1
|
Xin S, Liu X, He C, Gao H, Wang B, Hua R, Gao L, Shang H, Sun F, Xu J. Inflammation accelerating intestinal fibrosis: from mechanism to clinic. Eur J Med Res 2024; 29:335. [PMID: 38890719 PMCID: PMC11184829 DOI: 10.1186/s40001-024-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Intestinal fibrosis is a prevalent complication of IBD that that can frequently be triggered by prolonged inflammation. Fibrosis in the gut can cause a number of issues, which continue as an ongoing challenge to healthcare systems worldwide. The primary causes of intestinal fibrosis are soluble molecules, G protein-coupled receptors, epithelial-to-mesenchymal or endothelial-to-mesenchymal transition, and the gut microbiota. Fresh perspectives coming from in vivo and in vitro experimental models demonstrate that fibrogenic pathways might be different, at least to some extent, independent of the ones that influence inflammation. Understanding the distinctive procedures of intestinal fibrogenesis should provide a realistic foundation for targeting and blocking specific fibrogenic pathways, estimating the risk of fibrotic consequences, detecting early fibrotic alterations, and eventually allowing therapy development. Here, we first summarize the inflammatory and non-inflammatory components of fibrosis, and then we elaborate on the underlying mechanism associated with multiple cytokines in fibrosis, providing the framework for future clinical practice. Following that, we discuss the relationship between modernization and disease, as well as the shortcomings of current studies. We outline fibrosis diagnosis and therapy, as well as our recommendations for the future treatment of intestinal fibrosis. We anticipate that the global review will provides a wealth of fresh knowledge and suggestions for future fibrosis clinical practice.
Collapse
Affiliation(s)
- Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Department of Clinical Laboratory, Aerospace Clinical Medical College, Aerospace Central Hospital, Beijing, 100039, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, China
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2024:S2090-1232(24)00247-9. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
3
|
Migayron L, Bordes S, Closs B, Seneschal J, Boniface K. Type-2 immunity associated with type-1 related skin inflammatory diseases: friend or foe? Front Immunol 2024; 15:1405215. [PMID: 38868763 PMCID: PMC11167106 DOI: 10.3389/fimmu.2024.1405215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Chronic inflammatory skin diseases are multifactorial diseases that combine genetic predisposition, environmental triggers, and metabolic disturbances associated with abnormal immune responses. From an immunological perspective, the better understanding of their physiopathology has demonstrated a large complex network of immune cell subsets and related cytokines that interact with both epidermal and dermal cells. For example, in type-1-associated diseases such as alopecia areata, vitiligo, and localized scleroderma, recent evidence suggests the presence of a type-2 inflammation that is well known in atopic dermatitis. Whether this type-2 immune response has a protective or detrimental impact on the development and chronicity of these diseases remains to be fully elucidated, highlighting the need to better understand its involvement for the management of patients. This mini-review explores recent insights regarding the potential role of type-2-related immunity in alopecia areata, vitiligo, and localized scleroderma.
Collapse
Affiliation(s)
- Laure Migayron
- Univ. Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France
- R&D Department, SILAB, Brive-la-Gaillarde, France
| | | | | | - Julien Seneschal
- Univ. Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France
- CHU de Bordeaux, Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, UMR 5164, Bordeaux, France
| | - Katia Boniface
- Univ. Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
4
|
Rieder F, Mukherjee PK, Massey WJ, Wang Y, Fiocchi C. Fibrosis in IBD: from pathogenesis to therapeutic targets. Gut 2024; 73:854-866. [PMID: 38233198 PMCID: PMC10997492 DOI: 10.1136/gutjnl-2023-329963] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Intestinal fibrosis resulting in stricture formation and obstruction in Crohn's disease (CD) and increased wall stiffness leading to symptoms in ulcerative colitis (UC) is among the largest unmet needs in inflammatory bowel disease (IBD). Fibrosis is caused by a multifactorial and complex process involving immune and non-immune cells, their soluble mediators and exposure to luminal contents, such as microbiota and environmental factors. To date, no antifibrotic therapy is available. Some progress has been made in creating consensus definitions and measurements to quantify stricture morphology for clinical practice and trials, but approaches to determine the degree of fibrosis within a stricture are still lacking. OBJECTIVE We herein describe the current state of stricture pathogenesis, measuring tools and clinical trial endpoints development. DESIGN Data presented and discussed in this review derive from the past and recent literature and the authors' own research and experience. RESULTS AND CONCLUSIONS Significant progress has been made in better understanding the pathogenesis of fibrosis, but additional studies and preclinical developments are needed to define specific therapeutic targets.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William J Massey
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yan Wang
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Fergatova A, Affara NI. The cellular triumvirate: fibroblasts entangled in the crosstalk between cancer cells and immune cells. Front Immunol 2024; 14:1337333. [PMID: 38313431 PMCID: PMC10835808 DOI: 10.3389/fimmu.2023.1337333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024] Open
Abstract
This review article will focus on subpopulations of fibroblasts that get reprogrammed by tumor cells into cancer-associated fibroblasts. Throughout this article, we will discuss the intricate interactions between fibroblasts, immune cells, and tumor cells. Unravelling complex intercellular crosstalk will pave the way for new insights into cellular mechanisms underlying the reprogramming of the local tumor immune microenvironment and propose novel immunotherapy strategies that might have potential in harnessing and modulating immune system responses.
Collapse
|
6
|
Cates WT, Denbeigh JM, Salvagno RT, Kakar S, van Wijnen AJ, Eaton C. Inflammatory Markers Involved in the Pathogenesis of Dupuytren's Contracture. Crit Rev Eukaryot Gene Expr 2024; 34:1-35. [PMID: 38912961 DOI: 10.1615/critreveukaryotgeneexpr.2024052889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dupuytren's disease is a common fibroproliferative disease that can result in debilitating hand deformities. Partial correction and return of deformity are common with surgical or clinical treatments at present. While current treatments are limited to local procedures for relatively late effects of the disease, the pathophysiology of this connective tissue disorder is associated with both local and systemic processes (e.g., fibrosis, inflammation). Hence, a better understanding of the systemic circulation of Dupuytren related cytokines and growth factors may provide important insights into disease progression. In addition, systemic biomarker analysis could yield new concepts for treatments of Dupuytren that attenuate circulatory factors (e.g., anti-inflammatory agents, neutralizing antibodies). Progress in the development of any disease modifying biologic treatment for Dupuytren has been hampered by the lack of clinically useful biomarkers. The characterization of nonsurgical Dupuytren biomarkers will permit disease staging from diagnostic and prognostic perspectives, as well as allows evaluation of biologic responses to treatment. Identification of such markers may transcend their use in Dupuytren treatment, because fibrotic biological processes fundamental to Dupuytren are relevant to fibrosis in many other connective tissues and organs with collagen-based tissue compartments. There is a wide range of potential Dupuytren biomarker categories that could be informative, including disease determinants linked to genetics, collagen metabolism, as well as immunity and inflammation (e.g., cytokines, chemokines). This narrative review provides a broad overview of previous studies and emphasizes the importance of inflammatory mediators as candidate circulating biomarkers for monitoring Dupuytren's disease.
Collapse
Affiliation(s)
- William T Cates
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Janet M Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
7
|
Sharifinejad N, Mahmoudi E. Dual function of fungi-derived cytokines in inflammatory bowel diseases: protection or inflammation. Gastroenterol Rep (Oxf) 2023; 11:goad068. [PMID: 38058517 PMCID: PMC10697736 DOI: 10.1093/gastro/goad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 12/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition involving both the innate and adaptive immune systems. Recently, the role of intestinal fungal flora and their downstream immune pathways has been highlighted in the pathogenesis of IBD. Cytokines as primary immune mediators require a delicate balance for maintaining intestinal homeostasis. Although most cytokines have a predictable role in either amplifying or attenuating inflammation in IBD, a few cytokines have shown a dual function in the inflammatory state of the intestine. Some of these dual-faced cytokines are also involved in mucosal anti-microbial defense pathways, particularly against intestinal fungal residents. Here, we reviewed the role of these cytokines in IBD pathogenesis to achieve a better understanding of the fungal interactions in the development of IBD.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Elaheh Mahmoudi
- Department of Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
8
|
Rinnov MR, Gerner T, Halling AS, Liljendahl MS, Ravn NH, Knudgaard MH, Trautner S, Skov L, Thomsen SF, Egeberg A, Jakasa I, Kezic S, Petersen A, Larsen AR, Dam-Nielsen C, Jarløv JO, Thyssen JP. The association between Staphylococcus aureus colonization on cheek skin at 2 months and subsequent atopic dermatitis in a prospective birth cohort. Br J Dermatol 2023; 189:695-701. [PMID: 37480337 DOI: 10.1093/bjd/ljad249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/31/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Staphylococcus aureus may worsen already established atopic dermatitis (AD), but its primary role in the aetiopathogenesis and severity of AD is unclear. OBJECTIVES To compare the prevalence of S. aureus colonization in early infancy in children who developed AD during the first 2 years of life with children who did not. METHODS In this prospective birth cohort study, which included 450 infants, we analysed bacterial swabs collected from cheek skin at 0 and 2 months of age. The development of AD, and its severity, was diagnosed by a physician and monitored prospectively for 2 years. Information on parental atopy, filaggrin gene mutation status and use of antibiotics and emollients was included in the analyses. RESULTS At birth, the occurrence of S. aureus colonization was similar in infants who developed subsequent AD and those who did not. At 2 months of age, S. aureus colonization was more common in children who later developed AD (adjusted hazard ratio 1.97, 95% confidence interval 1.21-3.19; P = 0.006). No association was found between S. aureus colonization and AD severity or age at onset. CONCLUSIONS It remains unknown whether colonization with S. aureus may directly increase the risk of AD, or whether it should be considered as secondary to skin barrier impairment or a skewed immune activity, but according to our findings, S. aureus colonization is more commonly increased at 2 months of age in children who later developed AD.
Collapse
Affiliation(s)
- Maria Rasmussen Rinnov
- Department of Dermatology and Allergy
- Department of Neonatology, Rigshospitalet, University of Copenhagen, Copenhagen Ø, Denmark
| | | | - Anne-Sofie Halling
- Department of Dermatology and Allergy
- Department of Dermatology and Venereology, Bispebjerg Hospital, University of Copenhagen, Bispebjerg Bakke 23, 2400 Copenhagen N, Denmark
| | | | | | | | - Simon Trautner
- Department of Neonatology, Rigshospitalet, University of Copenhagen, Copenhagen Ø, Denmark
| | - Lone Skov
- Department of Dermatology and Allergy
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Simon Francis Thomsen
- Department of Dermatology and Venereology, Bispebjerg Hospital, University of Copenhagen, Bispebjerg Bakke 23, 2400 Copenhagen N, Denmark
| | - Alexander Egeberg
- Department of Dermatology and Venereology, Bispebjerg Hospital, University of Copenhagen, Bispebjerg Bakke 23, 2400 Copenhagen N, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ivone Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Sanja Kezic
- Amsterdam Public Health Research Institute, Department of Public and Occupational Health Amsterdam UMC, Department of Public and Occupational Health, University of Amsterdam, Amsterdam Public Health Research Institute, 1105 AZ, Amsterdam, the Netherlands
| | - Andreas Petersen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen S, Denmark
| | - Anders Rhod Larsen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen S, Denmark
| | - Casper Dam-Nielsen
- Department of Clinical Microbiology, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jens Otto Jarløv
- Department of Clinical Microbiology, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jacob P Thyssen
- Department of Dermatology and Venereology, Bispebjerg Hospital, University of Copenhagen, Bispebjerg Bakke 23, 2400 Copenhagen N, Denmark
| |
Collapse
|
9
|
Bernstein ZJ, Shenoy A, Chen A, Heller NM, Spangler JB. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunol Rev 2023; 320:29-57. [PMID: 37283511 DOI: 10.1111/imr.13230] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The structurally and functionally related interleukin-4 (IL-4) and IL-13 cytokines play pivotal roles in shaping immune activity. The IL-4/IL-13 axis is best known for its critical role in T helper 2 (Th2) cell-mediated Type 2 inflammation, which protects the host from large multicellular pathogens, such as parasitic helminth worms, and regulates immune responses to allergens. In addition, IL-4 and IL-13 stimulate a wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to coordinate various functions, including immune regulation, antibody production, and fibrosis. Due to its importance for a broad spectrum of physiological activities, the IL-4/IL-13 network has been targeted through a variety of molecular engineering and synthetic biology approaches to modulate immune behavior and develop novel therapeutics. Here, we review ongoing efforts to manipulate the IL-4/IL-13 axis, including cytokine engineering strategies, formulation of fusion proteins, antagonist development, cell engineering approaches, and biosensor design. We discuss how these strategies have been employed to dissect IL-4 and IL-13 pathways, as well as to discover new immunotherapies targeting allergy, autoimmune diseases, and cancer. Looking ahead, emerging bioengineering tools promise to continue advancing fundamental understanding of IL-4/IL-13 biology and enabling researchers to exploit these insights to develop effective interventions.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anjali Shenoy
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Chen
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Mital R, Penza SL, Choe HK, Chung CG, Kaffenberger BH. Dupilumab for refractory sclerotic-type cutaneous graft-versus-host disease. J Eur Acad Dermatol Venereol 2023; 37:e1323-e1324. [PMID: 37416952 DOI: 10.1111/jdv.19311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Affiliation(s)
- Rohan Mital
- Department of Dermatology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sam L Penza
- Division of Hematology, The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Hannah K Choe
- Division of Hematology, The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Catherine G Chung
- Department of Dermatology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Benjamin H Kaffenberger
- Department of Dermatology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
11
|
Zhang Y, Yang Y, Gao X, Gao W, Zhang L. Research progress on mesenchymal stem cells and their exosomes in systemic sclerosis. Front Pharmacol 2023; 14:1263839. [PMID: 37693906 PMCID: PMC10485262 DOI: 10.3389/fphar.2023.1263839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease with an unknown etiology. Clinically, it is characterized by localized or diffuse skin thickening and fibrosis. The pathogenesis of SSc includes microvascular injury, autoimmune-mediated inflammation, and fibroblast activation. These processes interact and contribute to the diverse clinicopathology and presentation of SSc. Given the limited effectiveness and substantial side effects of traditional treatments, the treatment strategy for SSc has several disadvantages. Mesenchymal stem cells (MSCs) are expected to serve as effective treatment options owing to their significant immunomodulatory, antifibrotic, and pro-angiogenic effects. Exosomes, secreted by MSCs via paracrine signaling, mirror the effect of MSCs as well as offer the benefit of targeted delivery, minimal immunogenicity, robust reparability, good safety and stability, and easy storage and transport. This enables them to circumvent the limitations of the MSCs. When using exosomes, it is crucial to consider preparation methods, quality standards, and suitable drug delivery systems, among other technical issues. Therefore, this review aims to summarize the latest research progress on MSCs and exosomes in SSc, offering novel ideas for treating SSc.
Collapse
Affiliation(s)
| | | | | | | | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
12
|
Gumkowska-Sroka O, Kotyla K, Mojs E, Palka K, Kotyla P. Novel Therapeutic Strategies in the Treatment of Systemic Sclerosis. Pharmaceuticals (Basel) 2023; 16:1066. [PMID: 37630981 PMCID: PMC10458905 DOI: 10.3390/ph16081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Systemic sclerosis is a connective tissue disease of unknown origin and with an unpredictable course, with both cutaneous and internal organ manifestations. Despite the enormous progress in rheumatology and clinical immunology, the background of this disease is largely unknown, and no specific therapy exists. The therapeutic approach aims to treat and preserve the function of internal organs, and this approach is commonly referred to as organ-based treatment. However, in modern times, data from other branches of medicine may offer insight into how to treat disease-related complications, making it possible to find new drugs to treat this disease. In this review, we present therapeutic options aiming to stop the progression of fibrotic processes, restore the aberrant immune response, stop improper signalling from proinflammatory cytokines, and halt the production of disease-related autoantibodies.
Collapse
Affiliation(s)
- Olga Gumkowska-Sroka
- Department of Rheumatology and Clinical Immunology, Voivodeship Hospital No. 5 in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| | - Kacper Kotyla
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| | - Ewa Mojs
- Department of Clinical Psychology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Klaudia Palka
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| | - Przemysław Kotyla
- Department of Rheumatology and Clinical Immunology, Voivodeship Hospital No. 5 in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| |
Collapse
|
13
|
Lung mesenchymal cells from patients with COVID-19 driven lung fibrosis: Several features with CTD-ILD derived cells but with higher response to fibrogenic signals and might be more pro-inflammatory. Biomed Pharmacother 2023; 162:114640. [PMID: 37004325 PMCID: PMC10063673 DOI: 10.1016/j.biopha.2023.114640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
A subset of severe COVID19 patients develop pulmonary fibrosis, but the pathophysiology of this complication is still unclear. We previously described the possibility to isolate lung mesenchymal cells (LMC) by culturing broncho-alveolar lavage (BAL) cells from patients with pulmonary fibrosis or chronic lung allograft dysfunction. Aim of this study was to investigate the possibility to isolate and characterize LMC from BAL of patients that, two months after discharge for severe COVID19, show CT signs of post-COVID19 fibrosis (Post-COVID) and in some cases has been considered transplant indication. Results were compared with those from BAL of patients with collagen tissue disease-associated interstitial fibrosis (CTD-ILD). BAL fluid levels of TGFβ, VEGF, TIMP2, RANTES, IL6, IL8, and PAI1 were assessed. LMC were cultured and expanded, phenotyped by flow cytometry, and tested for osteogenic and adipogenic differentiation. Finally, we tested immunomodulatory and proliferative capabilities, collagen I production + /- TGF-beta stimulation. BAL cytokine and growth factor levels were comparable in the two groups. Efficiency of isolation from BAL was 100% in post-COVID compared to 63% in CTD-ILD. LMC from post-COVID were positive for CD105, CD73, CD90, and negative for CD45, CD34, CD19 and HLA-DR as in CTD-ILD samples. Post-COVID LMC displayed higher collagen production with respect to CTD-ILD LMC. Immunomodulatory capacity towards lymphocytes was very low, while Post-COVID LMC significantly upregulated pro-inflammatory cytokine production by healthy PBMCs. Our preliminary data suggest that LMC from post-COVID19 fibrosis patients share several features with CTD-ILD ones but might have a higher response to fibrogenic signals and pro-inflammatory profile.
Collapse
|
14
|
Sutherland TE, Dyer DP, Allen JE. The extracellular matrix and the immune system: A mutually dependent relationship. Science 2023; 379:eabp8964. [PMID: 36795835 DOI: 10.1126/science.abp8964] [Citation(s) in RCA: 109] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/22/2022] [Indexed: 02/18/2023]
Abstract
For decades, immunologists have studied the role of circulating immune cells in host protection, with a more recent appreciation of immune cells resident within the tissue microenvironment and the intercommunication between nonhematopoietic cells and immune cells. However, the extracellular matrix (ECM), which comprises at least a third of tissue structures, remains relatively underexplored in immunology. Similarly, matrix biologists often overlook regulation of complex structural matrices by the immune system. We are only beginning to understand the scale at which ECM structures determine immune cell localization and function. Additionally, we need to better understand how immune cells dictate ECM complexity. This review aims to highlight the potential for biological discovery at the interface of immunology and matrix biology.
Collapse
Affiliation(s)
- Tara E Sutherland
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
- School of Medicine, Medical Sciences and Dentistry, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Salford M6 8HD, UK
| | - Judith E Allen
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
15
|
Molecular Mechanisms Behind the Role of Plasmacytoid Dendritic Cells in Systemic Sclerosis. BIOLOGY 2023; 12:biology12020285. [PMID: 36829561 PMCID: PMC9953616 DOI: 10.3390/biology12020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Systemic sclerosis (SSc) is a debilitating autoimmune disease that affects multiple systems. It is characterized by immunological deregulation, functional and structural abnormalities of small blood vessels, and fibrosis of the skin, and, in some cases, internal organs. Fibrosis has a devastating impact on a patient's life and lung fibrosis is associated with high morbimortality. Several immune populations contribute to the progression of SSc, and plasmacytoid dendritic cells (pDCs) have been identified as crucial mediators of fibrosis. Research on murine models of lung and skin fibrosis has shown that pDCs are essential in the development of fibrosis, and that removing pDCs improves fibrosis. pDCs are a subset of dendritic cells (DCs) that are specialized in anti-viral responses and are also involved in autoimmune diseases, such as SSc, systemic lupus erythematosus (SLE) and psoriasis, mostly due to their capacity to produce type I interferon (IFN). A type I IFN signature and high levels of CXCL4, both derived from pDCs, have been associated with poor prognosis in patients with SSc and are correlated with fibrosis. This review will examine the recent research on the molecular mechanisms through which pDCs impact SSc.
Collapse
|
16
|
Vizely K, Wagner KT, Mandla S, Gustafson D, Fish JE, Radisic M. Angiopoietin-1 derived peptide hydrogel promotes molecular hallmarks of regeneration and wound healing in dermal fibroblasts. iScience 2023; 26:105984. [PMID: 36818306 PMCID: PMC9932487 DOI: 10.1016/j.isci.2023.105984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/12/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
By providing an ideal environment for healing, biomaterials can be designed to facilitate and encourage wound regeneration. As the wound healing process is complex, there needs to be consideration for the cell types playing major roles, such as fibroblasts. As a major cell type in the dermis, fibroblasts have a large impact on the processes and outcomes of wound healing. Prevopisly, conjugating the angiopoietin-1 derived Q-peptide (QHREDGS) to a collagen-chitosan hydrogel created a biomaterial with in vivo success in accelerating wound healing. This study utilized solvent cast Q-peptide conjugated collagen-chitosan seeded with fibroblast monolayers to investigate the direct impact of the material on this major cell type. After 24 h, fibroblasts had a significant change in release of anti-inflammatory, pro-healing, and ECM deposition cytokines, with demonstrated immunomodulatory effects on macrophages and upregulated expression of critical wound healing genes.
Collapse
Affiliation(s)
- Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Karl T. Wagner
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Serena Mandla
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Dakota Gustafson
- Toronto General Hospital Research Institute, University Health Network, Toronto,ON M5G 2C4, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto,ON M5G 2C4, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada,Toronto General Hospital Research Institute, University Health Network, Toronto,ON M5G 2C4, Canada,Corresponding author
| |
Collapse
|
17
|
Yuan S, Guo D, Liang X, Zhang L, Zhang Q, Xie D. Relaxin in fibrotic ligament diseases: Its regulatory role and mechanism. Front Cell Dev Biol 2023; 11:1131481. [PMID: 37123405 PMCID: PMC10134402 DOI: 10.3389/fcell.2023.1131481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/24/2023] [Indexed: 05/02/2023] Open
Abstract
Fibrotic ligament diseases (FLDs) are diseases caused by the pathological accumulation of periarticular fibrotic tissue, leading to functional disability around joint and poor life quality. Relaxin (RLX) has been reported to be involved in the development of fibrotic lung and liver diseases. Previous studies have shown that RLX can block pro-fibrotic process by reducing the excess extracellular matrix (ECM) formation and accelerating collagen degradation in vitro and in vivo. Recent studies have shown that RLX can attenuate connective tissue fibrosis by suppressing TGF-β/Smads signaling pathways to inhibit the activation of myofibroblasts. However, the specific roles and mechanisms of RLX in FLDs remain unclear. Therefore, in this review, we confirmed the protective effect of RLX in FLDs and summarized its mechanism including cells, key cytokines and signaling pathways involved. In this article, we outline the potential therapeutic role of RLX and look forward to the application of RLX in the clinical translation of FLDs.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dong Guo
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinzhi Liang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Luhui Zhang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| | - Denghui Xie
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| |
Collapse
|
18
|
Izaki R, Kobayashi A, Fujita H, Harada K, Ozaki H, Kadonosono K, Uchio E. Analysis of Cytokine Production Profiles of Local and Systemic Lymphocytes in Sick Building Syndrome Compared with Ocular Allergy. J Asthma Allergy 2022; 15:1115-1124. [PMID: 36034973 PMCID: PMC9416413 DOI: 10.2147/jaa.s375080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose We have previously studied clinical and allergological aspects of sick building syndrome (SBS) cases with ocular disorders and found that SBS is suggested to be partially induced by an allergic response. We analyzed the cytokine production profiles of conjunctival and peripheral blood lymphocytes in patients with SBS with ocular manifestations to further evaluate the pathophysiology of SBS from an immunological standpoint. Methods We obtained conjunctival samples and peripheral blood mononuclear cells (PBMC) from 15 cases of SBS with ocular findings, 49 cases of allergic conjunctival diseases (ACD) (allergic conjunctivitis (AC), atopic keratoconjunctivitis (AKC), and vernal keratoconjunctivitis (VKC)), and normal controls. Frequencies of cytokine-producing T cells were analyzed by flow cytometry based on an intracellular cytokine staining method. Results Although no significant difference was observed in the percentage of interferon (IFN)-γ-producing CD4+ T cells in PBMC between patients with SBS and controls, the percentage of interleukin (IL)-4-producing PBMC CD4+ T cells in patients with SBS was significantly higher than that in controls. The percentage of IL-4-producing CD4+ T cells in the conjunctiva in patients with SBS was significantly higher than that in controls, whereas it was significantly lower than that in AKC and VKC. A significant correlation was observed between the percentage of IL-4-producing CD4+ T cells in the conjunctiva and clinical score. Conclusion These results suggest that SBS may be a kind of allergic disorder and that IL-4 plays a role in the development of allergic disorders in SBS ocular lesions.
Collapse
Affiliation(s)
- Ryosuke Izaki
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Ayaka Kobayashi
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hideaki Fujita
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kazuhiro Harada
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hiroaki Ozaki
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kazuaki Kadonosono
- Department of Ophthalmology, Yokohama City University Medical Center, Yokohama, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
19
|
Miyake R, Iwamoto K, Sakai N, Matsunae K, Aziz F, Sugai M, Takahagi S, Tanaka A, Hide M. Uptake of Staphylococcus aureus by keratinocytes is reduced by interferon-fibronectin pathway and filaggrin expression. J Dermatol 2022; 49:1148-1157. [PMID: 35983802 DOI: 10.1111/1346-8138.16546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
Abstract
Staphylococcus aureus (S. aureus) is frequently detected in the skin of patients with atopic dermatitis (AD). AD skin-derived strains of S. aureus (AD strain) are selectively internalized into keratinocytes (HaCaT cells) compared to standard strains. However, the mechanism of AD strain internalization by keratinocytes and effect of the skin environment on internalization remain unclear. HaCaT cells were exposed to heat-killed AD or standard strains of fluorescently labeled S. aureus, with or without interferon (IFN)-γ, interleukin (IL)-4, and IL-13 cytokines, for 24 h. Filaggrin and fibronectin expression in HaCaT cells was knocked down using small interfering RNA. The amount of internalized S. aureus was evaluated using a cell imaging system. The effects of INF-γ, IL-4, and S. aureus exposure on mRNA expression in HaCaT cells were analyzed using single-cell RNA sequencing. AD strains adhered to HaCaT cells in approximately 15 min and were increasingly internalized for up to 3 h (2361 ± 467 spots/100 cells, mean ± SD), whereas the standard strain was not (991 ± 71 spots/100 cells). In the presence of IFN-γ, both the number of internalized strains and fibronectin expression significantly decreased compared to in the control, whereas Th2 cytokines had no significant effects. The number of internalized AD strains was significantly higher in filaggrin knockdown and lower in fibronectin knockdown HaCaT cells compared to in the control. RNA sequencing revealed that IFN-γ decreased both fibronectin and filaggrin expression. Keratinocyte internalization of the AD strain may be predominantly mediated by the INF-γ-fibronectin pathway and partially regulated by filaggrin expression.
Collapse
Affiliation(s)
- Ryu Miyake
- Department of Dermatology, Graduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima, Japan
| | - Kazumasa Iwamoto
- Department of Dermatology, Graduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences Hiroshima University, Hiroshima, Japan
| | - Kyoka Matsunae
- Department of Dermatology, Graduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima, Japan
| | - Fatkhanuddin Aziz
- Department of Bioresources Technology and Veterinary, Vocational, College Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center National Institute of Infectious Diseases, Tokyo, Japan
| | - Shunsuke Takahagi
- Department of Dermatology, Graduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima, Japan
| | - Akio Tanaka
- Department of Dermatology, Graduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima, Japan
| | - Michihiro Hide
- Department of Dermatology, Graduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima, Japan.,Department of Dermatology Hiroshima Citizens Hospital, Hiroshima, Japan
| |
Collapse
|
20
|
Jak Inhibitors for Treatment of Autoimmune Diseases: Lessons from Systemic Sclerosis and Systemic Lupus Erythematosus. Pharmaceuticals (Basel) 2022; 15:ph15080936. [PMID: 36015084 PMCID: PMC9413112 DOI: 10.3390/ph15080936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/07/2022] Open
Abstract
Systemic sclerosis and systemic lupus erythematosus represent two distinct autoimmune diseases belonging to the group of connective tissue disorders. Despite the great progress in the basic science, this progress has not been translated to the development of novel therapeutic approaches that can radically change the face of these diseases. The discovery of JAK kinases, which are tyrosine kinases coupled with cytokine receptors, may open a new chapter in the treatment of so far untreatable diseases. Small synthetic compounds that can block Janus kinases and interact directly with cytokine signalling may provide therapeutic potential in these diseases. In this review, we discuss the therapeutic potential of Jak kinases in light of the cytokine network that JAK kinases are able to interact with. We also provide the theoretical background for the rationale of blocking cytokines with specific JAK inhibitors.
Collapse
|
21
|
Beck LA, Cork MJ, Amagai M, De Benedetto A, Kabashima K, Hamilton JD, Rossi AB. Type 2 Inflammation Contributes to Skin Barrier Dysfunction in Atopic Dermatitis. JID INNOVATIONS 2022; 2:100131. [PMID: 36059592 PMCID: PMC9428921 DOI: 10.1016/j.xjidi.2022.100131] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/02/2023] Open
Abstract
Skin barrier dysfunction, a defining feature of atopic dermatitis (AD), arises from multiple interacting systems. In AD, skin inflammation is caused by host-environment interactions involving keratinocytes as well as tissue-resident immune cells such as type 2 innate lymphoid cells, basophils, mast cells, and T helper type 2 cells, which produce type 2 cytokines, including IL-4, IL-5, IL-13, and IL-31. Type 2 inflammation broadly impacts the expression of genes relevant for barrier function, such as intracellular structural proteins, extracellular lipids, and junctional proteins, and enhances Staphylococcus aureus skin colonization. Systemic anti‒type 2 inflammation therapies may improve dysfunctional skin barrier in AD.
Collapse
Key Words
- AD, atopic dermatitis
- AMP, antimicrobial peptide
- CLDN, claudin
- FFA, free fatty acid
- ILC2, type 2 innate lymphoid cell
- Jaki, Jak inhibitor
- K, keratin
- KC, keratinocyte
- MMP, matrix metalloproteinase
- NMF, natural moisturizing factor
- PAR, protease-activated receptor
- PDE-4, phosphodiesterase-4
- SC, stratum corneum
- SG, stratum granulosum
- TCI, topical calcineurin inhibitor
- TCS, topical corticosteroid
- TEWL, transepidermal water loss
- TJ, tight junction
- TLR, toll-like receptor
- TNF-α, tumor necrosis factor alpha
- TYK, tyrosine kinase
- Th, T helper
- ZO, zona occludens
- hBD, human β-defensin
Collapse
Affiliation(s)
- Lisa A. Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA,Correspondence: Lisa A. Beck, Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 697, Rochester, New York 14642, USA.
| | - Michael J. Cork
- Sheffield Dermatology Research, Department of Infection, Immunity and Cardiovascular Disease (IICD), The University of Sheffield, The Medical School, Sheffield, United Kingdom
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan,Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Anna De Benedetto
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
22
|
Selective Serotonin Reuptake Inhibitor Promotes Bone-Tendon Interface Healing in a Rotator Cuff Tear Rat Model. Tissue Eng Regen Med 2022; 19:853-860. [PMID: 35438456 PMCID: PMC9294099 DOI: 10.1007/s13770-022-00444-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Selective serotonin reuptake inhibitor (SSRI) is believed to accelerate wound healing, and thus expected to have a positive effect on rotator cuff repair. We hypothesized that SSRI has a positive effect on the healing of the bone-tendon interface (BTI), and improved rotator cuff tear healing would be confirmed by mechanical strength measurements and histological assessment of the restored tendon. METHODS The study used 40 adult male Sprague-Dawley wild-type rats. The animals were divided into two groups: group-SSRI, the supraspinatus repair with SSRI injection group, and group-C, conventional supraspinatus repair only without SSRI. Biomechanical and histological analyses were performed 8 weeks after index rotator cuff surgery. RESULTS The ultimate load (N) was significantly higher in group-SSRI than in group-C (54.8 ± 56.9 Vs 25.1 ± 11.1, p = .031). In the histological evaluation, the Bonar score confirmed significant differences in collagen fiber density (group-C: 0.6 ± 0.5, group-SSRI: 1.1 ± 0.6, p = .024), vascularity (group-C: 0.1 ± 0.2, group-SSRI: 0.3 ± 0.4, p = .024) and cellularity (group-C: 1.7 ± 0.4, group-SSRI: 2.0 ± 0.0, p = .023) between the groups. Based on the total score, group-SSRI was significantly better compared with group-C (6.3 ± 2.7 Vs 4.3 ± 1.9, p = .019). CONCLUSION Our study demonstrated that SSRI could facilitate improved biomechanical and histological outcomes 8 weeks after rotator cuff repair in a rat model. Consequently, SSRI may improve healing after rotator cuff repair.
Collapse
|
23
|
LaChance AH, Goldman N, Kassamali B, Vleugels RA. Immunologic underpinnings and treatment of morphea. Expert Rev Clin Immunol 2022; 18:461-483. [DOI: 10.1080/1744666x.2022.2063841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Avery H. LaChance
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Nathaniel Goldman
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
- New York Medical College School of Medicine, Valhalla, NY
| | - Bina Kassamali
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ruth Ann Vleugels
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
24
|
Kurkipuro J, Mierau I, Wirth T, Samaranayake H, Smith W, Kärkkäinen HR, Tikkanen M, Yrjänheikki J. Four in one-Combination therapy using live Lactococcus lactis expressing three therapeutic proteins for the treatment of chronic non-healing wounds. PLoS One 2022; 17:e0264775. [PMID: 35226700 PMCID: PMC8884502 DOI: 10.1371/journal.pone.0264775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/17/2022] [Indexed: 01/03/2023] Open
Abstract
Diabetes mellitus is one of the major concerns for health care systems, affecting 382 million people worldwide. Among the different complications of diabetes, lower limbs chronic ulceration is a common, severe and costly cause of morbidity. Diabetic foot ulcers are a leading cause of hospitalization in diabetic patients and its rate exceed the ones of congestive heart failure, depression or renal disease. Diabetic non-healing ulcers account for more than 60% of all non-traumatic lower limb amputations and the five-year mortality after amputation is higher than 50%, being equal to several types of advanced cancer. The primary management goals for an existing diabetic foot ulcer are to achieve primary healing as expeditiously as possible and to achieve a reduction of the amputation rate in the patients. Unfortunately, approximately a quarter of patients do not partially or fully respond to the standard of care. Advanced therapies for chronic wounds are existing, however, recent guidelines including the latest reviews and meta-analyses of the scientific and clinical evidence available from current treatment strategies and new therapeutic agents revealed that there is a lack of clinical data and persistent gap of evidence for many of the advanced therapeutic approaches. In addition, no pharmacological wound healing product has gained authority approval for more than 10 years in both US and EU, constituting a highly unmet medical need. In this publication we present data from a live biopharmaceutical product AUP1602-C designed as a single pharmaceutical entity based on the non-pathogenic, food-grade lactic acid bacterium Lactococcus lactis subsp. cremoris that has been genetically engineered to produce human fibroblast growth factor 2,interleukin4 and colony stimulating factor 1. Designed to address different aspects of wound healing (i.e. fibroblast proliferation, angiogenesis and immune cell activation) and currently in phase I clinical study, we show how the combination of the individual components on the wound micro-environment initiates and improves the wound healing in chronic wounds.
Collapse
|
25
|
Interleukin-31 promotes fibrosis and T helper 2 polarization in systemic sclerosis. Nat Commun 2021; 12:5947. [PMID: 34642338 PMCID: PMC8511151 DOI: 10.1038/s41467-021-26099-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic multisystem disorder characterized by fibrosis and autoimmunity. Interleukin (IL)-31 has been implicated in fibrosis and T helper (Th) 2 immune responses, both of which are characteristics of SSc. The exact role of IL-31 in SSc pathogenesis is unclear. Here we show the overexpression of IL-31 and IL-31 receptor A (IL-31RA) in dermal fibroblasts (DFs) from SSc patients. We elucidate the dual role of IL-31 in SSc, where IL-31 directly promotes collagen production in DFs and indirectly enhances Th2 immune responses by increasing pro-Th2 cytokine expression in DFs. Furthermore, blockade of IL-31 with anti-IL-31RA antibody significantly ameliorates fibrosis and Th2 polarization in a mouse model of SSc. Therefore, in addition to defining IL-31 as a mediator of fibrosis and Th2 immune responses in SSc, our study provides a rationale for targeting the IL-31/IL-31RA axis in the treatment of SSc. Systemic sclerosis (SSc) disease involves multisystem fibrosis and autoimmunity with limited treatment options. Here the authors demonstrate that IL-31 and IL-31RA are overexpressed in dermal fibroblasts from SSc patients and show that fibrosis and cytokine release can be reduced upon blocking of IL-31/IL-31RA.
Collapse
|
26
|
Beurier P, Ricard L, Eshagh D, Malard F, Siblany L, Fain O, Mohty M, Gaugler B, Mekinian A. TFH cells in systemic sclerosis. J Transl Med 2021; 19:375. [PMID: 34461933 PMCID: PMC8407089 DOI: 10.1186/s12967-021-03049-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic sclerosis is an autoimmune disease characterized by excessive dermal fibrosis with progression to internal organs, vascular impairment and immune dysregulation evidenced by the infiltration of inflammatory cells in affected tissues and the production of auto antibodies. While the pathogenesis remains unclear, several data highlight that T and B cells deregulation is implicated in the disease pathogenesis. Over the last decade, aberrant responses of circulating T follicular helper cells, a subset of CD4 T cells which are able to localise predominantly in the B cell follicles through a high level of chemokine receptor CXCR5 expression are described in pathogenesis of several autoimmune diseases and chronic graft-versus-host-disease. In the present review, we summarized the observed alteration of number and frequency of circulating T follicular helper cells in systemic sclerosis. We described their role in aberrant B cell activation and differentiation though interleukine-21 secretion. We also clarified T follicular helper-like cells involvement in fibrogenesis in both human and mouse model. Finally, because T follicular helper cells are involved in both fibrosis and autoimmune abnormalities in systemic sclerosis patients, we presented the different strategies could be used to target T follicular helper cells in systemic sclerosis, the therapeutic trials currently being carried out and the future perspectives from other auto-immune diseases and graft-versus-host-disease models.
Collapse
Affiliation(s)
- Pauline Beurier
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Laure Ricard
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Deborah Eshagh
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Florent Malard
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Lama Siblany
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Olivier Fain
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Mohamad Mohty
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Béatrice Gaugler
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France
| | - Arsène Mekinian
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France. .,Sorbonne Université, Paris, France. .,Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), AP-HP, Hôpital Saint-Antoine, 75012, Paris, France.
| |
Collapse
|
27
|
Belmesk L, Muntyanu A, Cantin E, AlHalees Z, Jack CS, Le M, Sasseville D, Iannattone L, Ben-Shoshan M, Litvinov IV, Netchiporouk E. Prominent Role of Type 2 Immunity in Skin Diseases-Beyond Atopic Dermatitis. J Cutan Med Surg 2021; 26:33-49. [PMID: 34261335 DOI: 10.1177/12034754211027858] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Type 2 immunity, illustrated by T helper 2 lymphocytes (Th2) and downstream cytokines (IL-4, IL-13, IL-31) as well as group 2 innate lymphoid cells (ILC2), is important in host defense and wound healing.1 The hallmark of type 2 inflammation is eosinophilia and/or high IgE counts and is best recognized in atopic diathesis. Persistent eosinophilia, such as seen in hypereosinophilic syndromes, leads to fibrosis and hence therapeutic Type 2 inhibition in fibrotic diseases is of high interest. Furthermore, as demonstrated in cutaneous T cell lymphoma, advanced disease is characterized by Th1 to Th2 switch allowing cancer progression and immunosuppression. Development of targeted monoclonal antibodies against IL-4Rα (eg, dupilumab) led to a paradigm shift for the treatment of atopic dermatitis (AD) and stimulated research to better understand the role of Type 2 inflammation in other skin conditions. In this review, we summarize up to date knowledge on the role of Type 2 inflammation in skin diseases other than AD and highlight whether the use of Type 2 targeted therapies has been documented or is being investigated in clinical trials. This manuscript reviews the role of Type 2 inflammation in dermatitis, neurodermatitis, IgE-mediated dermatoses (eg, bullous pemphigoid, chronic spontaneous urticaria), sclerodermoid conditions and skin neoplasms.
Collapse
Affiliation(s)
| | - Anastasiya Muntyanu
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | | | - Zeinah AlHalees
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Carolyn S Jack
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Michelle Le
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Denis Sasseville
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Lisa Iannattone
- 60301 Division of Dermatology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Moshe Ben-Shoshan
- Division of Pediatric Allergy Immunology and Dermatology, Department of Pediatrics, McGill University Health Center, Montreal, QC, Canada
| | - Ivan V Litvinov
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Elena Netchiporouk
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
28
|
Hult EM, Gurczynski SJ, Moore BB. M2 macrophages have unique transcriptomes but conditioned media does not promote profibrotic responses in lung fibroblasts or alveolar epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol 2021; 321:L518-L532. [PMID: 34231378 DOI: 10.1152/ajplung.00107.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophages are critical regulators of pulmonary fibrosis. Their plasticity, proximity, and ability to cross talk with structural cells of the lung make them a key cell type of interest in the regulation of lung fibrosis. Macrophages can express a variety of phenotypes, which have been historically represented through an "M1-like" to "M2-like" delineation. In this classification, M1-like macrophages are proinflammatory and have increased phagocytic capacity compared with alternatively activated M2-like macrophages that are profibrotic and are associated with wound healing. Extensive evidence in the field in both patients and animal models aligns pulmonary fibrosis with M2 macrophages. In this study, we performed RNA sequencing (RNAseq) to fully characterize M1- vs. M2-skewed bone marrow-derived macrophages (BMDMs) and investigated the profibrotic abilities of M2 BMDM conditioned media (CM) to promote fibroblast migration and proliferation, alveolar epithelial cell (AEC) apoptosis, and mRNA expression of key fibrotic genes in both fibroblasts and AECs. Although M2 CM-treated fibroblasts had increased migration and M2 CM-treated fibroblasts and AECs had increased expression of profibrotic proteins over M1 CM-treated cells, all differences can be attributed to M2 polarization reagents IL-4 and IL-13 also present in the CM. Collectively, these data suggest that the profibrotic effects associated with M2 macrophage CM in vitro are attributable to effects of polarization cytokines rather than additional factors secreted in response to those polarizing cytokines.
Collapse
Affiliation(s)
- Elissa M Hult
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Stephen J Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
29
|
Wang J, Lin S, Brown JM, van Wagoner D, Fiocchi C, Rieder F. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol Rev 2021; 302:211-227. [PMID: 33993489 DOI: 10.1111/imr.12974] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) worldwide has resulted in a global public health challenge. Intestinal fibrosis leading to stricture formation and bowel obstruction is a frequent complication in Crohn's disease (CD), and the lack of anti-fibrotic therapies makes elucidation of fibrosis mechanisms a priority. Progress has shown that mesenchymal cells, cytokines, microbial products, and mesenteric adipocytes are jointly implicated in the pathogenesis of intestinal fibrosis. This recent information puts prevention or reversal of intestinal strictures within reach through innovative therapies validated by reliable clinical trial endpoints. Here, we review the role of immune and non-immune components of the pathogenesis of intestinal fibrosis, including new cell clusters, cytokine networks, host-microbiome interactions, creeping fat, and their translation for endpoint development in anti-fibrotic clinical trials.
Collapse
Affiliation(s)
- Jie Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jonathan Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - David van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
30
|
Schuster R, Rockel JS, Kapoor M, Hinz B. The inflammatory speech of fibroblasts. Immunol Rev 2021; 302:126-146. [PMID: 33987902 DOI: 10.1111/imr.12971] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Activation of fibroblasts is a key event during normal tissue repair after injury and the dysregulated repair processes that result in organ fibrosis. To most researchers, fibroblasts are rather unremarkable spindle-shaped cells embedded in the fibrous collagen matrix of connective tissues and/or deemed useful to perform mechanistic studies with adherent cells in culture. For more than a century, fibroblasts escaped thorough classification due to the lack of specific markers and were treated as the leftovers after all other cells have been identified from a tissue sample. With novel cell lineage tracing and single cell transcriptomics tools, bona fide fibroblasts emerge as only one heterogeneous sub-population of a much larger group of partly overlapping cell types, including mesenchymal stromal cells, fibro-adipogenic progenitor cells, pericytes, and/or perivascular cells. All these cells are activated to contribute to tissue repair after injury and/or chronic inflammation. "Activation" can entail various functions, such as enhanced proliferation, migration, instruction of inflammatory cells, secretion of extracellular matrix proteins and organizing enzymes, and acquisition of a contractile myofibroblast phenotype. We provide our view on the fibroblastic cell types and activation states playing a role during physiological and pathological repair and their crosstalk with inflammatory macrophages. Inflammation and fibrosis of the articular synovium during rheumatoid arthritis and osteoarthritis are used as specific examples to discuss inflammatory fibroblast phenotypes. Ultimately, delineating the precursors and functional roles of activated fibroblastic cells will contribute to better and more specific intervention strategies to treat fibroproliferative and fibrocontractive disorders.
Collapse
Affiliation(s)
- Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,PhenomicAI, MaRS Centre, Toronto, ON, Canada
| | - Jason S Rockel
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Cytokines Involved in the Pathogenesis of SSc and Problems in the Development of Anti-Cytokine Therapy. Cells 2021; 10:cells10051104. [PMID: 34064515 PMCID: PMC8147957 DOI: 10.3390/cells10051104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease of unknown etiology. SSc causes damage to the skin and various organs including the lungs, heart, and digestive tract, but the extent of the damage varies from patient to patient. The pathology of SSc includes ischemia, inflammation, and fibrosis, but the degree of progression varies from case to case. Many cytokines have been reported to be involved in the pathogenesis of SSc: interleukin-6 is associated with inflammation and transforming growth factor-β and interleukin-13 are associated with fibrosis. Therapeutic methods to control these cytokines have been proposed; however, which cytokines have a dominant role in SSc might differ depending on the extent of visceral lesions and the stage of disease progression. Therefore, it is necessary to consider the disease state of the patient to be targeted and the type of evaluation method when an anti-cytokine therapy is conducted. Here, we review the pathology of SSc and potential cytokine targets, especially interleukin-6, as well as the use of anti-cytokine therapy for SSc.
Collapse
|
32
|
Hu P, Chiarini A, Wu J, Freddi G, Nie K, Armato U, Prà ID. Exosomes of adult human fibroblasts cultured on 3D silk fibroin nonwovens intensely stimulate neoangiogenesis. BURNS & TRAUMA 2021; 9:tkab003. [PMID: 34212056 PMCID: PMC8240536 DOI: 10.1093/burnst/tkab003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Background Bombyx mori silk fibroin is a biomacromolecule that allows the assembly of scaffolds for tissue engineering and regeneration purposes due to its cellular adhesiveness, high biocompatibility and low immunogenicity. Earlier work showed that two types of 3D silk fibroin nonwovens (3D-SFnws) implanted into mouse subcutaneous tissue were promptly vascularized via undefined molecular mechanisms. The present study used nontumorigenic adult human dermal fibroblasts (HDFs) adhering to a third type of 3D-SFnws to assess whether HDFs release exosomes whose contents promote neoangiogenesis. Methods Electron microscopy imaging and physical tests defined the features of the novel carded/hydroentangled 3D-SFnws. HDFs were cultured on 3D-SFnws and polystyrene plates in an exosome-depleted medium. DNA amounts and D-glucose consumption revealed the growth and metabolic activities of HDFs on 3D-SFnws. CD9-expressing total exosome fractions were from conditioned media of 3D-SFnws and 2D polystyrene plates HDF cultures. Angiogenic growth factors (AGFs) in equal amounts of the two groups of exosomal proteins were analysed via double-antibody arrays. A tube formation assay using human dermal microvascular endothelial cells (HDMVECs) was used to evaluate the exosomes’ angiogenic power. Results The novel features of the 3D-SFnws met the biomechanical requirements typical of human soft tissues. By experimental day 15, 3D-SFnws-adhering HDFs had increased 4.5-fold in numbers and metabolized 5.4-fold more D-glucose than at day 3 in vitro. Compared to polystyrene-stuck HDFs, exosomes from 3D-SFnws-adhering HDFs carried significantly higher amounts of AGFs, such as interleukin (IL)-1α, IL-4 and IL-8; angiopoietin-1 and angiopoietin-2; angiopoietin-1 receptor (or Tie-2); growth-regulated oncogene (GRO)-α, GRO-β and GRO-γ; matrix metalloproteinase-1; tissue inhibitor metalloproteinase-1; and urokinase-type plasminogen activator surface receptor, but lesser amounts of anti-angiogenic tissue inhibitor metalloproteinase-2 and pro-inflammatory monocyte chemoattractant protein-1. At concentrations from 0.62 to 10 μg/ml, the exosomes from 3D-SFnws-cultured HDFs proved their angiogenic power by inducing HDMVECs to form significant amounts of tubes in vitro. Conclusions The structural and mechanical properties of carded/hydroentangled 3D-SFnws proved their suitability for tissue engineering and regeneration applications. Consistent with our hypothesis, 3D-SFnws-adhering HDFs released exosomes carrying several AGFs that induced HDMVECs to promptly assemble vascular tubes in vitro. Hence, we posit that once implanted in vivo, the 3D-SFnws/HDFs interactions could promote the vascularization and repair of extended skin wounds due to burns or other noxious agents in human and veterinary clinical settings.
Collapse
Affiliation(s)
- Peng Hu
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, 149 Dalian Road, ZunYi City, 563003 Guizhou Province, China
| | - Anna Chiarini
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy
| | - Jun Wu
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns and Plastic Surgery, Second People's Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China
| | - Giuliano Freddi
- Silk Biomaterials S.r.l., Via Cavour 2, I-22074, Lomazzo, Lombardy, Italy
| | - Kaiyu Nie
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, 149 Dalian Road, ZunYi City, 563003 Guizhou Province, China
| | - Ubaldo Armato
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns and Plastic Surgery, Second People's Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China
| | - Ilaria Dal Prà
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns and Plastic Surgery, Second People's Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China
| |
Collapse
|
33
|
Abstract
Systemic sclerosis (SSc) is a rare and complex disease, involving multiple organs, with high morbidity and mortality. Fibrosis is the hallmark of SSc, although vascular and inflammatory mechanisms are also implicated in its pathogenesis. Disease management is challenging, due to its heterogeneous presentation, and to the limited number of controlled clinical trials to guide treating clinicians. Immunosuppressive agents have been used to prevent progression, especially in the lung, before irreversible injury occurs, with some, although modest, benefit. Nintedanib, a tyrosine kinase inhibitor, has recently demonstrated safety and efficacy in interstitial lung disease (ILD) associated with SSc, and many other antifibrotics are being assessed as possible beneficial therapies, with promising results. An important unmet need remains, to clarify to which patients, when, and with which agent therapy should be initiated, to achieve optimal outcomes. This review summarizes available evidence for current and emerging antifibrotic therapies in SSc patients.
Collapse
Affiliation(s)
- Maria Martin-Lopez
- Rheumatology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Patricia E Carreira
- Rheumatology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
34
|
Frese L, Darwiche SE, von Rechenberg B, Hoerstrup SP, Giovanoli P, Calcagni M. Thermal conditioning improves quality and speed of keratinocyte sheet production for burn wound treatment. Cytotherapy 2021; 23:536-547. [PMID: 33685808 DOI: 10.1016/j.jcyt.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/06/2021] [Accepted: 01/20/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND AIMS Cultured patient-specific keratinocyte sheets have been used clinically since the 1970s for the treatment of large severe burns. However, despite significant developments in recent years, successful and sustainable treatment is still a challenge. Reliable, high-quality grafts with faster availability and a flexible time window for transplantation are required to improve clinical outcomes. METHODS Keratinocytes are usually grown in vitro at 37°C. Given the large temperature differences in native skin tissue, the aim of the authors' study was to investigate thermal conditioning of keratinocyte sheet production. Therefore, the influence of 31°C, 33°C and 37°C on cell expansion and differentiation in terms of proliferation and sheet formation efficacy was investigated. In addition, the thermal effect on the biological status and thus the quality of the graft was assessed on the basis of the release of wound healing-related biofactors in various stages of graft development. RESULTS The authors demonstrated that temperature is a decisive factor in the production of human keratinocyte sheets. By using specific temperature ranges, the authors have succeeded in optimizing the individual manufacturing steps. During the cell expansion phase, cultivation at 37°C was most effective. After 6 days of culture at 37°C, three times and six times higher numbers of viable cells were obtained compared with 33°C and 31°C. During the cell differentiation and sheet formation phase, however, the cells benefited from a mildly hypothermic temperature of 33°C. Keratinocytes showed increased differentiation potential and formed better epidermal structures, which led to faster biomechanical sheet stability at day 18. In addition, a cultivation temperature of 33°C resulted in a longer lasting and higher secretion of the investigated immunomodulatory, anti-inflammatory, angiogenic and pro-inflammatory biofactors. CONCLUSIONS These results show that by using specific temperature ranges, it is possible to accelerate the large-scale production of cultivated keratinocyte sheets while at the same time improving quality. Cultivated keratinocyte sheets are available as early as 18 days post-biopsy and at any time for 7 days thereafter, which increases the flexibility of the process for surgeons and patients alike. These findings will help to provide better clinical outcomes, with an increased take rate in severe burn patients.
Collapse
Affiliation(s)
- Laura Frese
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine, Zurich, Switzerland; La Colline Research Fellow, La Colline, Sion, Switzerland.
| | - Salim E Darwiche
- Center for Applied Biotechnology and Molecular Medicine, Zurich, Switzerland; Musculoskeletal Research Unit, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Brigitte von Rechenberg
- Center for Applied Biotechnology and Molecular Medicine, Zurich, Switzerland; Musculoskeletal Research Unit, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine, Zurich, Switzerland
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Maurizio Calcagni
- Center for Applied Biotechnology and Molecular Medicine, Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Li S, Shao L, Fang J, Zhang J, Chen Y, Yeo AJ, Lavin MF, Yu G, Shao H. Hesperetin attenuates silica-induced lung injury by reducing oxidative damage and inflammatory response. Exp Ther Med 2021; 21:297. [PMID: 33717240 PMCID: PMC7885076 DOI: 10.3892/etm.2021.9728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress and the inflammatory response are two important mechanisms of silica-induced lung injury. Hesperetin (HSP) is a natural flavonoid compound that is found in citrus fruits and has been indicated to exhibit strong antioxidant and anti-inflammatory properties. The current study evaluated the protective effect of HSP on lung injury in rats exposed to silica. The results indicated that the degree of alveolitis and pulmonary fibrosis in the HSP-treated group was significantly decreased compared with the silica model group. The content of hydroxyproline (HYP) was also revealed to decrease overall in the HSP treated group compared with the silica model group, indicating that the degree of pulmonary fibrosis was decreased compared with the silica model group. The present study also demonstrated that HSP reduced oxidation levels of malondialdehyde (MDA) and increased the activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-PX). Total antioxidant capacity (T-AOC) was also increased following HSP treatment, indicating that HSP can alleviate oxidative stress in the lung tissue of silica-exposed rats. In addition, HSP was revealed to inhibit the synthesis and secretion of fibrogenic factor TGF-β1, reduce the production of pro-inflammatory cytokines IL-1β, IL-4, TNF-α and increase the levels of anti-inflammatory factors IFN-γ and IL-10. The current study demonstrated that HSP can effectively attenuate silica-induced lung injury by reducing oxidative damage and the inflammatory response.
Collapse
Affiliation(s)
- Shuxian Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Linlin Shao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Jinguo Fang
- Primary Health Department, Linqing Health Bureau, Linqing, Shandong 252600, P.R. China
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yanqin Chen
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Abrey J Yeo
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martin F Lavin
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
36
|
Yaseen B, Lopez H, Taki Z, Zafar S, Rosario H, Abdi BA, Vigneswaran S, Xing F, Arumalla N, Black S, Ahmad S, Kumar K, Gul R, Scolamiero L, Morris S, Bowman A, Stainer A, Rice A, Stock C, Renzoni E, Denton CP, Venturini C, Brown M, O'Reilly S, Stratton R. Interleukin-31 promotes pathogenic mechanisms underlying skin and lung fibrosis in scleroderma. Rheumatology (Oxford) 2021; 59:2625-2636. [PMID: 32365362 DOI: 10.1093/rheumatology/keaa195] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Cytokines released by infiltrating T cells may promote mechanisms leading to fibrosis in scleroderma. The aim of this study was to investigate the role of the Th2 cytokine IL-31, and its receptor IL-31RA, in scleroderma skin and lung fibrosis. METHODS IL-31 was measured by ELISA of plasma, and by immunochemistry of fibrotic skin and lung tissue of scleroderma patients. The receptor, IL-31RA, was assayed by qPCR of tissue resident cells. Next-generation sequencing was used to profile the responses of normal skin fibroblasts to IL-31. In wild-type Balb/c mice, IL-31 was administered by subcutaneous mini pump, with or without additional TGFβ, and the fibrotic reaction measured by histology and ELISA of plasma. RESULTS IL-31 was present at high levels in plasma and fibrotic skin and lung lesions in a subset of scleroderma patients, and the receptor overexpressed by downstream cells relevant to the disease process, including skin and lung fibroblasts, through loss of epigenetic regulation by miR326. In skin fibroblasts, IL-31 induced next generation sequencing profiles associated with cellular growth and proliferation, anaerobic metabolism and mineralization, and negatively associated with angiogenesis and vascular repair, as well as promoting phenotype changes including migration and collagen protein release via pSTAT3, resembling the activation state in the disease. In mice, IL-31 induced skin and lung fibrosis. No synergy was seen with TGFβ, which supressed IL-31RA. CONCLUSION IL-31/IL-31RA is confirmed as a candidate pro-fibrotic pathway, which may contribute to skin and lung fibrosis in a subset of scleroderma patients.
Collapse
Affiliation(s)
- Bodoor Yaseen
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Henry Lopez
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK.,MuriGenics, Inc, Vallejo, CA, USA
| | - Zeinab Taki
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Sara Zafar
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Henrique Rosario
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Bahja Ahmed Abdi
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Shivanee Vigneswaran
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Fiona Xing
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Nikita Arumalla
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Simon Black
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Sara Ahmad
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Kimti Kumar
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Rabia Gul
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Laura Scolamiero
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Sian Morris
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Alex Bowman
- Department of Respiratory Medicine, Imperial College London, Royal Brompton Campus
| | - Anna Stainer
- Department of Respiratory Medicine, Imperial College London, Royal Brompton Campus
| | - Alexandra Rice
- Department of Respiratory Medicine, Imperial College London, Royal Brompton Campus
| | - Carmel Stock
- Department of Respiratory Medicine, Imperial College London, Royal Brompton Campus
| | - Elisabetta Renzoni
- Department of Respiratory Medicine, Imperial College London, Royal Brompton Campus
| | - Christopher P Denton
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | | | - Max Brown
- Department of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Steven O'Reilly
- Department of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Richard Stratton
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| |
Collapse
|
37
|
A Review of the Evidence for and against a Role for Mast Cells in Cutaneous Scarring and Fibrosis. Int J Mol Sci 2020; 21:ijms21249673. [PMID: 33353063 PMCID: PMC7766369 DOI: 10.3390/ijms21249673] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
Scars are generated in mature skin as a result of the normal repair process, but the replacement of normal tissue with scar tissue can lead to biomechanical and functional deficiencies in the skin as well as psychological and social issues for patients that negatively affect quality of life. Abnormal scars, such as hypertrophic scars and keloids, and cutaneous fibrosis that develops in diseases such as systemic sclerosis and graft-versus-host disease can be even more challenging for patients. There is a large body of literature suggesting that inflammation promotes the deposition of scar tissue by fibroblasts. Mast cells represent one inflammatory cell type in particular that has been implicated in skin scarring and fibrosis. Most published studies in this area support a pro-fibrotic role for mast cells in the skin, as many mast cell-derived mediators stimulate fibroblast activity and studies generally indicate higher numbers of mast cells and/or mast cell activation in scars and fibrotic skin. However, some studies in mast cell-deficient mice have suggested that these cells may not play a critical role in cutaneous scarring/fibrosis. Here, we will review the data for and against mast cells as key regulators of skin fibrosis and discuss scientific gaps in the field.
Collapse
|
38
|
Jiménez M, Muñoz FC, Cervantes-García D, Cervantes MM, Hernández-Mercado A, Barrón-García B, Moreno Hernández-Duque JL, Rodríguez-Carlos A, Rivas-Santiago B, Salinas E. Protective Effect of Glycomacropeptide on the Atopic Dermatitis-Like Dysfunctional Skin Barrier in Rats. J Med Food 2020; 23:1216-1224. [DOI: 10.1089/jmf.2019.0247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Mariela Jiménez
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
| | - Fabiola C. Muñoz
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
| | - Daniel Cervantes-García
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
- National Council of Science and Technology, Mexico City, México
| | - Maritza M. Cervantes
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
| | | | - Berenice Barrón-García
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
| | | | - Adrián Rodríguez-Carlos
- Medical Research Unit from Zacatecas, Mexican Institute of Social Security, Zacatecas, México
| | - Bruno Rivas-Santiago
- Medical Research Unit from Zacatecas, Mexican Institute of Social Security, Zacatecas, México
| | - Eva Salinas
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
| |
Collapse
|
39
|
Fallet B, Walker UA. Current immunosuppressive and antifibrotic therapies of systemic sclerosis and emerging therapeutic strategies. Expert Rev Clin Pharmacol 2020; 13:1203-1218. [PMID: 33008265 DOI: 10.1080/17512433.2020.1832466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a rare, difficult to treat disease with profound effects on quality of life and high mortality. Complex and incompletely understood pathophysiologic processes and greatly heterogeneous clinical presentations and outcomes have hampered drug development. AREAS COVERED This review summarizes the currently available immunosuppressive and antifibrotic therapies and discusses novel approaches for the treatment of SSc. We reviewed the literature using the MEDLINE and ClinicalTrial.gov databases between May and September 2020. EXPERT OPINION Available immunosuppressive and antifibrotic drugs only modestly impact the course of the disease. Most drugs are currently only investigated in the subset of patients with early diffuse cutaneous SSc. In this patient population, hematopoietic stem-cell transplantation is currently the only treatment that has demonstrated reversal of lung involvement, enhanced quality of life and reduced long-term mortality, but carries the risk of short-term treatment-related mortality. A great need to provide better therapeutic options to patients exists also for those patients who have limited cutaneous skin involvement. A better understanding of SSc pathophysiology has enabled the identification of numerous new therapeutic targets. The progress made in the design of clinical trials and outcome parameters will likely result in the improvement of effective management options.
Collapse
Affiliation(s)
- Bénédict Fallet
- Department of Rheumatology, University Hospital Basel , Basel, Switzerland
| | - Ulrich A Walker
- Department of Rheumatology, University Hospital Basel , Basel, Switzerland
| |
Collapse
|
40
|
Thomas TP, Grisanti LA. The Dynamic Interplay Between Cardiac Inflammation and Fibrosis. Front Physiol 2020; 11:529075. [PMID: 33041853 PMCID: PMC7522448 DOI: 10.3389/fphys.2020.529075] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Heart failure is a leading cause of death worldwide. While there are multiple etiologies contributing to the development of heart failure, all cause result in impairments in cardiac function that is characterized by changes in cardiac remodeling and compliance. Fibrosis is associated with nearly all forms of heart failure and is an important contributor to disease pathogenesis. Inflammation also plays a critical role in the heart and there is a large degree of interconnectedness between the inflammatory and fibrotic response. This review discusses the cellular and molecular mechanisms contributing to inflammation and fibrosis and the interplay between the two.
Collapse
Affiliation(s)
- Toby P Thomas
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
41
|
Yang B, Zhang G, Elias M, Zhu Y, Wang J. The role of cytokine and immune responses in intestinal fibrosis. J Dig Dis 2020; 21:308-314. [PMID: 32410365 DOI: 10.1111/1751-2980.12879] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/11/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
The rapidly increasing incidence of inflammatory bowel disease (IBD) in South America, eastern Europe, Asia, and Africa has resulted in a global public health challenge. Intestinal fibrosis is a common complication in patients with long-term IBD, which may develop into stenosis and subsequent obstruction. Hitherto, the origin of IBD is unclear and several factors may be involved, including genetic, immune, environmental and microbial influences. Little is known about how the recurrent inflammation in patients with IBD develops into intestinal fibrosis and currently, there is no suitable treatment to reverse intestinal fibrosis in these patients. Here, we review the role of immune components in the pathogenesis of IBD and intestinal fibrosis, including cytokine networks, host-microbiome interactions, and immune cell trafficking.
Collapse
Affiliation(s)
- Bo Yang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ge Zhang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yijun Zhu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.,Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jie Wang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
42
|
Nguyen JK, Austin E, Huang A, Mamalis A, Jagdeo J. The IL-4/IL-13 axis in skin fibrosis and scarring: mechanistic concepts and therapeutic targets. Arch Dermatol Res 2020; 312:81-92. [PMID: 31493000 PMCID: PMC7008089 DOI: 10.1007/s00403-019-01972-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/22/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023]
Abstract
Skin fibrosis, characterized by excessive fibroblast proliferation and extracellular matrix deposition in the dermis, is the histopathologic hallmark of dermatologic diseases such as systemic sclerosis, hypertrophic scars, and keloids. Effective anti-scarring therapeutics remain an unmet need, underscoring the complex pathophysiologic mechanisms of skin fibrosis. The Th2 cytokines interleukin (IL)-4 and IL-13 have been implicated as key mediators in the pathogenesis of fibroproliferative disorders. The goal of this article is to summarize the current understanding of the role of the IL-4/IL-13 axis in wound healing and skin fibrosis. We conducted a literature search to identify research studies investigating the roles of IL-4 and IL-13 in fibrotic skin diseases. While transforming growth factor-beta has long been regarded as the main driver of fibrotic processes, research into the cellular and molecular biology of wound healing has revealed other pathways that promote scar tissue formation. IL-4 and IL-13 are important mediators of skin fibrosis, supported by evidence from in vitro data, animal models of fibrosis, and clinical studies. Overactive signaling of the IL-4/IL-13 axis contributes to the initiation and perpetuation of fibrotic skin diseases. Further insights into the IL-4/IL-13 axis may reveal potential targets for the development of novel therapies that prevent or treat fibrotic skin diseases.
Collapse
Affiliation(s)
- Julie K Nguyen
- Department of Dermatology, SUNY Downstate Medical Center, 450 Clarkson Avenue MSC 46, Brooklyn, NY, 11203, USA
| | - Evan Austin
- Department of Dermatology, SUNY Downstate Medical Center, 450 Clarkson Avenue MSC 46, Brooklyn, NY, 11203, USA
| | - Alisen Huang
- Department of Dermatology, SUNY Downstate Medical Center, 450 Clarkson Avenue MSC 46, Brooklyn, NY, 11203, USA
| | - Andrew Mamalis
- Department of Dermatology, SUNY Downstate Medical Center, 450 Clarkson Avenue MSC 46, Brooklyn, NY, 11203, USA
| | - Jared Jagdeo
- Department of Dermatology, SUNY Downstate Medical Center, 450 Clarkson Avenue MSC 46, Brooklyn, NY, 11203, USA.
- Dermatology Service, VA New York Harbor Healthcare System, Brooklyn, NY, USA.
| |
Collapse
|
43
|
El Ayadi A, Jay JW, Prasai A. Current Approaches Targeting the Wound Healing Phases to Attenuate Fibrosis and Scarring. Int J Mol Sci 2020; 21:ijms21031105. [PMID: 32046094 PMCID: PMC7037118 DOI: 10.3390/ijms21031105] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cutaneous fibrosis results from suboptimal wound healing following significant tissue injury such as severe burns, trauma, and major surgeries. Pathologic skin fibrosis results in scars that are disfiguring, limit normal movement, and prevent patient recovery and reintegration into society. While various therapeutic strategies have been used to accelerate wound healing and decrease the incidence of scarring, recent studies have targeted the molecular regulators of each phase of wound healing, including the inflammatory, proliferative, and remodeling phases. Here, we reviewed the most recent literature elucidating molecular pathways that can be targeted to reduce fibrosis with a particular focus on post-burn scarring. Current research targeting inflammatory mediators, the epithelial to mesenchymal transition, and regulators of myofibroblast differentiation shows promising results. However, a multimodal approach addressing all three phases of wound healing may provide the best therapeutic outcome.
Collapse
|
44
|
Alexander H, Paller AS, Traidl-Hoffmann C, Beck LA, De Benedetto A, Dhar S, Girolomoni G, Irvine AD, Spuls P, Su J, Thyssen JP, Vestergaard C, Werfel T, Wollenberg A, Deleuran M, Flohr C. The role of bacterial skin infections in atopic dermatitis: expert statement and review from the International Eczema Council Skin Infection Group. Br J Dermatol 2019; 182:1331-1342. [PMID: 31677162 PMCID: PMC7317931 DOI: 10.1111/bjd.18643] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/27/2022]
Abstract
Patients with atopic dermatitis (AD) have an increased risk of bacterial skin infections, which cause significant morbidity and, if untreated, may become systemic. Staphylococcus aureus colonizes the skin of most patients with AD and is the most common organism to cause infections. Overt bacterial infection is easily recognized by the appearance of weeping lesions, honey‐coloured crusts and pustules. However, the wide variability in clinical presentation of bacterial infection in AD and the inherent features of AD – cutaneous erythema and warmth, oozing associated with oedema, and regional lymphadenopathy – overlap with those of infection, making clinical diagnosis challenging. Furthermore, some features may be masked because of anatomical site‐ and skin‐type‐specific features, and the high frequency of S. aureus colonization in AD makes positive skin swab culture of suspected infection unreliable as a diagnostic tool. The host mechanisms and microbial virulence factors that underlie S. aureus colonization and infection in AD are incompletely understood. The aim of this article is to present the latest evidence from animal and human studies, including recent microbiome research, to define the clinical features of bacterial infections in AD, and to summarize our current understanding of the host and bacterial factors that influence microbial colonization and virulence.
Collapse
Affiliation(s)
- H Alexander
- Unit for Population-Based Dermatology Research, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 7EH, U.K
| | - A S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, U.S.A
| | - C Traidl-Hoffmann
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Augsburg, Germany.,CK-CARE, Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - L A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | - A De Benedetto
- Department of Dermatology, College of Medicine, University of Florida, Gainesville, FL, U.S.A
| | - S Dhar
- Department of Pediatric Dermatology, Institute of Child Health, Kolkata, India
| | - G Girolomoni
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, Verona, Italy
| | - A D Irvine
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland.,Dermatology, Children's Health Ireland, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - P Spuls
- Department of Dermatology, Amsterdam Public Health, Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - J Su
- Departments of Dermatology and Paediatrics, Murdoch Children's Research Institute, University of Melbourne and Monash University, Eastern Health, Melbourne, VIC, Australia
| | - J P Thyssen
- Department of Dermatology and Allergy, Herlev-Gentofte Hospital, Hellerup, Denmark
| | - C Vestergaard
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - T Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - A Wollenberg
- Department of Dermatology and Allergology, Ludwig Maximilian University, Munich, Germany
| | - M Deleuran
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - C Flohr
- Unit for Population-Based Dermatology Research, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 7EH, U.K
| |
Collapse
|
45
|
Fifty-Two-Week Results of Clinical and Imaging Assessments of a Patient with Rheumatoid Arthritis Complicated by Systemic Sclerosis with Interstitial Pneumonia and Type 1 Diabetes despite Multiple Disease-Modifying Antirheumatic Drug Therapy That Was Successfully Treated with Baricitinib: A Novel Case Report. Case Rep Rheumatol 2019; 2019:5293981. [PMID: 31360575 PMCID: PMC6652034 DOI: 10.1155/2019/5293981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/09/2019] [Indexed: 01/14/2023] Open
Abstract
Baricitinib is a Janus kinase 1/2 (JAK1/2) inhibitor used in the treatment of rheumatoid arthritis. A 71-year-old woman with rheumatoid arthritis complicated by systemic sclerosis and type 1 diabetes that were resistant to multiple disease-modifying antirheumatic drugs started treatment with baricitinib. After baricitinib administration, the disease activity of her rheumatoid arthritis was attenuated from the early stage of treatment, and the effect was maintained for up to 52 weeks. In addition, the skin sclerosis in systemic sclerosis showed an improvement. Regarding the influence on type 1 diabetes, the required daily dose of insulin and hemoglobin A1c (HbA1c) levels decreased. To date, no studies have demonstrated the effectiveness of baricitinib on systemic sclerosis or type 1 diabetes. We report that baricitinib was effective for systemic sclerosis and type 1 diabetes, as well as for rheumatoid arthritis, for up to 52 weeks.
Collapse
|
46
|
Kulminski AM, Loika Y, Huang J, Arbeev KG, Bagley O, Ukraintseva S, Yashin AI, Culminskaya I. Pleiotropic Meta-Analysis of Age-Related Phenotypes Addressing Evolutionary Uncertainty in Their Molecular Mechanisms. Front Genet 2019; 10:433. [PMID: 31134135 PMCID: PMC6524409 DOI: 10.3389/fgene.2019.00433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Age-related phenotypes are characterized by genetic heterogeneity attributed to an uncertain role of evolution in establishing their molecular mechanisms. Here, we performed univariate and pleiotropic meta-analyses of 24 age-related phenotypes dealing with such evolutionary uncertainty and leveraging longitudinal information. Our analysis identified 237 novel single nucleotide polymorphisms (SNPs) in 199 loci with phenotype-specific (61 SNPs) and pleiotropic (176 SNPs) associations and replicated associations for 160 SNPs in 68 loci in a modest sample of 26,371 individuals from five longitudinal studies. Most pleiotropic associations (65.3%, 115 of 176 SNPs) were impacted by heterogeneity, with the natural-selection—free genetic heterogeneity as its inevitable component. This pleiotropic heterogeneity was dominated (93%, 107 of 115 SNPs) by antagonistic genetic heterogeneity, a phenomenon that is characterized by antagonistic directions of genetic effects for directly correlated phenotypes. Genetic association studies of age-related phenotypes addressing the evolutionary uncertainty in establishing their molecular mechanisms have power to substantially improve the efficiency of the analyses. A dominant form of heterogeneous pleiotropy, antagonistic genetic heterogeneity, provides unprecedented insight into the genetic origin of age-related phenotypes and side effects in medical care that is counter-intuitive in medical genetics but naturally expected when molecular mechanisms of age-related phenotypes are not due to direct evolutionary selection.
Collapse
Affiliation(s)
- Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Jian Huang
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Konstantin G Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Anatoliy I Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| |
Collapse
|
47
|
Jürgensen HJ, Silva LM, Krigslund O, van Putten S, Madsen DH, Behrendt N, Engelholm LH, Bugge TH. CCL2/MCP-1 signaling drives extracellular matrix turnover by diverse macrophage subsets. Matrix Biol Plus 2019; 1:100003. [PMID: 33543002 PMCID: PMC7852312 DOI: 10.1016/j.mbplus.2019.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Macrophage plasticity, cellular origin, and phenotypic heterogeneity are perpetual challenges for studies addressing the biology of this pivotal immune cell in development, homeostasis, and tissue remodeling/repair. Consequently, a myriad of macrophage subtypes has been described in these contexts. To facilitate the identification of functional macrophage subtypes in vivo, here we used a flow cytometry-based assay that allows for detailed phenotyping of macrophages engaged in extracellular matrix (ECM) degradation. Of the five macrophage subtypes identified in the remodeling dermis by using this assay, collagen degradation was primarily executed by Ly6C−CCR2+ and Ly6C−CCR2low macrophages via mannose receptor-dependent collagen endocytosis, while Ly6C+CCR2+ macrophages were the dominant fibrin-endocytosing cells. Unexpectedly, the CCL2/MCP1-CCR2 signaling axis was critical for both collagen and fibrin degradation, while collagen degradation was independent of IL-4Ra signaling. Furthermore, the cytokine GM-CSF selectively enhanced collagen degradation by Ly6C+CCR2+ macrophages. This study reveals distinct subsets of macrophages engaged in ECM turnover and identifies novel wound healing-associated functions for CCL2 and GM-CSF inflammatory cytokines. Phenotypically diverse subsets of dermal macrophages undertake the degradation of extracellular matrix C-C motif chemokine Ligand 2 (CCL2) signaling is critical for macrophage-mediated endocytosis of collagen and fibrin. Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) and Interleukin (IL)-13 stimulate collagen endocytosis. The wound healing-associated IL4-IL4 Receptor a (IL4Ra) signaling is dispensable for collagen endocytosis by macrophages. The mannose receptor is the principal endocytic collagen receptor utilized by resident dermal macrophages.
Collapse
Key Words
- AF, Alexa Fluor
- CCL2/MCP-1, chemokine (C-C motif) ligand 2/monocyte chemoattractant protein 1
- CCR2, C-C chemokine receptor type 2
- CEMS, collagen-endocytosing macrophages
- Collagen degradation
- ECM, extracellular matrix
- Extracellular matrix endocytosis
- FEMS, fibrin-endocytosing macrophages
- FMO, fluorescence minus one
- Fibrin degradation
- GM-CSF, Granulocyte Macrophage-Colony Stimulating Factor
- GM-CSFR, GM-CSF Receptor
- IL, Interleukin
- IL4Ra, IL4 Receptor a
- Interleukin-13
- M-CSF, Macrophage-Colony Stimulating Factor
- MR, mannose receptor/CD206
- Mannose receptor/CD206
- Plg, plasminogen
- RFP, red fluorescent protein
- uPARAP, urokinase plasminogen activator receptor associated protein/Endo180
- uPARAP/Endo180
Collapse
Affiliation(s)
- Henrik J. Jürgensen
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
- Finsen Laboratory, Rigshospitalet/BRIC, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen N, Denmark
| | - Lakmali M. Silva
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
- Oral Inflammation and Immunity Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Oliver Krigslund
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
- Finsen Laboratory, Rigshospitalet/BRIC, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen N, Denmark
| | - Sander van Putten
- Finsen Laboratory, Rigshospitalet/BRIC, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen N, Denmark
| | - Daniel H. Madsen
- Finsen Laboratory, Rigshospitalet/BRIC, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen N, Denmark
- Center for Cancer Immune Therapy (CCIT), Department of Haematology, Herlev Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
- Department of Oncology, Herlev Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/BRIC, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen N, Denmark
| | - Lars H. Engelholm
- Finsen Laboratory, Rigshospitalet/BRIC, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen N, Denmark
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
- Corresponding author at: Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 211, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Kano M, Kobayashi T, Date M, Tennichi M, Hamaguchi Y, Strasser DS, Takehara K, Matsushita T. Attenuation of murine sclerodermatous models by the selective S1P 1 receptor modulator cenerimod. Sci Rep 2019; 9:658. [PMID: 30679645 PMCID: PMC6345830 DOI: 10.1038/s41598-018-37074-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a lipid mediator, regulates lymphocyte migration between lymphoid tissue and blood. Furthermore, S1P participates in several physiological phenomena including angiogenesis, inflammation, immune regulation, and neurotransmitter release. Moreover, S1P/S1P receptor signaling involves in systemic sclerosis (SSc) pathogenesis. This study aimed to investigate whether the selective S1P1 receptor modulator cenerimod attenuates murine sclerodermatous models. Cenerimod was orally administered to murine sclerodermatous chronic graft versus host disease (Scl-cGVHD) mice, either from day 0 to 42 or day 22 to 42 after bone marrow transplantation. Bleomycin-induced SSc model mice were administered cenerimod from day 0 to 28. Early cenerimod administration inhibited, and delayed cenerimod administration attenuated skin and lung fibrosis in Scl-cGVHD mice. Cenerimod suppressed the infiltration of CD4+ T cells, CD8+ T cells, and CD11b+ cells into the inflamed skin of Scl-cGVHD mice as opposed to control mice. In contrast, cenerimod increased the frequency of regulatory T cells in the spleen and skin of Scl-cGVHD mice. Additionally, cenerimod attenuated the mRNA expression of extracellular matrix and fibrogenic cytokines in the skin. Furthermore, cenerimod attenuated bleomycin-induced fibrosis in the skin and lung. Hence, the selective S1P1 receptor modulator cenerimod is a promising candidate for treating patients with SSc and Scl-cGVHD.
Collapse
Affiliation(s)
- Miyu Kano
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Tadahiro Kobayashi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Mutsumi Date
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Momoko Tennichi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Daniel S Strasser
- Idorsia Pharmaceuticals Ltd., Drug Discovery, Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan.
| |
Collapse
|
49
|
Abstract
Fibrosis is a medical condition characterized by an excessive deposition of extracellular matrix compounds such as collagen in tissues. Fibrotic lesions are present in many diseases and can affect all organs. The excessive extracellular matrix accumulation in these conditions can often have serious consequences and in many cases be life-threatening. A typical event seen in many fibrotic conditions is a profound accumulation of mast cells (MCs), suggesting that these cells can contribute to the pathology. Indeed, there is now substantialv evidence pointing to an important role of MCs in fibrotic disease. However, investigations from various clinical settings and different animal models have arrived at partly contradictory conclusions as to how MCs affect fibrosis, with many studies suggesting a detrimental role of MCs whereas others suggest that MCs can be protective. Here, we review the current knowledge of how MCs can affect fibrosis.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
50
|
Brown M, O'Reilly S. The immunopathogenesis of fibrosis in systemic sclerosis. Clin Exp Immunol 2018; 195:310-321. [PMID: 30430560 DOI: 10.1111/cei.13238] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis (SSc) is an idiopathic systemic autoimmune disease. It is characterized by a triad of hallmarks: immune dysfunction, fibrosis and vasculopathy. Immune dysfunction in SSc is characterized by the activation and recruitment of immune cells and the production of autoantibodies and cytokines. How immune abnormalities link the fibrosis and vasculopathy in SSc is poorly understood. A plethora of immune cell types are implicated in the immunopathogenesis of SSc, including T cells, B cells, dendritic cells, mast cells and macrophages. How these different cell types interact to contribute to SSc is complicated, and can involve cell-to-cell interactions and communication via cytokines, including transforming growth factor (TGF)-β, interleukin (IL)-6 and IL-4. We will attempt to review significant and recent research demonstrating the importance of immune cell regulation in the immunopathogenesis of SSc with a particular focus on fibrosis.
Collapse
Affiliation(s)
- M Brown
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - S O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|