1
|
Habibi A, Ruf W, Schurgers L. Protease-activated receptors in vascular smooth muscle cells: a bridge between thrombo-inflammation and vascular remodelling. Cell Commun Signal 2025; 23:57. [PMID: 39891111 PMCID: PMC11786455 DOI: 10.1186/s12964-025-02066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025] Open
Abstract
Coagulation factors are responsible for blood clot formation yet have also non-canonical functions as signalling molecules. In this context, they can activate protease-activated receptors (PARs) ubiquitously expressed in the vasculature. During vascular repair, vascular smooth muscle cells (VSMCs) will switch from a contractile to a synthetic reparative phenotype. During prolonged vascular stress, VSMCs acquire a pathological phenotype leading to cardiovascular disease. Activated coagulation factors impact on vessel wall permeability and integrity after vascular injury with a key role for PAR activation on endothelial cells. The activation of PARs on VSMCs supports vessel wall repair following injury. Prolonged PAR activation, however, results in pathological vascular remodelling. Therefore, understanding the mechanisms of PAR activation on VSMCs is key to propel our understanding of the molecular and cellular mechanisms to develop novel therapeutic strategies to resolve vascular remodelling.In this review, we discuss recent advances on the role of PAR signalling on VSMCs and specifically their role in vascular remodelling contributing to cardiovascular disease. Additionally, we discuss current therapeutic strategies targeting PAR signalling - indirectly or directly - in relation to cardiovascular disease.
Collapse
Affiliation(s)
- Anxhela Habibi
- Department of Biochemistry, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
- Center for Thrombosis and Hemostasis, Johannes-Gutenberg-University Medical Center Mainz, Mainz, Germany.
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes-Gutenberg-University Medical Center Mainz, Mainz, Germany
| | - Leon Schurgers
- Department of Biochemistry, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Noone D, Preston RJS, Rehill AM. The Role of Myeloid Cells in Thromboinflammatory Disease. Semin Thromb Hemost 2024; 50:998-1011. [PMID: 38547918 DOI: 10.1055/s-0044-1782660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Inflammation contributes to the development of thrombosis, but the mechanistic basis for this association remains poorly understood. Innate immune responses and coagulation pathways are activated in parallel following infection or injury, and represent an important host defense mechanism to limit pathogen spread in the bloodstream. However, dysregulated proinflammatory activity is implicated in the progression of venous thromboembolism and arterial thrombosis. In this review, we focus on the role of myeloid cells in propagating thromboinflammation in acute inflammatory conditions, such as sepsis and coronavirus disease 2019 (COVID-19), and chronic inflammatory conditions, such as obesity, atherosclerosis, and inflammatory bowel disease. Myeloid cells are considered key drivers of thromboinflammation via upregulated tissue factor activity, formation of neutrophil extracellular traps (NETs), contact pathway activation, and aberrant coagulation factor-mediated protease-activated receptor (PAR) signaling. We discuss how strategies to target the intersection between myeloid cell-mediated inflammation and activation of blood coagulation represent an exciting new approach to combat immunothrombosis. Specifically, repurposed anti-inflammatory drugs, immunometabolic regulators, and NETosis inhibitors present opportunities that have the potential to dampen immunothrombotic activity without interfering with hemostasis. Such therapies could have far-reaching benefits for patient care across many thromboinflammatory conditions.
Collapse
Affiliation(s)
- David Noone
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Aisling M Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| |
Collapse
|
3
|
Al-Saidi A, Alzaim IF, Hammoud SH, Al Arab G, Abdalla S, Mougharbil N, Eid AH, El-Yazbi AF. Interruption of perivascular and perirenal adipose tissue thromboinflammation rescues prediabetic cardioautonomic and renovascular deterioration. Clin Sci (Lond) 2024; 138:289-308. [PMID: 38381744 DOI: 10.1042/cs20231186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
The cardiovascular and renovascular complications of metabolic deterioration are associated with localized adipose tissue dysfunction. We have previously demonstrated that metabolic impairment delineated the heightened vulnerability of both the perivascular (PVAT) and perirenal adipose tissue (PRAT) depots to hypoxia and inflammation, predisposing to cardioautonomic, vascular and renal deterioration. Interventions either addressing underlying metabolic disturbances or halting adipose tissue dysfunction rescued the observed pathological and functional manifestations. Several lines of evidence implicate adipose tissue thromboinflammation, which entails the activation of the proinflammatory properties of the blood clotting cascade, in the pathogenesis of metabolic and cardiovascular diseases. Despite offering valuable tools to interrupt the thromboinflammatory cycle, there exists a significant knowledge gap regarding the potential pleiotropic effects of anticoagulant drugs on adipose inflammation and cardiovascular function. As such, a systemic investigation of the consequences of PVAT and PRAT thromboinflammation and its interruption in the context of metabolic disease has not been attempted. Here, using an established prediabetic rat model, we demonstrate that metabolic disturbances are associated with PVAT and PRAT thromboinflammation in addition to cardioautonomic, vascular and renal functional decline. Administration of rivaroxaban, a FXa inhibitor, reduced PVAT and PRAT thromboinflammation and ameliorated the cardioautonomic, vascular and renal deterioration associated with prediabetes. Our present work outlines the involvement of PVAT and PRAT thromboinflammation during early metabolic derangement and offers novel perspectives into targeting adipose tissue thrombo-inflammatory pathways for the management its complications in future translational efforts.
Collapse
Affiliation(s)
- Aya Al-Saidi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ibrahim F Alzaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Safaa H Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Ghida Al Arab
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samaya Abdalla
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nahed Mougharbil
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ahmed F El-Yazbi
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy and Research and Innovation Hub, Alamein International University, Alamein, Matrouh, Egypt
| |
Collapse
|
4
|
O'Donnell JS, Fleming H, Noone D, Preston RJS. Unraveling coagulation factor-mediated cellular signaling. J Thromb Haemost 2023; 21:3342-3353. [PMID: 37391097 DOI: 10.1016/j.jtha.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
Blood coagulation is initiated in response to blood vessel injury or proinflammatory stimuli, which activate coagulation factors to coordinate complex biochemical and cellular responses necessary for clot formation. In addition to these critical physiologic functions, plasma protein factors activated during coagulation mediate a spectrum of signaling responses via receptor-binding interactions on different cell types. In this review, we describe examples and mechanisms of coagulation factor signaling. We detail the molecular basis for cell signaling mediated by coagulation factor proteases via the protease-activated receptor family, considering new insights into the role of protease-specific cleavage sites, cofactor and coreceptor interactions, and distinct signaling intermediate interactions in shaping protease-activated receptor signaling diversity. Moreover, we discuss examples of how injury-dependent conformational activation of other coagulation proteins, such as fibrin(ogen) and von Willebrand factor, decrypts their signaling potential, unlocking their capacity to contribute to aberrant proinflammatory signaling. Finally, we consider the role of coagulation factor signaling in disease development and the status of pharmacologic approaches to either attenuate or enhance coagulation factor signaling for therapeutic benefit, emphasizing new approaches to inhibit deleterious coagulation factor signaling without impacting hemostatic activity.
Collapse
Affiliation(s)
- James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland, Crumlin, Dublin, Ireland. https://twitter.com/profJSOdonnell
| | - Harry Fleming
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. https://www.twitter.com/PrestonLab_RCSI
| | - David Noone
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. https://www.twitter.com/PrestonLab_RCSI
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland, Crumlin, Dublin, Ireland.
| |
Collapse
|
5
|
Cauwenberghs N, Verheyen A, Sabovčik F, Ntalianis E, Vanassche T, Brguljan J, Kuznetsova T. Serum proteomic profiling of carotid arteriopathy: A population outcome study. Atherosclerosis 2023; 385:117331. [PMID: 37879154 DOI: 10.1016/j.atherosclerosis.2023.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND AND AIMS Circulating proteins reflecting subclinical vascular disease may improve prediction of atherosclerotic cardiovascular disease (ASCVD). We applied feature selection and unsupervised clustering on proteomic data to identify proteins associated with carotid arteriopathy and construct a protein-based classifier for ASCVD event prediction. METHODS 491 community-dwelling participants (mean age, 58 ± 11 years; 51 % women) underwent carotid ultrasonography and proteomic profiling (CVD II panel, Olink Proteomics). ASCVD outcome was collected (median follow-up time: 10.2 years). We applied partial least squares (PLS) to identify proteins linked to carotid intima-media thickness (cIMT). Next, we assessed the association between future ASCVD events and protein-based phenogroups derived by unsupervised clustering (Gaussian Mixture modelling) based on proteins selected in PLS. RESULTS PLS identified 19 proteins as important, which were all associated with cIMT in multivariable-adjusted linear regression. 8 of the 19 proteins were excluded from the clustering analysis because of high collinearity. Based on the 11 remaining proteins, the clustering algorithm subdivided the cohort into two phenogroups. Compared to the first phenogroup (n = 177), participants in the second phenogroup (n = 314) presented: i) a more unfavorable lipid profile with higher total cholesterol and triglycerides and lower HDL cholesterol (p ≤ 0.014); ii) higher cIMT (p = 0.0020); and iii) a significantly higher risk for future ASCVD events (multivariable-adjusted hazard ratio (95 % CI) versus phenogroup 1: 2.05 (1.26-3.52); p = 0.0093). The protein-based phenogrouping supplemented ACC/AHA 10-year ASCVD risk scoring for prediction of a first ASCVD event. CONCLUSIONS Focused protein-based phenogrouping identified individuals at high risk for future ASCVD and may complement current risk stratification strategies.
Collapse
Affiliation(s)
- Nicholas Cauwenberghs
- Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Belgium.
| | - Astrid Verheyen
- Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - František Sabovčik
- Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Evangelos Ntalianis
- Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Thomas Vanassche
- Division of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Jana Brguljan
- Hypertension Department, University Medical Centre Ljubljana, Medical University Ljubljana, Ljubljana, Slovenia
| | - Tatiana Kuznetsova
- Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Belgium
| |
Collapse
|
6
|
Wu Z, Meng P, Guo Y, You W, Wu X, Ye F. Prolonged infusion of bivalirudin after elective percutaneous coronary intervention protects against procedural myocardial injury (a COBER study)-a randomized trial. Sci Rep 2023; 13:6667. [PMID: 37095298 PMCID: PMC10126106 DOI: 10.1038/s41598-023-34008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/22/2023] [Indexed: 04/26/2023] Open
Abstract
Procedural myocardial injury (PMI), which is the most common complication of elective percutaneous coronary intervention (ePCI), is associated with future adverse cardiac events. In this randomized pilot trial, we assessed the effects of prolonged use of the anti-coagulant bivalirudin on PMI after ePCI. Patients undergoing ePCI were randomized into the following two groups: the bivalirudin use during operation group (BUDO, 0.75 mg/kg bolus plus 1.75 mg/kg/h) and the bivalirudin use during and after operation for 4 h (BUDAO, 0.75 mg/kg bolus plus 1.75 mg/kg/h). Blood samples were collected before and 24 h after ePCI (per 8 h). The primary outcome, PMI, was defined as an increase in post-ePCI cardiac troponin I (cTnI) levels of > 1 × 99th% upper reference limit (URL) when the pre-PCI cTnI was normal or a rise in cTnI of > 20% of the baseline value when it was above the 99th percentile URL, but it was stable or falling. Major PMI (MPMI) was defined as a post-ePCI cTnI increase of > 5 × 99th% URL. A total of 330 patients were included (n = 165 per group). The incidences of PMI and MPMI were not significantly higher in the BUDO group than in the BUDAO group (PMI: 115 [69.70%] vs. 102 [61.82%], P = 0.164; MPMI: 81 [49.09%] vs. 70 [42.42%], P = 0.269). However, the absolute change in cTnI levels (calculated as the peak value 24 h post-PCI minus the pre-PCI value) was notably larger in the BUDO group (0.13 [0.03, 1.95]) than in the BUDAO group (0.07 [0.01, 0.61]) (P = 0.045). Moreover, the incidence of bleeding events was similar between the two groups (BUDO: 0 [0.00%]; BUDAO: 2 [1.21%], P = 0.498). Prolonged infusion of bivalirudin for 4 h after ePCI reduces PMI severity without increasing the risk of bleeding.ClinicalTrials.gov.Number: NCT04120961, 09/10/2019.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, China
| | - Peina Meng
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, China
| | - Yajie Guo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, China
| | - Wei You
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, China.
| | - Xiangqi Wu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, China.
| | - Fei Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Rd, Nanjing, 210006, China.
| |
Collapse
|
7
|
Zhang Y, Sun L, Wang X, Zhou Q. Integrative analysis of HASMCs gene expression profile revealed the role of thrombin in the pathogenesis of atherosclerosis. BMC Cardiovasc Disord 2023; 23:191. [PMID: 37046189 PMCID: PMC10091598 DOI: 10.1186/s12872-023-03211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
We explored the effect of thrombin on human aortic smooth muscle cells (HASMCs) and further analyzed its role in the pathogenesis of atherosclerosis (AS). Thrombin-induced differentially expressed genes (DEGs) in HASMCs were identified by analyzing expression profiles from the GEO. Subsequently, enrichment analysis, GSEA, PPI network, and gene-microRNAs networks were interrogated to identify hub genes and associated pathways. Enrichment analysis results indicated that thrombin causes HASMCs to secrete various pro-inflammatory cytokines and chemokines, exacerbating local inflammatory response in AS. Moreover, we identified 9 HUB genes in the PPI network, which are closely related to the inflammatory response and the promotion of the cell cycle. Additionally, we found that thrombin inhibits lipid metabolism and autophagy of HASMCs, potentially contributing to smooth muscle-derived foam cell formation. Our study deepens a mechanistic understanding of the effect of thrombin on HASMCs and provides new insight into treating AS.
Collapse
Affiliation(s)
- Yichen Zhang
- The Second Hospital of Shandong University, Jinan, Shandong Province, China
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lin Sun
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xingsheng Wang
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Qingbo Zhou
- The Second Hospital of Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
8
|
Li W, Osman E, Forssell C, Yuan XM. Protease-Activated Receptor 1 in Human Carotid Atheroma Is Significantly Related to Iron Metabolism, Plaque Vulnerability, and the Patient's Age. Int J Mol Sci 2022; 23:ijms23126363. [PMID: 35742805 PMCID: PMC9223560 DOI: 10.3390/ijms23126363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022] Open
Abstract
(1) Background: Protease-activated receptor 1 (PAR1) has regulatory functions in inflammation, atherogenesis, and atherothrombosis. Chronic iron administration accelerates arterial thrombosis. Intraplaque hemorrhage and hemoglobin catabolism by macrophages are associated with dysregulated iron metabolism and atherosclerotic lesion instability. However, it remains unknown whether expressions of PAR1 in human atherosclerotic lesions are related to plaque severity, accumulation of macrophages, and iron-related proteins. We investigated the expression of PAR1 and its relation to the expression of ferritin and transferrin receptors in human carotid atherosclerotic plaques and then explored potential connections between their expressions, plaque development, and classical risk factors. (2) Methods: Carotid samples from 39 patients (25 males and 14 females) were immunostained with PAR1, macrophages, ferritin, and transferrin receptor. Double immunocytochemistry of PAR1 and ferritin was performed on THP-1 macrophages exposed to iron. (3) Results: PAR1 expression significantly increases with the patient’s age and the progression of human atherosclerotic plaques. Expressions of PAR1 are significantly correlated with the accumulation of CD68-positive macrophages, ferritin, and transferrin receptor 1 (TfR1), and inversely correlated with levels of high-density lipoprotein. In vitro, PAR1 is significantly increased in macrophages exposed to iron, and the expression of PAR1 is colocalized with ferritin expression. (4) Conclusions: PAR1 is significantly related to the progression of human atherosclerotic lesions and the patient’s age. PAR1 is also associated with macrophage infiltration and accumulation of iron metabolic proteins in human atherosclerotic lesions. Cellular iron-mediated induction of PAR1 and its colocalization with ferritin in macrophages may further indicate an important role of cellular iron in atherothrombosis.
Collapse
Affiliation(s)
- Wei Li
- Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
- Correspondence: ; Tel.: +46-0761619736
| | - Ehab Osman
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden; (E.O.); (X.-M.Y.)
| | - Claes Forssell
- Vascular Surgery, Linköping University Hospital, 581 85 Linköping, Sweden;
| | - Xi-Ming Yuan
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden; (E.O.); (X.-M.Y.)
| |
Collapse
|
9
|
Friebel J, Moritz E, Witkowski M, Jakobs K, Strässler E, Dörner A, Steffens D, Puccini M, Lammel S, Glauben R, Nowak F, Kränkel N, Haghikia A, Moos V, Schutheiss HP, Felix SB, Landmesser U, Rauch BH, Rauch U. Pleiotropic Effects of the Protease-Activated Receptor 1 (PAR1) Inhibitor, Vorapaxar, on Atherosclerosis and Vascular Inflammation. Cells 2021; 10:cells10123517. [PMID: 34944024 PMCID: PMC8700178 DOI: 10.3390/cells10123517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Protease-activated receptor 1 (PAR1) and toll-like receptors (TLRs) are inflammatory mediators contributing to atherogenesis and atherothrombosis. Vorapaxar, which selectively antagonizes PAR1-signaling, is an approved, add-on antiplatelet therapy for secondary prevention. The non-hemostatic, platelet-independent, pleiotropic effects of vorapaxar have not yet been studied. METHODS AND RESULTS Cellular targets of PAR1 signaling in the vasculature were identified in three patient cohorts with atherosclerotic disease. Evaluation of plasma biomarkers (n = 190) and gene expression in endomyocardial biopsies (EMBs) (n = 12) revealed that PAR1 expression correlated with endothelial activation and vascular inflammation. PAR1 colocalized with TLR2/4 in human carotid plaques and was associated with TLR2/4 gene transcription in EMBs. In addition, vorapaxar reduced atherosclerotic lesion size in apolipoprotein E-knock out (ApoEko) mice. This reduction was associated with reduced expression of vascular adhesion molecules and TLR2/4 presence, both in isolated murine endothelial cells and the aorta. Thrombin-induced uptake of oxLDL was augmented by additional TLR2/4 stimulation and abrogated by vorapaxar. Plaque-infiltrating pro-inflammatory cells were reduced in vorapaxar-treated ApoEko mice. A shift toward M2 macrophages paralleled a decreased transcription of pro-inflammatory cytokines and chemokines. CONCLUSIONS PAR1 inhibition with vorapaxar may be effective in reducing residual thrombo-inflammatory event risk in patients with atherosclerosis independent of its effect on platelets.
Collapse
Affiliation(s)
- Julian Friebel
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Eileen Moritz
- Center of Drug Absorption and Transport, Institute of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (E.M.); (B.H.R.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany;
| | - Marco Witkowski
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kai Jakobs
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Elisabeth Strässler
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Andrea Dörner
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
| | - Daniel Steffens
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Marianna Puccini
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Stella Lammel
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Rainer Glauben
- Medical Department I, Gastroenterology, Infectious Diseases and Rheumatology, Charité—University Medicine, 12203 Berlin, Germany; (R.G.); (F.N.); (V.M.)
| | - Franziska Nowak
- Medical Department I, Gastroenterology, Infectious Diseases and Rheumatology, Charité—University Medicine, 12203 Berlin, Germany; (R.G.); (F.N.); (V.M.)
| | - Nicolle Kränkel
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Arash Haghikia
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Verena Moos
- Medical Department I, Gastroenterology, Infectious Diseases and Rheumatology, Charité—University Medicine, 12203 Berlin, Germany; (R.G.); (F.N.); (V.M.)
| | | | - Stephan B. Felix
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany;
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Ulf Landmesser
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Bernhard H. Rauch
- Center of Drug Absorption and Transport, Institute of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (E.M.); (B.H.R.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany;
- Department of Human Medicine, Section of Pharmacology and Toxicology, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Ursula Rauch
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513794
| |
Collapse
|
10
|
Abstract
The serine protease thrombin, a naturally derived enzyme, plays a key role in hemostasis by converting fibrinogen to fibrin and activating coagulation factor XIII whereby the fibrin clot is stabilized. Furthermore, thrombin activates platelets through protease-activated receptors on the platelet surface. Conversely, thrombin also exerts anticoagulant effects, enhancing the protein C activity while complexed with thrombomodulin. During recent years, it has become evident that thrombin has significant effects beyond hemostasis, as it contributes also to modulation of the endothelium, promotes inflammation and angiogenesis, and plays a role in tumor progression. Yet, due to the very short half-life and almost immediate inhibition in fluid phase by antithrombin, thrombin itself remains elusive, and only indirect measurement of thrombin generation is possible. This review provides a description of structure and mechanisms of action of thrombin both in physiological and pathological processes. Furthermore, it summarizes laboratory tests that measure in vivo or ex vivo thrombin generation, and presents knowledge on the value of these biomarkers in bleeding disorders, cardiopulmonary bypass surgery, and thromboembolic risk assessment in different patient populations. Finally, this review outlines further perspectives on using thrombin generation biomarkers for research purposes and in clinical practice.
Collapse
Affiliation(s)
- Julie Brogaard Larsen
- Department of Clinical Biochemistry, Thrombosis and Hemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Thrombosis and Hemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
The pleiotropic effects of antithrombotic drugs in the metabolic-cardiovascular-neurodegenerative disease continuum: impact beyond reduced clotting. Clin Sci (Lond) 2021; 135:1015-1051. [PMID: 33881143 DOI: 10.1042/cs20201445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.
Collapse
|
12
|
Liu X, Pan Z. Store-Operated Calcium Entry in the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:303-333. [DOI: 10.1007/978-981-16-4254-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Wang L, Tang C. Targeting Platelet in Atherosclerosis Plaque Formation: Current Knowledge and Future Perspectives. Int J Mol Sci 2020; 21:ijms21249760. [PMID: 33371312 PMCID: PMC7767086 DOI: 10.3390/ijms21249760] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
Besides their role in hemostasis and thrombosis, it has become increasingly clear that platelets are also involved in many other pathological processes of the vascular system, such as atherosclerotic plaque formation. Atherosclerosis is a chronic vascular inflammatory disease, which preferentially develops at sites under disturbed blood flow with low speeds and chaotic directions. Hyperglycemia, hyperlipidemia, and hypertension are all risk factors for atherosclerosis. When the vascular microenvironment changes, platelets can respond quickly to interact with endothelial cells and leukocytes, participating in atherosclerosis. This review discusses the important roles of platelets in the plaque formation under pro-atherogenic factors. Specifically, we discussed the platelet behaviors under disturbed flow, hyperglycemia, and hyperlipidemia conditions. We also summarized the molecular mechanisms involved in vascular inflammation during atherogenesis based on platelet receptors and secretion of inflammatory factors. Finally, we highlighted the studies of platelet migration in atherogenesis. In general, we elaborated an atherogenic role of platelets and the aspects that should be further studied in the future.
Collapse
Affiliation(s)
- Lei Wang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, China;
| | - Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, China;
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215123, China
- Correspondence: ; Tel.: +86-512-6588-0899
| |
Collapse
|
14
|
de Jong H, Bonger KM, Löwik DWPM. Activatable cell-penetrating peptides: 15 years of research. RSC Chem Biol 2020; 1:192-203. [PMID: 34458758 PMCID: PMC8341016 DOI: 10.1039/d0cb00114g] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
An important hurdle for the intracellular delivery of large cargo is the cellular membrane, which protects the cell from exogenous substances. Cell-penetrating peptides (CPPs) can cross this barrier but their use as drug delivery vehicles is hampered by their lack of cell type specificity. Over the past years, several approaches have been explored to control the activity of CPPs that can be primed for cellular uptake. Since the first report on such activatable CPPs (ACPPs) in 2004, various methods of activation have been developed. Here, we provide an overview of the different ACPPs strategies known to date and summarize the benefits, drawbacks, and future directions.
Collapse
Affiliation(s)
- Heleen de Jong
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen The Netherlands
| | - Kimberly M Bonger
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen The Netherlands
| | - Dennis W P M Löwik
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen The Netherlands
| |
Collapse
|
15
|
Kuwabara Y, Tanaka-Ishikawa M, Abe K, Hirano M, Hirooka Y, Tsutsui H, Sunagawa K, Hirano K. Proteinase-activated receptor 1 antagonism ameliorates experimental pulmonary hypertension. Cardiovasc Res 2020; 115:1357-1368. [PMID: 30423156 DOI: 10.1093/cvr/cvy284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/28/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS Pulmonary hypertension (PH) is characterized by progressive increases in pulmonary vascular resistance (PVR). Thrombotic lesions are common pathological findings. The pulmonary artery has a unique property regarding the vasoconstrictive response to thrombin, which is mediated by proteinase-activated receptor 1 (PAR1). We aim to elucidate the role of PAR1 in the development and progression of PH. METHODS AND RESULTS A rat model of monocrotaline-induced PH and a mouse model of hypoxia (Hx)-induced PH were used to investigate the effects of atopaxar (a PAR1 antagonist) and PAR1 knockout on haemodynamic parameters, right ventricular hypertrophy (RVH), vascular remodelling and survival. In perfused lung preparations, the pressor response to PAR1 agonist was significantly augmented in monocrotaline-induced PH. Both the preventive and therapeutic administration of atopaxar significantly inhibited the increase in PVR and the development of RVH and prolonged survival. A real-time PCR revealed that the level of PAR1 mRNA in the pulmonary artery was significantly higher than that in any of the systemic arteries examined in control rats, and the level was significantly up-regulated in monocrotaline-induced PH. PAR1 gene knockout significantly attenuated the haemodynamic and histological findings in the mouse model of Hx-induced PH. CONCLUSION The specific expression of PAR1 in the pulmonary artery and its up-regulation were suggested to play a critical role in the development and progression of experimental PH in murine models. PAR1 is a potential therapeutic target for the treatment of PH.
Collapse
Affiliation(s)
- Yukimitsu Kuwabara
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan.,Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Mariko Tanaka-Ishikawa
- Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan.,Department of Anesthesiology and Critical Care, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Mayumi Hirano
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Kenji Sunagawa
- Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan
| |
Collapse
|
16
|
Comment on "Endothelial Protein C Receptor (EPCR), Protease Activated Receptor-1 (PAR-1) and Their Interplay in Cancer Growth and Metastatic Dissemination" Cancers 2019, 11, 51. Cancers (Basel) 2019; 11:cancers11030374. [PMID: 30884838 PMCID: PMC6468748 DOI: 10.3390/cancers11030374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/25/2019] [Accepted: 03/14/2019] [Indexed: 01/12/2023] Open
|
17
|
Verdecchia P, Reboldi G, Angeli F, Mazzotta G, Lip GYH, Brueckmann M, Kleine E, Wallentin L, Ezekowitz MD, Yusuf S, Connolly SJ, Di Pasquale G. Dabigatran vs. warfarin in relation to the presence of left ventricular hypertrophy in patients with atrial fibrillation- the Randomized Evaluation of Long-term anticoagulation therapY (RE-LY) study. Europace 2018; 20:253-262. [PMID: 28520924 PMCID: PMC5834147 DOI: 10.1093/europace/eux022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/01/2017] [Indexed: 11/12/2022] Open
Abstract
Aim We tested the hypothesis that left ventricular hypertrophy (LVH) interferes with the antithrombotic effects of dabigatran and warfarin in patients with atrial fibrillation (AF). Methods and results This is a post-hoc analysis of the Randomized Evaluation of Long-term anticoagulation therapY (RE-LY) Study. We defined LVH by electrocardiography (ECG) and included patients with AF on the ECG tracing at entry. Hazard ratios (HR) for each dabigatran dose vs. warfarin were calculated in relation to LVH. LVH was present in 2353 (22.7%) out of 10 372 patients. In patients without LVH, the rates of primary outcome were 1.59%/year with warfarin, 1.60% with dabigatran 110 mg (HR vs. warfarin 1.01, 95% confidence interval (CI) 0.75-1.36) and 1.08% with dabigatran 150 mg (HR vs. warfarin 0.68, 95% CI 0.49-0.95). In patients with LVH, the rates of primary outcome were 3.21%/year with warfarin, 1.69% with dabigatran 110 mg (HR vs. warfarin 0.52, 95% CI 0.32-0.84) and 1.55% with 150 mg (HR vs. warfarin 0.48, 95% CI 0.29-0.78). The interaction between LVH status and dabigatran 110 mg vs. warfarin was significant for the primary outcome (P = 0.021) and stroke (P = 0.016). LVH was associated with a higher event rate with warfarin, not with dabigatran. In the warfarin group, the time in therapeutic range was significantly lower in the presence than in the absence of LVH. Conclusions LVH was associated with a lower antithrombotic efficacy of warfarin, but not of dabigatran, in patients with AF. Consequently, the relative benefit of the lower dose of dabigatran compared to warfarin was enhanced in patients with LVH. The higher dose of dabigatran was superior to warfarin regardless of LVH status. Clinical trial registration http:www.clinicaltrials.gov. Unique identifier: NCT00262600.
Collapse
Affiliation(s)
| | | | - Fabio Angeli
- Department of Cardiology and Cardiovascular Pathophysiology, Hospital S.M. della Misericordia, Perugia, Italy
| | | | - Gregory Y H Lip
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Martina Brueckmann
- Boehringer Ingelheim GmbH & Co, Ingelheim am Rhein, Germany.,Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Eva Kleine
- Boehringer Ingelheim GmbH & Co, Ingelheim am Rhein, Germany
| | - Lars Wallentin
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Michael D Ezekowitz
- Sidney Kimmel Medical College at Jefferson University, Philadelphia, PA, USA.,Medical College and Lankenau Medical Center, Wynnewood, PA, USA
| | - Salim Yusuf
- McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
18
|
Lê BV, Jandrot-Perrus M, Couture C, Checkmahomed L, Venable MC, Hamelin MÈ, Boivin G. Evaluation of anticoagulant agents for the treatment of human metapneumovirus infection in mice. J Gen Virol 2018; 99:1367-1380. [PMID: 30102144 DOI: 10.1099/jgv.0.001135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thrombin has been demonstrated to be involved in several viral diseases including human metapneumovirus (hMPV) infections. We previously showed that immediate administration of thrombin inhibitor argatroban post-infection protected mice against hMPV disease. This current work aims at determining whether warfarin and heparin, two other anticoagulants inhibiting thrombin formation and activities, may also be used for treatment against hMPV in vivo. We found that immediate injections of argatroban, warfarin or heparin after virus challenge protected mice against hMPV infection, as evidenced by decreased or no mortality, less weight loss, reduced viral load and attenuated inflammation. However, delayed treatments starting 1 day post-infection with argatroban or warfarin almost did not impact the survival whereas delayed treatment with heparin induced an increased mortality during infection. Moreover, these treatments also did not reduce weight loss, viral replication and inflammation. In agreement with these results, thrombin generation was decreased upon immediate anticoagulant treatments but was unaltered upon delayed treatments. Thus, thrombin generation occurs at the onset of hMPV infection and thrombin inhibition may be only useful for the treatment of this disease when initiated in the early stage. In this case, heparin is not recommended because of its reduced efficacy on mortality in infected mice whereas argatroban and warfarin appear as safe and effective drugs for the treatment of hMPV disease. The antiviral and anti-inflammatory effects of argatroban occur via thrombin-dependent pathways whereas the mechanisms by which warfarin exerts its beneficial effects against hMPV infection were not elucidated and need to be further studied.
Collapse
Affiliation(s)
- Ba Vuong Lê
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | | | - Christian Couture
- 3Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
| | - Liva Checkmahomed
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | | | - Marie-Ève Hamelin
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- 1Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
19
|
Ghali MGZ, Srinivasan VM, Johnson J, Kan P, Britz G. Therapeutically Targeting Platelet-Derived Growth Factor-Mediated Signaling Underlying the Pathogenesis of Subarachnoid Hemorrhage-Related Vasospasm. J Stroke Cerebrovasc Dis 2018; 27:2289-2295. [PMID: 30037648 DOI: 10.1016/j.jstrokecerebrovasdis.2018.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/10/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Vasospasm accounts for a large fraction of the morbidity and mortality burden in patients sustaining subarachnoid hemorrhage (SAH). Platelet-derived growth factor (PDGF)-β levels rise following SAH and correlate with incidence and severity of vasospasm. METHODS The literature was reviewed for studies investigating the role of PDGF in the pathogenesis of SAH-related vasospasm and efficacy of pharmacological interventions targeting the PDGF pathway in ameliorating the same and improving clinical outcomes. RESULTS Release of blood under high pressure into the subarachnoid space activates the complement cascade, which results in release of PDGF. Abluminal contact of blood with cerebral vessels increases their contractile response to PDGF-β and thrombin, with the latter upregulating PDGF-β receptors and augmenting effects of PDGF-β. PDGF-β figures prominently in the early and late phases of post-SAH vasospasm. PDGF-β binding to the PDGF receptor-β results in receptor tyrosine kinase domain activation and consequent stimulation of intracellular signaling pathways, including p38 mitogen-activated protein kinase, phosphatidylinositol-3-kinase, Rho-associated protein kinase, and extracellular regulated kinase 1 and 2. Consequent increases in intracellular calcium and increased expression of genes mediating cellular growth and proliferation mediate PDGF-induced augmentation of vascular smooth muscle cell contractility, hypertrophy, and proliferation. CONCLUSION Treatments with statins, serine protease inhibitors, and small molecular pathway inhibitors have demonstrated varying degrees of efficacy in prevention of cerebral vasospasm, which is improved with earlier institution.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas; Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas.
| | | | - Jeremiah Johnson
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Peter Kan
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Gavin Britz
- Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
20
|
Protease-Activated Receptor 1 Inhibitors: Novel Antiplatelet Drugs in Prevention of Atherothrombosis. Am J Ther 2018; 24:e730-e736. [PMID: 26398717 DOI: 10.1097/mjt.0000000000000347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protease-activated receptor (PAR)-1 inhibitors have recently become popular in the use of atherosclerosis among clinicians. Atherosclerosis can cause cardiovascular and cerebrovascular events leading to one of the major causes of mortality worldwide. Thrombin-mediated platelets can cause atherosclerotic plaques, and these platelets are activated by thrombin through the PAR-1. Vorapaxar and atopaxar are novel antiplatelet drugs that inhibit the thrombin-induced platelet activation by antagonizing the PAR-1. The objective of this article is to review the mechanism of action of vorapaxar and atopaxar and explain the rationale for using them in atherothrombosis patients including myocardial infarction, peripheral arterial disease, and stroke.
Collapse
|
21
|
Bettinger JS. Comparative approximations of criticality in a neural and quantum regime. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 131:445-462. [PMID: 29031703 DOI: 10.1016/j.pbiomolbio.2017.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Under a variety of conditions, stochastic and non-linear systems with many degrees of freedom tend to evolve towards complexity and criticality. Over the last decades, a steady proliferation of models re: far-from-equilibrium thermodynamics of metastable, many-valued systems arose, serving as attributes of a 'critical' attractor landscape. Building off recent data citing trademark aspects of criticality in the brain-including: power-laws, scale-free (1/f) behavior (scale invariance, or scale independence), critical slowing, and avalanches-it has been conjectured that operating at criticality entails functional advantages such as: optimized neural computation and information processing; boosted memory; large dynamical ranges; long-range communication; and an increased ability to react to highly diverse stimuli. In short, critical dynamics provide a necessary condition for neurobiologically significant elements of brain dynamics. Theoretical predictions have been verified in specific models such as Boolean networks, liquid state machines, and neural networks. These findings inspired the neural criticality hypothesis, proposing that the brain operates in a critical state because the associated optimal computational capabilities provide an evolutionarily advantage. This paper develops in three parts: after developing the critical landscape, we will then shift gears to rediscover another inroad to criticality via stochastic quantum field theory and dissipative dynamics. The existence of these two approaches deserves some consideration, given both neural and quantum criticality hypotheses propose specific mechanisms that leverage the same phenomena. This suggests that understanding the quantum approach could help to shed light on brain-based modeling. In the third part, we will turn to Whitehead's actual entities and modes of perception in order to demonstrate a concomitant logic underwriting both models. In the discussion, I briefly motivate a reading of criticality and its properties as responsive to the characterization of tenets from Eastern wisdom traditions.
Collapse
Affiliation(s)
- Jesse Sterling Bettinger
- Johns Hopkins University, Center for Talented Youth, Baltimore, MD, United States; Center for Process Studies, Claremont, CA, United States.
| |
Collapse
|
22
|
Morihara R, Yamashita T, Kono S, Shang J, Nakano Y, Sato K, Hishikawa N, Ohta Y, Heitmeier S, Perzborn E, Abe K. Reduction of intracerebral hemorrhage by rivaroxaban after tPA thrombolysis is associated with downregulation of PAR-1 and PAR-2. J Neurosci Res 2016; 95:1818-1828. [PMID: 28035779 DOI: 10.1002/jnr.24013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/18/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
This study aimed to assess the risk of intracerebral hemorrhage (ICH) after tissue-type plasminogen activator (tPA) treatment in rivaroxaban compared with warfarin-pretreated male Wistar rat brain after ischemia in relation to activation profiles of protease-activated receptor-1, -2, -3, and -4 (PAR-1, -2, -3, and -4). After pretreatment with warfarin (0.2 mg/kg/day), low-dose rivaroxaban (60 mg/kg/day), high-dose rivaroxaban (120 mg/kg/day), or vehicle for 14 days, transient middle cerebral artery occlusion was induced for 90 min, followed by reperfusion with tPA (10 mg/kg/10 ml). Infarct volume, hemorrhagic volume, immunoglobulin G leakage, and blood parameters were examined. Twenty-four hours after reperfusion, immunohistochemistry for PARs was performed in brain sections. ICH volume was increased in the warfarin-pretreated group compared with the rivaroxaban-treated group. PAR-1, -2, -3, and -4 were widely expressed in the normal brain, and their levels were increased in the ischemic brain, especially in the peri-ischemic lesion. Warfarin pretreatment enhanced the expression of PAR-1 and PAR-2 in the peri-ischemic lesion, whereas rivaroxaban pretreatment did not. The present study shows a lower risk of brain hemorrhage in rivaroxaban-pretreated compared with warfarin-pretreated rats following tPA administration to the ischemic brain. It is suggested that the relative downregulation of PAR-1 and PAR-2 by rivaroxaban compared with warfarin pretreatment might be partly involved in the mechanism of reduced hemorrhagic complications in patients receiving rivaroxaban in clinical trials. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryuta Morihara
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Syoichiro Kono
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Jingwei Shang
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Yumiko Nakano
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Kota Sato
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Nozomi Hishikawa
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Yasuyuki Ohta
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Stefan Heitmeier
- Bayer Pharma AG, Drug Discovery-Global Therapeutic Research Groups, Cardiovascular Pharmacology, Wuppertal, Germany
| | - Elisabeth Perzborn
- Bayer Pharma AG, Drug Discovery-Global Therapeutic Research Groups, Cardiovascular Pharmacology, Wuppertal, Germany
| | - Koji Abe
- Departments of Neurology, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| |
Collapse
|
23
|
Rayt HS, Merker L, Davies RSM. Coagulation, Fibrinolysis, and Platelet Activation Following Open Surgical or Percutaneous Angioplasty Revascularization for Symptomatic Lower Limb Chronic Ischemia. Vasc Endovascular Surg 2016; 50:193-201. [DOI: 10.1177/1538574416638759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction: Critical limb ischemia (CLI) is associated with a prothrombotic diathesis that involves a complex balance between the coagulation and fibrinolytic systems. Knowledge of this is essential when considering revascularization procedures but is often overlooked. The aim of this review is to summarize the available literature and provide an overview of the effects of lower limb angioplasty and open surgical revascularization on coagulation, fibrinolysis, and platelet activation. Methods: A MEDLINE and EMBASE search was conducted between 1973 and 2014 for articles relating to the effects of revascularization for patients with CLI on the fibrinolytic and coagulation pathways. Studies with a small cohort of patients (<5) were rejected. Results: Many of the studies included in this analysis had small cohorts. Multiple markers were assessed across the published literature including von Willebrand factor, tissue factor, prothrombin fragments 1 and 2, platelets, soluble platelet selectin, plasminogen activator inhibitor 1, tissue plasminogen activator, and thrombin–antithrombin complex. Percutaneous intervention causes an exaggerated prothrombotic and a disturbed fibrinolytic effect. Surgery seems to cause a similar prothrombotic derangement with reduced fibrinolysis and platelet hyperactivity, but this appears to be maintained for a considerable amount of time postoperatively. Conclusion: There is a sparse amount published on the effects of the coagulation and fibrinolytic systems in patients undergoing intervention for CLI. Much of these studies are small, historical, and completely heterogeneous, making it difficult to draw meaningful conclusions. The literature does identify a prothrombotic state in patients with CLI, which appears to be exacerbated by any form of intervention and prolonged in those having surgery. Understanding this may allow us to tailor the intervention offered to patients and prevent limb loss.
Collapse
Affiliation(s)
- Harjeet S. Rayt
- Department of Vascular Surgery, Leicester Royal Infirmary, Leicester, United Kingdom
| | - L. Merker
- Southmead Hospital, Bristol, United Kingdom
| | - Robert S. M. Davies
- Department of Vascular Surgery, Leicester Royal Infirmary, Leicester, United Kingdom
| |
Collapse
|
24
|
Stavik B, Espada S, Cui XY, Iversen N, Holm S, Mowinkel MC, Halvorsen B, Skretting G, Sandset PM. EPAS1/HIF-2 alpha-mediated downregulation of tissue factor pathway inhibitor leads to a pro-thrombotic potential in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2016; 1862:670-678. [PMID: 26826018 DOI: 10.1016/j.bbadis.2016.01.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/04/2015] [Accepted: 01/24/2016] [Indexed: 12/11/2022]
Abstract
Neovascularization and hemorrhaging are evident in advanced atherosclerotic plaques due to hypoxic conditions, and mediate the accumulation of metabolic substrates, inflammatory cells, lipids, and other blood born factors inside the plaque. Tissue factor (TF) pathway inhibitor (TFPI) is mainly expressed by endothelial cells and is the endogenous inhibitor of the coagulation activator TF, which together with the downstream product thrombin can drive plaque progression and atherogenesis. We aimed to investigate the effect of hypoxic conditions on endothelial cell expression and activity of TFPI and TF that are important in coagulation initiation. Hypoxia was induced in primary human umbilical vein endothelial cells using chemicals or 1% oxygen tension, and mRNA and protein expressions were measured using qRT-PCR, ELISA, and Western blot analysis. Microscopy of fluorescence-labeled cells was used to visualize cell-associated TFPI. Cell-surface factor Xa (FXa) activity was measured using a two-stage chromogenic substrate method. We found that hypoxia reduced the TFPI mRNA and protein levels and increased the TF mRNA expression in a dose-dependent manner. The effect on TFPI was apparent on all the protein pools of TFPI, i.e., secreted TFPI, cell-surface associated TFPI, and intracellular TFPI, and seemed to be dependent upon hypoxia inducible factor-2α (HIF-2α). An increase in FXa activity was also observed on the endothelial cell surface, reflecting an increase in pro-thrombotic potential of the cells. Our findings indicate that hypoxic conditions may enhance the pro-coagulant activity of endothelial cells, which may promote atherogenesis in addition to clinical events and thus the severity of atherosclerotic disorders.
Collapse
Affiliation(s)
- Benedicte Stavik
- Department of Haematology, Oslo University Hospital, Postboks 4950 Nydalen, 0424 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Postboks 4950 Nydalen, 0424 Oslo, Norway.
| | - Sandra Espada
- Department of Haematology, Oslo University Hospital, Postboks 4950 Nydalen, 0424 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Postboks 4950 Nydalen, 0424 Oslo, Norway; Institute of Basic Medical Sciences, University of Oslo, Postboks 1072 Blindern, 0316 Oslo, Norway.
| | - Xue Yan Cui
- Department of Haematology, Oslo University Hospital, Postboks 4950 Nydalen, 0424 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Postboks 4950 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Postboks 1072 Blindern, 0316 Oslo, Norway.
| | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Postboks 4950 Nydalen, 0424 Oslo, Norway.
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital, Postboks 4950 Nydalen, 0424 Oslo, Norway; Hospital for Rheumatic Diseases, Margrethe Grundtvigsvei 6, 2609 Lillehammer, Norway.
| | - Marie-Christine Mowinkel
- Department of Haematology, Oslo University Hospital, Postboks 4950 Nydalen, 0424 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Postboks 4950 Nydalen, 0424 Oslo, Norway.
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Postboks 4950 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Postboks 1072 Blindern, 0316 Oslo, Norway.
| | - Grethe Skretting
- Department of Haematology, Oslo University Hospital, Postboks 4950 Nydalen, 0424 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Postboks 4950 Nydalen, 0424 Oslo, Norway.
| | - Per Morten Sandset
- Department of Haematology, Oslo University Hospital, Postboks 4950 Nydalen, 0424 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Postboks 4950 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Postboks 1072 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
25
|
Jeong JY, Son Y, Kim BY, Eo SK, Rhim BY, Kim K. Multiple Signaling Pathways Contribute to the Thrombin-induced Secretory Phenotype in Vascular Smooth Muscle Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:549-55. [PMID: 26557022 PMCID: PMC4637358 DOI: 10.4196/kjpp.2015.19.6.549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/19/2015] [Accepted: 09/11/2015] [Indexed: 10/29/2022]
Abstract
We attempted to investigate molecular mechanisms underlying phenotypic change of vascular smooth muscle cells (VSMCs) by determining signaling molecules involved in chemokine production. Treatment of human aortic smooth muscle cells (HAoSMCs) with thrombin resulted not only in elevated transcription of the (C-C motif) ligand 11 (CCL11) gene but also in enhanced secretion of CCL11 protein. Co-treatment of HAoSMCs with GF109230X, an inhibitor of protein kinase C, or GW5074, an inhibitor of Raf-1 kinase, caused inhibition of ERK1/2 phosphorylation and significantly attenuated expression of CCL11 at transcriptional and protein levels induced by thrombin. Both Akt phosphorylation and CCL11 expression induced by thrombin were attenuated in the presence of pertussis toxin (PTX), an inhibitor of Gi protein-coupled receptor, or LY294002, a PI3K inhibitor. In addition, thrombin-induced production of CCL11 was significantly attenuated by pharmacological inhibition of Akt or MEK which phosphorylates ERK1/2. These results indicate that thrombin is likely to promote expression of CCL11 via PKC/Raf-1/ERK1/2 and PTX-sensitive protease-activated receptors/PI3K/Akt pathways in HAoSMCs. We propose that multiple signaling pathways are involved in change of VSMCs to a secretory phenotype.
Collapse
Affiliation(s)
- Ji Young Jeong
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Younghae Son
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Bo-Young Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seong-Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Byung-Yong Rhim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
26
|
Althoff TF, Offermanns S. G-protein-mediated signaling in vascular smooth muscle cells — implications for vascular disease. J Mol Med (Berl) 2015; 93:973-81. [DOI: 10.1007/s00109-015-1305-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/14/2015] [Accepted: 06/02/2015] [Indexed: 10/24/2022]
|
27
|
Abstract
Proteinase-activated receptors (PARs) are a family of G protein-coupled receptor that are activated by extracellular cleavage of the receptor in the N-terminal domain. This slicing of the receptor exposes a tethered ligand which binds to a specific docking point on the receptor surface to initiate intracellular signalling. PARs are expressed by numerous tissues in the body, and they are involved in various physiological and pathological processes such as food digestion, tissue remodelling and blood coagulation. This chapter will summarise how serine proteinases activate PARs leading to the development of pain in several chronic pain conditions. The potential of PARs as a drug target for pain relief is also discussed.
Collapse
Affiliation(s)
- Jason J McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management and Perioperative Medicine, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2,
| | | |
Collapse
|
28
|
Alberelli MA, De Candia E. Functional role of protease activated receptors in vascular biology. Vascul Pharmacol 2014; 62:72-81. [PMID: 24924409 DOI: 10.1016/j.vph.2014.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 01/22/2023]
Abstract
Protease activated receptors (PARs) are a small family of G protein-coupled receptors (GPCR) mediating the cellular effects of some proteases of the coagulation system, such as thrombin, or other proteases, such as trypsin or metalloproteinase 1. As the prototype of PARs, PAR1 is a seven transmembrane GPCR that, upon cleavage by thrombin, unmasks a new amino-terminus able to bind intramolecularly to PAR1 itself thus inducing signaling. In the vascular system, thrombin and other proteases of the coagulation-fibrinolysis system, such as plasmin, factor VIIa and factor Xa, activated protein C, are considered physiologically relevant agonists, and PARs appear to largely account for the cellular effects of these enzymes. In the vasculature, PARs are expressed on platelets, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). In the vessel wall, under physiological conditions, PARs are mainly expressed in ECs and participate in the regulation of vascular tone, by inducing endothelium-dependent relaxation. PAR activation on ECs promotes conversion of these cells into a proinflammatory phenotype, causes increase of vascular permeability, and the exposure/secretion of proteins and cytokines mediating the local accumulation of platelets and leukocytes. These effects contribute to the vascular consequences of sepsis and of diseases such as acute lung injury and acute respiratory distress syndrome. In normal arteries PARs are to a much lesser amount expressed on VSMCs. However, in conditions associated with endothelial dysfunction, PARs mediate contraction, proliferation, migration, hypertrophy of VSMCs and their production of extracellular matrix, thereby contributing to the pathophysiology of atherosclerosis and hypertension. Inhibition of protease-PAR interaction might thus become a potential therapeutic target in various vascular diseases.
Collapse
Affiliation(s)
- Maria Adele Alberelli
- Hemostasis and Thrombosis Unit, Department of Internal Medicine, Agostino Gemelli Hospital School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Erica De Candia
- Hemostasis and Thrombosis Unit, Department of Internal Medicine, Agostino Gemelli Hospital School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
29
|
Jiang P, Yu GY, Zhang Y, Xiang Y, Hua HR, Bian L, Wang CY, Lee WH, Zhang Y. Down-regulation of protease-activated receptor 4 in lung adenocarcinoma is associated with a more aggressive phenotype. Asian Pac J Cancer Prev 2014; 14:3793-8. [PMID: 23886184 DOI: 10.7314/apjcp.2013.14.6.3793] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The role of protease-activated receptors (PARs) in lung tumors is controversial. Although PAR4 is preferentially expressed in human lung tissues, its possible significance in lung cancer has not been defined. The studies reported herein used a combination of clinical observations and molecular methods. Surgically resected lung adenocarcinomas and associated adjacent normal lung tissues were collected and BEAS-2B and NCI-H157 cell lines were grown in tissue culture. PAR4 expression was evaluated by RT-PCR, RT-qPCR, Western blotting and immunohistochemistry analysis. The results showed that PAR4 mRNA expression was generally decreased in lung adenocarcinoma tissues as compared with matched noncancerous tissues (67.7%) and was associated with poor differentiation (p=0.017) and metastasis (p=0.04). Western blotting and immunohistochemical analysis also showed that PAR4 protein levels were mostly decreased in lung adenocarcinoma tissues (61.3%), and were also associated with poor differentiation (p=0.035) and clinical stage (p=0.027). Moreover, PAR4 expression was decreased in NCI-H157 cells as compared with BEAS-2B cells. In conclusion, PAR4 expression is significantly decreased in lung adenocarcinoma, and down-regulation of PAR4 is associated with a more clinically aggressive phenotype. PAR4 may acts as a tumor suppressor in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Li H, Zuo X, Ouyang P, Lin M, Zhao Z, Liang Y, Zhong S, Rao S. Identifying functional modules for coronary artery disease by a prior knowledge-based approach. Gene 2013; 537:260-8. [PMID: 24389497 DOI: 10.1016/j.gene.2013.12.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 12/22/2022]
Abstract
Until recently, the underlying genetic mechanisms for coronary artery disease (CAD) have been largely unknown, with just a list of genes identified accounting for very little of the disease in the population. Hence, a systematic dissection of the sophisticated interplays between these individual disease genes and their functional involvements becomes essential. Here, we presented a novel knowledge-based approach to identify the functional modules for CAD. First, we selected 266 disease genes in CADgene database as the initial seed genes, and used PPI knowledge as a guide to expand these genes into a CAD-specific gene network. Then, we used Newman's algorithm to decompose the primary network into 14 compact modules with high modularity. By analysis of these modules, we further identified 114 hub genes, all either directly or indirectly associated with CAD. Finally, by functional analysis of these modules, we revealed several novel pathogenic mechanisms for CAD (for examples, some yet rarely concerned like peptide YY receptor activity, Fc gamma R-mediated phagocytosis and actin cytoskeleton regulation etc.).
Collapse
Affiliation(s)
- Haoli Li
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, School of Public Health, Guangdong Medical College, Dongguan 523808, China
| | - Xiaoyu Zuo
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, School of Public Health, Guangdong Medical College, Dongguan 523808, China; Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ping Ouyang
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, School of Public Health, Guangdong Medical College, Dongguan 523808, China
| | - Meihua Lin
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, School of Public Health, Guangdong Medical College, Dongguan 523808, China
| | - Zhong Zhao
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, School of Public Health, Guangdong Medical College, Dongguan 523808, China; Department of Statistical Sciences, School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Liang
- Department of Internal Cardiovascular Medicine, Maoming People's Hospital, Maoming 525000, China
| | - Shouqiang Zhong
- Department of Internal Cardiovascular Medicine, Maoming People's Hospital, Maoming 525000, China
| | - Shaoqi Rao
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, School of Public Health, Guangdong Medical College, Dongguan 523808, China; Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Statistical Sciences, School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
31
|
|
32
|
Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R. Proteinase-activated receptors (PARs) - focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Commun Signal 2013; 11:86. [PMID: 24215724 PMCID: PMC3842752 DOI: 10.1186/1478-811x-11-86] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/25/2013] [Indexed: 02/07/2023] Open
Abstract
Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease.
Collapse
Affiliation(s)
| | | | | | | | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Drackendorfer Str, 1, D-07747, Jena, Germany.
| |
Collapse
|
33
|
Gadepalli R, Kotla S, Heckle MR, Verma SK, Singh NK, Rao GN. Novel role for p21-activated kinase 2 in thrombin-induced monocyte migration. J Biol Chem 2013; 288:30815-31. [PMID: 24025335 DOI: 10.1074/jbc.m113.463414] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To understand the role of thrombin in inflammation, we tested its effects on migration of THP-1 cells, a human monocytic cell line. Thrombin induced THP-1 cell migration in a dose-dependent manner. Thrombin induced tyrosine phosphorylation of Pyk2, Gab1, and p115 RhoGEF, leading to Rac1- and RhoA-dependent Pak2 activation. Downstream to Pyk2, Gab1 formed a complex with p115 RhoGEF involving their pleckstrin homology domains. Furthermore, inhibition or depletion of Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, or Pak2 levels substantially attenuated thrombin-induced THP-1 cell F-actin cytoskeletal remodeling and migration. Inhibition or depletion of PAR1 also blocked thrombin-induced activation of Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, and Pak2, resulting in diminished THP-1 cell F-actin cytoskeletal remodeling and migration. Similarly, depletion of Gα12 negated thrombin-induced Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, and Pak2 activation, leading to attenuation of THP-1 cell F-actin cytoskeletal remodeling and migration. These novel observations reveal that thrombin induces monocyte/macrophage migration via PAR1-Gα12-dependent Pyk2-mediated Gab1 and p115 RhoGEF interactions, leading to Rac1- and RhoA-targeted Pak2 activation. Thus, these findings provide mechanistic evidence for the role of thrombin and its receptor PAR1 in inflammation.
Collapse
Affiliation(s)
- Ravisekhar Gadepalli
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | | | | | | | | |
Collapse
|
34
|
Austin KM, Nguyen N, Javid G, Covic L, Kuliopulos A. Noncanonical matrix metalloprotease-1-protease-activated receptor-1 signaling triggers vascular smooth muscle cell dedifferentiation and arterial stenosis. J Biol Chem 2013; 288:23105-15. [PMID: 23814055 DOI: 10.1074/jbc.m113.467019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vascular injury that results in proliferation and dedifferentiation of vascular smooth muscle cells (SMCs) is an important contributor to restenosis following percutaneous coronary interventions or plaque rupture. Protease-activated receptor-1 (PAR1) has been shown to play a role in vascular repair processes; however, little is known regarding its function or the relative roles of the upstream proteases thrombin and matrix metalloprotease-1 (MMP-1) in triggering PAR1-mediated arterial restenosis. The goal of this study was to determine whether noncanonical MMP-1 signaling through PAR1 would contribute to aberrant vascular repair processes in models of arterial injury. A mouse carotid arterial wire injury model was used for studies of neointima hyperplasia and arterial stenosis. The mice were treated post-injury for 21 days with a small molecule inhibitor of MMP-1 or a direct thrombin inhibitor and compared with vehicle control. Intimal and medial hyperplasia was significantly inhibited by 2.8-fold after daily treatment with the small molecule MMP-1 inhibitor, an effect that was lost in PAR1-deficient mice. Conversely, chronic inhibition of thrombin showed no benefit in suppressing the development of arterial stenosis. Thrombin-PAR1 signaling resulted in a supercontractile, differentiated phenotype in SMCs. Noncanonical MMP-1-PAR1 signaling resulted in the opposite effect and led to a dedifferentiated phenotype via a different G protein pathway. MMP-1-PAR1 significantly stimulated hyperplasia and migration of SMCs, and resulted in down-regulation of SMC contractile genes. These studies provide a new mechanism for the development of vascular intimal hyperplasia and suggest a novel therapeutic strategy to suppress restenosis by targeting noncanonical MMP-1-PAR1 signaling in vascular SMCs.
Collapse
Affiliation(s)
- Karyn M Austin
- Hemostasis and Thrombosis Laboratory, Molecular Oncology Research Institute, Tufts Medical Center, the Program in Genetics at the Sackler School of Biomedical Sciences, Tufts University, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
35
|
Borissoff JI, Joosen IA, Versteylen MO, Spronk HM, ten Cate H, Hofstra L. Accelerated in vivo thrombin formation independently predicts the presence and severity of CT angiographic coronary atherosclerosis. JACC Cardiovasc Imaging 2013; 5:1201-10. [PMID: 23236969 DOI: 10.1016/j.jcmg.2012.01.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/13/2012] [Accepted: 01/18/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVES This study sought to investigate the association between thrombin generation in plasma and the presence and severity of computed tomography angiographically defined coronary atherosclerosis in patients with suspected coronary artery disease (CAD). BACKGROUND Besides its pivotal role in thrombus formation, experimental data indicate that thrombin can induce an array of pro-atherogenic and plaque-destabilizing effects. Although thrombin plays a role in the pathophysiology of atherosclerosis progression and vascular calcification, the clinical evidence remains limited. METHODS Using 64-slice coronary computed tomographic angiography, we assessed the presence and characteristics of CAD in patients (n = 295; median age 58 years) with stable chest pain. Coronary artery calcification was graded as absent (Agatston score 0), mild (Agatston score 1 to 100), moderate (Agatston score 101 to 400), and severe (Agatston score >400). Calibrated automated thrombography was used to assess endogenous thrombin potential in plasma in vitro. Thrombin-antithrombin complex (TATc) levels were measured as a marker for thrombin formation in vivo. RESULTS TATc plasma levels were substantially higher in patients with CAD versus patients without CAD (p = 0.004). Significant positive correlations were observed between steadily increasing TATc levels and the severity of CAD (r = 0.225, p < 0.001). In multinomial logistic regression models, after adjusting for established risk factors, TATc levels predicted the degree of coronary artery calcification: mild (odds ratio: 1.56, p = 0.006), moderate (odds ratio: 1.56, p = 0.007), and severe (odds ratio: 1.67, p = 0.002). Trends were comparable between the groups when stratified according to the degree of coronary luminal stenosis. CONCLUSIONS This study provides novel clinical evidence indicating a positive independent association between enhanced in vivo thrombin generation and the presence and severity of coronary atherosclerosis, which may suggest that thrombin plays a role in the pathophysiology of vascular calcification and atherosclerosis progression.
Collapse
Affiliation(s)
- Julian I Borissoff
- Laboratory for Clinical Thrombosis and Haemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Ruhle B, Trebak M. Emerging roles for native Orai Ca2+ channels in cardiovascular disease. CURRENT TOPICS IN MEMBRANES 2013; 71:209-35. [PMID: 23890117 DOI: 10.1016/b978-0-12-407870-3.00009-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Orai proteins form highly calcium (Ca(2+))-selective channels located in the plasma membrane of both nonexcitable and excitable cells, where they make important contributions to many cellular processes. The well-characterized Ca(2+) release-activated Ca(2+) current is mediated by Orai1 multimers and is activated, upon depletion of inositol 1,4,5-trisphosphate-sensitive stores, by direct interaction of Orai1 with the endoplasmic reticulum Ca(2+) sensor, stromal interaction molecule 1 (STIM1). This pathway is known as capacitative Ca(2+) entry or store-operated Ca(2+) entry. While most investigations have focused on STIM1 and Orai1 in their store-dependent mode, emerging evidence suggests that Orai1 and Orai3 heteromultimeric channels can form store-independent Ca(2+)-selective channels. The role of store-dependent and store-independent channels in excitation-transcription coupling and the pathological remodeling of the cardiovascular system are beginning to come forth. Recent evidence suggests that STIM/Orai-generated Ca(2+) signaling couples to gene transcription and subsequent phenotypic changes associated with the processes of cardiac and vascular remodeling. This short review will explore the contributions of native Orai channels to heart and vessel physiology and their role in cardiovascular diseases.
Collapse
Affiliation(s)
- Brian Ruhle
- Nanobioscience Constellation, The College of Nanoscale Science and Engineering, University at Albany-State University of New York, Albany, NY, USA
| | | |
Collapse
|
37
|
Yanamoto H, Kataoka H, Nakajo Y, Iihara K. The Role of the Host Defense System in the Development of Cerebral Vasospasm: Analogies between Atherosclerosis and Subarachnoid Hemorrhage. Eur Neurol 2012; 68:329-43. [DOI: 10.1159/000341336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/24/2012] [Indexed: 01/13/2023]
|
38
|
Abstract
Cardiovascular diseases, including atherothrombosis, are the leading cause of morbidity and mortality in the United States, Europe, and the developed world. Matrix metalloproteases (MMPs) have recently emerged as important mediators of platelet and endothelial function, and atherothrombotic disease. Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that is classically activated through cleavage of the N-terminal exodomain by the serine protease thrombin. Most recently, 2 MMPs have been discovered to have agonist activity for PAR1. Unexpectedly, MMP-1 and MMP-13 cleave the N-terminal exodomain of PAR1 at noncanonical sites, which result in distinct tethered ligands that activate G-protein signaling pathways. PAR1 exhibits metalloprotease-specific signaling patterns, known as biased agonism, that produce distinct functional outputs by the cell. Here we contrast the mechanisms of canonical (thrombin) and noncanonical (MMP) PAR1 activation, the contribution of MMP-PAR1 signaling to diseases of the vasculature, and the therapeutic potential of inhibiting MMP-PAR1 signaling with MMP inhibitors, including atherothrombotic disease, in-stent restenosis, heart failure, and sepsis.
Collapse
|
39
|
Lee H, Hamilton JR. Physiology, pharmacology, and therapeutic potential of protease-activated receptors in vascular disease. Pharmacol Ther 2012; 134:246-59. [DOI: 10.1016/j.pharmthera.2012.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/09/2023]
|
40
|
Lugli AK, Brown MM, Steffel J, Büchi L, Förnzler D, Dupont A, Gaussem P, Forestier M, Beer JH. Platelet receptor gain-of-function single nucleotide polymorphisms in carotid and vertebral stenosis patients. J Thromb Thrombolysis 2011; 32:215-22. [PMID: 21505785 DOI: 10.1007/s11239-011-0586-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The role of platelet receptor gain-of-function single nucleotide polymorphisms (SNP) in cardiovascular disease is controversial. We hypothesised that certain SNPs may accelerate the development of carotid artery stenosis. The intronic PAR-1 receptor intervening sequence-14 A/T (IVSn-14 A/T) polymorphism and three additional platelet receptor polymorphisms, i.e. GPIa (807C/T), GPIbα (5T/C) and HPA-1a/HPA-1b (Pl (A1/A2)) of GPIIIa were studied. The interaction of SNPs with conventional risk factors including male gender, hypertension, high cholesterol, diabetes, advanced age and smoking were investigated. The hypothesis was tested in 114 well-characterised patients with symptomatic carotid or vertebral stenosis from the British CAVATAS population and compared the results with 97 unrelated controls. The allele frequency of the platelet gain-of-function SNP was not significantly different in the CAVATAS population as compared to controls (PAR-1A/T (P = 0.13), GPIa C/T (P = 0.25), GPIIIa HPA-1a/HPA-1b (PlA1/A2) (P = 0.66) and GPIb T/C (P = 0.20)). In the subgroup of smokers, however, the prothrombotic GPIbα C mutated allele was found in a significantly higher frequency in the patient as compared to the control group (P = 0.04). Contrary to the primary hypothesis, the PAR-1A/T SNP as well as the other SNPs tested were not over- or underrepresented in the CAVATAS population. However, a significantly increased prevalence of GPIb-α (5C/T) was found in the subgroup of smokers and may represent an important cofactor in this patient group of our hypothesis-generating study.
Collapse
Affiliation(s)
- Andrea Kopp Lugli
- Department of Medicine, Cantonal Hospital Baden, 5404 Baden, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sevigny LM, Austin KM, Zhang P, Kasuda S, Koukos G, Sharifi S, Covic L, Kuliopulos A. Protease-activated receptor-2 modulates protease-activated receptor-1-driven neointimal hyperplasia. Arterioscler Thromb Vasc Biol 2011; 31:e100-6. [PMID: 21940952 DOI: 10.1161/atvbaha.111.238261] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Emerging evidence suggests that protease-activated receptors-1 and -2 (PAR1 and PAR2) can signal together in response to proteases found in the rapidly changing microenvironment of damaged blood vessels. However, it is unknown whether PAR1 and PAR2 promote or mitigate the hyperplastic response to arterial injury. Using cell-penetrating PAR1 pepducins and mice deficient in PAR1 or PAR2, we set out to determine the respective contributions of the receptors to hyperplasia and phenotypic modulation of smooth muscle cells (SMCs) in response to arterial injury. METHODS AND RESULTS SMCs were strongly activated by PAR1 stimulation, as evidenced by increased mitogenesis, mitochondrial activity, and calcium mobilization. The effects of chronic PAR1 stimulation following vascular injury were studied by performing carotid artery ligations in mice treated with the PAR1 agonist pepducin, P1pal-13. Histological analysis revealed that PAR1 stimulation caused striking hyperplasia, which was ablated in PAR1(-/-) and, surprisingly, PAR2(-/-) mice. P1pal-13 treatment yielded an expression pattern consistent with a dedifferentiated phenotype in carotid artery SMCs. Detection of PAR1-PAR2 complexes provided an explanation for the hyperplastic effects of the PAR1 agonist requiring the presence of both receptors. CONCLUSIONS We conclude that PAR2 regulates the PAR1 hyperplastic response to arterial injury leading to stenosis.
Collapse
Affiliation(s)
- Leila M Sevigny
- Hemostasis and Thrombosis Laboratory, Molecular Oncology Research Institute, Tufts Medical Center, 75 Kneeland St, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Davies RS, Abdelhamid M, Wall ML, Vohra RK, Bradbury AW, Adam DJ. Coagulation, fibrinolysis, and platelet activation in patients undergoing open and endovascular repair of abdominal aortic aneurysm. J Vasc Surg 2011; 54:865-78. [DOI: 10.1016/j.jvs.2011.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 03/29/2011] [Accepted: 04/03/2011] [Indexed: 10/18/2022]
|
43
|
Wei HJ, Li YH, Shi GY, Liu SL, Chang PC, Kuo CH, Wu HL. Thrombomodulin domains attenuate atherosclerosis by inhibiting thrombin-induced endothelial cell activation. Cardiovasc Res 2011; 92:317-27. [PMID: 21840881 DOI: 10.1093/cvr/cvr220] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Thrombin modulates the formation of atherosclerotic lesions by stimulating a variety of cellular effects through protease-activated receptor-1 (PAR-1) activation. Thrombomodulin (TM) inhibits thrombin effects by binding thrombin through its domains 2 and 3 (TMD23). We investigated whether recombinant TMD23 (rTMD23) could inhibit atherosclerosis via its thrombin-binding ability. METHODS AND RESULTS Wild-type mouse rTMD23 and three mutants with altered thrombin-binding sites, rTMD23 (I425A), rTMD23 (D424A/D426A), and rTMD23 (D424A/I425A/D426A), were expressed and purified in the Pichia pastoris expression system. Wild-type rTMD23 and rTMD23 (D424A/D426A) could effectively bind thrombin, activate protein C, and prolong thrombin clotting time, whereas rTMD23 (I425A) and rTMD23 (D424A/I425A/D426A) lost these functions. Wild-type rTMD23, but not rTMD23 (I425A), decreased both the thrombin-induced surface PAR-1 internalization and the increase in cytoplasmic Ca(2+) concentrations in endothelial cells (ECs). Wild-type rTMD23 and rTMD23 (D424A/D426A) also inhibited thrombin-induced adhesion molecules and monocyte chemoattractant protein-1 expression and increased permeability in ECs, whereas rTMD23 (I425A) and rTMD23 (D424A/I425A/D426A) had no such effects. Furthermore, wild-type rTMD23 and rTMD23 (D424A/D426A) were effective in reducing carotid ligation-induced neointima formation in C57BL/6 mice and atherosclerotic lesion formation in apolipoprotein E-deficient (ApoE-/-) mice, whereas rTMD23 with the I425A mutation showed impairment of this function. Wild-type rTMD23, but not rTMD23 (I425A), also markedly suppressed the PAR-1, the adhesion molecules expression, and the macrophage content in the carotid ligation model and ApoE-/- mice. CONCLUSION rTMD23 protein significantly reduces atherosclerosis and neointima formation through its thrombin-binding ability.
Collapse
Affiliation(s)
- Hsi-Ju Wei
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
44
|
Gurbel PA, Jeong YH, Tantry US. Vorapaxar: a novel protease-activated receptor-1 inhibitor. Expert Opin Investig Drugs 2011; 20:1445-53. [DOI: 10.1517/13543784.2011.606809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
45
|
Wei XN, Han BC, Zhang JX, Liu XH, Tan CY, Jiang YY, Low BC, Tidor B, Chen YZ. An integrated mathematical model of thrombin-, histamine-and VEGF-mediated signalling in endothelial permeability. BMC SYSTEMS BIOLOGY 2011; 5:112. [PMID: 21756365 PMCID: PMC3149001 DOI: 10.1186/1752-0509-5-112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/15/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND Endothelial permeability is involved in injury, inflammation, diabetes and cancer. It is partly regulated by the thrombin-, histamine-, and VEGF-mediated myosin-light-chain (MLC) activation pathways. While these pathways have been investigated, questions such as temporal effects and the dynamics of multi-mediator regulation remain to be fully studied. Mathematical modeling of these pathways facilitates such studies. Based on the published ordinary differential equation models of the pathway components, we developed an integrated model of thrombin-, histamine-, and VEGF-mediated MLC activation pathways. RESULTS Our model was validated against experimental data for calcium release and thrombin-, histamine-, and VEGF-mediated MLC activation. The simulated effects of PAR-1, Rho GTPase, ROCK, VEGF and VEGFR2 over-expression on MLC activation, and the collective modulation by thrombin and histamine are consistent with experimental findings. Our model was used to predict enhanced MLC activation by CPI-17 over-expression and by synergistic action of thrombin and VEGF at low mediator levels. These may have impact in endothelial permeability and metastasis in cancer patients with blood coagulation. CONCLUSION Our model was validated against a number of experimental findings and the observed synergistic effects of low concentrations of thrombin and histamine in mediating the activation of MLC. It can be used to predict the effects of altered pathway components, collective actions of multiple mediators and the potential impact to various diseases. Similar to the published models of other pathways, our model can potentially be used to identify important disease genes through sensitivity analysis of signalling components.
Collapse
Affiliation(s)
- X N Wei
- Computation and Systems Biology, Singapore-MIT Alliance, National University of Singapore, E4-04-10, 4 Engineering Drive 3, 117576, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kogushi M, Matsuoka T, Kuramochi H, Murakami K, Kawata T, Kimura A, Chiba K, Musha T, Suzuki S, Kawahara T, Kajiwara A, Hishinuma I. Oral administration of the thrombin receptor antagonist E5555 (atopaxar) attenuates intimal thickening following balloon injury in rats. Eur J Pharmacol 2011; 666:158-64. [PMID: 21635884 DOI: 10.1016/j.ejphar.2011.05.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 04/27/2011] [Accepted: 05/11/2011] [Indexed: 11/15/2022]
Abstract
Thrombin is a powerful agonist for a variety of cellular responses including platelet aggregation and vascular smooth muscle cell (SMC) proliferation. These actions are mediated by a thrombin receptor known as protease-activated receptor-1 (PAR-1). Recently we discovered that 1-(3-tert-butyl-4-methoxy-5-morpholinophenyl)-2-(5,6-diethoxy-7-fluoro-1-imino-1,3-dihydro-2H-isoindol-2-yl)ethanone hydrobromide (E5555, atopaxar) is a potent and selective thrombin receptor antagonist. This study characterized the pharmacological effects of E5555 on SMC proliferation in vitro and in a rat model of intimal thickening after balloon injury in vivo. E5555 selectively inhibited rat aortic SMC proliferation induced by thrombin and thrombin receptor-activating peptide (TRAP) with half maximal inhibitory concentration (IC(50)) values of 0.16 and 0.038 μM, respectively. E5555 did not inhibit rat SMC proliferation induced by basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) at concentrations up to 1μM. In addition, E5555 inhibited human aortic SMC proliferation induced by thrombin at concentrations of 0.3 and 3units/ml with IC(50) values of 0.028 and 0.079 μM, respectively, whereas it did not affect bFGF-induced proliferation at concentrations up to 1μM. Repeated oral administration of 30 mg/kg E5555 (once daily for 16 days) significantly reduced neointimal formation in the balloon-injured rat arterial model. These results suggested that a PAR-1 antagonist could be effective for treating restenosis following vascular intervention in addition to preventing thrombus formation. E5555 could thus have therapeutic potential for restenosis and chronic atherothrombotic disease.
Collapse
Affiliation(s)
- Motoji Kogushi
- Eisai Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Han N, Jin K, He K, Cao J, Teng L. Protease-activated receptors in cancer: A systematic review. Oncol Lett 2011; 2:599-608. [PMID: 22848234 DOI: 10.3892/ol.2011.291] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/06/2011] [Indexed: 12/16/2022] Open
Abstract
The traditional view of the role of proteases in tumor growth, progression and metastasis has significantly changed. Apart from their contribution to cancer progression, it is evident that a subclass of proteases, such as thrombin, serves as signal molecules controlling cell functions through the protease-activated receptors (PARs). Among the four types of PAR (PAR1-4; cloned and named in order of their discovery), PAR1, PAR3 and PAR4 are activated by thrombin, unlike PAR2, which is activated by trypsin-like serine proteases. Thrombin has been proven to be a significant factor in both the behavior of cancer in its involvement in hemostasis and blood coagulation. Thrombin is a key supporter of various cellular effects relevant to tumor growth and metastasis, as well as a potent activator of angiogenesis, which is essential for the growth and development of all solid tumor types. This review presents an overview of the role of PAR-mediated thrombin in angiogenesis and cancer, focusing on the ability of PAR1- and PAR4-mediated thrombin to affect tumorigenesis and angiogenesis.
Collapse
Affiliation(s)
- Na Han
- Sir Run Run Shaw Institute of Clinical Medicine, Zhejiang University: Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310016
| | | | | | | | | |
Collapse
|
48
|
Increased expression of matrix metalloproteinase-1 in systemic vessels of preeclamptic women: a critical mediator of vascular dysfunction. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:451-60. [PMID: 21224082 DOI: 10.1016/j.ajpath.2010.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 02/07/2023]
Abstract
This study was conducted to determine the following: (1) whether matrix metalloproteinase-1 (MMP-1) is increased in systemic vessels of preeclamptic women, (2) whether this increase might be mediated by neutrophils, and (3) whether MMP-1 could be responsible for vascular dysfunction. Omental arteries and plasma were collected from healthy pregnant and preeclamptic women. Omental arteries were evaluated for gene and protein expression of MMP-1, collagen type 1α, tissue inhibitor of metalloproteinase-1, and vascular reactivity to MMP-1. Gene and protein expression levels were also evaluated in human vascular smooth muscle cells (VSMCs) co-cultured with activated neutrophils, reactive oxygen species, or tumor necrosis factor α. Vessel expression of MMP-1 and circulating MMP-1 levels were increased in preeclamptic women, whereas vascular expression of collagen or tissue inhibitor of metalloproteinase-1 were down-regulated or unchanged. In cultured VSMCs, the imbalance in collagen-regulating genes of preeclamptic vessels was reproduced by treatment with neutrophils, tumor necrosis factor α, or reactive oxygen species. Chemotaxis studies with cultured cells revealed that MMP-1 promoted recruitment of neutrophils via vascular smooth muscle release of interleukin-8. Furthermore, MMP-1 induced vasoconstriction via protease-activated receptor-1, whose expression was significantly increased in omental arteries of preeclamptic women and in VSMCs co-cultured with neutrophils. Collectively, these findings disclose a novel role for MMP-1 as a mediator of vasoconstriction and vascular dysfunction in preeclampsia.
Collapse
|
49
|
Plasma heparin cofactor II activity is inversely associated with left atrial volume and diastolic dysfunction in humans with cardiovascular risk factors. Hypertens Res 2010; 34:225-31. [PMID: 21107326 DOI: 10.1038/hr.2010.211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thrombin has a crucial role in cardiac remodeling through protease-activated receptor-1 activation in cardiac fibroblasts and cardiomyocytes. As heparin cofactor II (HCII) inhibits the action of tissue thrombin in the cardiovascular system, it is possible that HCII counteracts the development of cardiac remodeling. We investigated the relationships between plasma HCII activity and surrogate markers of cardiac geometry, including left atrial volume index (LAVI), relative wall thickness (RWT) and left ventricular mass index, and deceleration time (DcT) and the ratio of peak E velocity to early diastolic mitral annulus velocity (E/e' ratio) as surrogate markers of left ventricular diastolic dysfunction measured using echocardiography in 304 Japanese elderly individuals without systolic heart failure (169 men and 135 women; mean age: 65.4 ± 11.8 years). Mean plasma HCII activity in all participants was 95.8 ± 17.0% and there was no difference between the mean plasma HCII activities in males and females. Multiple regression analysis revealed that there were significant inverse relationships between plasma HCII activity and LAVI (coefficient: -0.2302, P<0.001), between HCII activity and RWT (coefficient: -0.0007, P<0.05), between HCII activity and DcT (coefficient: -0.5189, P<0.05) and between HCII activity and E/e' ratio (coefficient: -0.0558, P<0.01). Plasma HCII activity was independently and inversely associated with the development of cardiac remodeling, including cardiac concentric change, left atrial enlargement and left ventricular diastolic dysfunction. These findings suggest that cardiac tissue thrombin inactivation by HCII is a novel therapeutic target for cardiac remodeling and atherosclerosis.
Collapse
|
50
|
Babu GG, Walker JM, Yellon DM, Hausenloy DJ. Peri-procedural myocardial injury during percutaneous coronary intervention: an important target for cardioprotection. Eur Heart J 2010; 32:23-31. [PMID: 21037252 DOI: 10.1093/eurheartj/ehq393] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Percutaneous coronary intervention (PCI) has become the predominant procedure for coronary revascularization in patients with both stable and unstable coronary artery disease (CAD). Over the past two decades, technical advances in PCI have resulted in a better and safer therapeutic procedure with minimal procedural complications. However, about 30% of patients undergoing elective PCI sustain myocardial injury arising from the procedure itself, the extent of which is significant enough to carry prognostic importance. The peri-procedural injury which accompanies PCI might therefore reduce some of the beneficial effects of coronary revascularization. The availability of more sensitive serum biomarkers of myocardial injury such as creatine phosphokinase MB isoenzyme (CK-MB), Troponin T, and Troponin I has enabled the quantification of previously undetectable myocardial injury. Peri-procedural myocardial injury (PMI) can also be visualized by cardiac magnetic resonance imaging, a technique which allows the detection and quantification of myocardial necrosis following PCI. The identification of CAD patients at greatest risk of sustaining PMI during PCI would allow targeted treatment with novel therapies capable of limiting the extent of PMI or reducing the number of patients experiencing PMI.
Collapse
Affiliation(s)
- Girish Ganesha Babu
- Division of Medicine, The Hatter Cardiovascular Institute, University College Medical School, 67 Chenies Mews, London, UK
| | | | | | | |
Collapse
|