1
|
Taenaka H, Matthay MA. Mechanisms of impaired alveolar fluid clearance. Anat Rec (Hoboken) 2025; 308:1026-1039. [PMID: 36688689 PMCID: PMC10564110 DOI: 10.1002/ar.25166] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Impaired alveolar fluid clearance (AFC) is an important cause of alveolar edema fluid accumulation in patients with acute respiratory distress syndrome (ARDS). Alveolar edema leads to insufficient gas exchange and worse clinical outcomes. Thus, it is important to understand the pathophysiology of impaired AFC in order to develop new therapies for ARDS. Over the last few decades, multiple experimental studies have been done to understand the molecular, cellular, and physiological mechanisms that regulate AFC in the normal and the injured lung. This review provides a review of AFC in the normal lung, focuses on the mechanisms of impaired AFC, and then outlines the regulation of AFC. Finally, we summarize ongoing challenges and possible future research that may offer promising therapies for ARDS.
Collapse
Affiliation(s)
- Hiroki Taenaka
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Michael A. Matthay
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|
2
|
Zhou Y, Ding H, Liang H, Zhao Y, Feng J, Jiang K, Dai R. Global research trends and emerging hotspots in acute high altitude illness: a bibliometric analysis and review (1937-2024). REVIEWS ON ENVIRONMENTAL HEALTH 2025:reveh-2024-0144. [PMID: 40150970 DOI: 10.1515/reveh-2024-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
INTRODUCTION Acute High Altitude Illness (AHAI) includes conditions such as Acute Mountain Sickness (AMS), High Altitude Cerebral Edema (HACE), and High Altitude Pulmonary Edema (HAPE), which result from rapid ascent to altitudes exceeding 2,500 m. Although interest in AHAI research has been growing, a systematic and comprehensive analysis of global research trends remains lacking. CONTENT A total of 3,214 articles and reviews published from 1937 to 2024 were retrieved from the Web of Science Core Collection. Bibliometric tools, including CiteSpace and VOSviewer, were applied to thoroughly assess publication trends, collaborative networks among authors, institutional contributions, and keyword co-occurrence patterns. The dataset represents the contributions of over 11,758 authors across 86 countries and 3,378 institutions, reflecting the significant growth of this research domain. SUMMARY AND OUTLOOK Our findings highlight the increasing scholarly attention to AHAI research, with the United States leading in publication numbers. Emerging research themes include cellular activation, oxidative stress, risk factors, and hypobaric hypoxia. This is the first systematic bibliometric review of AHAI literature, offering a detailed roadmap of research hotspots, potential collaborations, and key future directions. These findings provide a valuable reference for researchers aiming to explore gaps and build on the existing knowledge in high-altitude medicine.
Collapse
Affiliation(s)
- Yongjiang Zhou
- Department of General Surgery, Affiliated Hospital of Southwest Medical University, Sichuan, China
- General Surgery Center, General Hospital of Western Theater Command, Sichuan, China
| | - Hanyu Ding
- General Surgery Center, General Hospital of Western Theater Command, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Sichuan, China
| | - Hongyin Liang
- General Surgery Center, General Hospital of Western Theater Command, Sichuan, China
| | - Yiwen Zhao
- Department of General Surgery, Affiliated Hospital of Southwest Medical University, Sichuan, China
- General Surgery Center, General Hospital of Western Theater Command, Sichuan, China
| | - Jiajie Feng
- Department of General Surgery, Affiliated Hospital of Southwest Medical University, Sichuan, China
- General Surgery Center, General Hospital of Western Theater Command, Sichuan, China
| | - Kexin Jiang
- General Surgery Center, General Hospital of Western Theater Command, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Sichuan, China
| | - Ruiwu Dai
- Department of General Surgery, Affiliated Hospital of Southwest Medical University, Sichuan, China
- General Surgery Center, General Hospital of Western Theater Command, Sichuan, China
| |
Collapse
|
3
|
Aubin Vega M, Girault A, Adam D, Chebli J, Privé A, Maillé É, Robichaud A, Brochiero E. Impact of KvLQT1 potassium channel modulation on alveolar fluid homeostasis in an animal model of thiourea-induced lung edema. Front Physiol 2023; 13:1069466. [PMID: 36699692 PMCID: PMC9868633 DOI: 10.3389/fphys.2022.1069466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Alveolar ion and fluid absorption is essential for lung homeostasis in healthy conditions as well as for the resorption of lung edema, a key feature of acute respiratory distress syndrome. Liquid absorption is driven by active transepithelial sodium transport, through apical ENaC Na+ channels and basolateral Na+/K+-ATPase. Our previous work unveiled that KvLQT1 K+ channels also participate in the control of Na+/liquid absorption in alveolar epithelial cells. Our aim was to further investigate the function of KvLQT1 channels and their interplay with other channels/transporters involved in ion/liquid transport in vivo using adult wild-type (WT) and KvLQT1 knock-out (KO) mice under physiological conditions and after thiourea-induced lung edema. A slight but significant increase in water lung content (WLC) was observed in naïve KvLQT1-KO mice, relative to WT littermates, whereas lung function was generally preserved and histological structure unaltered. Following thiourea-induced lung edema, KvLQT1-KO did not worsen WLC or lung function. Similarly, lung edema was not aggravated by the administration of a KvLQT1 inhibitor (chromanol). However, KvLQT1 activation (R-L3) significantly reduced WLC in thiourea-challenged WT mice. The benefits of R-L3 were prevented in KO or chromanol-treated WT mice. Furthermore, R-L3 treatment had no effect on thiourea-induced endothelial barrier alteration but restored or enhanced the levels of epithelial alveolar AQP5, Na+/K+-ATPase, and ENaC expressions. Altogether, the results indicate the benefits of KvLQT1 activation in the resolution of lung edema, probably through the observed up-regulation of epithelial alveolar channels/transporters involved in ion/water transport.
Collapse
Affiliation(s)
- Mélissa Aubin Vega
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Alban Girault
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada,Département de Médecine, Université de Montréal, Montréal, QC, Canada,Laboratoire de Physiologie Cellulaire et Moléculaire (LPCM), Amiens, France
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jasmine Chebli
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Anik Privé
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Émilie Maillé
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada,Département de Médecine, Université de Montréal, Montréal, QC, Canada,*Correspondence: Emmanuelle Brochiero,
| |
Collapse
|
4
|
Ex Vivo Pulmonary Oedema after In Vivo Blast-Induced Rat Lung Injury: Time Dependency, Blast Intensity and Beta-2 Adrenergic Receptor Role. Biomedicines 2022; 10:biomedicines10112930. [PMID: 36428498 PMCID: PMC9687465 DOI: 10.3390/biomedicines10112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: Current treatments for blast-induced lung injury are limited to supportive procedures including mechanical ventilation. The study aimed to investigate the role of post-trauma-induced oedema generation in the function of time and trauma intensity and the probable role of beta 2-adrenergic receptors (β2-ARs) agonists on pulmonary oedema. The study is conducted using an ex vivo model after an experimental in vivo blast-induced thorax trauma in rats. Methods: Rats were randomised and divided into two groups, blast and sham. The blast group were anaesthetised and exposed to the blast wave (3.16 ± 0.43 bar) at a distance of 3.5 cm from the thorax level. The rats were sacrificed 10 min after the blast, the lungs explanted and treated with terbutaline, formoterol, propranolol or amiloride to assess the involvement of sodium transport. Other groups of rats were exposed to distances of 5 and 7 cm from the thorax to reduce the intensity of the injury. Further, one group of rats was studied after 180 min and one after 360 min after a 3.5 cm blast injury. Sham controls were exposed to identical procedures except for receiving blast overpressure. Results: Lung injury and oedema generation depended on time after injury and injury intensity. Perfusion with amiloride resulted in a further increase in oedema formation as indicated by weight gain (p < 0.001), diminished tidal volume (Tv) (p < 0.001), and increased airway resistance (p < 0.001). Formoterol caused a significant increase in the Tv (p < 0.001) and a significant decrease in the airway resistance (p < 0.01), while the lung weight was not influenced. Trauma-related oedema was significantly reduced by terbutaline in terms of lung weight gain (p < 0.01), Tv (p < 0.001), and airway resistance (p < 0.01) compared to control blast-injured lungs. Terbutaline-induced effects were completely blocked by the β-receptor antagonist propranolol (p < 0.05). Similarly, amiloride, which was added to terbutaline perfusion, reversed terbutaline-induced weight gain reduction (p < 0.05). Conclusions: β2-adrenoceptor stimulation had a beneficial impact by amiloride-dependent sodium and therefore, fluid transport mechanisms on the short-term ex vivo oedema generation in a trauma-induced in vivo lung injury of rats.
Collapse
|
5
|
In Brief. Curr Probl Surg 2020. [DOI: 10.1016/j.cpsurg.2020.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Mowery NT, Terzian WTH, Nelson AC. Acute lung injury. Curr Probl Surg 2020; 57:100777. [PMID: 32505224 DOI: 10.1016/j.cpsurg.2020.100777] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/24/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Nathan T Mowery
- Associate Professor of Surgery, Wake Forest Medical Center, Winston-Salem, NC.
| | | | - Adam C Nelson
- Acute Care Surgery Fellow, Wake Forest Medical Center, Winston-Salem, NC
| |
Collapse
|
7
|
Inhibition of the Receptor for Advanced Glycation End-Products in Acute Respiratory Distress Syndrome: A Randomised Laboratory Trial in Piglets. Sci Rep 2019; 9:9227. [PMID: 31239497 PMCID: PMC6592897 DOI: 10.1038/s41598-019-45798-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/12/2019] [Indexed: 02/08/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) modulates the pathogenesis of acute respiratory distress syndrome (ARDS). RAGE inhibition attenuated lung injury and restored alveolar fluid clearance (AFC) in a mouse model of ARDS. However, clinical translation will require assessment of this strategy in larger animals. Forty-eight anaesthetised Landrace piglets were randomised into a control group and three treatment groups. Animals allocated to treatment groups underwent orotracheal instillation of hydrochloric acid (i) alone; (ii) in combination with intravenous administration of a RAGE antagonist peptide (RAP), or (iii) recombinant soluble (s)RAGE. The primary outcome was net AFC at 4 h. Arterial oxygenation was assessed hourly and alveolar-capillary permeability, alveolar inflammation and lung histology were assessed at 4 h. Treatment with either RAP or sRAGE improved net AFC (median [interquartile range], 21.2 [18.8–21.7] and 19.5 [17.1–21.5] %/h, respectively, versus 12.6 [3.2–18.8] %/h in injured, untreated controls), oxygenation and decreased alveolar inflammation and histological evidence of tissue injury after ARDS. These findings suggest that RAGE inhibition restored AFC and attenuated lung injury in a piglet model of acid-induced ARDS.
Collapse
|
8
|
Niu F, Xu X, Zhang R, Sun L, Gan N, Wang A. Ursodeoxycholic acid stimulates alveolar fluid clearance in LPS-induced pulmonary edema via ALX/cAMP/PI3K pathway. J Cell Physiol 2019; 234:20057-20065. [PMID: 30972764 DOI: 10.1002/jcp.28602] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
This study aims to examine the impact of ursodeoxycholic acid (UDCA) on pulmonary edema and explore the underlying molecular mechanisms. The effects of UDCA on pulmonary edema were assessed through hematoxylin and eosin (H&E) staining, lung dry/wet (W/D) ratio, TNF-α/IL-1β levels of bronchoalveolar lavage fluid (BALF), protein expression of epithelial sodium channel (ENaC), and Na+ /K+ -ATPase. Besides, the detailed mechanisms were explored in primary rat alveolar type (AT) II epithelial cells by determining the effects of BOC-2 (ALX [lipoxin A4 receptor] inhibitor), Rp-cAMP (cAMP inhibitor), LY294002 (PI3K inhibitor), and H89 (PKA inhibitor) on the therapeutic effects of UDCA against lipopolysaccharide (LPS)-induced changes. Histological examination suggested that LPS-induced lung injury was obviously attenuated by UDCA. BALF TNF-α/IL-1β levels and lung W/D ratios were decreased by UDCA in LPS model rats. UDCA stimulated alveolar fluid clearance (AFC) though the upregulation of ENaC and Na+ /K+ -ATPase. BOC-2, Rp-cAMP, and LY294002 largely suppressed the therapeutic effects of UDCA. Significant attenuation of pulmonary edema and lung inflammation was revealed in LPS-challenged rats after the UDCA treatment. The therapeutic efficacy of UDCA against LPS was mainly achieved through the ALX/cAMP/PI3K pathway. Our results suggested that UDCA might be a potential drug for the treatment of pulmonary edema induced by LPS.
Collapse
Affiliation(s)
- Fangfang Niu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaotao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rong Zhang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lingling Sun
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ning Gan
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Aizhong Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
9
|
Richard C, Shabbir W, Ferraro P, Massé C, Berthiaume Y. Alveolar liquid clearance in lung injury: Evaluation of the impairment of the β 2-adrenergic agonist response in an ischemia-reperfusion lung injury model. Respir Physiol Neurobiol 2018; 259:104-110. [PMID: 30171906 DOI: 10.1016/j.resp.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/27/2018] [Accepted: 08/27/2018] [Indexed: 01/05/2023]
Abstract
While alveolar liquid clearance (ALC) mediated by the β2-adrenergic receptor (β2-AR) plays an important role in lung edema resolution in certain models of lung injury, in more severe lung injury models, this response might disappear. Indeed, we have shown that in an ischemia-reperfusion-induced lung injury model, β2-agonists do not enhance ALC. The objective of this study was to determine if downregulation of the β2-AR could explain the lack of response to β2-agonists in this lung injury model. In an in vivo canine model of lung transplantation, we observed no change in β2-AR concentration or affinity in the injured transplanted lungs compared to the native lungs. Furthermore, we could not enhance ALC in transplanted lungs with dcAMP + aminophylline, a treatment that bypasses the β2-adrenergic receptor and is known to stimulate ALC in normal lungs. However, transplantation decreased αENaC expression in the lungs by 50%. We conclude that the lack of response to β2-agonists in ischemia-reperfusion-induced lung injury is not associated with significant downregulation of the β2-adrenergic receptors but is attributable to decreased expression of the ENaC channel, which is essential for sodium transport and alveolar liquid clearance in the lung.
Collapse
Affiliation(s)
- Chloé Richard
- Centre de recherche, Centre hospitalier de l'université de Montréal (CHUM), Canada
| | - Waheed Shabbir
- Institute of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Pasquale Ferraro
- Centre de recherche, Centre hospitalier de l'université de Montréal (CHUM), Canada; Département de chirurgie, Université de Montréal, Montréal, Québec, Canada
| | - Chantal Massé
- Centre de recherche, Centre hospitalier de l'université de Montréal (CHUM), Canada; Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
| | - Yves Berthiaume
- Centre de recherche, Centre hospitalier de l'université de Montréal (CHUM), Canada; Département de médecine, Université de Montréal, Montréal, Québec, Canada; Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada.
| |
Collapse
|
10
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
11
|
Wynne BM, Zou L, Linck V, Hoover RS, Ma HP, Eaton DC. Regulation of Lung Epithelial Sodium Channels by Cytokines and Chemokines. Front Immunol 2017; 8:766. [PMID: 28791006 PMCID: PMC5524836 DOI: 10.3389/fimmu.2017.00766] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/16/2017] [Indexed: 12/20/2022] Open
Abstract
Acute lung injury leading to acute respiratory distress (ARDS) is a global health concern. ARDS patients have significant pulmonary inflammation leading to flooding of the pulmonary alveoli. This prevents normal gas exchange with consequent hypoxemia and causes mortality. A thin fluid layer in the alveoli is normal. The maintenance of this thin layer results from fluid movement out of the pulmonary capillaries into the alveolar interstitium driven by vascular hydrostatic pressure and then through alveolar tight junctions. This is then balanced by fluid reabsorption from the alveolar space mediated by transepithelial salt and water transport through alveolar cells. Reabsorption is a two-step process: first, sodium enters via sodium-permeable channels in the apical membranes of alveolar type 1 and 2 cells followed by active extrusion of sodium into the interstitium by the basolateral Na+, K+-ATPase. Anions follow the cationic charge gradient and water follows the salt-induced osmotic gradient. The proximate cause of alveolar flooding is the result of a failure to reabsorb sufficient salt and water or a failure of the tight junctions to prevent excessive movement of fluid from the interstitium to alveolar lumen. Cytokine- and chemokine-induced inflammation can have a particularly profound effect on lung sodium transport since they can alter both ion channel and barrier function. Cytokines and chemokines affect alveolar amiloride-sensitive epithelial sodium channels (ENaCs), which play a crucial role in sodium transport and fluid reabsorption in the lung. This review discusses the regulation of ENaC via local and systemic cytokines during inflammatory disease and the effect on lung fluid balance.
Collapse
Affiliation(s)
- Brandi M Wynne
- Department of Medicine, Nephrology, Emory University, Atlanta, GA, United States.,Department of Physiology, Emory University, Atlanta, GA, United States.,The Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, United States
| | - Li Zou
- Department of Physiology, Emory University, Atlanta, GA, United States
| | - Valerie Linck
- Department of Physiology, Emory University, Atlanta, GA, United States
| | - Robert S Hoover
- Department of Medicine, Nephrology, Emory University, Atlanta, GA, United States.,Department of Physiology, Emory University, Atlanta, GA, United States.,Research Service, Atlanta Veteran's Administration Medical Center, Decatur, GA, United States
| | - He-Ping Ma
- Department of Physiology, Emory University, Atlanta, GA, United States.,The Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, United States
| | - Douglas C Eaton
- Department of Physiology, Emory University, Atlanta, GA, United States.,The Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, United States
| |
Collapse
|
12
|
Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci 2016; 74:93-115. [PMID: 27714410 PMCID: PMC5209439 DOI: 10.1007/s00018-016-2391-y] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
Salt and fluid absorption and secretion are two processes that are fundamental to epithelial function and whole body fluid homeostasis, and as such are tightly regulated in epithelial tissues. The CFTR anion channel plays a major role in regulating both secretion and absorption in a diverse range of epithelial tissues, including the airways, the GI and reproductive tracts, sweat and salivary glands. It is not surprising then that defects in CFTR function are linked to disease, including life-threatening secretory diarrhoeas, such as cholera, as well as the inherited disease, cystic fibrosis (CF), one of the most common life-limiting genetic diseases in Caucasian populations. More recently, CFTR dysfunction has also been implicated in the pathogenesis of acute pancreatitis, chronic obstructive pulmonary disease (COPD), and the hyper-responsiveness in asthma, underscoring its fundamental role in whole body health and disease. CFTR regulates many mechanisms in epithelial physiology, such as maintaining epithelial surface hydration and regulating luminal pH. Indeed, recent studies have identified luminal pH as an important arbiter of epithelial barrier function and innate defence, particularly in the airways and GI tract. In this chapter, we will illustrate the different operational roles of CFTR in epithelial function by describing its characteristics in three different tissues: the airways, the pancreas, and the sweat gland.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Michael A. Gray
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
13
|
Courtney Broaddus V, Berthiaume Y, Biondi JW, Matthay MA. Analytic Reviews : Hemodynamic Management of the Adult Respiratory Distress Syndrome. J Intensive Care Med 2016. [DOI: 10.1177/088506668700200404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hemodynamic management is an essential aspect of the care of patients with adult respiratory distress syn drome (ARDS). On the basis of current knowledge, our proposed goals of management are to maximize pe ripheral oxygen delivery while attempting to minimize further lung damage or dysfunction. The major patho physiologic abnormalities of ARDS are an increased lung vascular permeability, right-to-left intrapulmonary shunting, and pulmonary vascular resistance. These abnormalities must be understood to select the proper therapy. Although all patients with ARDS share these abnormalities, they differ in their associated clinical conditions and underlying cardiovascular status. Be cause each ARDS patient may respond differently to therapy, hemodynamic management must be selected empirically with the goal of therapy as a guide. We have considered available therapeutic options including posi tive end-expiratory pressure, volume depletion, volume expansion, vasopressors, and vasodilators. In the future hemodynamic management of patients with ARDS will likely change as better methods of patient assessment and treatment are developed.
Collapse
Affiliation(s)
- V. Courtney Broaddus
- Departments of Medicine and Anesthesia and the Cardiovascular Research Institute, University of California, San Francisco, Departments of Medicine and Anesthesia, Yale University School of Medicine, New Haven, CT
| | - Yves Berthiaume
- Departments of Medicine and Anesthesia and the Cardiovascular Research Institute, University of California, San Francisco, Departments of Medicine and Anesthesia, Yale University School of Medicine, New Haven, CT,
| | - James W. Biondi
- Departments of Medicine and Anesthesia and the Cardiovascular Research Institute, University of California, San Francisco, Departments of Medicine and Anesthesia, Yale University School of Medicine, New Haven, CT,
| | - Michael A. Matthay
- University of California, San Francisco, San Francisco, CA 94143., Departments of Medicine and Anesthesia, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
14
|
Jabaudon M, Blondonnet R, Roszyk L, Bouvier D, Audard J, Clairefond G, Fournier M, Marceau G, Déchelotte P, Pereira B, Sapin V, Constantin JM. Soluble Receptor for Advanced Glycation End-Products Predicts Impaired Alveolar Fluid Clearance in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2015; 192:191-9. [PMID: 25932660 DOI: 10.1164/rccm.201501-0020oc] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Levels of the soluble form of the receptor for advanced glycation end-products (sRAGE) are elevated during acute respiratory distress syndrome (ARDS) and correlate with severity and prognosis. Alveolar fluid clearance (AFC) is necessary for the resolution of lung edema but is impaired in most patients with ARDS. No reliable marker of this process has been investigated to date. OBJECTIVES To verify whether sRAGE could predict AFC during ARDS. METHODS Anesthetized CD-1 mice underwent orotracheal instillation of hydrochloric acid. At specified time points, lung injury was assessed by analysis of blood gases, alveolar permeability, lung histology, AFC, and plasma/bronchoalveolar fluid measurements of proinflammatory cytokines and sRAGE. Plasma sRAGE and AFC rates were also prospectively assessed in 30 patients with ARDS. MEASUREMENTS AND MAIN RESULTS The rate of AFC was inversely correlated with sRAGE levels in the plasma and the bronchoalveolar fluid of acid-injured mice (Spearman's ρ = -0.73 and -0.69, respectively; P < 10(-3)), and plasma sRAGE correlated with AFC in patients with ARDS (Spearman's ρ = -0.59; P < 10(-3)). Similarly, sRAGE levels were significantly associated with lung injury severity, and decreased over time in mice, whereas AFC was restored and lung injury resolved. CONCLUSIONS Our results indicate that sRAGE levels could be a reliable predictor of impaired AFC during ARDS, and should stimulate further studies on the pathophysiologic implications of RAGE axis in the mechanisms leading to edema resolution. Clinical trial registered with www.clinicaltrials.gov (NCT 00811629).
Collapse
Affiliation(s)
- Matthieu Jabaudon
- 1 Intensive Care Unit, Department of Anesthesiology, Critical Care and Perioperative Medicine, Estaing University Hospital.,2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Raiko Blondonnet
- 1 Intensive Care Unit, Department of Anesthesiology, Critical Care and Perioperative Medicine, Estaing University Hospital.,2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Laurence Roszyk
- 3 Department of Medical Biochemistry and Molecular Biology.,2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Damien Bouvier
- 3 Department of Medical Biochemistry and Molecular Biology.,2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Jules Audard
- 1 Intensive Care Unit, Department of Anesthesiology, Critical Care and Perioperative Medicine, Estaing University Hospital
| | - Gael Clairefond
- 2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | - Geoffroy Marceau
- 3 Department of Medical Biochemistry and Molecular Biology.,2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | - Bruno Pereira
- 6 Department of Clinical Research and Innovation, CHU Clermont-Ferrand, Clermont-Ferrand, France; and
| | - Vincent Sapin
- 3 Department of Medical Biochemistry and Molecular Biology.,2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Jean-Michel Constantin
- 1 Intensive Care Unit, Department of Anesthesiology, Critical Care and Perioperative Medicine, Estaing University Hospital.,2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| |
Collapse
|
15
|
Endogenous acetylcholine increases alveolar epithelial fluid transport via activation of alveolar epithelial Na,K-ATPase in mice. Respir Physiol Neurobiol 2015; 217:25-31. [DOI: 10.1016/j.resp.2015.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 01/11/2023]
|
16
|
Abstract
Pulmonary edema clearance is necessary for patients with lung injury to recover and survive. The mechanisms regulating edema clearance from the lungs are distinct from the factors contributing edema formation during injury. Edema clearance is effected via vectorial transport of Na(+) out of the airspaces which generates an osmotic gradient causing water to follow the gradient out of the cells. This Na(+) transport across the alveolar epithelium is mostly effected via apical Na(+) and chloride channels and basolateral Na,K-ATPase. The Na,K-ATPase pumps Na(+) out of the cell and K(+) into the cell against their respective gradients in an ATP-consuming reaction. Two mechanisms contribute to the regulation of the Na,K-ATPase activity:recruitment of its subunits from intracellular compartments into the basolateral membrane, and transcriptional/translational regulation. Na,K-ATPase activity and edema clearance are increased by catecholamines, aldosterone, vasopressin, overexpression of the pump genes, and others. During lung injury, mechanisms regulating edema clearance are inhibited by yet unclear pathways. Better understanding of the mechanisms that regulate pulmonary edema clearance may lead to therapeutic interventions that counterbalance the inhibition of edema clearance during lung injury and improve the lungs' ability to clear fluid, which is crucial for patient survival.
Collapse
Affiliation(s)
- Zaher S. Azzam
- Internal Medicine “B”, Rambam Health Care Campus, Department of Physiology and Biophysics, The Rappaport Family Faculty of Medicine and Research Institute, Technion, Israel Institute of Technology, Haifa, Israel
| | - Jacob I. Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Synergistic Inhibition of β2-adrenergic Receptor-mediated Alveolar Epithelial Fluid Transport by Interleukin-8 and Transforming Growth Factor-β. Anesthesiology 2015; 122:1084-92. [PMID: 25591042 DOI: 10.1097/aln.0000000000000595] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Patients with acute respiratory distress syndrome who retain maximal alveolar fluid clearance (AFC) have better clinical outcomes. The release of endogenous catecholamines associated with shock or the administration of β2-adrenergic receptor (β2AR) agonists enhances AFC via a 3'-5'-cyclic adenosine monophosphate-dependent mechanism. The authors have previously reported that transforming growth factor-β1 (TGF-β1) and interleukin-8 (IL-8), two major mediators of alveolar inflammation associated with the early phase of acute respiratory distress syndrome, inhibit AFC upregulation by β2AR agonists via a phosphoinositol-3-kinase (PI3K)-dependent mechanism. However, whether TGF-β1 and IL-8 cause an additive or synergistic inhibition of AFC is unclear. Thus, the central hypothesis of the study was to determine whether they synergistically inhibit the β2AR-stimulated AFC by activating two different isoforms of PI3K. METHODS The effects of TGF-β1 or IL-8 on β2AR agonist-stimulated net alveolar fluid transport were studied using short-circuit current studies. Molecular pathways of inhibition were confirmed by pharmacologic inhibitors and Western blotting of p-Akt, G-protein-coupled receptor kinase 2, protein kinase C-ζ, and phospho-β2AR. Finally, our observations were confirmed by an in vivo model of AFC. RESULTS Combined exposure to TGF-β1 and IL-8/cytokine-induced neutrophil chemoattractant-1 caused synergistic inhibition of β2AR agonist-stimulated vectorial Cl across alveolar epithelial type II cells (n = 12 in each group). This effect was explained by activation of different isoforms of PI3K by TGF-β1 and IL-8/cytokine-induced neutrophil chemoattractant-1 (n = 12 in each group). Furthermore, the inhibitory effect of TGF-β1 on 3'-5'-cyclic adenosine monophosphate-stimulated alveolar epithelial fluid transport required the presence of IL-8/cytokine-induced neutrophil chemoattractant-1 (n = 12 in each group). Inhibition of cytokine-induced neutrophil chemoattractant-1 prevented TGF-β1-mediated heterologous β2AR downregulation and restored physiologic β2AR agonist-stimulated AFC in rats (n = 6 in each group). CONCLUSIONS TGF-β1 and IL-8 have a synergistic inhibitory effect on β2AR-mediated stimulation of pulmonary edema removal by the alveolar epithelium. This result may, in part, explain why a large proportion of the patients with acute respiratory distress syndrome have impaired AFC.
Collapse
|
18
|
Zhou M, Dai J, Du M, Wang W, Guo C, Wang Y, Tang R, Xu F, Rao Z, Sun G. Effect of dobutamine on extravascular lung water index, ventilator function, and perfusion parameters in acute respiratory distress syndrome associated with septic shock. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1326-32. [PMID: 26178769 DOI: 10.3109/21691401.2015.1052470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The role of dobutamine in the relief of pulmonary edema during septic shock-induced acute respiratory distress syndrome (ARDS) remains undetermined, due to a lack of controllable and quantitative clinical studies. Our objective was to assess the potential effects of dobutamine on extravascular lung water index (ELWI) in septic shock-induced ARDS, reflecting its importance in pulmonary edema. At the same time, ventilator function and perfusion parameters were evaluated. METHODS We designed a prospective, non-randomized, non-blinded, controlled study to compare the differences in PiCCO parameters after 6 h of constant dobutamine infusion (15 μg/kg/min), in the baseline parameters in 26 septic shock-related ARDS patients with cardiac index ≥ 2.5I/min/m(2) and hyperlactatemia. These patients (12 survivors/14 non-survivors) were monitored using the PiCCO catheter system within 48 h of onset of septic shock. The dynamic changes in ELWI, which is typically used for quantifying the extent of pulmonary edema, were evaluated, and the corresponding ventilator function and tissue perfusion parameters were also measured. RESULTS Decreasing ELWI (p = 0.0376) was accompanied by significantly decreased SVRI (p < 0.0001). Despite a significant increase in cardiac output (p < 0.0001), no differences were found in ITBI or GEDI. Moreover, the required dose of norepinephrine was decreased (p = 0.0389), and urine output was increased (p = 0.0358), accompanied by stabilized lactacidemia and MAP. Additionally, airway pressure was moderately improved. CONCLUSION During the early stage of septic shock-induced ARDS, dobutamine treatment demonstrated a beneficial effect by relieving pulmonary edema in patients, without a negative elevation in preload or hemodynamics, which might account for the improvements in ventilator function and tissue hypoperfusion.
Collapse
Affiliation(s)
- Min Zhou
- a Department of Critical Care Medicine , the First Affiliated Hospital of Anhui Medical University , Anhui , China
| | - Ji Dai
- b Department of Critical Care Medicine , the Affiliated Yixing People's Hospital of Jiangsu University , Jiangsu , China
| | - Min Du
- a Department of Critical Care Medicine , the First Affiliated Hospital of Anhui Medical University , Anhui , China
| | - Wei Wang
- a Department of Critical Care Medicine , the First Affiliated Hospital of Anhui Medical University , Anhui , China
| | - Changxing Guo
- c Department of Emergency and Critical Care Medicine , Shanghai Changzheng Hospital , Shanghai , China
| | - Yi Wang
- d Department of Emergency and Critical Care Medicine , the People's Hospital of Hangzhou City , ZheJiang , China
| | - Rui Tang
- a Department of Critical Care Medicine , the First Affiliated Hospital of Anhui Medical University , Anhui , China
| | - Fengling Xu
- a Department of Critical Care Medicine , the First Affiliated Hospital of Anhui Medical University , Anhui , China
| | - Zhuqing Rao
- e Department of Anesthesiology , the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Jiangsu , China
| | - Gengyun Sun
- f Department of Respiratory Medicine , the First Affiliated Hospital of Anhui Medical University , Anhui , China
| |
Collapse
|
19
|
Modulation by thyroid hormone of myosin light chain phosphorylation and aquaporin 5 protein expression in intact lung. J Physiol Biochem 2015; 71:99-106. [DOI: 10.1007/s13105-015-0386-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
|
20
|
Agné AM, Baldin JP, Benjamin AR, Orogo-Wenn MC, Wichmann L, Olson KR, Walters DV, Althaus M. Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption. Am J Physiol Regul Integr Comp Physiol 2015; 308:R636-49. [PMID: 25632025 DOI: 10.1152/ajpregu.00489.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/19/2015] [Indexed: 01/11/2023]
Abstract
In pulmonary epithelia, β-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on β-adrenergic agonist-regulated pulmonary sodium and liquid absorption. Application of the H2S-liberating molecule Na2S (50 μM) to the alveolar compartment of rat lungs in situ decreased baseline liquid absorption and abrogated the stimulation of liquid absorption by the β-adrenergic agonist terbutaline. There was no additional effect of Na2S over that of the ENaC inhibitor amiloride. In electrophysiological Ussing chamber experiments with native lung epithelia (Xenopus laevis), Na2S inhibited the stimulation of amiloride-sensitive current by terbutaline. β-adrenergic agonists generally increase ENaC abundance by cAMP formation and activation of PKA. Activation of this pathway by forskolin and 3-isobutyl-1-methylxanthine increased amiloride-sensitive currents in H441 pulmonary epithelial cells. This effect was inhibited by Na2S in a dose-dependent manner (5-50 μM). Na2S had no effect on cellular ATP concentration, cAMP formation, and activation of PKA. By contrast, Na2S prevented the cAMP-induced increase in ENaC activity in the apical membrane of H441 cells. H441 cells expressed the H2S-generating enzymes cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, and they produced H2S amounts within the employed concentration range. These data demonstrate that H2S prevents the stimulation of ENaC by cAMP/PKA and, thereby, inhibits the proabsorptive effect of β-adrenergic agonists on lung liquid clearance.
Collapse
Affiliation(s)
- Alisa M Agné
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany
| | - Jan-Peter Baldin
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany
| | - Audra R Benjamin
- Division of Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Maria C Orogo-Wenn
- Division of Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Lukas Wichmann
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany
| | - Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend, South Bend, Indiana; and
| | - Dafydd V Walters
- Division of Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Mike Althaus
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany;
| |
Collapse
|
21
|
Banga A, Flaig S, Lewis S, Winfree S, Blazer-Yost BL. Epinephrine stimulation of anion secretion in the Calu-3 serous cell model. Am J Physiol Lung Cell Mol Physiol 2014; 306:L937-46. [PMID: 24705724 DOI: 10.1152/ajplung.00190.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Calu-3 is a well-differentiated human bronchial cell line with the characteristics of the serous cells of airway submucosal glands. The submucosal glands play a major role in mucociliary clearance because they secrete electrolytes that facilitate airway hydration. Given the significance of both long- and short-term β-adrenergic receptor agonists in the treatment of respiratory diseases, it is important to determine the role of these receptors and their ligands in normal physiological function. The present studies were designed to characterize the effect of epinephrine, the naturally occurring β-adrenergic receptor agonist, on electrolyte transport of the airway serous cells. Interestingly, epinephrine stimulated two anion secretory channels, the cystic fibrosis transmembrane conductance regulator and a Ca(2+)-activated Cl(-) channel, with the characteristics of transmembrane protein 16A, thereby potentially altering mucociliary clearance via multiple channels. Consistent with the dual channel activation, epinephrine treatment resulted in increases in both intracellular cAMP and Ca(2+). Furthermore, the present results extend previous reports indicating that the two anion channels are functionally linked.
Collapse
Affiliation(s)
- Amiraj Banga
- Department of Biology, Indiana University Purdue University Indianapolis
| | - Stephanie Flaig
- Department of Biology, Indiana University Purdue University Indianapolis
| | - Shanta Lewis
- Department of Biology, Indiana University Purdue University Indianapolis
| | | | - Bonnie L Blazer-Yost
- Department of Biology, Indiana University Purdue University Indianapolis; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
22
|
Datar SA, Oishi PE, Gong W, Bennett SH, Sun CE, Johengen M, Maki J, Johnson RC, Raff GW, Fineman JR. Altered reactivity and nitric oxide signaling in the isolated thoracic duct from an ovine model of congenital heart disease with increased pulmonary blood flow. Am J Physiol Heart Circ Physiol 2014; 306:H954-62. [PMID: 24531811 DOI: 10.1152/ajpheart.00841.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have previously shown decreased pulmonary lymph flow in our lamb model of chronically increased pulmonary blood flow, created by the in utero placement of an 8-mm aortopulmonary shunt. The purpose of this study was to test the hypothesis that abnormal lymphatic function in shunt lambs is due to impaired lymphatic endothelial nitric oxide (NO)-cGMP signaling resulting in increased lymphatic vascular constriction and/or impaired relaxation. Thoracic duct rings were isolated from 4-wk-old shunt (n = 7) and normal (n = 7) lambs to determine length-tension properties, vascular reactivity, and endothelial NO synthase protein. At baseline, shunt thoracic duct rings had 2.6-fold higher peak to peak tension and a 2-fold increase in the strength of contractions compared with normal rings (P < 0.05). In response to norepinephrine, shunt thoracic duct rings had a 2.4-fold increase in vascular tone compared with normal rings (P < 0.05) and impaired relaxation in response to the endothelium-dependent dilator acetylcholine (63% vs. 13%, P < 0.05). In vivo, inhaled NO (40 ppm) increased pulmonary lymph flow (normalized for resistance) ∼1.5-fold in both normal and shunt lambs (P < 0.05). Inhaled NO exposure increased bioavailable NO [nitrite/nitrate (NOx); ∼2.5-fold in normal lambs and ∼3.4-fold in shunt lambs] and cGMP (∼2.5-fold in both) in the pulmonary lymph effluent (P < 0.05). Chronic exposure to increased pulmonary blood flow is associated with pulmonary lymphatic endothelial injury that disrupts NO-cGMP signaling, leading to increased resting vasoconstriction, increased maximal strength of contraction, and impaired endothelium-dependent relaxation. Inhaled NO increases pulmonary lymph NOx and cGMP levels and pulmonary lymph flow in normal and shunt lambs. Therapies that augment NO-cGMP signaling within the lymphatic system may provide benefits, warranting further study.
Collapse
Affiliation(s)
- Sanjeev A Datar
- Department of Pediatrics, University of California, San Francisco, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
McAuley DF, Curley GF, Hamid UI, Laffey JG, Abbott J, McKenna DH, Fang X, Matthay MA, Lee JW. Clinical grade allogeneic human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. Am J Physiol Lung Cell Mol Physiol 2014; 306:L809-15. [PMID: 24532289 DOI: 10.1152/ajplung.00358.2013] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The lack of suitable donors for all solid-organ transplant programs is exacerbated in lung transplantation by the low utilization of potential donor lungs, due primarily to donor lung injury and dysfunction, including pulmonary edema. The current studies were designed to determine if intravenous clinical-grade human mesenchymal stem (stromal) cells (hMSCs) would be effective in restoring alveolar fluid clearance (AFC) in the human ex vivo lung perfusion model, using lungs that had been deemed unsuitable for transplantation and had been subjected to prolonged ischemic time. The human lungs were perfused with 5% albumin in a balanced electrolyte solution and oxygenated with continuous positive airway pressure. Baseline AFC was measured in the control lobe and if AFC was impaired (defined as <10%/h), the lungs received either hMSC (5 × 10(6) cells) added to the perfusate or perfusion only as a control. AFC was measured in a different lung lobe at 4 h. Intravenous hMSC restored AFC in the injured lungs to a normal level. In contrast, perfusion only did not increase AFC. This positive effect on AFC was reduced by intrabronchial administration of a neutralizing antibody to keratinocyte growth factor (KGF). Thus, intravenous allogeneic hMSCs are effective in restoring the capacity of the alveolar epithelium to remove alveolar fluid at a normal rate, suggesting that this therapy may be effective in enhancing the resolution of pulmonary edema in human lungs deemed clinically unsuitable for transplantation.
Collapse
Affiliation(s)
- D F McAuley
- Health Sciences Bldg., 97, Lisburn Rd., Belfast, Northern Ireland, BT9 7BL.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
K+ channels regulate ENaC expression via changes in promoter activity and control fluid clearance in alveolar epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1818:1682-90. [PMID: 22406554 DOI: 10.1016/j.bbamem.2012.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 02/16/2012] [Accepted: 02/22/2012] [Indexed: 12/21/2022]
Abstract
Active Na+ absorption by alveolar ENaC is the main driving force of liquid clearance at birth and lung edema resorption in adulthood. We have demonstrated previously that long-term modulation of KvLQT1 and KATP K+ channel activities exerts sustained control in Na+ transport through the regulation of ENaC expression in primary alveolar type II (ATII) cells. The goal of the present study was: 1) to investigate the role of the alpha-ENaC promoter, transfected in the A549 alveolar cell line, in the regulation of ENaC expression by K+ channels, and 2) to determine the physiological impact of K+ channels and ENaC modulation on fluid clearance in ATII cells. KvLQT1 and KATP channels were first identified in A549 cells by PCR and Western blotting. We showed, for the first time, that KvLQT1 activation by R-L3 (applied for 24 h) increased alpha-ENaC expression, similarly to KATP activation by pinacidil. Conversely, pharmacological KvLQT1 and KATP inhibition or silencing with siRNAs down-regulated alpha-ENaC expression. Furthermore, K+ channel blockers significantly decreased alpha-ENaC promoter activity. Our results indicated that this decrease in promoter activity could be mediated, at least in part, by the repressor activity of ERK1/2. Conversely, KvLQT1 and KATP activation dose-dependently enhanced alpha-ENaC promoter activity. Finally, we noted a physiological impact of changes in K+ channel functions on ERK activity, alpha-, beta-, gamma-ENaC subunit expression and fluid absorption through polarized ATII cells. In summary, our results disclose that K+ channels regulate alpha-ENaC expression by controlling its promoter activity and thus affect the alveolar function of fluid clearance.
Collapse
|
25
|
Roux J, McNicholas CM, Carles M, Goolaerts A, Houseman BT, Dickinson DA, Iles KE, Ware LB, Matthay MA, Pittet JF. IL-8 inhibits cAMP-stimulated alveolar epithelial fluid transport via a GRK2/PI3K-dependent mechanism. FASEB J 2013; 27:1095-106. [PMID: 23221335 PMCID: PMC3574281 DOI: 10.1096/fj.12-219295] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/13/2012] [Indexed: 12/27/2022]
Abstract
Patients with acute lung injury (ALI) who retain maximal alveolar fluid clearance (AFC) have better clinical outcomes. Experimental and small clinical studies have shown that β2-adrenergic receptor (β2AR) agonists enhance AFC via a cAMP-dependent mechanism. However, two multicenter phase 3 clinical trials failed to show that β2AR agonists provide a survival advantage in patients with ALI. We hypothesized that IL-8, an important mediator of ALI, directly antagonizes the alveolar epithelial response to β2AR agonists. Short-circuit current and whole-cell patch-clamping experiments revealed that IL-8 or its rat analog CINC-1 decreases by 50% β2AR agonist-stimulated vectorial Cl(-) and net fluid transport across rat and human alveolar epithelial type II cells via a reduction in the cystic fibrosis transmembrane conductance regulator activity and biosynthesis. This reduction was mediated by heterologous β2AR desensitization and down-regulation (50%) via the G-protein-coupled receptor kinase 2 (GRK2)/PI3K signaling pathway. Inhibition of CINC-1 restored β2AR agonist-stimulated AFC in an experimental model of ALI in rats. Finally, consistent with the experimental results, high pulmonary edema fluid levels of IL-8 (>4000 pg/ml) were associated with impaired AFC in patients with ALI. These results demonstrate a novel role for IL-8 in inhibiting β2AR agonist-stimulated alveolar epithelial fluid transport via GRK2/PI3K-dependent mechanisms.-Roux, J., McNicholas, C. M., Carles, M., Goolaerts, A., Houseman, B. T., Dickinson, D. A., Iles, K. E., Ware, L. B., Matthay, M. A., Pittet, J.-F. IL-8 inhibits cAMP-stimulated alveolar epithelial fluid transport via a GRK2/PI3K-dependent mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Benjamin T. Houseman
- Department of Anesthesia and Perioperative Care
- Department of Cellular Pharmacology, and
| | - Dale A. Dickinson
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA; and
| | | | - Lorraine B. Ware
- Department of Medicine, and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Michael A. Matthay
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Jean-François Pittet
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|
26
|
Epinephrine induces rapid deterioration in pulmonary oxygen exchange in intact, anesthetized rats: a flow and pulmonary capillary pressure-dependent phenomenon. Anesthesiology 2012; 117:745-54. [PMID: 22902967 DOI: 10.1097/aln.0b013e31826a7da7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Previous studies indicate epinephrine adversely affects arterial oxygenation when administered in a rat model of local anesthetic overdose. The authors tested whether epinephrine alone exerts similar effects in the intact animal. METHODS Anesthetized rats received a single intravenous injection of epinephrine (25, 50, or 100 mcg/kg); matched cohorts were pretreated with phentolamine (100 mcg/kg); n = 5 for each of the six treatment groups. Arterial pressure and blood gases were measured at baseline, 1 and 10 min after epinephrine administration. Pulmonary capillary pressures during epinephrine infusion with normal and increased flows were measured in an isolated lung preparation. RESULTS Epinephrine injection in the intact animal caused hypoxemia, hypercapnia, and acidosis at all doses. Arterial oxygen tension was reduced within 1 min of injection. Hyperlactatemia occurred by 10 min after 50 and 100 mcg/kg. Rate pressure product was decreased by 10 min after 100 mcg/kg epinephrine. Pretreatment with phentolamine attenuated these effects except at 100 mcg/kg epinephrine. In the isolated lung preparation, epinephrine in combination with increased pulmonary flow increased pulmonary capillary pressure and lung water. CONCLUSIONS Bolus injection of epinephrine in the intact, anesthetized rat impairs pulmonary oxygen exchange within 1 min of treatment. Effects were blunted by α-adrenergic receptor blockade. Edema occurred in the isolated lung above a threshold pulmonary capillary pressure when epinephrine treatment was coupled with an increase in pulmonary flow. These results potentially argue against using traditional doses of epinephrine for resuscitation, particularly in the anesthetized patient.
Collapse
|
27
|
Pedersen LRE, Müllertz KM, Amtorp O, Christensen S, Jonassen TEN. Enhanced alveolar fluid clearance following 72 h of continuous isoproterenol infusion in rats. Acta Physiol (Oxf) 2012; 206:142-9. [PMID: 22681716 DOI: 10.1111/j.1748-1716.2012.02459.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 11/28/2022]
Abstract
AIM We wished to determine the effect of continuous β-receptor stimulation on alveolar fluid clearance and to elucidate the mechanisms behind this effect. METHODS Alveolar fluid clearance was measured in anaesthetized rats pretreated for 72 h with the β-agonist isoproterenol (200 μg kg(-1) h(-1) sc) or vehicle. Alveolar fluid clearance in artificially ventilated rats was determined over 1 h by infusion of isotonic Ringer solution containing (125) I-albumin into the lungs. Additionally, alveolar fluid clearance was determined when amiloride or l-cis-diltiazem was added to the solution to block ENaC and cyclic nucleotide-gated (CNG) channels respectively. RESULTS Isoproterenol treatment induced a 42% increase in alveolar fluid clearance (18.9 ± 1.4%) vs. vehicle (13.3 ± 3.3%). Addition of amiloride resulted in a net decrease of 8% in both groups, while l-cis-diltiazem caused a net decrease of 12% in isoproterenol-treated animals, but only 5% in vehicle-treated animals. Western blotting showed that isoproterenol treatment increased the abundance of the α-ENaC and β-ENaC subunits (223 ± 51% and 274 ± 55% of vehicle, respectively) but we saw no changes in protein level of the γ-EnaC subunit. CONCLUSION Continuous β-adrenoceptor stimulation with isoproterenol enhances alveolar fluid clearance through alternative pathways involving l-cis-diltiazem-sensitive channels.
Collapse
Affiliation(s)
- L. R. E. Pedersen
- Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Copenhagen; Denmark
| | - K. M. Müllertz
- Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Copenhagen; Denmark
| | - O. Amtorp
- Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Copenhagen; Denmark
| | - S. Christensen
- Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Copenhagen; Denmark
| | - T. E. N. Jonassen
- Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Copenhagen; Denmark
| |
Collapse
|
28
|
Ochoa CD, Alexeyev M, Pastukh V, Balczon R, Stevens T. Pseudomonas aeruginosa exotoxin Y is a promiscuous cyclase that increases endothelial tau phosphorylation and permeability. J Biol Chem 2012; 287:25407-18. [PMID: 22637478 DOI: 10.1074/jbc.m111.301440] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Exotoxin Y (ExoY) is a type III secretion system effector found in ~ 90% of the Pseudomonas aeruginosa isolates. Although it is known that ExoY causes inter-endothelial gaps and vascular leak, the mechanisms by which this occurs are poorly understood. Using both a bacteria-delivered and a codon-optimized conditionally expressed ExoY, we report that this toxin is a dual soluble adenylyl and guanylyl cyclase that results in intracellular cAMP and cGMP accumulation. The enzymatic activity of ExoY caused phosphorylation of endothelial Tau serine 214, accumulation of insoluble Tau, inter-endothelial cell gap formation, and increased macromolecular permeability. To discern whether the cAMP or cGMP signal was responsible for Tau phosphorylation and barrier disruption, pulmonary microvascular endothelial cells were engineered for the conditional expression of either wild-type guanylyl cyclase, which synthesizes cGMP, or a mutated guanylyl cyclase, which synthesizes cAMP. Sodium nitroprusside stimulation of the cGMP-generating cyclase resulted in transient Tau serine 214 phosphorylation and gap formation, whereas stimulation of the cAMP-generating cyclase induced a robust increase in Tau serine 214 phosphorylation, gap formation, and macromolecular permeability. These results indicate that the cAMP signal is the dominant stimulus for Tau phosphorylation. Hence, ExoY is a promiscuous cyclase and edema factor that uses cAMP and, to some extent, cGMP to induce the hyperphosphorylation and insolubility of endothelial Tau. Because hyperphosphorylated and insoluble Tau are hallmarks in neurodegenerative tauopathies such as Alzheimer disease, acute Pseudomonas infections cause a pathophysiological sequela in endothelium previously recognized only in chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Cristhiaan D Ochoa
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|
29
|
Valenza F, Rosso L, Coppola S, Froio S, Colombo J, Dossi R, Fumagalli J, Salice V, Pizzocri M, Conte G, Gatti S, Santambrogio L, Gattinoni L. β-Adrenergic agonist infusion during extracorporeal lung perfusion: Effects on glucose concentration in the perfusion fluid and on lung function. J Heart Lung Transplant 2012; 31:524-30. [DOI: 10.1016/j.healun.2012.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/16/2011] [Accepted: 02/02/2012] [Indexed: 11/25/2022] Open
|
30
|
Datar SA, Johnson EG, Oishi PE, Johengen M, Tang E, Aramburo A, Barton J, Kuo HC, Bennett S, Xoinis K, Reel B, Kalkan G, Sajti E, Osorio O, Raff GW, Matthay MA, Fineman JR. Altered lymphatics in an ovine model of congenital heart disease with increased pulmonary blood flow. Am J Physiol Lung Cell Mol Physiol 2011; 302:L530-40. [PMID: 22207591 DOI: 10.1152/ajplung.00324.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abnormalities of the lymphatic circulation are well recognized in patients with congenital heart defects. However, it is not known how the associated abnormal blood flow patterns, such as increased pulmonary blood flow (PBF), might affect pulmonary lymphatic function and structure. Using well-established ovine models of acute and chronic increases in PBF, we cannulated the efferent lymphatic duct of the caudal mediastinal node and collected and analyzed lymph effluent from the lungs of lambs with acutely increased PBF (n = 6), chronically increased PBF (n = 6), and age-matched normal lambs (n = 8). When normalized to PBF, we found that lymph flow was unchanged following acute increases in PBF but decreased following chronic increases in PBF. The lymph:plasma protein ratio decreased with both acute and chronic increases in PBF. Lymph bioavailable nitric oxide increased following acute increases in PBF but decreased following chronic increases in PBF. In addition, we found perturbations in the transit kinetics of contrast material through the pleural lymphatics of lambs with chronic increases in PBF. Finally, there were structural changes in the pulmonary lymphatic system in lambs with chronic increases in PBF: lymphatics from these lambs were larger and more dilated, and there were alterations in the expression of vascular endothelial growth factor-C, lymphatic vessel endothelial hyaluronan receptor-1, and Angiopoietin-2, proteins known to be important for lymphatic growth, development, and remodeling. Taken together these data suggest that chronic increases in PBF lead to both functional and structural aberrations of lung lymphatics. These findings have important therapeutic implications that warrant further study.
Collapse
Affiliation(s)
- Sanjeev A Datar
- Department of Pediatrics, University of California, San Francisco, 94143-0106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Goodson P, Kumar A, Jain L, Kundu K, Murthy N, Koval M, Helms MN. Nadph oxidase regulates alveolar epithelial sodium channel activity and lung fluid balance in vivo via O⁻₂ signaling. Am J Physiol Lung Cell Mol Physiol 2011; 302:L410-9. [PMID: 22160304 DOI: 10.1152/ajplung.00260.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To define roles for reactive oxygen species (ROS) and epithelial sodium channel (ENaC) in maintaining lung fluid balance in vivo, we used two novel whole animal imaging approaches. Live X-ray fluoroscopy enabled quantification of air space fluid content of C57BL/6J mouse lungs challenged by intratracheal (IT) instillation of saline; results were confirmed by using conventional lung wet-to-dry weight ratios and Evans blue as measures of pulmonary edema. Visualization and quantification of ROS produced in lungs was performed in mice that had been administered a redox-sensitive dye, hydro-Cy7, by IT instillation. We found that inhibition of NADPH oxidase with a Rac-1 inhibitor, NSC23766, resulted in alveolar flooding, which correlated with a decrease in lung ROS production in vivo. Consistent with a role for Nox2 in alveolar fluid balance, Nox2(-/-) mice showed increased retention of air space fluid compared with wild-type controls. Interestingly, fluoroscopic analysis of C57BL/6J lungs IT instilled with LPS showed an acute stimulation of lung fluid clearance and ROS production in vivo that was abrogated by the ROS scavenger tetramethylpiperidine-N-oxyl (TEMPO). Acute application of LPS increased the activity of 20 pS nonselective ENaC channels in rat type 1 cells; the average number of channel and single-channel open probability (NPo) increased from 0.14 ± 0.04 to 0.62 ± 0.23. Application of TEMPO to the same cell-attached recording caused an immediate significant decrease in ENaC NPo to 0.04 ± 0.03. These data demonstrate that, in vivo, ROS has the capacity to stimulate lung fluid clearance by increasing ENaC activity.
Collapse
Affiliation(s)
- Preston Goodson
- Department of Physiology, Center for Developmental Lung Biology at Children's Healthcare of Atlanta, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Smart DE, Princivalle MB. Improving RDS treatment with current drugs. J Matern Fetal Neonatal Med 2011; 25:1209-11. [DOI: 10.3109/14767058.2011.634456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Soukup B, Benjamin A, Orogo-Wenn M, Walters D. Physiological effect of protein kinase C on ENaC-mediated lung liquid regulation in the adult rat lung. Am J Physiol Lung Cell Mol Physiol 2011; 302:L133-9. [PMID: 21949158 DOI: 10.1152/ajplung.00031.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tight control of lung liquid (LL) regulation is vital for pulmonary function. The aim of this work was to determine whether PKC activation is involved in the physiological regulation of LL volume in a whole lung preparation. Rat lungs were perfused with a modified Ringer solution, and the lumen was filled with the same solution without glucose. LL volume was measured during a control period and after modulating drugs were administered, and net LL transepithelial movement (J(v)) was calculated. When the PKC activator PMA (10(-5) M) and the Ca(2+) ionophore ionomycin (10(-6) M) were instilled into the lung together, J(v) was significantly reduced (P = 0.03). This reduction was blocked by the PKC inhibitor chelerythrine chloride (10(-6) M; P = 0.56) and by a second PKC inhibitor GF109203X (10(-5) M; P = 0.98). When PMA and ionomycin were added with the β-adrenergic agonist terbutaline, the terbutaline-induced increase in J(v) was abolished. Addition of PMA and ionomycin with the epithelial Na(+) channel (ENaC) blocker amiloride had no additional inhibitory effect. Together, these results suggest that PKC is likely to be involved in LL absorption, and the ability of PMA/ionomycin to block the terbutaline-induced increase in J(v) suggests that the downstream target of PKC is ENaC.
Collapse
Affiliation(s)
- Benjamin Soukup
- Division of Biomedical Sciences, St. George's University of London, London, United Kingdom
| | | | | | | |
Collapse
|
34
|
Kooijman EE, Kuzenko SR, Gong D, Best MD, Folkesson HG. Phosphatidylinositol 4,5-bisphosphate stimulates alveolar epithelial fluid clearance in male and female adult rats. Am J Physiol Lung Cell Mol Physiol 2011; 301:L804-11. [PMID: 21873448 DOI: 10.1152/ajplung.00445.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell membrane phospholipids, like phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], can regulate epithelial Na channel (ENaC) activity. Gender differences in lung ENaC expression have also been demonstrated. However, the effects in vivo on alveolar fluid clearance are uncertain. Thus PI(4,5)P(2) effects on alveolar fluid clearance were studied in male and female rats. An isosmolar 5% albumin solution was intrapulmonary instilled; alveolar fluid clearance was studied for 1 h. Female rats had a 37 ± 19% higher baseline alveolar fluid clearance than male rats. Bilateral ovariectomy attenuated this gender difference. Compared with controls, PI(4,5)P(2) instillation (300 μM) increased alveolar fluid clearance by ∼93% in both genders. Amiloride or the specific αENaC small-interfering RNA inhibited baseline and PI(4,5)P(2)-stimulated alveolar fluid clearance in both genders, indicating a dependence on amiloride-sensitive pathways. The fraction of amiloride inhibition was greater in PI(4,5)P(2)-instilled rats (male: 64 ± 10%; female: 70 ± 11%) than in controls (male: 30 ± 6%; female: 44 ± 8%). PI(4,5)P(2) instillation lacked additional alveolar fluid clearance stimulation above that of terbutaline, nor did propranolol inhibit alveolar fluid clearance after PI(4,5)P(2) instillation, indicating that PI(4,5)P(2) stimulation was not secondary to endogenous β-adrenoceptor activation. PI(4,5)P(2) amine instillation resulted in an intermediate alveolar fluid clearance stimulation, suggesting that, to reach maximal alveolar fluid clearance stimulation, PI(4,5)P(2) must reside in cell membranes. In summary, PI(4,5)P(2) instillation upregulated in vivo alveolar fluid clearance similar to short-term β-adrenoceptor upregulation of alveolar fluid clearance. PI(4,5)P(2) stimulation was mediated partly by increased amiloride-sensitive Na transport. There exist important gender-related effects suggesting a female advantage that may have clinical implications for resolution of acute lung injury.
Collapse
Affiliation(s)
- Edgar E Kooijman
- Dept. of Biological Sciences, Kent State Univ., Kent, OH 44242, USA.
| | | | | | | | | |
Collapse
|
35
|
Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 2011; 44:725-38. [PMID: 21531958 PMCID: PMC7328339 DOI: 10.1165/rcmb.2009-0210st] [Citation(s) in RCA: 1411] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is well defined in humans, but there is no agreement as to the main features of acute lung injury in animal models. A Committee was organized to determine the main features that characterize ALI in animal models and to identify the most relevant methods to assess these features. We used a Delphi approach in which a series of questionnaires were distributed to a panel of experts in experimental lung injury. The Committee concluded that the main features of experimental ALI include histological evidence of tissue injury, alteration of the alveolar capillary barrier, presence of an inflammatory response, and evidence of physiological dysfunction; they recommended that, to determine if ALI has occurred, at least three of these four main features of ALI should be present. The Committee also identified key "very relevant" and "somewhat relevant" measurements for each of the main features of ALI and recommended the use of least one "very relevant" measurement and preferably one or two additional separate measurements to determine if a main feature of ALI is present. Finally, the Committee emphasized that not all of the measurements listed can or should be performed in every study, and that measurements not included in the list are by no means "irrelevant." Our list of features and measurements of ALI is intended as a guide for investigators, and ultimately investigators should choose the particular measurements that best suit the experimental questions being addressed as well as take into consideration any unique aspects of the experimental design.
Collapse
|
36
|
Lalande S, Anderson PJ, Miller AD, Ceridon ML, Beck KC, O’Malley KA, Johnson JB, Johnson BD. Variability in pulmonary function following rapid altitude ascent to the Amundsen–Scott South Pole station. Eur J Appl Physiol 2011; 111:2221-8. [DOI: 10.1007/s00421-011-1864-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/01/2011] [Indexed: 11/29/2022]
|
37
|
Amiloride-sensitive sodium channels and pulmonary edema. Pulm Med 2010; 2011:830320. [PMID: 21637371 PMCID: PMC3100597 DOI: 10.1155/2011/830320] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/01/2010] [Indexed: 01/11/2023] Open
Abstract
The development of pulmonary edema can be considered as a combination of alveolar flooding via increased fluid filtration, impaired alveolar-capillary barrier integrity, and disturbed resolution due to decreased alveolar fluid clearance. An important mechanism regulating alveolar fluid clearance is sodium transport across the alveolar epithelium. Transepithelial sodium transport is largely dependent on the activity of sodium channels in alveolar epithelial cells. This paper describes how sodium channels contribute to alveolar fluid clearance under physiological conditions and how deregulation of sodium channel activity might contribute to the pathogenesis of lung diseases associated with pulmonary edema. Furthermore, sodium channels as putative molecular targets for the treatment of pulmonary edema are discussed.
Collapse
|
38
|
Abstract
Chlorine is considered a chemical threat agent to which humans may be exposed as a result of accidental or intentional release. Chlorine is highly reactive, and inhalation of the gas causes cellular damage to the respiratory tract, inflammation, pulmonary edema, and airway hyperreactivity. Drugs that increase intracellular levels of the signaling molecule cyclic AMP (cAMP) may be useful for treatment of acute lung injury through effects on alveolar fluid clearance, inflammation, and airway reactivity. This article describes mechanisms by which cAMP regulates cellular processes affecting lung injury and discusses the basis for investigating drugs that increase cAMP levels as potential treatments for chlorine-induced lung injury. The effects of beta(2)-adrenergic agonists, which stimulate cAMP synthesis, and phosphodiesterase inhibitors, which inhibit cAMP degradation, on acute lung injury are reviewed, and the relative advantages of these approaches are compared.
Collapse
|
39
|
Johnson ER, Matthay MA. Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv 2010; 23:243-52. [PMID: 20073554 PMCID: PMC3133560 DOI: 10.1089/jamp.2009.0775] [Citation(s) in RCA: 583] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/03/2009] [Indexed: 01/10/2023] Open
Abstract
Acute lung injury (ALI) remains a significant source of morbidity and mortality in the critically ill patient population. Defined by a constellation of clinical criteria (acute onset of bilateral pulmonary infiltrates with hypoxemia without evidence of hydrostatic pulmonary edema), ALI has a high incidence (200,000 per year in the US) and overall mortality remains high. Pathogenesis of ALI is explained by injury to both the vascular endothelium and alveolar epithelium. Recent advances in the understanding of pathophysiology have identified several biologic markers that are associated with worse clinical outcomes. Phase III clinical trials by the NHLBI ARDS Network have resulted in improvement in survival and a reduction in the duration of mechanical ventilation with a lung-protective ventilation strategy and fluid conservative protocol. Potential areas of future treatments include nutritional strategies, statin therapy, and mesenchymal stem cells.
Collapse
Affiliation(s)
- Elizabeth R. Johnson
- University of California, San Francisco, Cardiovascular Research Institute, San Fransicso, California
| | - Michael A. Matthay
- University of California, San Francisco, Departments of Medicine and Anesthesiology, San Fransicso, California
| |
Collapse
|
40
|
García-Delgado M, Touma-Fernández A, Chamorro-Marín V, Ruiz-Aguilar A, Aguilar-Alonso E, Fernández-Mondéjar E. Alveolar fluid clearance in healthy pigs and influence of positive end-expiratory pressure. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R36. [PMID: 20233408 PMCID: PMC2887143 DOI: 10.1186/cc8914] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/21/2010] [Accepted: 03/16/2010] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The objectives were to characterize alveolar fluid clearance (AFC) in pigs with normal lungs and to analyze the effect of immediate application of positive end-expiratory pressure (PEEP). METHODS Animals (n = 25) were mechanically ventilated and divided into four groups: small edema (SE) group, producing pulmonary edema (PE) by intratracheal instillation of 4 ml/kg of saline solution; small edema with PEEP (SE + PEEP) group, same as previous but applying PEEP of 10 cmH2O; large edema (LE) group, producing PE by instillation of 10 ml/kg of saline solution; and large edema with PEEP (LE + PEEP) group, same as LE group but applying PEEP of 10 cmH2O. AFC was estimated from differences in extravascular lung water values obtained by transpulmonary thermodilution method. RESULTS At one hour, AFC was 19.4% in SE group and 18.0% in LE group. In the SE + PEEP group, the AFC rate was higher at one hour than at subsequent time points and higher than in the SE group (45.4% vs. 19.4% at one hour, P < 0.05). The AFC rate was also significantly higher in the LE + PEEP than in the LE group at three hours and four hours. CONCLUSIONS In this pig model, the AFC rate is around 20% at one hour and around 50% at four hours, regardless of the amount of edema, and is increased by the application of PEEP.
Collapse
Affiliation(s)
- Manuel García-Delgado
- Department of Intensive Care Medicine, Virgen de las Nieves University Hospital, Fuerzas Armadas, Granada, Spain.
| | | | | | | | | | | |
Collapse
|
41
|
Roux J, Carles M, Koh H, Goolaerts A, Ganter MT, Chesebro BB, Howard M, Houseman BT, Finkbeiner W, Shokat KM, Paquet AC, Matthay MA, Pittet JF. Transforming growth factor beta1 inhibits cystic fibrosis transmembrane conductance regulator-dependent cAMP-stimulated alveolar epithelial fluid transport via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 2009; 285:4278-90. [PMID: 19996317 DOI: 10.1074/jbc.m109.036731] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exogenous or endogenous beta(2)-adrenergic receptor agonists enhance alveolar epithelial fluid transport via a cAMP-dependent mechanism that protects the lungs from alveolar flooding in acute lung injury. However, impaired alveolar fluid clearance is present in most of the patients with acute lung injury and is associated with increased mortality, although the mechanisms responsible for this inhibition of the alveolar epithelial fluid transport are not completely understood. Here, we found that transforming growth factor beta1 (TGF-beta1), a critical mediator of acute lung injury, inhibits beta(2)-adrenergic receptor agonist-stimulated vectorial fluid and Cl(-) transport across primary rat and human alveolar epithelial type II cell monolayers. This inhibition is due to a reduction in the cystic fibrosis transmembrane conductance regulator activity and biosynthesis mediated by a phosphatidylinositol 3-kinase (PI3K)-dependent heterologous desensitization and down-regulation of the beta(2)-adrenergic receptors. Consistent with these in vitro results, inhibition of the PI3K pathway or pretreatment with soluble chimeric TGF-beta type II receptor restored beta(2)-adrenergic receptor agonist-stimulated alveolar epithelial fluid transport in an in vivo model of acute lung injury induced by hemorrhagic shock in rats. The results demonstrate a novel role for TGF-beta1 in impairing the beta- adrenergic agonist-stimulated alveolar fluid clearance in acute lung injury, an effect that could be corrected by using PI3K inhibitors that are safe to use in humans.
Collapse
Affiliation(s)
- Jérémie Roux
- Laboratory of Surgical Research, Department of Anesthesia, University of California, San Francisco, California 94110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rahman MS, Gandhi S, Otulakowski G, Duan W, Sarangapani A, O'Brodovich H. Long-term terbutaline exposure stimulates alpha1-Na+-K+-ATPase expression at posttranscriptional level in rat fetal distal lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2009; 298:L96-L104. [PMID: 19880505 DOI: 10.1152/ajplung.00158.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transepithelial Na(+) transport through epithelial Na(+) channels (ENaC) on the apical membrane and Na(+)-K(+)-ATPase activity on the basolateral membrane of distal lung epithelial cells are critical for alveolar fluid clearance. Acute exposure to beta-adrenergic agonists stimulates lung fluid clearance by increasing Na(+) transport. We investigated the effects of chronic exposure to the beta(2)-adrenergic agonist terbutaline on the transepithelial Na(+) transport in rat fetal distal lung epithelia (FDLE). FDLE monolayers exposed to 10(-4) M terbutaline for 48 h had significantly increased propanolol-blockable transepithelial total and amiloride-sensitive short-circuit current (I(sc)); however, when these chronically exposed monolayers were acutely exposed to additional beta-agonists and intracellular cAMP upregulators, there was no further increase in I(sc). Monolayers exposed to terbutaline for >48 h had I(sc) similar to control cells. Ouabain-sensitive Na(+)-K(+)-ATPase activity was increased in 48-h terbutaline-exposed FDLE whose apical membranes were permeabilized with nystatin. In contrast, terbutaline did not increase amiloride-sensitive apical membrane I(sc) in FDLE whose basolateral membranes were permeabilized with nystatin. Terbutaline treatment did not affect alpha-, beta-, or gamma-ENaC mRNA or alpha-ENaC protein steady-state levels, but increased total cellular levels and rate of synthesis of alpha(1)-Na(+)-K(+)-ATPase protein in FDLE in the absence of any change in alpha(1)-Na(+)-K(+)-ATPase mRNA. Total cellular beta(1)-Na(+)-K(+)-ATPase mRNA and protein levels were not affected by terbutaline. These data suggest that FDLE have different responses from adult type II epithelial cells when chronically exposed to terbutaline, and their increased transepithelial Na(+) transport occurs via a posttranscriptional increase in alpha(1)-Na(+)-K(+)-ATPase expression.
Collapse
Affiliation(s)
- Muhammad S Rahman
- Program in Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, 555 Univ. Ave., Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|
43
|
Sugita M, Berthiaume Y, VanSpall M, Dagenais A, Ferraro P. Pharmacologic Modulation of Alveolar Liquid Clearance in Transplanted Lungs by Phentolamine and FK506. Ann Thorac Surg 2009; 88:958-64. [DOI: 10.1016/j.athoracsur.2009.05.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 01/11/2023]
|
44
|
Dünser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med 2009; 24:293-316. [PMID: 19703817 DOI: 10.1177/0885066609340519] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The term ''adrenergic'' originates from ''adrenaline'' and describes hormones or drugs whose effects are similar to those of epinephrine. Adrenergic stress is mediated by stimulation of adrenergic receptors and activation of post-receptor pathways. Critical illness is a potent stimulus of the sympathetic nervous system. It is undisputable that the adrenergic-driven ''fight-flight response'' is a physiologically meaningful reaction allowing humans to survive during evolution. However, in critical illness an overshooting stimulation of the sympathetic nervous system may well exceed in time and scope its beneficial effects. Comparable to the overwhelming immune response during sepsis, adrenergic stress in critical illness may get out of control and cause adverse effects. Several organ systems may be affected. The heart seems to be most susceptible to sympathetic overstimulation. Detrimental effects include impaired diastolic function, tachycardia and tachyarrhythmia, myocardial ischemia, stunning, apoptosis and necrosis. Adverse catecholamine effects have been observed in other organs such as the lungs (pulmonary edema, elevated pulmonary arterial pressures), the coagulation (hypercoagulability, thrombus formation), gastrointestinal (hypoperfusion, inhibition of peristalsis), endocrinologic (decreased prolactin, thyroid and growth hormone secretion) and immune systems (immunomodulation, stimulation of bacterial growth), and metabolism (increase in cell energy expenditure, hyperglycemia, catabolism, lipolysis, hyperlactatemia, electrolyte changes), bone marrow (anemia), and skeletal muscles (apoptosis). Potential therapeutic options to reduce excessive adrenergic stress comprise temperature and heart rate control, adequate use of sedative/analgesic drugs, and aiming for reasonable cardiovascular targets, adequate fluid therapy, use of levosimendan, hydrocortisone or supplementary arginine vasopressin.
Collapse
Affiliation(s)
- Martin W Dünser
- Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Anichstrasse, Innsbruck, Austria.
| | | |
Collapse
|
45
|
|
46
|
Comellas AP, Briva A. Role of endothelin-1 in acute lung injury. Transl Res 2009; 153:263-71. [PMID: 19446279 PMCID: PMC3046772 DOI: 10.1016/j.trsl.2009.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 02/19/2009] [Accepted: 02/20/2009] [Indexed: 01/11/2023]
Abstract
The alveolar-capillary membrane serves as a barrier that prevents the accumulation of fluid in the alveolar space and restricts the diffusion of large solutes while facilitating an efficient gas exchange. When this barrier becomes dysfunctional, patients develop acute lung injury (ALI), which is characterized by pulmonary edema and increased lung inflammation that leads to a life-threatening impairment of gas exchange. In addition to the increase of inflammatory cytokines, plasma levels of endothelin-1 (ET-1), which is a primarily endothelium-derived vasoconstrictor, are increased in patients with ALI. As patients recover, ET-1 levels decrease, which suggests that ET-1 may not only be a marker of endothelial dysfunction but may have a role in the pathogenesis of ALI. While pulmonary edema accumulates, alveolar fluid clearance (AFC) is of critical importance, as failure to return to normal clearance is associated with poor prognosis in patients with pulmonary edema. AFC involves active transport mechanisms where sodium (Na(+)) is actively transported from the alveolar airspaces, across the alveolar epithelium, and into the pulmonary circulation, which creates an osmotic gradient that is responsible for the clearance of lung edema. In this article, we review the relevance of ET-1 in the development of ALI, not only as a vasoconstrictor molecule but also by inhibiting AFC via the activation of endothelial ET-B receptors and generation. Furthermore, this review highlights the therapeutic role of drugs such as beta-adrenergic agonists and, in particular, of endothelin receptor antagonists in patients with ALI.
Collapse
Affiliation(s)
- Alejandro P Comellas
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
47
|
Chamorro-Marín V, García-Delgado M, Ruiz-Aguilar A, Fernández-Mondéjar E. [Survival of rats subjected to different levels of pulmonary injury]. Med Intensiva 2009; 33:105-8. [PMID: 19406082 DOI: 10.1016/s0210-5691(09)70942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To determine a pulmonary injury model in rats that is associated with moderate mortality after extubation. DESIGN AND SETTING An experimental study in an animal model of ventilator-induced lung injury in the animal research laboratory in Virgen de las Nieves University Hospital. SUBJECTS AND METHOD A total of 45 male Wistar-Kyoto rats weighing 250-300g received food and water ad libitum. The rats were anesthetized and a tracheotomy was performed by insertion of endotracheal tube by tracheotomy. INTERVENTIONS Pulmonary injury due to mechanical ventilation was maintained for 60 min with high tidal volume (25 ml/kg) combined with intratracheal instillation of different doses of 0,9% saline solution. Rats were randomly distributed into 3 groups (15 animals in each group) with different amounts of instilled saline solution: group I, 0.5 ml/250 g body weight; group II, 1 ml/250 g body weight, and group III, 1.5 ml/250 g body weight. MAIN MEASUREMENTS Survival of animals after extubation was recorded every 5 min for the first 40 min and then at 3 h, 24 h, 72 h, and 7 days. RESULTS Survival in rats that received 0.5, 1 and 1.5 ml/250 g of intratracheal saline solution was 60%, 43% and 0% respectively, with statistically significant differences between groups receiving 0.5 and 1.5 ml/250 g (p = 0.003). CONCLUSIONS Survival in rats mechanically ventilated with high moderate volume is influenced by increased doses of intratracheal saline solution and this is important to design studies that analyze the effect the interventions on mortality.
Collapse
Affiliation(s)
- V Chamorro-Marín
- Unidad Experimental. Hospital Universitario Virgen de las Nieves, Granada. España.
| | | | | | | |
Collapse
|
48
|
Hamacher J, Lucas R, Stammberger U, Wendel A. Terbutaline improves ischemia-reperfusion injury after left-sided orthotopic rat lung transplantation. Exp Lung Res 2009; 35:175-85. [PMID: 19337901 DOI: 10.1080/01902140802488446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Beta2-agonists have been shown to increase alveolar fluid reabsorption, and at least part of their effect depends on active sodium transport from the alveolus into the epithelial cell by the amiloride-sensitive epithelial sodium channel (ENaC). Few data exist on their effect in the injured lung. The authors therefore investigated the effect of intrabronchially administered terbutaline pretransplantation by measuring outcome 1 day after experimental donor lung transplantation with severe injury due to prolonged ischemia. Orthotopic single left-sided lung allotransplantation was performed in female rats (Wistar to Wistar) after a total ischemic time of 20 hours. Graft PaO2/FiO2 in 6 recipients treated with 10(-4) M terbutaline in 500 microL NaCl 0.9% was superior 24 hours after transplantation, with a PaO2 of 329 (111 [SD]) mm Hg versus 5 vehicle controls with 44 (15) mm Hg (P = .002). The beneficial effect of 10(-4) M terbutaline was abrogated by 10(-4) M of the sodium channel blocker amiloride to 71 (34) mm Hg in 3 recipients (P = .028 versus terbutaline 10(-4) M). Ten recipients receiving 10(-5) M terbutaline in 500 microL NaCl 0.9% showed inconsistent improvements of gas exchange, with a PaO2 of 158 (+/- 153) mm Hg (P = .058). Terbutaline at a high dose significantly improved the transplanted rat lung function at 24 hours after transplantation. Part of it may be via activating epithelial sodium transport, thus suggesting an important role of alveolar fluid transport in such a model of acute lung injury.
Collapse
Affiliation(s)
- Jürg Hamacher
- Biochemical Pharmacology, University of Konstanz, Germany.
| | | | | | | |
Collapse
|
49
|
Ma G, Zhao X, Ueno M, Tanaka M, Machida Y, Aikawa H, Usuda K, Sagawa M, Ueda Y, Sakuma T. Increased reabsorption of alveolar edema fluid in the obese Zucker rat. TOHOKU J EXP MED 2009; 216:223-30. [PMID: 18987456 DOI: 10.1620/tjem.216.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diabetic patients have a decreased incidence of acute respiratory distress syndrome, but the mechanism responsible for the decreased incidence is uncertain. Reabsorption of alveolar edema fluid (alveolar fluid clearance) has been considered to play an important role in resolution of acute respiratory distress syndrome. However, little is known regarding alveolar fluid clearance in diabetes mellitus. Since the obese Zucker rat has been used as an experimental model for diabetes mellitus, we determined if alveolar fluid clearance increased in the obese Zucker rat. First, we compared alveolar fluid clearance in obese Zucker rats with that in lean Zucker rats and Sprague-Dawley (SD) rats. Then, we determined the role of sodium channel, Na,K-ATPase, and beta(2)-adrenoceptor, which drives alveolar fluid clearance, in obese Zucker rats. Alveolar fluid clearance was estimated by the progressive increase in alveolar albumin concentrations in the isolated lungs. We found that basal alveolar fluid clearance in obese Zucker rats was two-fold greater than that in lean Zucker rats and SD rats. The mRNA expression of alpha(1)-, beta(1)-Na, K-ATPase and beta(2)-adrenoceptor, but not mRNA expression of sodium channel, increased in obese Zucker rats. A selective beta(2)-agrenergic antagonist, but not a Na, K-ATPase inhibitor, specifically inhibited the increase in alveolar fluid clearance in obese Zucker rats. These results indicate that overexpression of beta(2)-adrenoceptor primarily increases basal alveolar fluid clearance in the obese Zucker rat. We speculate that the stimulation of alveolar fluid clearance ameliorates acute respiratory distress syndrome in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Gang Ma
- Thoracic Surgery, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang L, Zhang Z, Guo H, Wang Y. Na+/K+-ATPase-mediated signal transduction and Na+/K+-ATPase regulation. Fundam Clin Pharmacol 2009; 22:615-21. [PMID: 19049666 DOI: 10.1111/j.1472-8206.2008.00620.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A number of studies suggest that Na(+)/K(+)-ATPase in caveolae interacts with neighboring membrane proteins and organizes cytosolic cascades of signaling proteins to send messages to intracellular organelles in different tissues, mostly in cardiac myocytes. Low concentration of ouabain binding to Na(+)/K(+)-ATPase activates Src/epidermal growth factor receptor complex to initiate multiple signal pathways, which include PLC/IP3/CICR, PI3K, reactive oxygen species (ROS), PLC/DG/PKC/Raf/MEK/ERK1/2, and Ras/Raf/MEK/ERK1/2 pathways. In cardiac myocytes, the resulting downstream events include the induction of some early response proto-oncogenes, activation of transcription factors, activator protein-1, and nuclear factor-kappaB, the regulation of a number of cardiac growth-related genes, and the stimulation of protein synthesis and myocyte hypertrophy and apoptosis. Conversely, several factors acting through signal pathways, such as protein kinases, Ca(2+), ROS, etc., can modulate the activity of the Na(+)/K(+)-ATPase.
Collapse
Affiliation(s)
- Linan Zhang
- Department of Pharmacology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | | | | | | |
Collapse
|