010; 21:428-37. [PMID: 20056751 DOI: 10.1681/asn.2009060672] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glycogen synthase kinase 3beta (GSK3beta), a serine/threonine protein kinase, is a key target of drug discovery in several diseases, including diabetes and Alzheimer disease. Because lithium, a potent inhibitor of GSK3beta, causes nephrogenic diabetes insipidus, GSK3beta may play a crucial role in regulating water homeostasis. We developed renal collecting duct-specific GSK3beta knockout mice to determine whether deletion of GSK3beta affects arginine vasopressin-dependent renal water reabsorption. Although only mildly polyuric under normal conditions, knockout mice exhibited an impaired urinary concentrating ability in response to water deprivation or treatment with a vasopressin analogue. The knockout mice had reduced levels of mRNA, protein, and membrane localization of the vasopressin-responsive water channel aquaporin 2 compared with wild-type mice. The knockout mice also expressed lower levels of pS256-AQP2, a phosphorylated form crucial for membrane trafficking. Levels of cAMP, a major regulator of aquaporin 2 expression and trafficking, were also lower in the knockout mice. Both GSK3beta gene deletion and pharmacologic inhibition of GSK3beta reduced adenylate cyclase activity. In summary, GSK3beta inactivation or deletion reduces aquaporin 2 expression by modulating adenylate cyclase activity and cAMP generation, thereby impairing responses to vasopressin in the renal collecting duct.
Collapse
Affiliation(s)
- Reena Rao
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | | | | | |
Collapse
|
23
|
Jia Z, Wang H, Yang T. Mice lacking mPGES-1 are resistant to lithium-induced polyuria. Am J Physiol Renal Physiol 2009; 297:F1689-96. [PMID: 19692487 DOI: 10.1152/ajprenal.00117.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclooxygenase-2 activity is required for the development of lithium-induced polyuria. However, the involvement of a specific, terminal prostaglandin (PG) isomerase has not been evaluated. The present study was undertaken to assess lithium-induced polyuria in mice deficient in microsomal prostaglandin E synthase-1 (mPGES-1). A 2-wk administration of LiCl (4 mmol.kg(-1).day(-1) ip) in mPGES-1 +/+ mice led to a marked polyuria with hyposmotic urine. This was associated with elevated renal mPGES-1 protein expression and increased urine PGE(2) excretion. In contrast, mPGES-1 -/- mice were largely resistant to lithium-induced polyuria and a urine concentrating defect, accompanied by nearly complete blockade of high urine PGE(2) and cAMP output. Immunoblotting, immunohistochemistry, and quantitative (q) RT-PCR consistently detected a significant decrease in aquaporin-2 (AQP2) protein expression in both the renal cortex and medulla of lithium-treated +/+ mice. This decrease was significantly attenuated in the -/- mice. qRT-PCR detected similar patterns of changes in AQP2 mRNA in the medulla but not in the cortex. Similarly, the total protein abundance of the Na-K-2Cl cotransporter (NKCC2) in the medulla but not in the cortex of the +/+ mice was significantly reduced by lithium treatment. In contrast, the dowregulation of renal medullary NKCC2 expression was significantly attenuated in the -/- mice. We conclude that mPGES-1-derived PGE(2) mediates lithium-induced polyuria likely via inhibition of AQP2 and NKCC2 expression.
Collapse
Affiliation(s)
- Zhanjun Jia
- Univ. of Utah and VA Medical Center, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
24
|
Kortenoeven MLA, Li Y, Shaw S, Gaeggeler HP, Rossier BC, Wetzels JFM, Deen PMT. Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int 2009; 76:44-53. [PMID: 19367330 DOI: 10.1038/ki.2009.91] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lithium therapy frequently induces nephrogenic diabetes insipidus; amiloride appears to prevent its occurrence in some clinical cases. Amiloride blocks the epithelial sodium channel (ENaC) located in the apical membrane of principal cells; hence one possibility is that ENaC is the main entry site for lithium and the beneficial effect of amiloride may be through inhibiting lithium entry. Using a mouse collecting duct cell line, we found that vasopressin caused an increase in Aquaporin 2 (AQP2) expression which was reduced by clinically relevant lithium concentrations similar to what is seen with in vivo models of this disease. Further amiloride or benzamil administration prevented this lithium-induced downregulation of AQP2. Amiloride reduced transcellular lithium transport, intracellular lithium concentration, and lithium-induced inactivation of glycogen synthase kinase 3beta. Treatment of rats with lithium downregulated AQP2 expression, reduced the principal-to-intercalated cell ratio, and caused polyuria, while simultaneous administration of amiloride attenuated all these changes. These results show that ENaC is the major entry site for lithium in principal cells both in vitro and in vivo. Blocking lithium entry with amiloride attenuates lithium-induced diabetes insipidus, thus providing a rationale for its use in treating this disorder.
Collapse
Affiliation(s)
- Marleen L A Kortenoeven
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Tae-Hwan Kwon
- Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
26
|
Dysregulation of renal aquaporins and epithelial sodium channel in lithium-induced nephrogenic diabetes insipidus. Semin Nephrol 2008; 28:227-44. [PMID: 18519084 DOI: 10.1016/j.semnephrol.2008.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lithium is used commonly to treat bipolar mood disorders. In addition to its primary therapeutic effects in the central nervous system lithium has a number of side effects in the kidney. The side effects include nephrogenic diabetes insipidus with polyuria, mild sodium wasting, and changes in acid/base balance. These functional changes are associated with marked structural changes in collecting duct cell composition and morphology, likely contributing to the functional changes. Over the past few years, investigations of lithium-induced renal changes have provided novel insight into the molecular mechanisms that are responsible for the disturbances in water, sodium, and acid/base metabolism. This includes dysregulation of renal aquaporins, epithelial sodium channel, and acid/base transporters. This review focuses on these issues with the aim to present this in context with clinically relevant features.
Collapse
|
27
|
Fröhlich O, Aggarwal D, Klein JD, Kent KJ, Yang Y, Gunn RB, Sands JM. Stimulation of UT-A1-mediated transepithelial urea flux in MDCK cells by lithium. Am J Physiol Renal Physiol 2008; 294:F518-24. [PMID: 18171999 DOI: 10.1152/ajprenal.00349.2007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Trans-epithelial tracer urea flux across Madin-Darby canine kidney (MDCK) cells permanently expressing the urea transporter UT-A1 is stimulated by agents that activate the cAMP signaling pathway, such as vasopressin or forskolin, thus mimicking the activation of urea permeability in the inner medullary collecting duct in the presence of vasopressin. Here, we report that UT-A1-mediated urea flux is also activated two-to-threefold over background by exposing the cells to media containing LiCl. This is in contrast to reports on cortical and medullary collecting duct tubules where acute and chronic exposure to lithium (Li) suppresses the osmotic water permeability, which is also regulated by cAMP levels. The Li concentration dependence of urea flux activation was linear up to 150 mM Li. Li activated only from the basolateral side where its effect was inhibited by amiloride, presumably because Li entered the cells through a basolateral Na-H exchanger. Li and IBMX, which also weakly activated urea flux, greatly augmented each others' stimulatory effect on urea flux. However, cellular cAMP levels did not rise commensurately with urea fluxes, and even though Li augments the activation by forskolin, it greatly inhibits the forskolin-induced formation of cAMP. These results suggest that the effect of Li in this MDCK model of renal cells does not involve cAMP or at least utilizes an additional signaling pathway independent of cAMP.
Collapse
Affiliation(s)
- Otto Fröhlich
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kim GH, Choi NW, Jung JY, Song JH, Lee CH, Kang CM, Knepper MA. Treating lithium-induced nephrogenic diabetes insipidus with a COX-2 inhibitor improves polyuria via upregulation of AQP2 and NKCC2. Am J Physiol Renal Physiol 2008; 294:F702-9. [PMID: 18216147 DOI: 10.1152/ajprenal.00366.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostaglandin E(2) may antagonize vasopressin-stimulated salt absorption in the thick ascending limb and water absorption in the collecting duct. Blockade of prostaglandin E(2) synthesis by nonsteroidal anti-inflammatory drugs (NSAIDs) enhances urinary concentration, and these agents have antidiuretic effects in patients with nephrogenic diabetes insipidus (NDI) of different etiologies. Because renal prostaglandins are derived largely from cyclooxygenase-2 (COX-2), we hypothesized that treatment of NDI with a COX-2 inhibitor may relieve polyuria through increased expression of Na-K-2Cl cotransporter type 2 (NKCC2) in the thick ascending limb and aquaporin-2 (AQP2) in the collecting duct. To test this hypothesis, semiquantitative immunoblotting and immunohistochemistry were carried out from the kidneys of lithium-induced NDI rats with and without COX-2 inhibition. After male Sprague-Dawley rats were fed an LiCl-containing rat diet for 3 wk, the rats were randomly divided into control and experimental groups. The COX-2 inhibitor DFU (40 mg.kg(-1).day(-1)) was orally administered to the experimental rats for an additional week. Treatment with the COX-2 inhibitor significantly relieved polyuria and raised urine osmolality. Semiquantitative immunoblotting using whole-kidney homogenates revealed that COX-2 inhibition caused significant increases in the abundance of AQP2 and NKCC2. Immunohistochemistry for AQP2 and NKCC2 confirmed the effects of COX-2 inhibition in lithium-induced NDI rats. The upregulation of AQP2 and NKCC2 in response to the COX-2 inhibitor may underlie the therapeutic mechanisms by which NSAIDs enhance antidiuresis in patients with NDI.
Collapse
Affiliation(s)
- Gheun-Ho Kim
- Dept. of Internal Medicine, Hanyang Univ. College of Medicine, 17 Haengdang-dong Seongdong-gu, Seoul 133-792, South Korea.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kwon TH. Dysregulation of Renal Cyclooxygenase-2 in Rats with Lithium-induced Nephrogenic Diabetes Insipidus. Electrolyte Blood Press 2007; 5:68-74. [PMID: 24459504 PMCID: PMC3894518 DOI: 10.5049/ebp.2007.5.2.68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 10/15/2007] [Indexed: 01/01/2023] Open
Abstract
This study aimed to examine whether the expression of major prostaglandin E2 (PGE2) synthesis enzyme, cyclooxygenase-2 (COX-2), is changed in the kidneys of the rats with lithium-induced nephrogenic diabetes insipidus (Li-NDI). Sprague-Dawley rats treated with lithium for 4 weeks were used as the NDI model and expression of renal COX-2 was determined by immunoblotting and immunohistochemistry. In Li-NDI where urine output was markedly increased and urine osmolality was significantly decreased, COX-2 expression in the inner medulla was decreased (28% of control), while it increased 18-fold in the cortex and outer medulla. Consistent with this, labeling intensity of COX-2 in macula densa region was increased, whereas it was decreased in the interstitial cells in the inner medulla, indicating a differential regulation of COX-2 between the cortex and inner medulla in Li-NDI. Accordingly, urinary PGE2 excretion was significantly increased in Li-NDI. In conclusion, there is a differential regulation of COX-2 between cortex and inner medulla in Li-NDI and urinary PGE2 excretion is increased in Li-NDI, possibly due to an increased renal production. This may suggest that increased renal production of PGE2 could play a role in modulating water reabsorption in the renal collecting duct in Li-NDI.
Collapse
Affiliation(s)
- Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
30
|
Cai Q, McReynolds MR, Keck M, Greer KA, Hoying JB, Brooks HL. Vasopressin receptor subtype 2 activation increases cell proliferation in the renal medulla of AQP1 null mice. Am J Physiol Renal Physiol 2007; 293:F1858-64. [PMID: 17913837 DOI: 10.1152/ajprenal.00068.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aquaporin (AQP) 1 null mice have a defect in the renal concentrating gradient because of their inability to generate a hyperosmotic medullary interstitium. To determine the effect of vasopressin on renal medullary gene expression, in the absence of high local osmolarity, we infused 1-deamino-8-d-arginine vasopressin (dDAVP), a V(2) receptor (V(2)R)-specific agonist, in AQP1 null mice for 7 days. cDNA microarray analysis was performed on the renal medullary tissue, and 5,140 genes of the possible 12,000 genes on the array were included in the analysis. In the renal medulla of AQP1 null mice, 245 transcripts were identified as increased by dDAVP infusion and 200 transcripts as decreased (1.5-fold or more). Quantitative real-time PCR measurements confirmed the increases seen for cyclin D1, early growth response gene 1, and activating transcription factor 3, genes associated with changes in cell cycle/growth. Changes in mRNA expression were correlated with changes in protein expression by semiquantitative immunoblotting; cyclin D1 and ATF3 were increased significantly in abundance following dDAVP infusion in the renal medulla of AQP1 null mice (161 and 461%, respectively). A significant increase in proliferation of medullary collecting ducts cells, following V(2)R activation, was identified by proliferating cell nuclear antigen immunohistochemistry; colocalization studies with AQP2 indicated that the increase in proliferation was primarily observed in principal cells of the inner medullary collecting duct (IMCD). V(2)R activation, via dDAVP, increased AQP2 and AQP3 protein abundance in the cortical collecting ducts of AQP1 null mice. However, V(2)R activation did not increase AQP2 protein abundance in the IMCD of AQP1 null mice.
Collapse
MESH Headings
- Animals
- Antidiuretic Hormone Receptor Antagonists
- Aquaporin 1/genetics
- Blotting, Western
- Cell Proliferation/drug effects
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Deamino Arginine Vasopressin/pharmacology
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Immunohistochemistry
- In Situ Hybridization
- Kidney Medulla/cytology
- Kidney Medulla/drug effects
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Mice
- Mice, Knockout
- Oligonucleotide Array Sequence Analysis
- Osmolar Concentration
- Proliferating Cell Nuclear Antigen/metabolism
- Proliferating Cell Nuclear Antigen/physiology
- RNA/biosynthesis
- RNA/genetics
- Receptors, Vasopressin/physiology
- Renal Agents/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Qi Cai
- Dept. of Physiology, College of Medicine, 1501 N. Campbell Ave., Univ. of Arizona, Tucson, AZ 85724-5051, USA
| | | | | | | | | | | |
Collapse
|
31
|
Khairallah W, Fawaz A, Brown EM, El-Hajj Fuleihan G. Hypercalcemia and diabetes insipidus in a patient previously treated with lithium. ACTA ACUST UNITED AC 2007; 3:397-404. [PMID: 17592473 DOI: 10.1038/ncpneph0525] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 04/16/2007] [Indexed: 11/08/2022]
Abstract
BACKGROUND A 65-year-old woman presented with decreased oral intake, a reduced level of consciousness, hypercalcemia and hypernatremia. She had previously received lithium for 20 years for a schizoaffective disorder, but this treatment had been discontinued 3 years before presentation. INVESTIGATIONS Physical examination, laboratory studies including measurement of serum calcium and parathyroid hormone levels, measurement of urine and serum osmolalities before and after desmopressin administration, blood and urine cultures, and a CT scan of the abdomen. DIAGNOSIS Urosepsis, dehydration, kidney stone disease, hyperparathyroidism, and nephrogenic diabetes insipidus. MANAGEMENT Hydration, antibiotics, intravenous pamidronate for rapid control of hypercalcemia, parathyroidectomy, surgical removal of the large kidney stones, a low-protein and low-sodium diet, and initiation of treatment with a thiazide diuretic.
Collapse
Affiliation(s)
- Walid Khairallah
- Division of Endocrinology, American University of Beirut, Lebanon
| | | | | | | |
Collapse
|
32
|
Wilting I, Baumgarten R, Movig KLL, van Laarhoven J, Apperloo AJ, Nolen WA, Heerdink ER, Knoers NVAM, Egberts ACG. Urine osmolality, cyclic AMP and aquaporin-2 in urine of patients under lithium treatment in response to water loading followed by vasopressin administration. Eur J Pharmacol 2007; 566:50-7. [PMID: 17466972 DOI: 10.1016/j.ejphar.2007.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 03/13/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
Lithium is the drug that is most frequently associated with acquired nephrogenic diabetes insipidus (NDI). The exact mechanism of lithium-induced NDI in man is unknown. The aim of the present study was to investigate the kidney response to minimal and maximal stimulation of the kidney urine concentrating mechanism by measuring urine osmolality, and urine levels of cAMP and AQP-2 in urine of patients under long-term lithium treatment. Twenty patients under long-term lithium treatment were included. The kidney urinary 3',5'-cyclic adenosine monophosphate (cyclic AMP), aquaporin-2 levels and urine osmolality were determined during a situation of minimal kidney urine concentrating activity (induced by water loading) and during a situation following maximal stimulation of kidney urine concentrating activity (induced by 1-desamino-8-D-arginine-vasopressin). Patients were classified as NDI, partial NDI and non-NDI based on maximal reached urine osmolality. The partial correlation (r) between urinary cyclic AMP levels (mol/l) and urine osmolality was 0.94 (P<0.001). No significant correlation was observed between urinary aquaporin-2 levels (mol/mol creatinine) and osmolality nor between urinary cyclic AMP and aquaporin-2 levels. The rise in urinary cyclic AMP but not aquaporin-2 levels upon 1-desamino-8-D-arginine-vasopressin administration after water loading significantly differed between the three categories, decreasing with increasing NDI category. In conclusion we found that in lithium-induced kidney urine concentrating deficit in man, the cyclic AMP generation in response to 1-desamino-8-D-arginine-vasopressin administration after water loading, is impaired. It remains to be elucidated whether principal cells, G-proteins or adenylate cyclase e.g. are the major targets for the mechanism underlying lithium-induced NDI in man.
Collapse
Affiliation(s)
- Ingeborg Wilting
- Utrecht University, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Division of Pharmacoepidemiology and Pharmacotherapy, Utrecht, and Department of Clinical Pharmacy, TweeSteden hospital, Tilburg, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The discovery of aquaporin-1 (AQP1) explained the long-standing biophysical question of how water specifically crosses biological membranes. These studies led to the identification of a whole new family of membrane proteins, the aquaporin water channels. At present, at least eight aquaporins are expressed at distinct sites in the kidney and four members of this family (AQP1-4) have been demonstrated to play pivotal roles in the physiology and pathophysiology for renal regulation of body water balance. In the present review, a number of inherited and acquired conditions characterized by urinary concentration defects as well as common diseases associated with severe water retention are discussed with relation to the role of aquaporins in regulation and dysregulation of renal water transport.
Collapse
Affiliation(s)
- S Nielsen
- The Water and Salt Research Center, University of Aarhus, Aarhus C, Denmark.
| | | | | | | |
Collapse
|
34
|
Abstract
Nephrogenic diabetes insipidus (NDI) is defined as the inability of the kidney to concentrate urine owing to the insensitivity of the distal nephron to the antidiuretic hormone, arginine vasopressin. NDI can be either a congenital or an acquired disorder. Acquired NDI most commonly is secondary to drugs such as lithium or metabolic disturbances, such as hypokalemia and hypercalcemia. Disturbance of the aquaporin-2 shuttle is the underlying molecular basis of acquired NDI. NDI is diagnosed with the help of a water-deprivation test. Patients with the disorder will have a urinary osmolality of less than 300 mosm/kg H2O despite water deprivation. On administration of aqueous vasopressin, patients with NDI will show little or no increase in urine osmolality. Therapy consists of identifying and correcting the underlying disorder, or withdrawing the offending drug. Other treatment options that may be beneficial include diuretics, nonsteroidal anti-inflammatory drugs, decreased dietary solute intake, and desmopressin (DDAVP).
Collapse
Affiliation(s)
- Apurv Khanna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA.
| |
Collapse
|
35
|
Robben JH, Knoers NVAM, Deen PMT. Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 2006; 291:F257-70. [PMID: 16825342 DOI: 10.1152/ajprenal.00491.2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the renal collecting duct, water reabsorption is regulated by the antidiuretic hormone vasopressin (AVP). Binding of this hormone to the vasopressin V2 receptor (V2R) leads to insertion of aquaporin-2 (AQP2) water channels in the apical membrane, thereby allowing water reabsorption from the pro-urine to the interstitium. The disorder nephrogenic diabetes insipidus (NDI) is characterized by the kidney's inability to concentrate pro-urine in response to AVP, which is mostly acquired due to electrolyte disturbances or lithium therapy. Alternatively, NDI is inherited in an X-linked or autosomal fashion due to mutations in the genes encoding V2R or AQP2, respectively. This review describes the current knowledge of the cell biological causes of NDI and how these defects may explain the patients' phenotypes. Also, the increased understanding of these cellular defects in NDI has opened exciting initiatives in the development of novel therapies for NDI, which are extensively discussed in this review.
Collapse
MESH Headings
- Amino Acid Sequence
- Aquaporin 2/genetics
- Aquaporin 2/physiology
- DNA/genetics
- Diabetes Insipidus, Nephrogenic/etiology
- Diabetes Insipidus, Nephrogenic/genetics
- Diabetes Insipidus, Nephrogenic/physiopathology
- Diabetes Insipidus, Nephrogenic/therapy
- Gene Expression Regulation/physiology
- Genetic Diseases, X-Linked/etiology
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/physiopathology
- Genetic Diseases, X-Linked/therapy
- Humans
- Molecular Sequence Data
- Mutation/genetics
- Mutation/physiology
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/physiology
- Vasopressins/physiology
Collapse
Affiliation(s)
- Joris H Robben
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences and Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
36
|
Nielsen J, Kwon TH, Frøkiaer J, Knepper MA, Nielsen S. Lithium-induced NDI in rats is associated with loss of α-ENaC regulation by aldosterone in CCD. Am J Physiol Renal Physiol 2006; 290:F1222-33. [PMID: 16332930 DOI: 10.1152/ajprenal.00321.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lithium-induced nephrogenic diabetes insipidus (Li-NDI) is associated with increased urinary sodium excretion and decreased responsiveness to aldosterone and vasopressin. Dysregulation of the epithelial sodium channel (ENaC) is thought to play an important role in renal sodium wasting. The effect of 7-day aldosterone and spironolactone treatment on regulation of ENaC in rat kidney cortex was investigated in rats with 3 wk of Li-NDI. Aldosterone treatment of rats with Li-NDI decreased fractional excretion of sodium (0.83 ± 0.02), whereas spironolactone did not change fractional excretion of sodium (1.10 ± 0.11) compared with rats treated with lithium alone (1.11 ± 0.05). Plasma lithium concentration was decreased by aldosterone (0.31 ± 0.03 mmol/l) but unchanged with spironolactone (0.84 ± 0.18 mmol/l) compared with rats treated with lithium alone (0.54 ± 0.04 mmol/l). Immunoblotting showed increased protein expression of α-ENaC, the 70-kDa form of γ-ENaC, and the Na-Cl cotransporter (NCC) in kidney cortex in aldosterone-treated rats, whereas spironolactone decreased α-ENaC and NCC compared with control rats treated with lithium alone. Immunohistochemistry confirmed increased expression of α-ENaC in the late distal convoluted tubule and connecting tubule and also revealed increased apical targeting of all three ENaC subunits (α, β, and γ) in aldosterone-treated rats compared with rats treated with lithium alone. Aldosterone did not, however, affect α-ENaC expression in the cortical collecting duct (CCD), which showed weak and dispersed labeling similar to that in rats treated with lithium alone. Spironolactone did not affect ENaC targeting compared with rats treated with lithium alone. This study shows a segment specific lack of aldosterone-mediated α-ENaC regulation in the CCD affecting both α-ENaC protein expression and trafficking, which may explain the increased sodium wasting associated with chronic lithium treatment.
Collapse
Affiliation(s)
- Jakob Nielsen
- The Water and Salt Research Center, Institute of Anatomy (Bldg. 233 Univ. of Aarhus, DK-8000 Aarhus, Denmark
| | | | | | | | | |
Collapse
|
37
|
Li Y, Shaw S, Kamsteeg EJ, Vandewalle A, Deen PMT. Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity. J Am Soc Nephrol 2006; 17:1063-72. [PMID: 16495377 DOI: 10.1681/asn.2005080884] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In antidiuresis, vasopressin (AVP) occupation of V2 receptors in renal collecting ducts activates adenylyl cyclase, resulting in increased intracellular cAMP levels, which activates protein kinase A (PKA). PKA phosphorylates both the cAMP responsive element binding protein, which induces aquaporin-2 (AQP2) transcription, and AQP2, which then is translocated to the apical membrane, allowing urine concentration. Lithium treatment often causes nephrogenic diabetes insipidus (NDI), which coincides with decreased AQP2 expression and which generally is ascribed to reduced adenylyl cyclase activity. However, the underlying mechanism by which lithium causes NDI is poorly understood. This study demonstrated that the mouse cortical collecting duct mpkCCD(c14) cells are a good model; the deamino-8 D-arginine vasopressin (dDAVP)-induced endogenous AQP2 expression and plasma membrane localization was time-dependently reduced by treatment with clinically relevant lithium concentrations. Lithium did not affect AQP2 stability but decreased its mRNA levels. Surprising, the effect of lithium was cAMP independent; it did not alter AVP-stimulated cAMP production or PKA-dependent phosphorylation of AQP2 or cAMP responsive element binding protein. In vivo, kidney tissue of rats with lithium-induced NDI indeed generated less dDAVP-induced cAMP than that of controls, but this could be due to elevated blood AVP levels in rats with lithium-induced NDI. Indeed, Brattleboro rats, which lack endogenous AVP, with clamped blood dDAVP levels, showed no difference in dDAVP-generated cAMP generation between kidneys of rats with lithium-induced NDI and control rats. In conclusion, the first proper cell model to study lithium-induced NDI was developed, and it was demonstrated that the lithium-induced downregulation of AQP2 and development of NDI occur independent of adenylyl cyclase activity in vitro and in vivo.
Collapse
Affiliation(s)
- Yuedan Li
- Department of Physiology, 286 Nijmegen Center for Molecular Life Sciences, RUNMC Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Jeff M Sands
- Renal Division, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
39
|
Fukushima K, Takeda T, Kakigi A, Takeda S, Sawada S, Nishioka R, Azuma H, Taguchi T. Effects of lithium on endolymph homeostasis and experimentally induced endolymphatic hydrops. ORL J Otorhinolaryngol Relat Spec 2005; 67:282-8. [PMID: 16374061 DOI: 10.1159/000089409] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is evidence to suggest that water homeostasis in the inner ear is regulated via the vasopressin (VP)-aquaporin 2 (AQP2) system in the same fashion as in the kidney. The VP-AQP2 system in the kidney is well known to be inhibited by lithium, resulting in polyuria due to a decrease in reabsorption of water in the collecting duct of the kidney. Therefore, lithium is also likely to inhibit the VP-AQP2 system in the inner ear, and consequently exert some influence on inner ear fluid homeostasis. In this study, we investigated the effects of lithium on AQP2 expression in the rat inner ear, and on the cochlear fluid volume in hydropic ears of guinea pigs. A quantitative PCR study revealed that lithium reduced AQP2 mRNA expression in the cochlea and endolymphatic sac. Lithium application also decreased the immunoreactivity of AQP2 in the cochlea and endolymphatic sac. In a morphological study, lithium intake significantly reduced endolymphatic hydrops dose-dependently. These results indicate that lithium acts on the VP-AQP2 system in the inner ear, consequently producing a dehydratic effect on the endolymphatic compartment.
Collapse
Affiliation(s)
- K Fukushima
- Department of Otolaryngology, Kochi Medical School, Nankoku, Kochi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Nielsen J, Kwon TH, Praetorius J, Frøkiaer J, Knepper MA, Nielsen S. Aldosterone increases urine production and decreases apical AQP2 expression in rats with diabetes insipidus. Am J Physiol Renal Physiol 2005; 290:F438-49. [PMID: 16159898 DOI: 10.1152/ajprenal.00158.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vasopressin and aldosterone are essential hormones in the regulation of water and sodium balance. Aldosterone regulates sodium reabsorption, although synergistic effects on collecting duct water permeability have been shown. We investigated the effects of 7-day aldosterone infusion or oral spironolactone treatment on water balance and aquaporin (AQP) 2 expression in rats with 21 days of lithium-induced nephrogenic diabetes insipidus (Li-NDI). In rats with Li-NDI, aldosterone markedly increased (271 +/- 14 ml/24 h), whereas spironolactone decreased (74 +/- 11 ml/24 h) urine production compared with rats treated with lithium only (120 +/- 11 ml/24 h). Aldosterone increased free-water clearance and creatinine clearance, whereas spironolactone caused a decreased creatinine clearance but unchanged free-water clearance. Immunoblotting showed unchanged AQP2 expression in cortex/outer stripe of the outer medulla and inner medulla. In the inner stripe of the outer medulla aldosterone caused a decreased AQP2 expression, whereas spironolactone caused an increase compared with rats treated with lithium only. Semiquantitative confocal immunofluorescence microscopy of AQP2 immunolabeling showed reduced AQP2 expression in the apical plasma membrane domain in connecting tubule (CNT) and initial cortical collecting ducts (iCCD) in response to aldosterone-treated rats compared with rats treated with lithium only. Spironolactone significantly increased apical AQP2 expression in the iCCD compared with rats treated with lithium only. We also tested whether similar changes could be observed in vasopressin-deficient BB rats and found similar changes in urine production and subcellular AQP2 expression in the CNT and iCCD in response to aldosterone and spironolactone. This study shows that aldosterone treatment perturbs diabetes insipidus and is associated with AQP2 redistribution in CNT and iCCD likely mediated by the spironolactone-sensitive mineralocorticoid receptor.
Collapse
Affiliation(s)
- Jakob Nielsen
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
41
|
Rojek A, Nielsen J, Brooks HL, Gong H, Kim YH, Kwon TH, Frøkiaer J, Nielsen S. Altered expression of selected genes in kidney of rats with lithium-induced NDI. Am J Physiol Renal Physiol 2005; 288:F1276-89. [PMID: 15687245 DOI: 10.1152/ajprenal.00305.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lithium treatment is associated with development of nephrogenic diabetes insipidus, caused in part by downregulation of collecting duct aquaporin-2 (AQP2) and AQP3 expression. In the present study, we carried out cDNA microarray screening of gene expression in the inner medulla (IM) of lithium-treated and control rats, and selected genes were then investigated at the protein level by immunoblotting and/or immunohistochemistry. The following genes exhibited significantly altered transcription and mRNA expression levels, and these were compatible with the changes in protein expression. 11β-Hydroxysteroid dehydrogenase type 2 protein expression in the IM was markedly increased (198 ± 25% of controls, n = 6), and immunocytochemistry demonstrated an increased labeling of IM collecting duct (IMCD) principal cells. This indicated altered renal mineralocorticoid/glucocorticoid responses in lithium-treated rats. The inhibitor of cyclin-dependent kinases p27 (KIP) protein expression was significantly decreased or undetectable in the IMCD cells, pointing to increased cellular proliferation and remodeling. Heat shock protein 27 protein expression was decreased in the IM (64 ± 6% of controls, n = 6), likely to be associated with the decreased medullary osmolality in lithium-treated rats. Consistent with this, lens aldose reductase protein expression was markedly decreased in the IM (16 ± 2% of controls, n = 6), and immunocytochemistry revealed decreased expression in the thin limb cells in the middle and terminal parts of the IM. Ezrin protein expression was upregulated in the IM (158 ± 16% of controls, n = 6), where it was predominantly expressed in the apical and cytoplasmic domain of the IMCD cells. Increased ezrin expression indicated remodeling of the actin cytoskeleton and/or altered regulation of IMCD transporters. In conclusion, the present study demonstrates changes in gene expression not only in the collecting duct but also in the thin limb of the loop of Henle in the IM, and several of these genes are linked to altered sodium and water reabsorption, cell cycling, and changes in interstitial osmolality.
Collapse
Affiliation(s)
- Aleksandra Rojek
- The Water and Salt Research Ctr., Bldg. 233/234, Institute of Anatomy, Univ. of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kotnik P, Nielsen J, Kwon TH, Krzisnik C, Frøkiaer J, Nielsen S. Altered expression of COX-1, COX-2, and mPGES in rats with nephrogenic and central diabetes insipidus. Am J Physiol Renal Physiol 2005; 288:F1053-68. [PMID: 15644490 DOI: 10.1152/ajprenal.00114.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostaglandins have an important role in renal salt and water reabsorption. PGE2is the main kidney prostaglandin and is thought to be mainly produced in the kidney inner medulla (IM). There are indications that PGE2synthesis in nephrogenic (NDI) and central (CDI) diabetes insipidus is altered. We hypothesize that the expression of the major PGE2synthesis enzymes cyclooxygenases 1 and 2 (COX-1, COX-2) and membrane-associated PGE2synthase (mPGES) is altered in the kidneys of rats with NDI and CDI. Wistar rats treated with lithium for 4 wk were used as the NDI model. One-half of the NDI model rats were additionally dehydrated for 48 h. Brattleboro (BB) rats that lack endogenous antidiuretic hormone were used as the CDI model. Expression and localization of COX-1, COX-2, and mPGES in IM, inner stripe of outer medulla (ISOM), and cortex were determined by immunoblotting and immunohistochemistry. In lithium-induced NDI, expression of COX-1, COX-2, and mPGES was markedly decreased in IM. In ISOM and cortex, COX-1 expression was marginally reduced and mPGES expression was unaltered. COX-2 expression was undetected in ISOM and marginally increased in cortex. Consistent with this, the density of COX-2-expressing cells in macula densa was significantly increased, indicating differential regulation of COX-2 in IM and cortex. Dehydration of NDI rats resulted in a marked increase in COX-2 immunolabeling in IM interstitial cells, and there was no significant change in COX-1 and mPGES expression in any kidney zone. Treatment of DDAVP in BB rats for 6 days resulted in a markedly increased expression of COX-1, COX-2, and mPGES in IM. In the cortex, there were no changes in the expression of COX-1 and mPGES, whereas COX-2 expression was decreased. These results identify markedly reduced expression of COX-1, COX-2, and mPGES in IM in lithium-induced NDI. Furthermore, there were major changes in the expression of COX-1, COX-2, and mPGES in rats with CDI.
Collapse
Affiliation(s)
- Primoz Kotnik
- The Water and Salt Research Center, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Rao R, Zhang MZ, Zhao M, Cai H, Harris RC, Breyer MD, Hao CM. Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am J Physiol Renal Physiol 2005; 288:F642-9. [PMID: 15585669 DOI: 10.1152/ajprenal.00287.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The use of LiCl in clinical psychiatry is routinely complicated by overt nephrogenic diabetes insipidus (NDI), the mechanism of which is incompletely understood. In vitro studies indicate that lithium can induce renal medullary interstitial cell cyclooxygenase 2 (COX2) protein expression via inhibition of glycogen synthase kinase-3β (GSK-3β). Both COX1 and COX2 are expressed in the kidney. Renal prostaglandins have been suggested to play an important role in lithium-induced polyuria. The present studies examined whether induction of the COX2 isoform contributes to LiCl-induced polyuria. Four days after initiation of lithium treatment in C57 BL/6J mice, urine volume increased in LiCl-treated mice by fourfold compared with controls ( P < 0.0001) and was accompanied by decreased urine osmolality. This was temporally associated with increased renal COX2 protein expression and increased urinary PGE2 excretion, whereas COX1 levels remained unchanged. COX2 inhibition significantly blunted lithium-induced polyuria ( P < 0.0001) and reduced urinary PGE2 levels. Lithium-associated polyuria was also seen in COX1−/− mice and was associated with increased urinary PGE2. COX2 inhibition completely prevented polyuria and PGE2 excretion in COX1−/− mice, suggesting that COX2, but not COX1, plays a critical role in lithium-induced polyuria. Lithium also induced renal medullary COX2 protein expression in congenitally polyuric antidiuretic hormone (AHD)-deficient rats, demonstrating that lithium-induced COX2 protein expression is not secondary to altered ADH levels or polyuria. Lithium also decreased renal medullary GSK-3β activity, and this was temporally related to increased COX2 expression in the kidney from lithium-treated mice, consistent with a tonic in vivo suppression of COX2 expression by GSK-3 activity. In conclusion, these findings temporally link decreased GSK-3 activity to enhanced renal COX2 expression and COX2-derived urine PGE2 excretion. Suppression of COX2-derived PGE2 blunts lithium-associated polyuria.
Collapse
Affiliation(s)
- Reena Rao
- Div. of Nephrology, Vanderbilt Univ. Medical Ctr., S3223, MCN, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Skyum H, Marcussen N, Nielsen SH, Christensen S. Interstitial capillary changes in lithium nephropathy: effects of antihypertensive treatment. APMIS 2004; 112:686-97. [PMID: 15601320 DOI: 10.1111/j.1600-0463.2004.apm1121007.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Histopathological changes were investigated in the tubulointerstitium and in the capillaries of male Wistar rats with lithium-induced nephropathy using stereological methods. Two antihypertensive drugs with opposite effects on the renin-angiotensin system, an ACE inhibitor (angiotensin converting enzyme inhibitor) and a thiazide diuretic, modified the nephropathy. Generally, there was a significant positive correlation between the reduction in GFR (glomerular filtration rate) and the reduction in the volume of intact tubular structures and interstitial capillaries. A significant negative correlation was seen between the reduction in GFR and the increase in tubulocapillary distance and the absolute volume of interstitial connective tissue, respectively. Treatment with perindopril, and to some extent hydrochlorothiazide, reversed the rise in systolic blood pressure associated with lithium-induced nephropathy but did not affect the progression to terminal uraemia, the structural renal changes or the mortality. In conclusion, severe tubular and capillary changes are seen in this model of chronic renal failure. Tubular atrophy is associated with a decrease in interstitial capillaries and with an increase in the tubulocapillary distance. Systemic hypertension or activation of the renin-angiotensin system may not be important factors for the progression to terminal renal failure.
Collapse
Affiliation(s)
- Helle Skyum
- University Institute of Pathology, Aarhus Kommunehospital, Aarhus, Denmark
| | | | | | | |
Collapse
|
45
|
Nielsen J, Kwon TH, Praetorius J, Kim YH, Frøkiaer J, Knepper MA, Nielsen S. Segment-specific ENaC downregulation in kidney of rats with lithium-induced NDI. Am J Physiol Renal Physiol 2003; 285:F1198-209. [PMID: 12928314 DOI: 10.1152/ajprenal.00118.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lithium-induced nephrogenic diabetes insipidus is associated with increased renal sodium excretion in addition to severe urinary concentrating defects. However, the molecular basis for this altered renal sodium excretion remains undefined. The amiloride-sensitive sodium channel (ENaC) is expressed in the renal connecting tubule and collecting duct and is essential in renal regulation of body sodium balance and blood pressure. We hypothesized that dysregulation of ENaC subunits may be responsible for the increased sodium excretion associated with lithium treatment. Lithium treatment for 28 days resulted in severe polyuria, increased fractional excretion of sodium, and increased plasma aldosterone concentration. Immunoblotting revealed that lithium treatment induced a marked decrease in the protein abundance of beta-ENaC and gamma-ENaC in the cortex and outer medulla. Moreover, immunohistochemistry and laser confocal microscopy demonstrated an almost complete absence of beta-ENaC and gamma-ENaC labeling in cortical and outer medullary collecting duct, which was not affected by dietary sodium intake. In contrast, immunohistochemistry showed increased apical labeling of all ENaC subunits in the connecting tubule and inner medullary collecting duct in rats on a fixed sodium intake but not in rats with free access to sodium. Except for a modest downregulation of the thiazide-sensitive Na-Cl cotransporter, the key renal sodium transporters upstream from the connecting tubule (including the alpha1-subunit of Na-K-ATPase, type 3 Na/H exchanger, and Na-K-2Cl cotransporter) were unchanged. These results identify a marked and highly segment-specific downregulation of beta-ENaC and gamma-ENaC in the cortical and outer medullary collecting duct, chief sites for collecting duct sodium reabsorption, in rats with a lithium-induced increase in fractional excretion of sodium.
Collapse
Affiliation(s)
- Jakob Nielsen
- The Water and Salt Research Center, Institute of Anatomy (Bldg. 233), University of Aarhus, DK-8000 Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
46
|
Chmielnicka J, Nasiadek M. The trace elements in response to lithium intoxication in renal failure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2003; 55:178-183. [PMID: 12742366 DOI: 10.1016/s0147-6513(02)00125-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The polyuric syndrome that develops as a consequence of chronic administration of lithium salts is most frequent and often causes complication in the treatment of manic depressive disease with the administration of drugs. It is known that kidneys play an essential role in systematic depositing of toxic metals. The purpose of this study was not only the determination of dose-dependent lithium concentration in serum and urine but also an estimation of sensitive biochemical indicators of nephrotoxicity detectable at an early stage after the administration of lithium carbonate to rats. Animals were given orally lithium salt to female Wistar rats at the dose of 10 and 20mg Li/kg daily during 5 weeks. In the urine diuresis protein concentration, copper, zinc, lithium and N-acetyl-beta-glucoaminidase (NAG) activity were determined. In the serum also lithium, copper and zinc were analyzed. The results of the experiments indicate that the changes in urinary concentrations of essential copper, proteins, NAG activity and diuresis were observed when the concentration of lithium was ca. 9.79+/-1.68 mmol Li/L and in serum it corresponded to 0.3+/-0.06 mmol Li/L. These values corresponded to total doses of 150 mg Li/kg body weight administered to rats. In summary the increase of copper concentration, diuresis and urinary concentrations of protein and the NAG activity may be interpreted as a general metabolic response of kidneys induced by lithium detectable as an earlier indicator of nephrotoxicity. Therefore, regular determinations of lithium concentrations in serum of patients are important tools in the prevention of intoxication.
Collapse
Affiliation(s)
- Jadwiga Chmielnicka
- Department of Toxicology, Chemistry School of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | | |
Collapse
|
47
|
Michimata M, Fujita S, Araki T, Mizukami K, Kazama I, Muramatsu Y, Suzuki M, Kimura T, Sasaki S, Imai Y, Matsubara M. Reverse pharmacological effect of loop diuretics and altered rBSC1 expression in rats with lithium nephropathy. Kidney Int 2003; 63:165-71. [PMID: 12472779 DOI: 10.1046/j.1523-1755.2003.00738.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Renal urinary concentration is associated with enhanced expression of rBSC1, a rat sodium cotransporter, in the thick ascending limb of Henle. Increased expression of rBSC1 was reported recently in nephrogenic diabetes insipidus induced by lithium chloride (Li nephropathy). However, the pathophysiological implication of altered rBSC1 expression has not yet been investigated. METHODS Li nephropathy was induced in rats by an oral administration of 40 mmol lithium/kg dry food. In rats with reduced urinary osmolality to less than 300 mOsm/kg H2O, we examined the expression of rBSC1 mRNA and protein, plasma arginine vasopressin (AVP) and RNA expression of kidney-specific water channel, aquaporin-2 (AQP2), of collecting ducts. Rats with Li nephropathy were treated with furosemide (3 mg/kg body weight), which blocks the activity of rBSC1, and changes in urine concentration, plasma AVP, medullary accumulation of Li ions, and apical AQP2 expression were determined. RESULTS Rats with Li nephropathy showed increased rBSC1 RNA and protein expression and reduced AQP2 RNA. In these rats, furosemide, which induces dilution of urine and polyuria in normal rats, resulted in a progressive and significant rise in urine osmolality from 167 +/- 11 (mean +/- SD) at baseline to 450 +/- 45 mOsm/kg H2O at three hours after administration, and significant oliguria. In the same rats, plasma AVP decreased significantly from 5.7 to 3.0 pg/mL. In addition, recovery of apical AQP2 expression was noted in a proportion of epithelial cells of the collecting ducts. Although Li+ in the renal medulla was slightly lower in rats with Li nephropathy treated with furosemide, statistical significance was not achieved. CONCLUSIONS Our results suggest that dehydration or high plasma AVP results in an enhanced rBSC1 expression in Li nephropathy, and that rBSC1 expression is closely associated with the adverse effects of Li ions on collecting duct function.
Collapse
Affiliation(s)
- Mari Michimata
- Department of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Medicine and Pharmaceutical Science, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Urea plays a critical role in the urine-concentrating mechanism in the inner medulla. Physiologic data provided evidence that urea transport in red blood cells and kidney inner medulla was mediated by specific urea transporter proteins. Molecular approaches during the past decade resulted in the cloning of two gene families for facilitated urea transporters, UT-A and UT-B, encoding several urea transporter cDNA isoforms in humans, rodents, and several nonmammalian species. Polyclonal antibodies have been generated to the cloned urea transporter proteins, and the use of these antibodies in integrative animal studies has resulted in several novel findings, including: (1) the surprising finding that UT-A1 protein abundance and urea transport are increased in the inner medulla during conditions in which urine concentrating ability is reduced; (2) vasopressin increases UT-A1 phosphorylation in rat inner medullary collecting duct; (3) UT-A protein abundance is upregulated in uremia in both liver and heart; and (4) UT-B is expressed in many nonrenal tissues and endothelial cells. This review will summarize the knowledge gained from using molecular approaches to perform integrative studies into urea transporter protein regulation, both in normal animals and in animal models of human diseases, including studies of uremic rats in which urea transporter protein is upregulated in liver and heart.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
49
|
Abstract
Urea plays a key role in the urine-concentrating mechanism. Physiologic and molecular data demonstrate that urea transport in kidney and red blood cells occurs by specific urea transporter proteins. Two gene families for facilitated urea transporters, UT-A and UT-B, and several urea transporter cDNA isoforms have been cloned from human, rat, mouse, and several non-mammalian species. Polyclonal antibodies have been generated to many of the urea transporter proteins, and several novel findings have resulted from their use in integrative animal studies. For example, (a) vasopressin increases the phosphorylation of UT-A1 in rat inner medullary collecting duct; (b) UT-A1 protein abundance is increased in the rat inner medulla during conditions in which urine-concentrating ability is reduced; and (c) urea transporters are expressed in non-renal tissues, and UT-A protein abundance is up-regulated in uremia in both liver and heart. In addition to the facilitated urea transporters, functional evidence exists for active urea transport in the kidney collecting duct. This review summarizes the physiologic evidence for the existence of facilitated and active urea transporters, the molecular biology of the facilitated urea transporter gene families and cDNAs, and integrative studies into urea transporter protein regulation, both in the kidney and in other organs.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
50
|
Peng T, Sands JM, Bagnasco SM. Glucocorticoids inhibit transcription and expression of the UT-A urea transporter gene. Am J Physiol Renal Physiol 2002; 282:F853-8. [PMID: 11934695 DOI: 10.1152/ajprenal.00262.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dexamethasone treatment increases urea excretion and decreases urea permeability and urea transporter UT-A1 protein abundance in the inner medullary collecting duct (IMCD) of adrenalectomized rats. We examined the effect of dexamethasone treatment for 3 days on the abundance of several UT-A mRNA transcripts in rat renal medulla. By Northern blot analysis, a significant decrease in mRNA expression was observed in the inner medulla of dexamethasone-treated rats compared with controls for UT-A1 (71%), UT-A3 (75%), and UT-A3b (75%), but not for UT-A2. We then tested the effect of 100 nM dexamethasone on the activity of promoter I in the UT-A gene, using LLC-PK(1)-GR101 cells that express the glucocorticoid receptor. Dexamethasone significantly decreased the activity of rat UT-A promoter I (72%) but did not affect UT-A promoter II. Deletion analysis and site-directed mutagenesis demonstrated that sequences between -423 and -244 are important for this inhibition and that a 10-bp sequence at -363, which binds a nuclear protein in a gel shift assay, is necessary for basal promoter activity. The specific factors involved in repression of UT-A promoter I activity by glucocorticoids remain to be determined.
Collapse
Affiliation(s)
- Tao Peng
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|