1
|
Takahashi M, Ozaki N, Nagashima S, Wakabayashi T, Iwamoto S, Ishibashi S. Normal plasma apoB48 despite the virtual absence of apoB100 in a compound heterozygote with novel mutations in the MTTP gene. J Clin Lipidol 2021; 15:569-573. [PMID: 34052173 DOI: 10.1016/j.jacl.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 11/27/2022]
Abstract
"Normotriglyceridemic abetalipoproteinemia (ABL)" was originally described as a clinical entity distinct from either ABL or hypobetalipoproteinemia. Subsequent studies identified mutations in APOB gene which encoded truncated apoB longer than apoB48. Therefore, "Normotriglyceridemic ABL" can be a subtype of homozygous familial hypobetalipoproteinemia 1. Here, we report an atypical female case of ABL who was initially diagnosed with "normotriglyceridemic ABL", because she had normal plasma apoB48 despite the virtual absence of apoB100 and low plasma TG level. Next generation sequencing revealed that she was a compound heterozygote of two novel MTTP mutations: nonsense (p.Q272X) and missense (p.G709R). We speculate that p.G709R might confer residual triglyceride transfer activity of MTTP preferentially in the intestinal epithelium to the hepatocytes, allowing production of apoB48. Together, "normotriglyceridemic ABL" may be a heterogenous disorder which is caused by specific mutations in either APOB or MTTP gene.
Collapse
Affiliation(s)
- Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan.
| | - Nobuaki Ozaki
- Division of Endocrinology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya 453-8511, Japan
| | - Shuichi Nagashima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Tetsuji Wakabayashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Sadahiko Iwamoto
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
2
|
Sallam T. Stephen G. Young. Circ Res 2018; 123:1192-1195. [PMID: 30571458 DOI: 10.1161/circresaha.118.314236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Di Costanzo A, Di Leo E, Noto D, Cefalù AB, Minicocci I, Polito L, D'Erasmo L, Cantisani V, Spina R, Tarugi P, Averna M, Arca M. Clinical and biochemical characteristics of individuals with low cholesterol syndromes: A comparison between familial hypobetalipoproteinemia and familial combined hypolipidemia. J Clin Lipidol 2017; 11:1234-1242. [PMID: 28733173 DOI: 10.1016/j.jacl.2017.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/27/2017] [Accepted: 06/17/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND The most frequent monogenic causes of low plasma cholesterol are familial hypobetalipoproteinemia (FHBL1) because of truncating mutations in apolipoprotein B coding gene (APOB) and familial combined hypolipidemia (FHBL2) due to loss-of-function mutations in ANGPTL3 gene. OBJECTIVE A direct comparison of lipid phenotypes of these 2 conditions has never been carried out. In addition, although an increased prevalence of liver steatosis in FHBL1 has been consistently reported, the hepatic consequences of FHBL2 are not well established. METHODS We investigated 350 subjects, 67 heterozygous carriers of APOB mutations, 63 carriers of the p.S17* mutation in ANGPTL3 (57 heterozygotes and 6 homozygotes), and 220 noncarrier normolipemic controls. Prevalence and degree of hepatic steatosis were assessed by ultrasonography. RESULTS A steady decrease of low-density lipoprotein cholesterol levels were observed from heterozygous to homozygous FHBL2 and to FHBL1 individuals, with the lowest levels in heterozygous FHBL1 carrying truncating mutations in exons 1 to 25 of APOB (P for trend <.001). Plasma triglycerides levels were similar in heterozygous FHBL1 and homozygous FHBL2 individuals, but higher in heterozygous FHBL2. The lowest high-density lipoprotein cholesterol levels were detected in homozygous FHBL2 (P for trend <.001). Compared with controls, prevalence and severity of hepatic steatosis were increased in heterozygous FHBL1 (P < .001), but unchanged in FHBL2 individuals. CONCLUSION Truncating APOB mutations showed the more striking low-density lipoprotein cholesterol lowering effect compared with p.S17* mutation in ANGPTL3. Reduced high-density lipoprotein cholesterol levels were the unique lipid characteristic associated with FHBL2. Mutations impairing liver synthesis or secretion of apolipoprotein B are crucial to increase the risk of liver steatosis.
Collapse
Affiliation(s)
- Alessia Di Costanzo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy.
| | - Enza Di Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Davide Noto
- Department of Biomedicine, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Angelo Baldassare Cefalù
- Department of Biomedicine, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Ilenia Minicocci
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Luca Polito
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Laura D'Erasmo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Vito Cantisani
- Department of Radiological Sciences, Sapienza University of Rome, Rome, Italy
| | - Rossella Spina
- Department of Biomedicine, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Patrizia Tarugi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maurizio Averna
- Department of Biomedicine, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Marcello Arca
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Schütz E, Wehrhahn C, Wanjek M, Bortfeld R, Wemheuer WE, Beck J, Brenig B. The Holstein Friesian Lethal Haplotype 5 (HH5) Results from a Complete Deletion of TBF1M and Cholesterol Deficiency (CDH) from an ERV-(LTR) Insertion into the Coding Region of APOB. PLoS One 2016; 11:e0154602. [PMID: 27128314 PMCID: PMC4851415 DOI: 10.1371/journal.pone.0154602] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/17/2016] [Indexed: 12/17/2022] Open
Abstract
Background With the availability of massive SNP data for several economically important cattle breeds, haplotype tests have been performed to identify unknown recessive disorders. A number of so-called lethal haplotypes, have been uncovered in Holstein Friesian cattle and, for at least seven of these, the causative mutations have been identified in candidate genes. However, several lethal haplotypes still remain elusive. Here we report the molecular genetic causes of lethal haplotype 5 (HH5) and cholesterol deficiency (CDH). A targeted enrichment for the known genomic regions, followed by massive parallel sequencing was used to interrogate for causative mutations in a case/control approach. Methods Targeted enrichment for the known genomic regions, followed by massive parallel sequencing was used in a case/control approach. PCRs for the causing mutations were developed and compared to routine imputing in 2,100 (HH5) and 3,100 (CDH) cattle. Results HH5 is caused by a deletion of 138kbp, spanning position 93,233kb to 93,371kb on chromosome 9 (BTA9), harboring only dimethyl-adenosine transferase 1 (TFB1M). The deletion breakpoints are flanked by bovine long interspersed nuclear elements Bov-B (upstream) and L1ME3 (downstream), suggesting a homologous recombination/deletion event. TFB1M di-methylates adenine residues in the hairpin loop at the 3’-end of mitochondrial 12S rRNA, being essential for synthesis and function of the small ribosomal subunit of mitochondria. Homozygous TFB1M-/- mice reportedly exhibit embryonal lethality with developmental defects. A 2.8% allelic frequency was determined for the German HF population. CDH results from a 1.3kbp insertion of an endogenous retrovirus (ERV2-1-LTR_BT) into exon 5 of the APOB gene at BTA11:77,959kb. The insertion is flanked by 6bp target site duplications as described for insertions mediated by retroviral integrases. A premature stop codon in the open reading frame of APOB is generated, resulting in a truncation of the protein to a length of only <140 amino acids. Such early truncations have been shown to cause an inability of chylomicron excretion from intestinal cells, resulting in malabsorption of cholesterol. The allelic frequency of this mutation in the German HF population was 6.7%, which is substantially higher than reported so far. Compared to PCR assays inferring the genetic variants directly, the routine imputing used so far showed a diagnostic sensitivity of as low as 91% (HH5) and 88% (CDH), with a high specificity for both (≥99.7%). Conclusion With the availability of direct genetic tests it will now be possible to more effectively reduce the carrier frequency and ultimately eliminate the disorders from the HF populations. Beside this, the fact that repetitive genomic elements (RE) are involved in both diseases, underline the evolutionary importance of RE, which can be detrimental as here, but also advantageous over generations.
Collapse
Affiliation(s)
- Ekkehard Schütz
- Institute of Veterinary Medicine, Georg-August-University Göttingen, Göttingen, Germany
- Chronix Biomedical GmbH, Göttingen, Germany
- * E-mail:
| | - Christin Wehrhahn
- Institute of Veterinary Medicine, Georg-August-University Göttingen, Göttingen, Germany
| | - Marius Wanjek
- Institute for Livestock Reproduction GmbH, Schönow, Germany
| | - Ralf Bortfeld
- Institute for Livestock Reproduction GmbH, Schönow, Germany
| | - Wilhelm E. Wemheuer
- Institute of Veterinary Medicine, Georg-August-University Göttingen, Göttingen, Germany
| | - Julia Beck
- Chronix Biomedical GmbH, Göttingen, Germany
| | - Bertram Brenig
- Institute of Veterinary Medicine, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Di Filippo M, Moulin P, Roy P, Samson-Bouma ME, Collardeau-Frachon S, Chebel-Dumont S, Peretti N, Dumortier J, Zoulim F, Fontanges T, Parini R, Rigoldi M, Furlan F, Mancini G, Bonnefont-Rousselot D, Bruckert E, Schmitz J, Scoazec JY, Charrière S, Villar-Fimbel S, Gottrand F, Dubern B, Doummar D, Joly F, Liard-Meillon ME, Lachaux A, Sassolas A. Homozygous MTTP and APOB mutations may lead to hepatic steatosis and fibrosis despite metabolic differences in congenital hypocholesterolemia. J Hepatol 2014; 61:891-902. [PMID: 24842304 DOI: 10.1016/j.jhep.2014.05.023] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/16/2014] [Accepted: 05/06/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic steatohepatitis leading to fibrosis occurs in patients with abetalipoproteinemia (ABL) and homozygous or compound heterozygous familial hypobetalipoproteinemia (Ho-FHBL). We wanted to establish if liver alterations were more frequent in one of both diseases and were influenced by comorbidities. METHODS We report genetic, clinical, histological and biological characteristics of new cases of ABL (n =7) and Ho-FHBL (n = 7), and compare them with all published ABL (51) and Ho-FHBL (22) probands. RESULTS ABL patients, diagnosed during infancy, presented mainly with diarrhea, neurological and ophthalmological impairments and remained lean, whereas Ho-FHBL were diagnosed later, with milder symptoms often becoming overweight in adulthood. Despite subtle differences in lipid phenotype, liver steatosis was observed in both groups with a high prevalence of severe fibrosis (5/27 for Ho-FHBL vs. 4/58 for ABL (n.s.)). Serum triglycerides concentration was higher in Ho-FHBL whereas total and HDL-cholesterol were similar in both groups. In Ho-FHBL liver alterations were found to be independent from the apoB truncation size and apoB concentrations. CONCLUSIONS Our findings provide evidence for major liver abnormalities in both diseases. While ABL and Ho-FHBL patients have subtle differences in lipid phenotype, carriers of APOB mutations are more frequently obese. These results raise the question of a complex causal link between apoB metabolism and obesity. They suggest that the genetic defect in VLDL assembly is critical for the occurrence of liver steatosis leading to fibrosis and shows that obesity and insulin resistance might contribute by increasing lipogenesis.
Collapse
Affiliation(s)
- Mathilde Di Filippo
- UF Dyslipidémies Cardiobiologie, Département de Biochimie et de Biologie Moléculaire du GHE, Laboratoire de Biologie Médicale Multi Sites, Hospices Civils de Lyon, Lyon, France; INSERM U1060, INSA de Lyon, INRA U1235, Univ Lyon-1, Université de Lyon, Villeurbanne, Oullins, France.
| | - Philippe Moulin
- INSERM U1060, INSA de Lyon, INRA U1235, Univ Lyon-1, Université de Lyon, Villeurbanne, Oullins, France; Fédération d'Endocrinologie, Maladies métaboliques, Diabète et Nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Pascal Roy
- Service de Biostatistique, Hospices Civils de Lyon, Lyon, France; Centre National de la Recherche Scientifique UMR5558, Univ Lyon-1, Villeurbanne, France
| | | | | | - Sabrina Chebel-Dumont
- UF Dyslipidémies Cardiobiologie, Département de Biochimie et de Biologie Moléculaire du GHE, Laboratoire de Biologie Médicale Multi Sites, Hospices Civils de Lyon, Lyon, France
| | - Noël Peretti
- Service de Gastroentérologie Hépatologie et Nutrition Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Jérôme Dumortier
- Fédération des Spécialités Digestives, Hôpital Edouard Herriot, Hospices Civils, Lyon, France
| | - Fabien Zoulim
- Service d'Hépato-Gastro-Entérologie, Hôpital de la Croix Rousse, Hospices Civils, Lyon, France
| | - Thierry Fontanges
- Service d'Hépato-Gastro-Entérologie, Centre Hospitalier Pierre Oudot, Bourgoin Jallieu, France
| | - Rossella Parini
- Rare Metabolic Disease Unit, Department of Pediatrics, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Miriam Rigoldi
- Rare Metabolic Disease Unit, Department of Pediatrics, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Francesca Furlan
- Rare Metabolic Disease Unit, Department of Pediatrics, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Grazia Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dominique Bonnefont-Rousselot
- Unité pédagogique de Biochimie, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France; UPMC University Paris 6, UMR_S1166 Inserm ICAN, Paris, France; Service de Biochimie métabolique, Groupe hospitalier Pitié-Salpêtrière-Charles Foix, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Eric Bruckert
- Service d'Endocrinologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Jacques Schmitz
- Service de Gastroentérologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Jean Yves Scoazec
- Service d'anatomie pathologique, Hôpital Edouard Herriot, Hospices Civils, Lyon, France
| | - Sybil Charrière
- INSERM U1060, INSA de Lyon, INRA U1235, Univ Lyon-1, Université de Lyon, Villeurbanne, Oullins, France; Fédération d'Endocrinologie, Maladies métaboliques, Diabète et Nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Sylvie Villar-Fimbel
- Fédération d'Endocrinologie, Maladies métaboliques, Diabète et Nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Frederic Gottrand
- Department of Pediatric Gastroenterology Hepatology and Nutrition, Jeanne de Flandre university hospital, Lille, France
| | - Béatrice Dubern
- Nutrition et Gastroentérologie Pédiatriques, Hôpital Trousseau, AP-HP, Paris, France; Institut de Cardiométabolisme et Nutrition (ICAN), INSERM UMRS U872 (Eq7) Nutriomique, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Diane Doummar
- Service de Neuropédiatrie, Hôpital Trousseau, Paris, France
| | - Francesca Joly
- Service de Gastroentérologie et d'Assistance Nutritive, Hôpital Beaujon, Clichy, France
| | | | - Alain Lachaux
- Service de Gastroentérologie Hépatologie et Nutrition Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France; INSERM U 1111, Faculté de médecine Lyon Est, Université Lyon 1, Lyon, France
| | - Agnès Sassolas
- UF Dyslipidémies Cardiobiologie, Département de Biochimie et de Biologie Moléculaire du GHE, Laboratoire de Biologie Médicale Multi Sites, Hospices Civils de Lyon, Lyon, France; INSERM U1060, INSA de Lyon, INRA U1235, Univ Lyon-1, Université de Lyon, Villeurbanne, Oullins, France
| |
Collapse
|
6
|
Abstract
The progress of molecular genetics helps clinicians to prove or exclude a suspected diagnosis for a vast and yet increasing number of genodermatoses. This leads to precise genetic counselling, prenatal diagnosis and preimplantation genetic haplotyping for many inherited skin conditions. It is also helpful in such occasions as phenocopy, late onset and incomplete penetrance, uniparental disomy, mitochondrial inheritance and pigmentary mosaicism. Molecular methods of two genodermatoses are explained in detail, i.e. genodermatoses with skin fragility and neurofibromatosis type 1.
Collapse
Affiliation(s)
- Vesarat Wessagowit
- Molecular Genetics Laboratory, The Institute of Dermatology, Bangkok, Thailand.
| |
Collapse
|
7
|
Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, Felin J, Perkins R, Borén J, Oresic M, Bäckhed F. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 2009; 51:1101-12. [PMID: 20040631 DOI: 10.1194/jlr.m002774] [Citation(s) in RCA: 445] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota has recently been identified as an environmental factor that may promote metabolic diseases. To investigate the effect of gut microbiota on host energy and lipid metabolism, we compared the serum metabolome and the lipidomes of serum, adipose tissue, and liver of conventionally raised (CONV-R) and germ-free mice. The serum metabolome of CONV-R mice was characterized by increased levels of energy metabolites, e.g., pyruvic acid, citric acid, fumaric acid, and malic acid, while levels of cholesterol and fatty acids were reduced. We also showed that the microbiota modified a number of lipid species in the serum, adipose tissue, and liver, with its greatest effect on triglyceride and phosphatidylcholine species. Triglyceride levels were lower in serum but higher in adipose tissue and liver of CONV-R mice, consistent with increased lipid clearance. Our findings show that the gut microbiota affects both host energy and lipid metabolism and highlights its role in the development of metabolic diseases.
Collapse
|
8
|
Hooper AJ, van Bockxmeer FM, Burnett JR. Monogenic Hypocholesterolaemic Lipid Disorders and Apolipoprotein B Metabolism. Crit Rev Clin Lab Sci 2008; 42:515-45. [PMID: 16390683 DOI: 10.1080/10408360500295113] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The study of apolipoprotein (apo) B metabolism is central to our understanding of human lipoprotein metabolism. Moreover, the assembly and secretion of apoB-containing lipoproteins is a complex process. Increased plasma concentrations of apoB-containing lipoproteins are an important risk factor for the development of atherosclerotic coronary heart disease. In contrast, decreased levels of, but not the absence of, these apoB-containing lipoproteins is associated with resistance to atherosclerosis and potential long life. The study of inherited monogenic dyslipidaemias has been an effective means to elucidate key metabolic steps and biologically relevant mechanisms. Naturally occurring gene mutations in affected families have been useful in identifying important domains of apoB and microsomal triglyceride transfer protein (MTP) governing the metabolism of apoB-containing lipoproteins. Truncation-causing mutations in the APOB gene cause familial hypobetalipoproteinaemia, whereas mutations in MTP result in abetalipoproteinaemia; both rare conditions are characterised by marked hypocholesterolaemia. The purpose of this review is to examine the role of apoB in lipoprotein metabolism and to explore the key biochemical, clinical, metabolic and genetic features of the monogenic hypocholesterolaemic lipid disorders affecting apoB metabolism.
Collapse
Affiliation(s)
- Amanda J Hooper
- School of Surgery and Pathology, University of Western Australia, Crawley, Australia
| | | | | |
Collapse
|
9
|
Tarugi P, Averna M, Di Leo E, Cefalù AB, Noto D, Magnolo L, Cattin L, Bertolini S, Calandra S. Molecular diagnosis of hypobetalipoproteinemia: an ENID review. Atherosclerosis 2007; 195:e19-27. [PMID: 17570373 DOI: 10.1016/j.atherosclerosis.2007.05.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 04/27/2007] [Accepted: 05/03/2007] [Indexed: 01/26/2023]
Abstract
Primary hypobetalipoproteinemia (HBL) includes a group of genetic disorders: abetalipoproteinemia (ABL) and chylomicron retention disease (CRD), with a recessive transmission, and familial hypobetalipoproteinemia (FHBL) with a co-dominant transmission. ABL and CRD are rare disorders due to mutations in the MTP and SARA2 genes, respectively. Heterozygous FHBL is much more frequent. FHBL subjects often have fatty liver and, less frequently, intestinal fat malabsorption. FHBL may be linked or not to the APOB gene. Most mutations in APOB gene cause the formation of truncated forms of apoB which may or may be not secreted into the plasma. Truncated apoBs with a size below that of apoB-30 are not detectable in plasma; they are more frequent in patients with the most severe phenotype. Only a single amino acid substitution (R463W) has been reported as the cause of FHBL. Approximately 50% of FHBL subjects are carriers of pathogenic mutations in APOB gene; therefore, a large proportion of FHBL subjects have no apoB gene mutations or are carriers of rare amino acid substitutions in apoB with unknown effect. In some kindred FHBL is linked to a locus on chromosome 3 (3p21) but the candidate gene is unknown. Recently a FHBL plasma lipid phenotype was observed in carriers of mutations of the PCSK9 gene causing loss of function of the encoded protein, a proprotein convertase which regulates LDL-receptor number in the liver. Inactivation of this enzyme is associated with an increased LDL uptake and hypobetalipoproteinemia. HBL carriers of PCSK9 mutations do not develop fatty liver disease.
Collapse
Affiliation(s)
- Patrizia Tarugi
- Department of Biomedical Sciences, University of Modena e Reggio Emilia, Via Campi 287, I-41100 Modena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Neuroacanthocytosis. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
11
|
Buhman KK, Smith SJ, Stone SJ, Repa JJ, Wong JS, Knapp FF, Burri BJ, Hamilton RL, Abumrad NA, Farese RV. DGAT1 is not essential for intestinal triacylglycerol absorption or chylomicron synthesis. J Biol Chem 2002; 277:25474-9. [PMID: 11959864 DOI: 10.1074/jbc.m202013200] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dietary triacylglycerols are a major source of energy for animals. The absorption of dietary triacylglycerols involves their hydrolysis to free fatty acids and monoacylglycerols in the intestinal lumen, the uptake of these products into enterocytes, the resynthesis of triacylgylcerols, and the incorporation of newly synthesized triacylglycerols into nascent chylomicrons for secretion. In enterocytes, the final step in triacylglycerol synthesis is believed to be catalyzed primarily through the actions of acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. In this study, we analyzed intestinal triacylglycerol absorption and chylomicron synthesis and secretion in DGAT1-deficient (Dgat1(-/-)) mice. Surprisingly, DGAT1 was not essential for quantitative dietary triacylglycerol absorption, even in mice fed a high fat diet, or for the synthesis of chylomicrons. However, Dgat1(-/-) mice had reduced postabsorptive chylomicronemia (1 h after a high fat challenge) and accumulated neutral-lipid droplets in the cytoplasm of enterocytes when chronically fed a high fat diet. These results suggest a reduced rate of triacylglycerol absorption in Dgat1(-/-) mice. Analysis of intestine from Dgat1(-/-) mice revealed activity for two other enzymes, DGAT2 and diacylglycerol transacylase, that catalyze triacylglycerol synthesis and apparently help to compensate for the absence of DGAT1. Our findings indicate that multiple mechanisms for triacylglycerol synthesis in the intestine facilitate triacylglycerol absorption.
Collapse
Affiliation(s)
- Kimberly K Buhman
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94141-9100, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cheesman EJ, Sharp RJ, Zlot CH, Liu CY, Taylor S, Marcovina SM, Young SG, McCormick SP. An analysis of the interaction between mouse apolipoprotein B100 and apolipoprotein(a). J Biol Chem 2000; 275:28195-200. [PMID: 10837476 DOI: 10.1074/jbc.m002772200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly of lipoprotein(a) (Lp(a)) involves an initial noncovalent interaction between apolipoprotein (apo) B100 and apo(a), followed by the formation of a disulfide bond between apoB100 cysteine 4326 and apo(a) cysteine 4057. The structural features of apoB100 that are required for its noncovalent interaction with apo(a) have not been fully defined. To analyze that initial interaction, we tested whether apo(a) could bind noncovalently to two apoB proteins that lack cysteine 4326: mouse apoB100 and human apoB100-C4326G. Our experiments demonstrated that both mouse apoB and the human apoB100-C4326G bind noncovalently to apo(a). We next sought to gain insights into the apoB amino acid sequences required for the interaction between apoB100 and apo(a). Previous studies of truncated human apoB proteins indicated that the carboxyl terminus of human apoB100 (amino acids 4330-4397) is important for Lp(a) assembly. To determine whether the carboxyl terminus of mouse apoB100 can interact with apo(a), transgenic mice were produced with a mutant human apoB gene construct in which human apoB100 amino acids 4279-4536 were replaced with the corresponding mouse apoB100 sequences and tyrosine 4326 was changed to a cysteine. The mutant apoB100 bound to apo(a) and formed bona fide disulfide-linked Lp(a), but Lp(a) assembly was less efficient than with wild-type human apoB100. The fact that Lp(a) assembly was less efficient with the mouse apoB sequences provides additional support for the notion that sequences in the carboxyl terminus of apoB100 are important for Lp(a) assembly.
Collapse
Affiliation(s)
- E J Cheesman
- Biochemistry Department, University of Otago, Dunedin 9001, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Levy E, Bendayan M. Use of immunoelectron microscopy and intestinal models to explore the elaboration of apolipoproteins required for intraenterocyte lipid transport. Microsc Res Tech 2000; 49:374-82. [PMID: 10820521 DOI: 10.1002/(sici)1097-0029(20000515)49:4<374::aid-jemt6>3.0.co;2-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intestine is the organ that contributes the majority of circulating alimentary lipoproteins. Intestinal epithelial cells have the unique ability to elaborate chylomicrons, the largest triglyceride-rich lipoproteins and the main vehicle for the transport of dietary lipids. The final intracellular assembly and exocytosis of chylomicrons require enterocyte-derived apolipoproteins (apo). As research on lipoprotein metabolism evolved, it has become increasingly evident that apo B is a crucial protein for the normal packaging of triglyceride-rich lipoproteins. Immunocytochemical techniques have successfully been used to demonstrate the presence of two types of apo B, the B-100 and the B-48, in different subcellular compartments of the human enterocyte. Confirmation was obtained by biochemically analyzing human lymph and intestine from pediatric patients. In addition, the immunoelectron microscopic approach revealed the location of apo A-I in the rough endoplasmic reticulum (ER) and predominantly in the Golgi apparatus and the basolateral membrane, which confirms the rapid transport of apo A-I documented by other studies. Proven utility and experimental conditions were defined to demonstrate the ability of Caco-2 cells, a colon carcinoma cell line, to esterify lipids, synthesize apo, and assemble lipoproteins. Thus, immunocytochemical and biochemical techniques can be combined with in vivo and in vitro intestinal models for the study of the intestinal lipid transport.
Collapse
Affiliation(s)
- E Levy
- Hôpital Sainte-Justine Research Center, Montréal, Québec, Canada H3T 1C5
| | | |
Collapse
|
14
|
Davis RA. Cell and molecular biology of the assembly and secretion of apolipoprotein B-containing lipoproteins by the liver. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1440:1-31. [PMID: 10477822 DOI: 10.1016/s1388-1981(99)00083-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Triglycerides are one of the most efficient storage forms of free energy. Because of their insolubility in biological fluids, their transport between cells and tissues requires that they be assembled into lipoprotein particles. Genetic disruption of the lipoprotein assembly/secretion pathway leads to several human disorders associated with malnutrition and developmental abnormalities. In contrast, patients displaying inappropriately high rates of lipoprotein production display increased risk for the development of atherosclerotic cardiovascular disease. Insights provided by diverse experimental approaches describe an elegant biological adaptation of basic chemical interactions required to overcome the thermodynamic dilemma of producing a stable emulsion vehicle for the transport and tissue targeting of triglycerides. The mammalian lipoprotein assembly/secretion pathway shows an absolute requirement for: (1) the unique amphipathic protein: apolipoprotein B, in a form that is sufficiently large to assemble a lipoprotein particle containing a neutral lipid core; and, (2) a lipid transfer protein (microsomal triglyceride transfer protein-MTP). In the endoplasmic reticulum apolipoprotein B has two distinct metabolic fates: (1) entrance into the lipoprotein assembly pathway within the lumen of the endoplasmic reticulum; or, (2) degradation in the cytoplasm by the ubiquitin-dependent proteasome. The destiny of apolipoprotein B is determined by the relative availability of individual lipids and level of expression of MTP. The dynamically varied expression of cholesterol-7alpha-hydroxylase indirectly influences the rate of lipid biosynthesis and the assembly and secretion lipoprotein particles by the liver.
Collapse
Affiliation(s)
- R A Davis
- Mammalian Cell and Molecular Biology Laboratory, Department of Biology, The Molecular Biology Institute, San Diego State University, San Diego, CA 92182-0057, USA.
| |
Collapse
|
15
|
Chuang SS, Das HK. A single in vitro point mutation in the first non-translated exon silences transcription of the human apolipoprotein B gene in HepG2 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1436:600-5. [PMID: 9989290 DOI: 10.1016/s0005-2760(98)00117-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hepatic cell-specific expression of the human apolipoprotein B (apoB) gene is controlled by at least four cis-acting elements located within the -128 to +122 promoter region (S.S. Chuang, H.K. Das, Identification of trans-acting factors that interact with cis-acting elements present in the first non-translated exon of the human apolipoprotein B gene, Biochem. Biophys. Res. Commun. 220 (1996) 553-562). Two cis-acting positive elements (-104 to -85; -84 to -60) are located upstream from the start of transcription. A negative element (+20 to +40) and a strong positive element (+43 to +53) are located in the first non-translated exon of the human apolipoprotein B gene. Trans-acting factors BRF-2, BRF-1, BRF-3, and BRF-4 interact with the above four cis-acting elements respectively. In this study, we examine the roles of the upstream positive elements -104 to -85 and -84 to -60 in modulating transcriptional regulation of the apoB gene by downstream elements +20 to +40 and +43 to +53. Using in vitro mutagenesis and transient transfection experiments in HepG2 cells, the cis-acting element -84 to -60 has been found to be absolutely necessary for the function of the upstream element -104 to -85 and downstream elements +20 to +40 and +43 to +53. In vitro mutagenesis of the downstream positive element +43 to +53 and transfection of the mutant promoter constructs in HepG2 cells reveal that nucleotide G at position +51 is essential for the strong positive activity of the element +43 to +53. A single substitution point mutation of nucleotide G to either A or T at position +51 reduces apolipoprotein B gene transcription substantially in HepG2 cells. These results suggest that a single substitution mutation in vivo, of nucleotide G to either A or T at position +51 in the downstream positive promoter element +43 to +53 may potentially cause hypobetalipoproteinemia, a heterozygous from of an autosomal-dominant disorder.
Collapse
Affiliation(s)
- S S Chuang
- Department of Pharmacology, University of North Texas Health Science Center at Fort Worth 76107, USA
| | | |
Collapse
|
16
|
Zlot CH, Flynn LM, Véniant MM, Kim E, Raabe M, McCormick SP, Ambroziak P, McEvoy LM, Young SG. Generation of monoclonal antibodies specific for mouse apolipoprotein B-100 in apolipoprotein B-48-only mice. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33341-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Kim E, Ambroziak P, Véniant MM, Hamilton RL, Young SG. A gene-targeted mouse model for familial hypobetalipoproteinemia. Low levels of apolipoprotein B mRNA in association with a nonsense mutation in exon 26 of the apolipoprotein B gene. J Biol Chem 1998; 273:33977-84. [PMID: 9852051 DOI: 10.1074/jbc.273.51.33977] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Familial hypobetalipoproteinemia, a syndrome characterized by abnormally low plasma levels of low density lipoprotein cholesterol, is caused by mutations in the apolipoprotein (apo) B gene that interfere with the synthesis of a full-length apoB100. In many cases of familial hypobetalipoproteinemia, nonsense or frameshift mutations result in the synthesis of a truncated apoB protein. To understand why these mutations result in low plasma cholesterol levels, we used gene targeting in mouse embryonic stem cells to introduce a nonsense mutation (N1785Stop) into exon 26 of the mouse Apob gene. The sole product of this mutant Apob allele was a truncated apoB, apoB39. Mice homozygous for this "apoB39-only" (Apob39) allele had low plasma levels of apoB39 and markedly reduced plasma levels of very low density lipoprotein and low density lipoprotein cholesterol when fed a high fat diet. Analysis of liver and intestinal RNA from heterozygous apoB39-only mice revealed that the Apob39 mRNA levels were 60-70% lower than those from the wild-type allele. Interestingly, apoB39 was not cleared as rapidly from the plasma as apoB48. The apoB39-only mice provide new insights into the mechanisms of familial hypobetalipoproteinemia and the structural features of apoB that are important for lipoprotein metabolism.
Collapse
Affiliation(s)
- E Kim
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA
| | | | | | | | | |
Collapse
|
18
|
Ohashi K, Ishibashi S, Yamamoto M, Osuga J, Yazaki Y, Yukawa S, Yamada N. A truncated species of apolipoprotein B (B-38.7) in a patient with homozygous hypobetalipoproteinemia associated with diabetes mellitus. Arterioscler Thromb Vasc Biol 1998; 18:1330-4. [PMID: 9714141 DOI: 10.1161/01.atv.18.8.1330] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Familial hypobetalipoproteinemia is caused by mutations in the apolipoprotein (apo) B gene. We identified a 57-year-old woman whose plasma total cholesterol and apoB levels were 2.17 mmol/L and 0.03 g/L, respectively. Separation of plasma lipoproteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the absence of apoB-100 and the presence of a faster-migrating form of apoB with an apparent Mr of 195 kDa. Direct sequencing of a polymerase chain reaction-amplified fragment of the patient's apoB gene DNA revealed a single C-->T transition at nucleotide 5472 that converts glutamine 1755 (CAA) to a stop codon (TAA). We predict this novel nonsense mutation of the apoB gene to produce a truncated protein that contains 1754 amino-terminal amino acid residues of apoB-100. We designated this mutant form of apoB apoB-38.7 by following the centile nomenclature of the apoB species. The same mutation was found in both of her children. The proband revealed clinical findings of retinitis pigmentosa, acanthocytosis, and loss of deep tendon reflexes that are characteristic of severe hypobetalipoproteinemia. In addition, the proband had type II diabetes mellitus with nephropathy, anemia, cholelithiasis, hepatic hemangioma, bronchiectasis, and extensive calcification of major arteries including, the celiac, splenic, and renal. In summary, we have found a novel truncated apoB, apoB-38.7, in a patient with an unusual presentation of hypobetalipoproteinemia that includes diabetes mellitus and extensive arterial calcification.
Collapse
Affiliation(s)
- K Ohashi
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Powell-Braxton L, Véniant M, Latvala RD, Hirano KI, Won WB, Ross J, Dybdal N, Zlot CH, Young SG, Davidson NO. A mouse model of human familial hypercholesterolemia: markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet. Nat Med 1998; 4:934-8. [PMID: 9701246 DOI: 10.1038/nm0898-934] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations in the low density lipoprotein (LDL) receptor gene cause familial hypercholesterolemia, a human disease characterized by premature atherosclerosis and markedly elevated plasma levels of LDL cholesterol and apolipoprotein (apo) B100. In contrast, mice deficient for the LDL receptor (Ldlr-/-) have only mildly elevated LDL cholesterol levels and little atherosclerosis. This difference results from extensive editing of the hepatic apoB mRNA in the mouse, which limits apoB100 synthesis in favor of apoB48 synthesis. We have generated Ldlr-/- mice that cannot edit the apoB mRNA and therefore synthesize exclusively apoB100. These mice had markedly elevated LDL cholesterol and apoB100 levels and developed extensive atherosclerosis on a chow diet. This authentic model of human familial hypercholesterolemia will provide a new tool for studying atherosclerosis.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/pathology
- Apolipoproteins B/biosynthesis
- Apolipoproteins B/blood
- Apolipoproteins B/deficiency
- Arteriosclerosis/blood
- Arteriosclerosis/genetics
- Arteriosclerosis/pathology
- Cholesterol/blood
- Cholesterol, LDL/blood
- Crosses, Genetic
- Diet, Fat-Restricted
- Disease Models, Animal
- Female
- Humans
- Hyperlipoproteinemia Type II/blood
- Hyperlipoproteinemia Type II/genetics
- Liver/metabolism
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- RNA Editing
- RNA, Messenger/biosynthesis
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Sex Characteristics
- Triglycerides/blood
Collapse
Affiliation(s)
- L Powell-Braxton
- Cardiovascular Research, Genentech Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Linton MF, Raabe M, Pierotti V, Young SG. Reading-frame restoration by transcriptional slippage at long stretches of adenine residues in mammalian cells. J Biol Chem 1997; 272:14127-32. [PMID: 9162040 DOI: 10.1074/jbc.272.22.14127] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We previously characterized a mutant apoB allele (the apoB86 allele) that produces both a truncated apoB (apoB86) and a full-length apoB100. The mutant allele contained a deletion of a single cytosine in exon 26, creating a stretch of eight consecutive adenines in the -1 reading frame. The altered reading-frame allele was restored, with approximately 10% efficiency, by the transcriptional insertion of an extra adenine into the stretch of eight consecutive adenines, thereby accounting for the synthesis of the full-length apoB100. Here, we demonstrate that this reading-frame restoration does not occur when the long stretch of adenines is interrupted by a cytosine. To assess whether reading-frame restoration is unique to a single site in the apoB gene, the same mutation (eight consecutive adenines in the -1 reading frame) was inserted into another site within the apoB gene. Reading-frame restoration occurred at the second site and was abrogated when the stretch of adenines was interrupted by another base. Of note, a computerized analysis of human cDNA sequences revealed that long stretches of adenines in protein-coding sequences occur at a lower than predicted frequency, suggesting that evolution has selected against these sequences.
Collapse
Affiliation(s)
- M F Linton
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
21
|
Mooser V, Marcovina SM, White AL, Hobbs HH. Kringle-containing fragments of apolipoprotein(a) circulate in human plasma and are excreted into the urine. J Clin Invest 1996; 98:2414-24. [PMID: 8941661 PMCID: PMC507694 DOI: 10.1172/jci119055] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Apolipoprotein(a) [apo(a)] contains multiple kringle 4 repeats and circulates as part of lipoprotein(a) [Lp(a)]. Apo(a) is synthesized by the liver but its clearance mechanism is unknown. Previously, we showed that kringle 4-containing fragments of apo(a) are present in human urine. To probe their origin, human plasma was examined and a series of apo(a) immunoreactive peptides larger in size than urinary fragments was identified. The concentration of apo(a) fragments in plasma was directly related to the plasma level of Lp(a) and the 24-h urinary excretion of apo(a). Individuals with low (< 2 mg/dl) plasma levels of Lp(a) had proportionally more apo(a) circulating as fragments in their plasma. Similar apo(a) fragments were identified in baboon plasma but not in conditioned media from primary cultures of baboon hepatocytes, suggesting that the apo(a) fragments are generated from circulating apo(a) or Lp(a). When apo(a) fragments purified from human plasma were injected intravenously into mice, a species that does not produce apo(a), apo(a) fragments similar to those found in human urine were readily detected in mouse urine. Thus, we propose that apo(a) fragments in human plasma are derived from circulating apo(a)/Lp(a) and are the source of urinary apo(a).
Collapse
Affiliation(s)
- V Mooser
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|
22
|
McCormick SP, Ng JK, Véniant M, Borén J, Pierotti V, Flynn LM, Grass DS, Young SG. Transgenic mice that overexpress mouse apolipoprotein B. Evidence that the DNA sequences controlling intestinal expression of the apolipoprotein B gene are distant from the structural gene. J Biol Chem 1996; 271:11963-70. [PMID: 8662599 DOI: 10.1074/jbc.271.20.11963] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An 87-kilobase (kb) P1 bacteriophage clone (p649) spanning the mouse apolipoprotein (apo) B gene was used to generate transgenic mice that express high levels of mouse apoB. Plasma levels of apoB, low density lipoprotein cholesterol, and low density lipoprotein triglycerides were increased, and high density lipoprotein cholesterol levels were decreased in the transgenic mice, compared with nontransgenic littermate controls. Although p649 contained 33 kb of 5'-flanking sequences and 11 kb of 3'-flanking sequences, the tissue pattern of transgene expression was different from that of the endogenous apoB gene. RNA slot blots and RNase protection analysis indicated that the transgene was expressed in the liver but not in the intestine, whereas the endogenous apoB gene was expressed in both tissues. To confirm the absence of transgene expression in the intestine, the mouse apoB transgenic mice were mated with the apoB knockout mice, and transgenic mice that were homozygous for the apoB knockout mutation were obtained. Because of the absence of transgene expression in the intestine, those mice lacked all intestinal apoB synthesis, resulting in a marked accumulation of fats within the intestinal villus enterocytes. The current studies, along with prior studies of human apoB transgenic animals, strongly suggest that the DNA sequence element(s) controlling intestinal expression of the apoB gene is located many kilobases from the structural gene.
Collapse
Affiliation(s)
- S P McCormick
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94141-9100, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The B apolipoproteins, apo-B48 and apo-B100, are key proteins in mammalian lipoprotein metabolism and are components of all classes of lipoproteins considered to be atherogenic. Our laboratory has generated an array of genetically modified mice for studying apo-B biology. Using gene targeting in mouse embryonic stem cells, we have generated apo-B-deficient mice. Heterozygotes had low plasma levels of apo-B and cholesterol; homozygotes died early in embryonic development, most likely because the absence of lipoprotein secretion by the yolk sac interfered with the delivery of lipid nutrients to the developing embryo. We have also generated human apo-B transgenic mice with an 80-kb genomic DNA fragment spanning the entire human apo-B gene; those mice had markedly increased plasma levels of low density lipoprotein cholesterol and exhibited increased susceptibility to atherosclerosis. The human apo-B transgenic mice have also yielded insights regarding the regulation of apo-B expression in different tissues. Although the 80-kb transgene contained nearly 20 kb of 5' and 3' flanking sequences and was expressed at high levels in the liver, no transgene expression was detectable in the intestine. Subsequent transgenic mouse studies have demonstrated that the expression of the apo-B gene in the intestine is controlled by DNA sequences that are very distant from the structural gene. Transgenic mice have also proved useful for studying apo-B structure/function relationships. By expressing mutant forms of human apo B in transgenic mice, we have examined the structural features of the apo-B molecule that are required for lipoprotein (a) formation. We have demonstrated that the carboxyl terminal cystine residue of apo-B100, cysteine-4326, is required for apo-B100's disulfide linkage with apo(a) to form lipoprotein (a). Finally, we have used gene targeting techniques to generate mice that synthesize exclusively apo-B48 (apo B48-only mice) and mice that synthesize exclusively apo-B100 (apo-B100 only mice): These mice have helped to clarify the unique metabolic roles of the two apo-B proteins.
Collapse
Affiliation(s)
- S G Young
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94141-9100, USA
| |
Collapse
|
24
|
Young SG, Krul ES, McCormick S, Farese RV, Linton MF. Identification and characterization of truncated forms of apolipoprotein B in hypobetalipoproteinemia. Methods Enzymol 1996; 263:120-45. [PMID: 8749004 DOI: 10.1016/s0076-6879(96)63009-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S G Young
- Gladstone Institute of Cardiovascular Disease, Department of Medicine, University of California, San Francisco 94140, USA
| | | | | | | | | |
Collapse
|
25
|
Young SG, Cham CM, Pitas RE, Burri BJ, Connolly A, Flynn L, Pappu AS, Wong JS, Hamilton RL, Farese RV. A genetic model for absent chylomicron formation: mice producing apolipoprotein B in the liver, but not in the intestine. J Clin Invest 1995; 96:2932-46. [PMID: 8675665 PMCID: PMC186005 DOI: 10.1172/jci118365] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The formation of chylomicrons by the intestine is important for the absorption of dietary fats and fat-soluble vitamins (e.g., retinol, alpha-tocopherol). Apo B plays an essential structural role in the formation of chylomicrons in the intestine as well as the VLDL in the liver. We have developed genetically modified mice that express apo B in the liver but not in the intestine. By electron microscopy, the enterocytes of these mice lacked nascent chylomicrons in the endoplasmic reticulum and Golgi apparatus. Because these mice could not form chylomicrons, the intestinal villus enterocytes were massively engorged with fat, which was contained in cytosolic lipid droplets. These mice absorbed D-xylose normally, but there was virtually no absorption of retinol palmitate or cholesterol. The levels of alpha-tocopherol in the plasma were extremely low. Of note, the absence of chylomicron synthesis in the intestine did not appear to have a significant effect on the plasma levels of the apo B-containing lipoproteins produced by the liver. The mice lacking intestinal apo B expression represent the first genetic model of defective absorption of fats and fat-soluble vitamins and provide a useful animal model for studying nutrition and lipoprotein metabolism.
Collapse
Affiliation(s)
- S G Young
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94141-9100, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Welty FK, Ordovas J, Schaefer EJ, Wilson PW, Young SG. Identification and molecular analysis of two apoB gene mutations causing low plasma cholesterol levels. Circulation 1995; 92:2036-40. [PMID: 7554178 DOI: 10.1161/01.cir.92.8.2036] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Familial hypobetalipoproteinemia (FHB) is an autosomal codominant disorder characterized by abnormally low plasma levels of apoB and LDL cholesterol. Heterozygotes for FHB almost always have plasma LDL cholesterol levels < 70 mg/dL and are asymptomatic. Because the low cholesterol levels may protect FHB heterozygotes from coronary heart disease, the mechanisms for FHB are of considerable interest. METHODS AND RESULTS The plasma lipoproteins of 29 subjects with LDL cholesterol levels < 70 mg/dL were examined by SDS-PAGE. One subject who had virtually undetectable levels of LDL cholesterol had a truncated apoB, apoB-44.4, in his lipoproteins; a second subject with an LDL cholesterol level of 44 mg/dL had apoB-55 in his lipoproteins. The apoB-44.4 (2014 amino acids in length) resulted from a frameshift caused by an 11-bp insertion in exon 26 of the apoB gene; the apoB-55 (2494 amino acids) was caused by a nonsense mutation in exon 26 of the apoB gene. The apoB-55 mutation occurred at a CpG dinucleotide pair, a mutational hot spot, and was identical to a mutation described previously in a subject with hypobetalipoproteinemia. Our subject with apoB-55, however, had a different haplotype than the subject described previously, suggesting that the two apoB-55 mutations may have arisen independently. Of note, the apoB-55 proband's father, who had very low cholesterol levels and who probably carried the apoB-55 mutation, had significant coronary and aortic atherosclerosis at autopsy. CONCLUSIONS In a study of adults with low LDL cholesterol levels, we discovered two subjects with truncated apoB proteins and identified the responsible mutations. ApoB gene mutations causing truncated apoB are not particularly rare in subjects with low cholesterol levels. The role of these mutations in preventing atherosclerosis deserves further study.
Collapse
Affiliation(s)
- F K Welty
- Lipid Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Mass, USA
| | | | | | | | | |
Collapse
|
27
|
McCormick SP, Day WA, George PM. Characterization of lipoproteins containing a truncated form of apolipoprotein B, apolipoprotein B32. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1258:49-56. [PMID: 7654780 DOI: 10.1016/0005-2760(95)00096-u] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have characterized the lipoproteins isolated from the plasma of a human subject who was heterozygous for a mutation yielding a truncated apolipoprotein B (apo-B32). The apo-B32 lipoproteins were isolated from the plasma high density lipoprotein (HDL) fraction by heparin-Sepharose chromatography. Although the chemical composition of the apo-B32-containing lipoproteins was similar to that of normal HDL, the mean diameter of the apo-B32 lipoproteins was larger than typical apo-AI-containing HDL particles. On agarose gels, the apo-B32 lipoproteins had pre-beta mobility similar to that of normal very low density lipoproteins. Analysis of the purified apo-B32 lipoproteins by SDS-polyacrylamide gel electrophoresis revealed the presence of both apo-AI and apo-E. In order to further analyze the properties of apo-B32, we developed an apo-B32 expression vector and generated stable rat hepatoma cell lines expressing apo-B32. In these cell lines, the apo-B32 protein was secreted in a d > 1.21 g/ml lipoprotein. Oleic acid supplementation of the cell-culture media had no measurable affect on the density distribution of the apo-B32 lipoproteins that were secreted by the cells.
Collapse
Affiliation(s)
- S P McCormick
- Pathology Department, Christchurch School of Medicine, Christchurch Hospital, New Zealand
| | | | | |
Collapse
|
28
|
Homanics GE, de Silva HV, Osada J, Zhang SH, Wong H, Borensztajn J, Maeda N. Mild dyslipidemia in mice following targeted inactivation of the hepatic lipase gene. J Biol Chem 1995; 270:2974-80. [PMID: 7852377 DOI: 10.1074/jbc.270.7.2974] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In order to gain better understanding of the function of hepatic lipase (HL) in vivo, we have generated mice that lack HL using gene targeting in embryonic stem cells. No mRNA for HL was detected in the liver of homozygous mutants, and no HL activity was detected in their plasma. Total cholesterol levels in plasma of mutant mice were increased by about 30% compared with wild type animals. Plasma phospholipids and high density lipoprotein (HDL) cholesterol were also increased, but plasma levels of triglycerides were not altered. Analysis of density fractions of plasma lipoproteins revealed that HDL1 (d = 1.02-1.04) was increased in homozygous mutants fed regular chow. In response to a diet containing high fat and high cholesterol, HDL cholesterol was doubled in the mutants, but was slightly decreased in the wild type mice. These results clearly demonstrate the importance of HL in HDL remodeling and metabolism in vivo. Various earlier studies suggested a role of HL in metabolism of triglyceride-rich particles, but the mutant mice appear to have no impairment in clearing them; the mutants clear exogenously introduced chylomicrons from plasma at a normal rate, and they tolerate acute fat loading as well as normal animals unless the loading is extreme. These differences may reflect species differences. However, it is also possible that the consequence of absence of HL as in our mutants is different from the consequence when nonfunctional HL protein is present as in the human HL-deficient patients and in rats treated with HL antibodies. We hypothesize that absence of HL in mutant mice allows other lipases to bind to the sites in the liver normally occupied by HL and facilitate the clearance of triglyceride-rich particles in these mice.
Collapse
Affiliation(s)
- G E Homanics
- Department of Pathology, University of North Carolina, Chapel Hill 27599-7525
| | | | | | | | | | | | | |
Collapse
|
29
|
Levy E, Roy CC, Thibault L, Bonin A, Brochu P, Seidman EG. Variable expression of familial heterozygous hypobetalipoproteinemia: transient malabsorption during infancy. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)39923-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Matsuo M, Nomura S, Hara T, Kinoshita M, Yamamoto K, Kuno T, Maeda Y, Miyazaki S. A variant form of hypobetalipoproteinaemia associated with ataxia, hearing loss and retinitis pigmentosa. Dev Med Child Neurol 1994; 36:1015-20. [PMID: 7958507 DOI: 10.1111/j.1469-8749.1994.tb11798.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A six-year-old Japanese boy had ataxia, mental retardation, peripheral neuropathy, proximal myopathy, hearing loss, retinitis pigmentosa and deficiencies in apolipoprotein AI, B, CII and CIII. His clinical features except for hearing loss resembled those of abetalipoproteinaemia or symptomatic hypobetalipoproteinaemia, but his apolipoprotein abnormalities were distinct from these disorders. He had apolipoprotein B-100 with a normal molecular weight. Although most of his neurological manifestations were compatible with those of vitamin E deficiency, their early onset and the presence of hearing loss was unusual for that condition. There has been slight deterioration of ataxia during two years follow-up despite high-dose vitamin E supplementation. Other abnormalities in lipid metabolism might be associated with the neurological damage in this case.
Collapse
Affiliation(s)
- M Matsuo
- Department of Pediatrics, Saga Prefectural Hospital, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
McCormick S, Linton M, Hobbs H, Taylor S, Curtiss L, Young S. Expression of human apolipoprotein B90 in transgenic mice. Demonstration that apolipoprotein B90 lacks the structural requirements to form lipoprotein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51079-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Galeano N, Milne R, Marcel Y, Walsh M, Levy E, Ngu'yen T, Gleeson A, Arad Y, Witte L, al-Haideri M. Apoprotein B structure and receptor recognition of triglyceride-rich low density lipoprotein (LDL) is modified in small LDL but not in triglyceride-rich LDL of normal size. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42379-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Linton MF, Farese RV, Chiesa G, Grass DS, Chin P, Hammer RE, Hobbs HH, Young SG. Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a). J Clin Invest 1993; 92:3029-37. [PMID: 8254057 PMCID: PMC288508 DOI: 10.1172/jci116927] [Citation(s) in RCA: 178] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The B apolipoproteins, apo-B48 and apo-B100, are key structural proteins in those classes of lipoproteins considered to be atherogenic [e.g., chylomicron remnants, beta-VLDL, LDL, oxidized LDL, and Lp(a)]. Here we describe the development of transgenic mice expressing high levels of human apo-B48 and apo-B100. A 79.5-kb human genomic DNA fragment containing the entire human apo-B gene was isolated from a P1 bacteriophage library and microinjected into fertilized mouse eggs. 16 transgenic founders expressing human apo-B were generated, and the animals with the highest expression had plasma apo-B100 levels nearly as high as those of normolipidemic humans (approximately 50 mg/dl). The human apo-B100 in transgenic mouse plasma was present largely in lipoproteins of the LDL class as shown by agarose gel electrophoresis, chromatography on a Superose 6 column, and density gradient ultracentrifugation. When the human apo-B transgenic founders were crossed with transgenic mice expressing human apo(a), the offspring that expressed both transgenes had high plasma levels of human Lp(a). Both the human apo-B and Lp(a) transgenic mice will be valuable resources for studying apo-B metabolism and the role of apo-B and Lp(a) in atherosclerosis.
Collapse
Affiliation(s)
- M F Linton
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94141-9100
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Synder SM, Terdiman JF, Caan B, Feingold KR, Hubl ST, Smith RS, Young SG. Relationship of apolipoprotein E phenotypes to hypocholesterolemia. Am J Med 1993; 95:480-8. [PMID: 8238064 DOI: 10.1016/0002-9343(93)90330-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Persons with total cholesterol (TC) levels less than 130 mg/dL (less than 3.26 mmol/L) make up less than 1% of a healthy population. Causes of hypocholesterolemia include a diet very low in cholesterol and saturated fat, disease, genetic factors (including low apolipoprotein B-100 [apo B-100] and the apo E allele), and drug therapy. The purpose of this study was to determine the causes of hypocholesterolemia in a healthy Kaiser Foundation Health Plan (KFHP) population. PATIENTS AND METHODS We conducted a dietary and health survey of 201 healthy hypocholesterolemic adults (range: 2.04 to 3.88 mmol/L [79 to 150 mg/dL]) and 200 matched control subjects with TC levels in the middle quintile of the population (range: 5.0 to 5.61 mmol/L [194 to 217 mg/dL]) who had routine health screening from 1983 through 1985. We did apo E phenotyping studies and lipid and apo A-1 and B-100 measurements in a subgroup of 45 hypocholesterolemic subjects (mean TC level: 3.26 mmol/L [126 mg/dL]) and in a comparison group of 49 unmatched volunteers (mean TC level: 5.04 +/- 0.75 mmol/L [195 +/- 29 mg/dL]). RESULTS We found no differences in dietary intake or clinically significant medical illness between hypocholesterolemic and control subjects. In the hypocholesterolemic subgroup, we found an increased frequency of the apo E2 allele (epsilon 2) and a decreased frequency of the apo E4 allele (epsilon 4); the frequencies of the epsilon 2, epsilon 3, and epsilon 4 alleles were 33.3%, 63.3%, and 3.3%, respectively. The corresponding apo E allele frequencies in the comparison subgroup were 8.2%, 73.5%, and 18.4%, similar to those previously reported for the general population and significantly different from those found in the hypocholesterolemic subgroup (p < 0.0001). One hypocholesterolemic subject (a 46th patient) had a mutation in the apo B gene that resulted in the synthesis of a truncated species of apo B (apo B-46). CONCLUSION Our study indicates that hypocholesterolemia in our KFHP urban population is usually not caused by diet or disease. Biochemical factors, including the increased frequency of the apo E-2 phenotype and the decreased frequency of the apo E-4 phenotype, are more important.
Collapse
Affiliation(s)
- S M Synder
- Department of Medicine, Kaiser Permanente Medical Center, South San Francisco, California
| | | | | | | | | | | | | |
Collapse
|
35
|
Lecomte E, Artur Y, Chancerelle Y, Herbeth B, Galteau MM, Jeandel C, Siest G. Malondialdehyde adducts to, and fragmentation of, apolipoprotein B from human plasma. Clin Chim Acta 1993; 218:39-46. [PMID: 8299218 DOI: 10.1016/0009-8981(93)90220-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many recent in vitro experiments support the hypothesis that oxidatively modified low density lipoproteins (LDLs) could participate in atherogenesis. Oxidation of LDLs, especially derivatization by aldehydes originating from peroxidation of fatty acids and fragmentation of apolipoprotein (apo) B-100 which is their major apolipoprotein, probably occurs extravascularly and the presence of oxidized LDLs in the circulation is not well documented. Using electrophoresis and immunodetection techniques, we studied the structure of apo B and the presence of adducts of malondialdehyde (MDA) to this protein in LDLs from plasma of a limited population of five healthy subjects and nine patients with severe atherosclerosis. In the patient-derived LDLs, apo B appeared extensively fragmented, much more so than in those from the healthy subjects, although LDLs were isolated in all cases in the presence of antioxidants, protease inhibitors and antibiotics. Additionally, in all healthy subjects, we found a minor fragment of apo B-100, apo B-74, whereas the complementary peptide, apo B-26, was not detected; thus the presence of this minor form cannot be related to cleavage of apo B-100, either by proteolysis or by oxidation. We also present evidence that MDA adducts are present in circulating apo B and most of its fragments not only in atheromatous patients, but also in healthy subjects. Our results are consistent with the existence of oxidized LDLs in the human circulation. However, the role of non-oxidative phenomena in the structural modifications affecting apo B which are reported here cannot be excluded.
Collapse
Affiliation(s)
- E Lecomte
- Laboratoire du Centre de Médecine Préventive, URA CNRS 597, Vandoeuvre Les Nancy, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Khouw AS, Parthasarathy S, Witztum JL. Radioiodination of low density lipoprotein initiates lipid peroxidation: protection by use of antioxidants. J Lipid Res 1993. [DOI: 10.1016/s0022-2275(20)36941-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
37
|
Greeve J, Altkemper I, Dieterich JH, Greten H, Windler E. Apolipoprotein B mRNA editing in 12 different mammalian species: hepatic expression is reflected in low concentrations of apoB-containing plasma lipoproteins. J Lipid Res 1993. [DOI: 10.1016/s0022-2275(20)36966-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
|
39
|
Homanics GE, Smith TJ, Zhang SH, Lee D, Young SG, Maeda N. Targeted modification of the apolipoprotein B gene results in hypobetalipoproteinemia and developmental abnormalities in mice. Proc Natl Acad Sci U S A 1993; 90:2389-93. [PMID: 8460149 PMCID: PMC46092 DOI: 10.1073/pnas.90.6.2389] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Familial hypobetalipoproteinemia is an autosomal codominant disorder resulting in a dramatic reduction in plasma concentrations of apolipoprotein (apo) B, cholesterol, and beta-migrating lipoproteins. A benefit of hypobetalipoproteinemia is that mildly affected individuals may be protected from coronary vascular disease. We have used gene targeting to generate mice with a modified Apob allele. Mice containing this allele display all of the hallmarks of human hypobetalipoproteinemia: they produce a truncated apoB protein, apoB70, and have markedly decreased plasma concentrations of apoB, beta-lipoproteins, and total cholesterol. In addition, the mice manifest several characteristics that are occasionally observed in human hypobetalipoproteinemia, including reduced plasma triglyceride concentrations, fasting chylomicronemia, and reduced high density lipoprotein cholesterol. An unexpected finding is that the modified Apob allele is strongly associated with exencephalus and hydrocephalus. These mice should help increase our understanding of hypobetalipoproteinemia, atherogenesis, and the etiology of exencephalus and hydrocephalus.
Collapse
Affiliation(s)
- G E Homanics
- Department of Pathology, University of North Carolina, Chapel Hill 27599-7525
| | | | | | | | | | | |
Collapse
|
40
|
Young SG, Pullinger CR, Zysow BR, Hofmann-Radvani H, Linton MF, Farese RV, Terdiman JF, Snyder SM, Grundy SM, Vega GL. Four new mutations in the apolipoprotein B gene causing hypobetalipoproteinemia, including two different frameshift mutations that yield truncated apolipoprotein B proteins of identical length. J Lipid Res 1993. [DOI: 10.1016/s0022-2275(20)40741-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Zannis VI, Kardassis D, Zanni EE. Genetic mutations affecting human lipoproteins, their receptors, and their enzymes. ADVANCES IN HUMAN GENETICS 1993; 21:145-319. [PMID: 8391199 DOI: 10.1007/978-1-4615-3010-7_3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- V I Zannis
- Department of Medicine, Housman Medical Research Center, Boston University Medical Center, Massachusetts 02118
| | | | | |
Collapse
|
42
|
Linton MF, Pierotti V, Young SG. Reading-frame restoration with an apolipoprotein B gene frameshift mutation. Proc Natl Acad Sci U S A 1992; 89:11431-5. [PMID: 1454832 PMCID: PMC50565 DOI: 10.1073/pnas.89.23.11431] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We examined a mutant human apolipoprotein B (apoB) allele that causes hypobetalipoproteinemia and has a single cytosine deletion in exon 26. This frameshift mutation was associated with the synthesis of a truncated apoB protein of the predicted size; however, studies in human subjects and minigene expression studies in cultured cells indicated that the mutant allele also yielded a full-length apoB protein. The 1-base-pair deletion in the mutant apoB allele created a stretch of eight consecutive adenines. To understand the mechanism whereby the mutant apoB allele yielded a full-length apoB protein, the cDNA from cells transfected with the mutant apoB minigene expression vector was examined. Splicing of the mRNA was normal; however, 11% of the cDNA clones had an additional adenine within the stretch of eight adenines, yielding nine consecutive adenines. The insertion of the extra adenine, presumably during apoB gene transcription, is predicted to restore the correct apoB reading frame, thereby permitting the synthesis of a full-length apoB protein.
Collapse
Affiliation(s)
- M F Linton
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94141-9100
| | | | | |
Collapse
|
43
|
Transcriptional regulation of the apolipoprotein B100 gene: purification and characterization of trans-acting factor BRF-2. Mol Cell Biol 1992. [PMID: 1620125 DOI: 10.1128/mcb.12.7.3183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B100 (apoB), the only protein of low-density lipoprotein, is produced primarily in the liver and serves as a ligand for the low-density lipoprotein receptor. Hepatic cell-specific expression of the human apoB gene is controlled by at least two cis-acting positive elements located between positions-128 and -70 (H. K. Das, T. Leff, and J.L. Breslow, J. Biol. Chem. 263:11452-11458, 1988). The distal element (-128 to -85) appears to be liver specific since it shows positive activity in HepG2 cells and negative activity in HeLa cells. The proximal element (-84 to -70) acts as a positive element in both these cell lines, and two rat liver nuclear proteins, BRF-1 and C/EBP, bind to two overlapping sites (-84 to -60 and -70 to -50, respectively). By gel mobility shift assay, we have identified a rat liver nuclear protein (BRF-2) which binds to the distal element (-128 to -85) of the apoB gene. This putative trans-acting factor has been purified to apparent homogeneity by DEAE-cellulose, heparin-agarose, and DNA-specific affinity chromatography. The purified BRF-2 has an apparent molecular mass of 120 kDa and was found to specifically recognize sequence -128 to -85; BRF-2 also produced a strong hypersensitive site at nucleotide position -95 with copper-orthophenanthroline reagent. A double-stranded oligonucleotide (-128 to -85) containing a 3-nucleotide (TTC) insertion between position -95 and -94 was found to abolish DNA binding by BRF-2. This result suggests that the region surrounding the hypersensitive site -95 is important for protein-DNA interaction. By using apoB promoter fragments containing various internal deletions as templates for gel mobility shift assay, the region between -104 and -85 was identified to be crucial for binding by BRF-2. We propose that BRF-2 may play an important role in the tissue-specific regulation of apoB gene transcription.
Collapse
|
44
|
Oleate-mediated stimulation of apolipoprotein B secretion from rat hepatoma cells. A function of the ability of apolipoprotein B to direct lipoprotein assembly and escape presecretory degradation. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49586-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Farese RV, Flynn LM, Young SG. Modification of the apolipoprotein B gene in HepG2 cells by gene targeting. J Clin Invest 1992; 90:256-61. [PMID: 1321843 PMCID: PMC443089 DOI: 10.1172/jci115845] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The HepG2 cell line has been used extensively to study the synthesis and secretion of apolipoprotein (apo) B. In this study, we tested whether gene-targeting techniques can be used to inactivate one of the apo B alleles in HepG2 cells by homologous recombination using a transfected gene-targeting vector. Our vector contained exons 1-7 of the apo B gene, in which exon 2 was interrupted by a promoterless neomycin resistance (neo(r)) gene. The recombination of this vector with the cognate gene would inactivate an apo B allele and enable the apo B promoter to activate the transcription of the neo(r) gene. To detect the rare homologous recombinant clone, we developed a novel solid phase RIA that uses the apo B-specific monoclonal antibody MB19 to analyze the apo B secreted by G418-resistant (G418r) clones. Antibody MB19 detects a two-allele genetic polymorphism in apo B by binding to the apo B allotypes MB19(1) and MB19(2) with high and low affinity, respectively. HepG2 cells normally secrete both the apo B MB19 allotypes. Using the MB19 immunoassay, we identified a G418r HepG2 clone that had lost the ability to secrete the MB19(1) allotype. The inactivation of an apo B allele of this clone was confirmed by the polymerase chain reaction amplification of an 865-bp fragment unique to the targeted apo B allele and by Southern blotting of genomic DNA. This study demonstrates that gene-targeting techniques can be used to modify the apo B gene in HepG2 cells and demonstrates the usefulness of a novel solid phase RIA system for detecting apo B gene targeting events in this cell line.
Collapse
Affiliation(s)
- R V Farese
- Gladstone Institute of Cardiovascular Disease, Department of Medicine, University of California, San Francisco 94141-9100
| | | | | |
Collapse
|
46
|
Krul ES, Parhofer KG, Barrett PH, Wagner RD, Schonfeld G. ApoB-75, a truncation of apolipoprotein B associated with familial hypobetalipoproteinemia: genetic and kinetic studies. J Lipid Res 1992. [DOI: 10.1016/s0022-2275(20)41419-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Zhuang H, Chuang SS, Das HK. Transcriptional regulation of the apolipoprotein B100 gene: purification and characterization of trans-acting factor BRF-2. Mol Cell Biol 1992; 12:3183-91. [PMID: 1620125 PMCID: PMC364533 DOI: 10.1128/mcb.12.7.3183-3191.1992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Apolipoprotein B100 (apoB), the only protein of low-density lipoprotein, is produced primarily in the liver and serves as a ligand for the low-density lipoprotein receptor. Hepatic cell-specific expression of the human apoB gene is controlled by at least two cis-acting positive elements located between positions-128 and -70 (H. K. Das, T. Leff, and J.L. Breslow, J. Biol. Chem. 263:11452-11458, 1988). The distal element (-128 to -85) appears to be liver specific since it shows positive activity in HepG2 cells and negative activity in HeLa cells. The proximal element (-84 to -70) acts as a positive element in both these cell lines, and two rat liver nuclear proteins, BRF-1 and C/EBP, bind to two overlapping sites (-84 to -60 and -70 to -50, respectively). By gel mobility shift assay, we have identified a rat liver nuclear protein (BRF-2) which binds to the distal element (-128 to -85) of the apoB gene. This putative trans-acting factor has been purified to apparent homogeneity by DEAE-cellulose, heparin-agarose, and DNA-specific affinity chromatography. The purified BRF-2 has an apparent molecular mass of 120 kDa and was found to specifically recognize sequence -128 to -85; BRF-2 also produced a strong hypersensitive site at nucleotide position -95 with copper-orthophenanthroline reagent. A double-stranded oligonucleotide (-128 to -85) containing a 3-nucleotide (TTC) insertion between position -95 and -94 was found to abolish DNA binding by BRF-2. This result suggests that the region surrounding the hypersensitive site -95 is important for protein-DNA interaction. By using apoB promoter fragments containing various internal deletions as templates for gel mobility shift assay, the region between -104 and -85 was identified to be crucial for binding by BRF-2. We propose that BRF-2 may play an important role in the tissue-specific regulation of apoB gene transcription.
Collapse
Affiliation(s)
- H Zhuang
- Department of Microbiology and Immunology, University of Tennessee-Memphis 38163
| | | | | |
Collapse
|
48
|
Abstract
In the past 5 years, many different mutations in the apolipoprotein (apo) B gene have been described that affect plasma cholesterol levels. More than 20 different mutations in the apoB gene have been shown to cause familial hypobetalipoproteinaemia, a condition characterized by abnormally low plasma concentrations of apoB and LDL cholesterol. Almost all of the mutations are nonsense or frameshift mutations that interfere with the translation of a full-length apoB100 molecule. Many, but not all, of these apoB gene mutations result in the synthesis of a truncated species of apoB that can be detected within the plasma lipoproteins. Familial hypobetalipoproteinaemia heterozygotes are almost always asymptomatic and have LDL cholesterol levels about one-quarter to one-third of those of unaffected family members. Several homozygotes and compound heterozygotes for familial hypobetalipoproteinaemia have been described. In these individuals, the LDL cholesterol levels are extremely low, usually less than 5 or 10 mg dl-1, and the clinical phenotype is variable, ranging from completely asymptomatic to severe problems related to intestinal fat malabsorption. One missense mutation in the apoB gene (an Arg----Gln substitution at apoB amino acid 3500) is associated with very poor binding of apoB100 to the cellular LDL receptor. This syndrome has been designated familial defective apolipoprotein B (FDB). The amino-acid substitution at residue 3500 delays the clearance of LDL from the plasma and results in hypercholesterolaemia. In some Western populations, the frequency of FDB heterozygotes appears to be as high as 1 in 500 individuals.
Collapse
Affiliation(s)
- R V Farese
- Gladstone Foundation Laboratories for Cardiovascular Disease, Department of Medicine, University of California, San Francisco
| | | | | |
Collapse
|
49
|
Malmendier CL, Lontie JF, Delcroix C, Sérougne C, Férézou J, Lee DM. Receptor-dependent and -independent catabolism of low-density lipoprotein in a kindred with familial hypobetalipoproteinemia. Metabolism 1992; 41:571-7. [PMID: 1640842 DOI: 10.1016/0026-0495(92)90047-e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Three affected members of a kindred with asymptomatic hypobetalipoproteinemia (HBL) were injected intravenously with 125I-labeled native low-density lipoproteins (LDL) and 131I-labeled cyclohexanedione (CHD)-treated LDL. Plasma and urine radioactivity data were collected for 15 days at regular intervals. A compartmental model using the SAAM program was built to fit simultaneously 125I and 131I plasma radioactivity decay and urine excretion data. This model allows precise calculation of the kinetic parameters of both receptor-independent (NR) and receptor-dependent (R) pathways. Compared with normal subjects, HBL patients show a 90% increased fractional catabolic rate (FCR) of LDL by both routes, more marked for the R pathway (215% increase), and an approximately 50% reduced production rate (PR). Structural analysis did not show significant abnormalities of apolipoprotein (apo) B in HBL patients compared with normal. These data suggest that the very reduced, LDL-apo B plasma levels result from a combination of two processes: (1) an increased activity of all catabolic routes, and (2) a reduced "synthesis" rate. The latter may result from a decreased conversion of very-low-density lipoprotein (VLDL) to LDL secondary to an increased direct removal of large VLDL, suggested by apo C-II and C-III turnover studies previously reported.
Collapse
Affiliation(s)
- C L Malmendier
- Research Foundation on Atherosclerosis, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
50
|
Pullinger CR, Hillas E, Hardman DA, Chen GC, Naya-Vigne JM, Iwasa JA, Hamilton RL, Lalouel JM, Williams RR, Kane JP. Two apolipoprotein B gene defects in a kindred with hypobetalipoproteinemia, one of which results in a truncated variant, apoB-61, in VLDL and LDL. J Lipid Res 1992. [DOI: 10.1016/s0022-2275(20)41434-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|