1
|
Macvanin M, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER. New insights on the cardiovascular effects of IGF-1. Front Endocrinol (Lausanne) 2023; 14:1142644. [PMID: 36843588 PMCID: PMC9947133 DOI: 10.3389/fendo.2023.1142644] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Cardiovascular (CV) disorders are steadily increasing, making them the world's most prevalent health issue. New research highlights the importance of insulin-like growth factor 1 (IGF-1) for maintaining CV health. METHODS We searched PubMed and MEDLINE for English and non-English articles with English abstracts published between 1957 (when the first report on IGF-1 identification was published) and 2022. The top search terms were: IGF-1, cardiovascular disease, IGF-1 receptors, IGF-1 and microRNAs, therapeutic interventions with IGF-1, IGF-1 and diabetes, IGF-1 and cardiovascular disease. The search retrieved original peer-reviewed articles, which were further analyzed, focusing on the role of IGF-1 in pathophysiological conditions. We specifically focused on including the most recent findings published in the past five years. RESULTS IGF-1, an anabolic growth factor, regulates cell division, proliferation, and survival. In addition to its well-known growth-promoting and metabolic effects, there is mounting evidence that IGF-1 plays a specialized role in the complex activities that underpin CV function. IGF-1 promotes cardiac development and improves cardiac output, stroke volume, contractility, and ejection fraction. Furthermore, IGF-1 mediates many growth hormones (GH) actions. IGF-1 stimulates contractility and tissue remodeling in humans to improve heart function after myocardial infarction. IGF-1 also improves the lipid profile, lowers insulin levels, increases insulin sensitivity, and promotes glucose metabolism. These findings point to the intriguing medicinal potential of IGF-1. Human studies associate low serum levels of free or total IGF-1 with an increased risk of CV and cerebrovascular illness. Extensive human trials are being conducted to investigate the therapeutic efficacy and outcomes of IGF-1-related therapy. DISCUSSION We anticipate the development of novel IGF-1-related therapy with minimal side effects. This review discusses recent findings on the role of IGF-1 in the cardiovascular (CVD) system, including both normal and pathological conditions. We also discuss progress in therapeutic interventions aimed at targeting the IGF axis and provide insights into the epigenetic regulation of IGF-1 mediated by microRNAs.
Collapse
Affiliation(s)
- Mirjana Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
- *Correspondence: Mirjana Macvanin,
| | - Zoran Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Roostalu U, Wong JK. Arterial smooth muscle dynamics in development and repair. Dev Biol 2018; 435:109-121. [PMID: 29397877 DOI: 10.1016/j.ydbio.2018.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Arterial vasculature distributes blood from early embryonic development and provides a nutrient highway to maintain tissue viability. Atherosclerosis, peripheral artery diseases, stroke and aortic aneurysm represent the most frequent causes of death and are all directly related to abnormalities in the function of arteries. Vascular intervention techniques have been established for the treatment of all of these pathologies, yet arterial surgery can itself lead to biological changes in which uncontrolled arterial wall cell proliferation leads to restricted blood flow. In this review we describe the intricate cellular composition of arteries, demonstrating how a variety of distinct cell types in the vascular walls regulate the function of arteries. We provide an overview of the developmental origin of arteries and perivascular cells and focus on cellular dynamics in arterial repair. We summarize the current knowledge of the molecular signaling pathways that regulate vascular smooth muscle differentiation in the embryo and in arterial injury response. Our review aims to highlight the similarities as well as differences between cellular and molecular mechanisms that control arterial development and repair.
Collapse
Affiliation(s)
- Urmas Roostalu
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK.
| | - Jason Kf Wong
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK; Department of Plastic Surgery, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK.
| |
Collapse
|
3
|
Cubbon RM, Mercer BN, Sengupta A, Kearney MT. Importance of insulin resistance to vascular repair and regeneration. Free Radic Biol Med 2013; 60:246-63. [PMID: 23466555 DOI: 10.1016/j.freeradbiomed.2013.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/22/2013] [Accepted: 02/23/2013] [Indexed: 01/14/2023]
Abstract
Metabolic insulin resistance is apparent across a spectrum of clinical disorders, including obesity and diabetes, and is characterized by an adverse clustering of cardiovascular risk factors related to abnormal cellular responses to insulin. These disorders are becoming increasingly prevalent and represent a major global public health concern because of their association with significant increases in atherosclerosis-related mortality. Endogenous repair mechanisms are thought to retard the development of vascular disease, and a growing evidence base supports the adverse impact of the insulin-resistant phenotype upon indices of vascular repair. Beyond the impact of systemic metabolic changes, emerging data from murine studies also provide support for abnormal insulin signaling at the level of vascular cells in retarding vascular repair. Interrelated pathophysiological factors, including reduced nitric oxide bioavailability, oxidative stress, altered growth factor activity, and abnormal intracellular signaling, are likely to act in conjunction to impede vascular repair while also driving vascular damage. Understanding of these processes is shaping novel therapeutic paradigms that aim to promote vascular repair and regeneration, either by recruiting endogenous mechanisms or by the administration of cell-based therapies.
Collapse
Affiliation(s)
- Richard M Cubbon
- Multidisciplinary Cardiovascular Research Centre, LIGHT Laboratories, The University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | |
Collapse
|
4
|
Abstract
Receptors for basic (b) and acidic (a) fibroblast growth factor (FGF) are upregulated in activated smooth muscle cells. These cells, which proliferate in response to bFGF, can thus be killed by a conjugate of bFGF and the ribosome-inactivating enzyme, saporin (which, by itself, does not enter the cells). Quiescent smooth muscle cells and other cells that have few FGF receptors are not killed. In vivo, bFGF-saporin transiently inhibits smooth muscle cell proliferation and neointimal accumulation after balloon injury to the rat carotid artery. Delivery of saporin, diagnostic imaging agents, or antisense oligodeoxynucleotides might be made even more selective by linking these substances to antibodies against the extracellular domains of the putative FGF receptor isoform specific for activated smooth muscle cells.
Collapse
Affiliation(s)
- W Casscells
- Texas Heart Institute and University of Texas Medical School, Houston, TX 77225-0345 USA
| | | | | |
Collapse
|
5
|
Interference of IP-10 expression inhibits vascular smooth muscle cell proliferation and intimal hyperplasia in carotid artery: a new insight in the prevention of restenosis. Cell Biochem Biophys 2012; 62:125-35. [PMID: 21850543 DOI: 10.1007/s12013-011-9270-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
After vascular angioplasty, vascular smooth muscle cell (VSMC) proliferation causes atherosclerosis and intimal hyperplasia leading to restenosis. Interferon-γ-inducible protein (IP)-10 plays a role in atherogenesis, but the mechanism remains unclear. We evaluated the role of IP-10 in intimal hyperplasia and restenosis. IP-10 expression was determined in arterial specimens from 20 arteriosclerotic obliteration patients and 6 healthy individuals. VSMCs were stimulated in vitro with IFN-γ and transfected with IP-10 siRNA. Silencing was verified with RT-PCR/Western blot; cell proliferation rate was detected by methyl-thiazol-tetrazolium. The carotid artery model of atherosclerosis injury was established with IP-10 siRNA. IP-10 expression was detected at 1 and 4 weeks using RT-PCR and immunohistochemistry. Artery morphology was assessed with hematoxylin-and-eosin staining, and intimal hyperplasia was evaluated by electron microscopy. IP-10 was overexpressed in arteriosclerotic obliteration group compared with control group (P < 0.05). IP-10 expression in transfected group was significantly lower than in untransfected group. The intima-to-media ratio of transfected group at 4 weeks was lower than that of untransfected group (P < 0.01). The transfected group exhibited more regular intimal structure and less hyperplasia under electron microscopy. We, therefore, concluded that IP-10 played an important role in intimal hyperplasia as siRNA-mediated IP-10 silencing inhibited aberrant VSMCs hyperplasia and reduced restenosis.
Collapse
|
6
|
Sudar E, Dobutovic B, Soskic S, Mandusic V, Zakula Z, Misirkic M, Vucicevic L, Janjetovic K, Trajkovic V, Mikhailidis DP, Isenovic ER. Regulation of inducible nitric oxide synthase activity/expression in rat hearts from ghrelin-treated rats. J Physiol Biochem 2010; 67:195-204. [PMID: 21107779 DOI: 10.1007/s13105-010-0063-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/09/2010] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to examine the effects of ghrelin on protein kinase B (Akt) and mitogen-activated protein kinase p42/44 (ERK1/2) activation as well as ghrelin effects on inducible nitric oxide (NO) synthase (iNOS; for gene Nos2) activity/expression in rat hearts. Male Wistar rats were treated with ghrelin (0.3 nmol/5 μl) or an equal volume of phosphate-buffered saline, injected every 24 h into the lateral cerebral ventricle for 5 days and 2 h after the last treatment the animals were sacrificed. Serum NO, L-arginine (L-Arg), and arginase activity were measured spectrophotometrically. For phosphorylation of Akt, ERK1/2, and iNOS protein expression, Western blot method was used. The expression of Nos2 mRNA was measured by the quantitative real-time polymerase chain reaction (qRT-PCR). Treatment with ghrelin significantly increased NO production in serum by 1.4-fold compared with control. The concentration of L-Arg was significantly higher in ghrelin-treated rats than in control while arginase activity was significantly lower in ghrelin-treated than in control hearts. Ghrelin treatment increased phosphorylation of Akt by 1.9-fold and ERK1/2 by 1.6-fold and increased iNOS expression by 2.5-fold compared with control. In addition, ghrelin treatment increased Nos2 gene expression by 2.2-fold as determined by qRT-PCR. These results indicate that ghrelin regulation of iNOS expression/activity is mediated via Akt/ERK1/2 signaling pathway. These results may be relevant to understanding molecular mechanisms underlying direct cardiovascular actions of ghrelin.
Collapse
Affiliation(s)
- Emina Sudar
- Laboratory of Radiobiology and Molecular Genetics, Institute Vinca, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Higashi Y, Holder K, Delafontaine P. Thiazolidinediones up-regulate insulin-like growth factor-1 receptor via a peroxisome proliferator-activated receptor gamma-independent pathway. J Biol Chem 2010; 285:36361-8. [PMID: 20843793 PMCID: PMC2978564 DOI: 10.1074/jbc.m110.137661] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/01/2010] [Indexed: 11/06/2022] Open
Abstract
There is increasing evidence that thiazolidinediones (TZDs), antidiabetic compounds that are synthetic ligands for the peroxisome proliferator-activated receptor γ (PPARγ), have cardiovascular effects through as yet poorly defined mechanisms. We tested the effect of two TZD class drugs, rosiglitazone and pioglitazone, on human aortic smooth muscle cell (SMC) expression of insulin-like growth factor-1 receptor (IGF-1R). Both TZDs dose dependently up-regulated IGF-1R protein levels (rosiglitazone, 10 μmol/liter, 67% increase, n = 4, p < 0.01; pioglitazone, 10 μmol/liter, 41% increase, n = 4, p < 0.01) and increased IGF-1R signaling activity (36% increase in Akt phosphorylation). However, the endogenous PPARγ ligand, 15-deoxy-Δ(12,14)-prostaglandin J(2), dose dependently reduced IGF-1R (10 μmol/liter, 80% decrease, n = 4, p < 0.01), and overexpression of PPARγ using an adenovirus likewise reduced IGF-1R (50% decrease versus SMC infected with control adenovirus), suggesting a PPARγ-independent action of TZDs. All three PPARγ ligands (rosiglitazone, pioglitazone, and 15-deoxy-Δ(12,14)-prostaglandin J(2)), however, did not change IGF-1R mRNA levels, indicating that their effects were posttranscriptional. Use of bicistronic constructs revealed that TZD induction of IGF-1R translation occurred via internal ribosomal entry. To examine the potential physiological relevance of TZD up-regulation of IGF-1R, we determined the effect of rosiglitazone on oxidized LDL (oxLDL)-induced apoptosis. 20 μmol/liter of rosiglitazone reduced oxidized LDL-induced apoptosis by 40% and neutralizing antibody to IGF-1R (αIR3) counteracted this rescue, suggesting the rosiglitazone survival effect was, at least in part, mediated by IGF-1R. In conclusion, TZDs markedly up-regulate SMC IGF-1R expression and signaling, likely via a PPARγ-independent mechanism. This novel action of TZDs may play an important role in their cardiovascular effects.
Collapse
MESH Headings
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Blotting, Western
- Cells, Cultured
- Humans
- Hypoglycemic Agents/pharmacology
- Lipoproteins, LDL/genetics
- Lipoproteins, LDL/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Phosphorylation
- RNA, Messenger/genetics
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Rosiglitazone
- Signal Transduction/drug effects
- Thiazolidinediones/pharmacology
- Up-Regulation
Collapse
Affiliation(s)
- Yusuke Higashi
- From the Tulane University Heart & Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Kevin Holder
- From the Tulane University Heart & Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Patrice Delafontaine
- From the Tulane University Heart & Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112
| |
Collapse
|
8
|
Shai SY, Sukhanov S, Higashi Y, Vaughn C, Kelly J, Delafontaine P. Smooth muscle cell-specific insulin-like growth factor-1 overexpression in Apoe-/- mice does not alter atherosclerotic plaque burden but increases features of plaque stability. Arterioscler Thromb Vasc Biol 2010; 30:1916-24. [PMID: 20671230 DOI: 10.1161/atvbaha.110.210831] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Growth factors may play a permissive role in atherosclerosis initiation and progression, in part via their promotion of vascular smooth muscle cell (VSMC) accumulation in plaques. However, unstable human plaques often have a relative paucity of VSMC, which has been suggested to contribute to plaque rupture and erosion and to clinical events. Insulin-like growth factor-1 (IGF-1) is an endocrine and autocrine/paracrine growth factor that is a mitogen for VSMC, but when infused into Apoe(-/-) mice it paradoxically reduces atherosclerosis burden. METHODS AND RESULTS To determine the effect of stimulation of VSMC growth on atherosclerotic plaque development and to understand mechanisms of IGF-1's atheroprotective effect, we assessed atherosclerotic plaques in mice overexpressing IGF-1 in smooth muscle cells (SMC) under the control of the α-smooth muscle actin promoter, after backcrossing to the Apoe(-/-) background (SMP8/Apoe(-/-)). Compared with Apoe(-/-) mice, these SMP8/Apoe(-/-) mice developed a comparable plaque burden after 12 weeks on a Western diet, suggesting that the ability of increased circulating IGF-1 to reduce plaque burden was mediated in large part via non-SMC target cells. However, advanced plaques in SMP8/Apoe(-/-) mice displayed several features of plaque stability, including increased fibrous cap area, α-smooth muscle actin-positive SMC and collagen content, and reduced necrotic cores. CONCLUSIONS These findings indicate that stimulation of VSMC IGF-1 signaling does not alter total atherosclerotic plaque burden and may improve atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Shaw-Yung Shai
- Tulane University Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, La 70112, USA
| | | | | | | | | | | |
Collapse
|
9
|
Cittadini A, Monti MG, Castiello MC, D'Arco E, Galasso G, Sorriento D, Saldamarco L, De Paulis A, Napoli R, Iaccarino G, Saccà L. Insulin-like growth factor-1 protects from vascular stenosis and accelerates re-endothelialization in a rat model of carotid artery injury. J Thromb Haemost 2009; 7:1920-8. [PMID: 19740101 DOI: 10.1111/j.1538-7836.2009.03607.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND IGF-1 is a potent mitogen for vascular smooth muscle cells, but exerts protective effects on endothelial cells that may trigger antiatherogenic mechanisms. OBJECTIVES This study was designed to test the hypothesis that an IGF-1 excess following arterial injury prevents neointima formation and vascular stenosis. METHODS Rats were subjected to carotid balloon injury and treated with IGF-1 (1.2 mg kg(-1) per die) or saline for 10 days. RESULTS In IGF-1 treated animals, high tissue levels of eNOS, Akt and its phosphorylated form were found, confirming activation of IGF-1-dependent signaling pathways. IGF-1 markedly reduced neointima formation and post-injury arterial stenosis. IGF-1 exerted proliferative and anti-apoptotic effects in the media of injured carotids, but inhibited mitotic activity and induced apoptosis in the neointima. Furthermore, IGF-1 stimulated mobilization of progenitor endothelial cells and re-endothelialization of the injured arteries. L-NAME administration inhibited IGF-1 vasculoprotective effects. CONCLUSIONS IGF-1 attenuates post-injury carotid stenosis by exerting differential effects in the neointima and tunica media with regard to the key components of the response to injury. The data point to a novel role of IGF-1 as a potent vasculoprotective factor.
Collapse
Affiliation(s)
- A Cittadini
- Department of Internal Medicine, University Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Engberding N, San Martín A, Martin-Garrido A, Koga M, Pounkova L, Lyons E, Lassègue B, Griendling KK. Insulin-like growth factor-1 receptor expression masks the antiinflammatory and glucose uptake capacity of insulin in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2009; 29:408-15. [PMID: 19122171 DOI: 10.1161/atvbaha.108.181727] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Insulin resistance of vascular smooth muscle cells (VSMCs) has been linked to accelerated atherosclerosis in diabetes; however, the effects of insulin on VSMCs remain controversial. Most VSMC insulin receptors are sequestered into insulin-insensitive hybrids with insulin-like growth factor-1 receptors (IGF1Rs). Thus we hypothesized that regulation of IGF1R expression may impact cellular insulin sensitivity. METHODS AND RESULTS IGF1R expression was increased in aortas from diabetic mice. IGF1R overexpression in VSMCs impaired insulin-induced Akt phosphorylation. Conversely, IGF1R downregulation by siRNA allowed assembly of insulin holoreceptors, enhanced insulin-induced phosphorylation of its receptor, Akt, Erk1/2, and further augmented insulin-induced glucose uptake. IGF1R downregulation uncovered an insulin-induced reduction in activation of NF-kappaB and inhibition of MCP-1 upregulation in response to TNF-alpha. CONCLUSIONS Downregulation of IGF1R increases the fraction of insulin receptors organized in holoreceptors, which leads to enhanced insulin signaling and unmasks potential antiinflammatory properties of insulin in VSMCs. Therefore, IGF1R, which is susceptible to feedback regulation by its own ligand, may represent a novel target for interventions designed to treat insulin resistance in the vasculature.
Collapse
Affiliation(s)
- Niels Engberding
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Page JH, Ma J, Pollak M, Manson JE, Hankinson SE. Plasma insulinlike growth factor 1 and binding-protein 3 and risk of myocardial infarction in women: a prospective study. Clin Chem 2008; 54:1682-8. [PMID: 18703768 DOI: 10.1373/clinchem.2008.105825] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The aim of this study was to prospectively evaluate relationships between plasma concentrations of insulinlike growth factor 1 (IGF1) and insulinlike growth factor binding protein 3 (IGFBP3) and subsequent myocardial infarction (MI) in women. METHODS We used case-control sampling to select study participants from women who had already been selected for inclusion in the prospective Nurses' Health Study cohort. Blood samples were collected from 32 826 women in 1989-1990. During the follow-up period from sample collection through June 1998, MI (fatal and nonfatal) was diagnosed in 245 women. Cases were matched to controls 1:2 by age, cigarette-smoking status, and month and fasting status at the time of blood collection. Conditional logistic regression was used to adjust for potential confounders (menopausal status, parental history of MI, postmenopausal hormone use, diabetes mellitus, hypertension, hypercholesterolemia, aspirin use, alcohol use, body mass index, and physical activity). RESULTS Multivariable adjusted analyses did not reveal a statistically significant linear relationship between IGF1 or IGFBP3 concentrations or their molar ratio and risk of MI. Women in the highest IGF1 quartile had a multivariable-adjusted rate ratio of 1.46 (95% CI 0.79, 2.72; P for trend = 0.46) for MI, compared with those in the lowest. The corresponding rate ratios (95% CI) for IGFBP3 and the IGF1:IGFBP3 mol/L ratio were 1.24 (0.71, 2.17) and 1.29 (0.70, 2.37), respectively. CONCLUSIONS We did not observe a monotonic relationship between IGF1 or IGFBP3 and MI among predominantly postmenopausal women. Future studies are warranted to evaluate these relationships in other demographic groups including younger women.
Collapse
Affiliation(s)
- John H Page
- Department of Epidemiology, Harvard School of Public Health, Harvard University, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
12
|
Nichols TC, Busby WH, Merricks E, Sipos J, Rowland M, Sitko K, Clemmons DR. Protease-resistant insulin-like growth factor (IGF)-binding protein-4 inhibits IGF-I actions and neointimal expansion in a porcine model of neointimal hyperplasia. Endocrinology 2007; 148:5002-10. [PMID: 17640990 DOI: 10.1210/en.2007-0571] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-I has been shown to play a role in the progression of atherosclerosis in experimental animal models. IGF-binding protein-4 (IGFBP-4) binds to IGF-I and prevents its association with receptors. Overexpression of a protease-resistant form of IGFBP-4 has been shown to inhibit the ability of IGF-I to stimulate normal smooth muscle cell growth in mice. Based on these observations, we prepared a protease-resistant form of IGFBP-4 and infused it into hypercholesterolemic pigs. Infusion of the protease-resistant mutant inhibited lesion development by 53.3 +/- 6.1% (n = 6; P < 0.01). Control vessels that received an equimolar concentration of IGF-I and the protease-resistant IGFBP-4 showed no reduction in lesion size compared with control lesions that were infused with vehicle. Infusion of a nonmutated form of IGFBP-4 did not significantly inhibit lesion development. Proliferating cell nuclear antigen analysis showed that the mutant IGFBP-4 appeared to inhibit cell proliferation. The area occupied by extracellular matrix was also reduced proportionally compared with total lesion area. Immunoblotting revealed that the mutant IGFBP-4 remained intact, whereas the wild-type IGFBP-4 that was infused was proteolytically cleaved. Further analysis of the lesions revealed that a marker protein, IGFBP-5, whose synthesis is stimulated by IGF-I, was decreased in the lesions that received the protease-resistant, IGFBP-4 mutant, whereas there was no change in lesions that received wild-type IGFBP-4 or the mutant protein plus IGF-I. These findings clearly illustrate that infusion of protease-resistant IGFBP-4 into the perilesion environment results in inhibition of cell proliferation and attenuation of the development of neointima. The findings support the hypothesis that inhibiting IGFBP-4 proteolysis in the lesion microenvironment could be an effective means for regulating neointimal expansion.
Collapse
Affiliation(s)
- T C Nichols
- Division of Endocrinology, University of North Carolina at Chapel Hill, 8024 Burnett-Womack, Chapel Hill, NC 27599-7170, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Clemmons DR, Maile LA, Ling Y, Yarber J, Busby WH. Role of the integrin alphaVbeta3 in mediating increased smooth muscle cell responsiveness to IGF-I in response to hyperglycemic stress. Growth Horm IGF Res 2007; 17:265-270. [PMID: 17412627 PMCID: PMC2366026 DOI: 10.1016/j.ghir.2007.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Under usual conditions, the role of IGF-I in vascular cell types is to maintain cellular protein synthesis and cell size, and even excess IGF-I does not stimulate proliferation. In pathophysiologic states, such as hyperglycemia, smooth muscle cells (SMC) dedifferentiate and change their responsiveness to IGF-I. During hyperglycemia IGF-I stimulates both SMC migration and proliferation. Our laboratory has investigated the molecular mechanism by which this change is mediated. During hyperglycemia SMC secrete increased concentrations of thrombospondin, vitronectin and osteopontin, ligands for the integrin alphaVbeta3. Activation of alphaVbeta3 stimulates recruitment of a tyrosine phosphatase, SHP-2. Exposure of SMC to IGF-I results in phosphorylation of the transmembrane protein, SHPS-1, which provides a docking site for alphaVbeta3-associated SHP-2. After IGF-I stimulation SHP-2 associates with Src kinase, which associates with the signaling protein Shc. Src phosphorylates Shc, resulting in activation of MAP kinases, which are necessary both for stimulation of cell proliferation and migration. Blocking activation of alphaVbeta3 results in an inability of IGF-I to stimulate Shc phosphorylation. Under conditions of normoglycemia, there are insufficient alphaVbeta3 ligands to recruit SHP-2, and no increase in Shc phosphorylation can be demonstrated in SMC. In contrast, if alphaVbeta3 ligands are added to cells in normal glucose, the signaling events that are necessary for Shc phosphorylation can be reconstituted. Therefore when SMC are exposed to normal glucose they are protected from excessive stimulation of mitogenesis by IGF-I. With hyperglycemia there is a marked increased in alphaVbeta3 ligands and Shc phosphorylation in response to IGF-I is sustained. These findings indicate that in SMC hyperglycemic stress leads to altered IGF-I signaling, which allows the cells to undergo a mitogenic response, and which may contribute to the development of atherosclerosis.
Collapse
Affiliation(s)
- David R Clemmons
- Department of Medicine, Division of Endocrinology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
14
|
Budhani F, Leonard KA, Bergdahl A, Gao J, Lawler J, Davis EC. Vascular response to intra-arterial injury in the thrombospondin-1 null mouse. J Mol Cell Cardiol 2007; 43:210-4. [PMID: 17583726 PMCID: PMC2045697 DOI: 10.1016/j.yjmcc.2007.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 04/27/2007] [Accepted: 05/14/2007] [Indexed: 11/20/2022]
Abstract
Thrombospondin-1 (TSP-1) is a multifunctional, extracellular matrix protein that has been implicated in the regulation of smooth muscle cell proliferation, migration and differentiation during vascular development and injury. Vascular injury in wildtype and TSP-1 null mice was carried out by insertion of a straight spring guidewire into the femoral artery via a muscular arterial branch. Blood flow was restored after the muscular branch was ligated. The injury completely denuded the endothelium and caused medial distension of the vessel in a manner similar to coronary artery balloon-angioplasty. After 28 days, wildtype arteries showed consistent neointima formation with smooth muscle cell hyperplasia. Injured arteries from TSP-1 null mice showed similar neointimal lesions with no significant difference in the extent of neointima formation. Unexpectedly, a high incidence of thrombus formation was observed in the TSP-1 null vessels in a region close to the entry point of the guidewire into the femoral artery. Thrombus was never observed in the injured wildtype vessels. These results provide in vivo evidence that the extent of smooth muscle cell proliferation and neointima formation following endothelial denuding injury is not affected by the absence of TSP-1. Furthermore, our results provide novel evidence for the involvement of TSP-1 in controlling thrombus growth following intra-arterial injury in areas of predicted high turbulent flow.
Collapse
Affiliation(s)
- Faisal Budhani
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 2B2
| | - Katherine A. Leonard
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 2B2
| | - Andreas Bergdahl
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 2B2
| | - Jimin Gao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Jack Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA, 02215
| | - Elaine C. Davis
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 2B2
- Address for correspondence: Dr. Elaine C. Davis, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2, phone: 514-398-5893, fax: 514-398-5047, E-mail:
| |
Collapse
|
15
|
Niu XL, Li J, Hakim ZS, Rojas M, Runge MS, Madamanchi NR. Leukocyte antigen-related deficiency enhances insulin-like growth factor-1 signaling in vascular smooth muscle cells and promotes neointima formation in response to vascular injury. J Biol Chem 2007; 282:19808-19. [PMID: 17500057 DOI: 10.1074/jbc.m610452200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increase in the expression of leukocyte antigen-related (LAR) protein causes insulin resistance, an important contributor to atherosclerosis. However, the function of LAR in atherosclerosis is not known. To address whether LAR is important in the response of vascular cells to atherogenic stimuli, we investigated cell proliferation, migration, and insulin-like growth factor-1 receptor (IGF-1R) signaling in wild-type and LAR(-/-) mouse vascular smooth muscle cells (VSMC) treated with IGF-1. Absence of LAR significantly enhanced proliferation and migration of VSMC compared with wild-type cells after IGF-1 treatment. U0126 and LY249002, specific inhibitors of MAPK/ERK kinase (MEK) and phosphoinositide 3-kinase, respectively, inhibited IGF-1-induced DNA synthesis and migration in both wild-type and LAR(-/-) VSMC. IGF-1 markedly enhanced IGF-1R phosphorylation in both wild-type and LAR(-/-) VSMC, but the phosphorylation was 90% higher in knock-out cells compared with wild-type cells. Absence of LAR enhanced phosphorylation of insulin receptor substrate-1 and insulin receptor substrate-1-associated phosphoinositide 3-kinase activity in VSMC treated with IGF-1. IGF-1-induced phosphorylation of ERK1/2 also increased significantly in LAR(-/-) VSMC compared with wild-type cells. Furthermore, LAR directly binds to IGF-1R in glutathione S-transferase-LAR pull-down and IGF-1R immunoprecipitation experiments and recombinant LAR dephosphorylates IGF-1R in vitro. Neointima formation in response to arterial injury and IGF-1R phosphorylation in neointima increased significantly in LAR(-/-) mice compared with wild-type mice. A significant decrease in body weight, fasting insulin, and IGF-1 levels were observed in LAR(-/-) mice compared with wild-type mice. Together, these data indicate that LAR regulates IGF-1R signaling in VSMC and dysregulation of this phosphatase may lead to VSMC hyperplasia.
Collapse
MESH Headings
- Animals
- Arteries/injuries
- Arteries/metabolism
- Arteries/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Butadienes/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Humans
- Hyperplasia/genetics
- Hyperplasia/metabolism
- Hyperplasia/pathology
- Insulin Resistance/genetics
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor I/pharmacology
- MAP Kinase Kinase Kinases/antagonists & inhibitors
- MAP Kinase Kinase Kinases/metabolism
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/genetics
- Male
- Mice
- Mice, Knockout
- Nitriles/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation/drug effects
- Protein Binding/drug effects
- Protein Binding/genetics
- Protein Processing, Post-Translational/drug effects
- Protein Processing, Post-Translational/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatases/deficiency
- Protein Tyrosine Phosphatases/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 4
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/metabolism
- Tunica Media/metabolism
- Tunica Media/pathology
Collapse
Affiliation(s)
- Xi-Lin Niu
- Department of Medicine, Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, North Carolina 27599-7126, USA
| | | | | | | | | | | |
Collapse
|
16
|
Johansson GS, Arnqvist HJ. Insulin and IGF-I action on insulin receptors, IGF-I receptors, and hybrid insulin/IGF-I receptors in vascular smooth muscle cells. Am J Physiol Endocrinol Metab 2006; 291:E1124-30. [PMID: 16803852 DOI: 10.1152/ajpendo.00565.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin and insulin-like growth factor I (IGF-I) are known to affect cardiovascular disease. We have investigated ligand binding and the dose-response relationship for insulin and IGF-I on vascular smooth muscle cells (VSMCs) at the receptor level. VSMCs from rat thoracic aorta were serum starved, stimulated with IGF-I or insulin, lysed, immunoprecipitated, and analyzed by Western blot. d-[U-(14)C]Glucose accumulation and [6-(3)H]thymidine incorporation into DNA were also measured. Specific binding of both insulin and IGF-I was demonstrated, being higher for IGF-I. Both IGF-I receptor (IGF-IR) and insulin receptor (IR) beta-subunits were detected and coprecipitated after immunoprecipitation (IP) against either of the two. No coprecipitation was found after reduction of disulphide bonds with dithiotreitol before IP. After stimulation with 10(-10)-10(-9) M IGF-I, IP of the IGF-IR, or IR beta-subunit and immunoblot with anti-phosphotyrosine antibody, we found two distinct bands indicating phosphorylation of both the IGF-IR and the IR beta-subunit. Stimulation with 10(-10)-10(-9) M insulin and IP against the IGF-IR did not show phosphorylation of either beta-subunit, whereas after IP of the IR we found phosphorylation of the IR beta-subunit. [(14)C]Glucose accumulation and [(3)H]thymidine incorporation were elevated in cells stimulated with IGF-I at 10(-10)-10(-7) M, reaching maximum by 10(-9) M. Insulin stimulation showed measurable effects only at supraphysiological concentrations, 10(-8)-10(-7) M. In conclusion, coprecipitation of both the IGF-IR and the IR beta-subunit indicates the presence of hybrid insulin/IGF-I receptors in VSMC. At a physiological concentration, insulin activates the IR but does not affect either glucose metabolism or DNA synthesis, whereas IGF-I both activates the receptor and elicits biological effect.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Carbon Radioisotopes
- Cells, Cultured
- Dimerization
- Glucose/pharmacokinetics
- Hypoglycemic Agents/metabolism
- Hypoglycemic Agents/pharmacology
- Insulin/metabolism
- Insulin/pharmacology
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor I/pharmacology
- Iodine Radioisotopes
- Ligands
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Phosphorylation
- Rats
- Rats, Sprague-Dawley
- Receptor, IGF Type 1/chemistry
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/chemistry
- Receptor, Insulin/metabolism
- Thymidine/pharmacokinetics
- Tritium
Collapse
Affiliation(s)
- Git S Johansson
- Department of Biomedicine and Surgery, Division of Cell Biology, Linköping University, Linköping, Sweden.
| | | |
Collapse
|
17
|
Risinger GM, Hunt TS, Updike DL, Bullen EC, Howard EW. Matrix metalloproteinase-2 expression by vascular smooth muscle cells is mediated by both stimulatory and inhibitory signals in response to growth factors. J Biol Chem 2006; 281:25915-25. [PMID: 16854986 DOI: 10.1074/jbc.m513513200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to growth factors, vascular smooth muscle cells (VSMCs) undergo a phenotypic modulation from a contractile, non-proliferative state to an activated, migratory state. This transition is characterized by changes in their gene expression profile, particularly by a significant down-regulation of contractile proteins. Platelet-derived growth factor (PDGF)-BB has long been known to initiate VSMC de-differentiation and mitogenesis. Insulin-like growth factor (IGF)-I, on the other hand, has differing effects depending on the model studied. Here, we report that both IGF-I and PDGF-BB stimulated VSMC de-differentiation of rat heart-derived SMCs in culture, although only PDGF-BB was capable of inducing proliferation. Although both PDGF-BB and IGF-I stimulation resulted in decreased smooth muscle alpha-actin expression and increased matrix metalloproteinase (MMP)-2 expression, the response to IGF-I was significantly more rapid. The increased MMP-2 expression in response to both growth factors was due to increased transcription rates and was dependent on the action of phosphatidylinositol 3-kinase (PI3K) and its downstream effector, Akt. Both PDGF-BB and IGF-I activated PI3K/Akt to similar degrees; however, only PDGF-BB concomitantly stimulated an inhibitory signaling pathway that antagonized the effects of Akt but did not alter the extent or duration of Akt activation. Together, these findings suggest that changes in MMP-2 expression are part of the program of VSMC phenotypic modulation and that both PDGF-BB and IGF-I, despite their different abilities to induce proliferation in this model, are capable of inducing VSMC activation.
Collapse
Affiliation(s)
- George M Risinger
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
18
|
Nguyen TT, Cao N, Short JL, White PJ. Intravenous insulin-like growth factor-I receptor antisense treatment reduces angiotensin receptor expression and function in spontaneously hypertensive rats. J Pharmacol Exp Ther 2006; 318:1171-7. [PMID: 16751253 DOI: 10.1124/jpet.106.103655] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The present study investigated the effects of a functional deficit in insulin-like growth factor-I signaling via chronic intravenous administration of insulin-like growth factor-I (IGF-I) receptor antisense in the conscious spontaneously hypertensive rat cardiovascular system. Insulin-like growth factor-I receptor (IGF-IR) antisense, but not full mismatch treatment, decreased IGF-IR expression in both conductance and resistance blood vessels. Aortic IGF-IR density was reduced by 67.4 +/- 6.0% in antisense-treated spontaneously hypertensive rat (SHR) compared with untreated animals, whereas mismatch treatment had no effect (analysis of variance, n = 3, P < 0.01). Aortic and tail artery angiotensin II type 1 receptor expression was significantly reduced by IGF-IR antisense treatment, whereas angiotensin II type 2 receptor expression was unaffected by administration of antisense and mismatch oligonucleotides. IGF-I receptor antisense treatment caused a significant decrease in pressor responses to angiotensin II in comparison with full-length mismatch treatment (E(max) was reduced to 65 +/- 7 mm Hg compared with 99 +/- 6 mm Hg, p < 0.05). Likewise, a reduction in pressor responses to noradrenaline was observed in hypertensive rats treated with IGF-IR antisense compared with full mismatch-treated rats (E(max) was reduced to 60 +/- 6 mm Hg compared with 108 +/- 5 mm Hg, p < 0.01). There was no clear antisense effect on resting blood pressure and no effect at on aortic medial thickness. These results suggest that although the proliferative and vasodilator effects of IGF-I are impaired in SHR, the effects on angiotensin receptor expression remain profound.
Collapse
Affiliation(s)
- Tien Thuy Nguyen
- Department of Pharmaceutical Biology and Pharmacology, Victorian College of Pharmacy, Monash University, 381 Royal Pde, Parkville, VIC, Australia 3052
| | | | | | | |
Collapse
|
19
|
Fiedler J, Brill C, Blum WF, Brenner RE. IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells. Biochem Biophys Res Commun 2006; 345:1177-83. [PMID: 16716263 DOI: 10.1016/j.bbrc.2006.05.034] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 05/07/2006] [Indexed: 01/14/2023]
Abstract
Insulin-like growth factors (IGFs) are known to be key regulators of bone growth, remodeling, and repair. Since all these processes depend on the recruitment of cells with the potential to be committed to the osteoblastic lineage, we studied possible effects of IGF-I and -II on migration of human mesenchymal progenitor cells (MPC) using a modified Boyden chamber assay. The results were compared to those of primary osteoblasts and in vitro-osteogenic-differentiated MPC. IGF-I and -II stimulated cell migration of all these cell populations in a dose-dependent manner from 1 to 100ng/mL. The maximal chemotactic index (CI) was 4-5 for MPC and primary osteoblasts and about 3 for in vitro-differentiated MPC. Checkerboard analysis revealed that IGFs stimulated true directed cell migration (chemotaxis) and not simply chemokinesis. Addition of an antibody against the type I IGF receptor (alphaIR3) completely abolished (MPC) or markedly reduced (primary osteoblasts) the chemotactic effects of each of the IGFs. IGFBP-3 itself had no direct effect, while IGFBP-5 stimulated MPC migration at concentrations of 80 and 160ng/mL. Parallel application of IGFBP-3 had borderline inhibitory effects while the addition of 40ng/mL of IGFBP-5 enhanced the chemotactic effect of IGF-I on MPC. In conclusion, our results show that IGF-I and -II are chemotactic factors for MPC and indicate that IGFBP-5 both modulates the IGF-I effect and directly stimulates migration of human mesenchymal progenitor cells.
Collapse
Affiliation(s)
- Jörg Fiedler
- Orthopaedic Department, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
20
|
Ceacareanu AC, Ceacareanu B, Zhuang D, Chang Y, Ray RM, Desai L, Chapman KE, Waters CM, Hassid A. Nitric oxide attenuates IGF-I-induced aortic smooth muscle cell motility by decreasing Rac1 activity: essential role of PTP-PEST and p130cas. Am J Physiol Cell Physiol 2005; 290:C1263-70. [PMID: 16354758 DOI: 10.1152/ajpcell.00241.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent data support the hypothesis that reactive oxygen species (ROS) play a central role in the initiation and progression of vascular diseases. An important vasoprotective function related to the regulation of ROS levels appears to be the antioxidant capacity of nitric oxide (NO). We previously reported that treatment with NO decreases phosphotyrosine levels of adapter protein p130(cas) by increasing protein tyrosine phosphatase-proline, glutamate, serine, and threonine sequence protein (PTP-PEST) activity, which leads to the suppression of agonist-induced H(2)O(2) elevation and motility in cultured rat aortic smooth muscle cells (SMCs). The present study was performed to investigate the hypotheses that 1) IGF-I increases the activity of the small GTPase Rac1 as well as H(2)O(2) levels and 2) NO suppresses IGF-I-induced H(2)O(2) elevation by decreasing Rac1 activity via increased PTP-PEST activity and dephosphorylation of p130(cas). We report that IGF-I induces phosphorylation of p130(cas) and activation of Rac1 and that NO attenuates these effects. The effects of NO are mimicked by the overexpression of PTP-PEST or dominant-negative (dn)-p130(cas) and antagonized by the expression of dn-PTP-PEST or p130(cas). We conclude that IGF-I induces rat aortic SMC motility by increasing phosphotyrosine levels of p130(cas) and activating Rac1 and that NO decreases motility by activating PTP-PEST, inducing dephosphorylating p130(cas), and decreasing Rac1 activity. Decreased Rac1 activity lowers intracellular H(2)O(2) levels, thus attenuating cell motility.
Collapse
Affiliation(s)
- Alice-Corina Ceacareanu
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Ave., Memphis, 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kwok CF, Juan CC, Shih KC, Hwu CM, Jap TS, Ho LT. Insulin-like growth factor-1 increases endothelin receptor A levels and action in cultured rat aortic smooth muscle cells. J Cell Biochem 2005; 94:1126-34. [PMID: 15668985 DOI: 10.1002/jcb.20321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Insulin is known to cause an increase in endothelin-1 (ET-1) receptors in vascular smooth muscle cells (SMCs), but the effect of insulin-like growth factor 1 (IGF-1) on ET-1 receptor expression is not known. We therefore carried out the present study to determine the effect of IGF-1 on the binding of ET-1 to, and ET type A receptor (ETAR) expression and ET-1-induced 3H-thymidine incorporation in, vascular SMCs. In serum-free medium, IGF-1 treatment increased the binding of 125I-ET-1 to SMC cell surface ET receptors from a specific binding of 20.1%+/-3.1% per mg of protein in control cells to 45.1%+/-8.6% per mg of protein in cells treated with IGF-1 (10 nM). The effect of IGF-1 was dose-related, with a significant effect (1.4-fold) being seen at 1 nM. The minimal time for IGF-1 treatment to be effective was 30 min and the maximal effect was reached at 6 h. Immunoblotting analysis showed that ETAR expression in IGF-1-treated cells was increased by 1.7-fold compared to controls. Levels of ETAR mRNA measured by the RT-PCR method and Northern blotting were also increased by 2-fold in IGF-1-treated SMCs. These effects of IGF-1 were abolished by cycloheximide or genistein. Finally, ET-1-stimulated thymidine uptake and cell proliferation were enhanced by IGF-1 treatment, with a maximal increase of 3.2-fold compared to controls. In conclusion, in vascular SMCs, IGF-1 increases the expression of the ET-1 receptor in a dose- and time-related manner. This effect is associated with increased thymidine uptake and involves tyrosine kinase activation and new protein synthesis. These findings support the role of IGF-1 in the development of atherosclerotic, hypertensive, and diabetic vascular complications.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Aorta/metabolism
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Cells, Cultured
- DNA Primers
- Insulin-Like Growth Factor I/physiology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptor, Endothelin A/genetics
- Receptor, Endothelin A/metabolism
- Receptor, Endothelin A/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Thymidine/metabolism
Collapse
Affiliation(s)
- Ching Fai Kwok
- Department of Medicine, Division of Endocrinology and Metabolism, Taipei Veterans General Hospital, Taiwan.
| | | | | | | | | | | |
Collapse
|
22
|
Abid MR, Yano K, Guo S, Patel VI, Shrikhande G, Spokes KC, Ferran C, Aird WC. Forkhead transcription factors inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia. J Biol Chem 2005; 280:29864-73. [PMID: 15961397 DOI: 10.1074/jbc.m502149200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration contribute significantly to atherosclerosis, postangioplasty restenosis, and transplant vasculopathy. Forkhead transcription factors belonging to the FoxO subfamily have been shown to inhibit growth and cell cycle progression in a variety of cell types. We hypothesized that forkhead proteins may play a role in VSMC biology. Under in vitro conditions, platelet-derived growth factor (PDGF)-BB, tumor necrosis factor-alpha, and insulin-like growth factor 1 stimulated phosphorylation of FoxO in human coronary artery smooth muscle cells via MEK1/2 and/or phosphatidylinositol 3-kinase-dependent signaling pathways. PDGF-BB, tumor necrosis factor-alpha, and insulin-like growth factor 1 treatment resulted in the nuclear exclusion of FoxO, whereas PDGF-BB alone down-regulated the FoxO target gene, p27(kip1), and enhanced cell survival and progression through the cell cycle. These effects were abrogated by overexpression of a constitutively active, phosphorylation-resistant mutant of the FoxO family member, TM-FKHRL1. The anti-proliferative effect of TM-FKHRL1 was partially reversed by small interfering RNA against p27(kip1). In a rat balloon carotid arterial injury model, adenovirus-mediated gene transfer of FKHRL1 caused an increase in the expression of p27(kip1) in the VSMC and inhibition of neointimal hyperplasia. These data suggest that FoxO activity inhibits VSMC proliferation and activation and that this signaling axis may represent a therapeutic target in vasculopathic disease states.
Collapse
Affiliation(s)
- Md Ruhul Abid
- Center for Vascular Biology Research, Department of Medicine, Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Therapeutic angiogenesis/vasculogenesis holds promise for the cure of ischaemic disease. The approach postulates the manipulation of spontaneous healing response by supplementation of growth factors or transplantation of vascular progenitor cells. These supplements are intended to foster the formation of arterial collaterals and promote the regeneration of damaged tissues. Angiogenic factors are generally delivered in the form of recombinant proteins or by gene transfer using viral vectors. In addition, new non-viral methods are gaining importance for their safer profile. The association of growth factors with different biological activity might offer distinct advantages in terms of efficacy, yet combined approaches require further optimization. Alternatively, substances with pleiotropic activity might be considered, by virtue of their ability to target multiple mechanisms. For instance, some angiogenic factors not only stimulate the growth of arterioles and capillaries, but also inhibit vascular destabilization triggered by metabolic and oxidative stress. Transplantation of endothelial progenitor cells was recently proposed for the treatment of peripheral and myocardial ischaemia. Progenitor cells can be transplanted either without any preliminary conditioning or after ex vivo genetic manipulation. Delivery of genetically modified progenitor cells eliminates the drawback of immune response against viral vectors and makes feasible repeating the therapeutic procedure in case of injury recurrence. It is envisioned that these new approaches of regenerative medicine will open unprecedented opportunities for the care of life-threatening diseases.
Collapse
Affiliation(s)
- Paolo Madeddu
- Experimental Medicine and Gene Therapy, National Institute of Biostructures and Biosystems, Osilo and Porto Conte Technological Park, Osilo (Sassari), Italy.
| |
Collapse
|
24
|
Clemmons DR, Maile LA. Interaction between insulin-like growth factor-I receptor and alphaVbeta3 integrin linked signaling pathways: cellular responses to changes in multiple signaling inputs. Mol Endocrinol 2004; 19:1-11. [PMID: 15528274 DOI: 10.1210/me.2004-0376] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Integrins are heterodimeric transmembrane proteins that mediate cell attachment to extracellular matrix, migration, division, and inhibition of apoptosis. Because growth factors are also important for these processes, there has been interest in cooperative signaling between growth factor receptors and integrins. IGF-I is an important growth factor for vascular cells. One integrin, alphaVbeta3, that is expressed in smooth muscle cells modulates IGF-I actions. Ligand occupancy of alphaVbeta3 is required for IGF-I to stimulate cell migration and division. Src homology 2 containing tyrosine phosphatase (SHP-2) is a tyrosine phosphatase whose recruitment to signaling molecules is stimulated by growth factors including IGF-I. If alphaVbeta3 ligand occupancy is inhibited, there is no recruitment of SHP-2 to alphaVbeta3 and its transfer to downstream signaling molecules is blocked. Ligand occupancy of alphaVbeta3 stimulates tyrosine phosphorylation of the beta3-subunit, resulting in recruitment of SHP-2. This transfer is mediated by an insulin receptor substrate-1-related protein termed DOK-1. Subsequently, SHP-2 is transferred to another transmembrane protein, SHPS-1. This transfer requires IGF-I receptor-mediated tyrosine phosphorylation of SHPS-1, which contains two YXXL motifs that mediate SHP-2 binding. The transfer of SHP-2 to SHPS-1 is also required for recruitment of Shc to SHPS-1. Ligand occupancy of alphaVbeta3 results in sustained Shc phosphorylation and enhanced Shc recruitment. Shc activation results in induction of MAPK. Inhibition of the Shc/SHPS-1 complex formation results in failure to achieve sustained MAPK activation and an attenuated mitogenic response. Thus, within the vessel wall, a mechanism exists whereby ligand occupancy of the alphaVbeta3 integrin is required for assembly of a multicomponent membrane signaling complex that is necessary for cells to respond optimally to IGF-I.
Collapse
Affiliation(s)
- D R Clemmons
- Department of Medicine, Division of Endocrinology, University of North Carolina School of Medicine, CB 7170, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
25
|
Zhuang D, Ceacareanu AC, Lin Y, Ceacareanu B, Dixit M, Chapman KE, Waters CM, Rao GN, Hassid A. Nitric oxide attenuates insulin- or IGF-I-stimulated aortic smooth muscle cell motility by decreasing H2O2 levels: essential role of cGMP. Am J Physiol Heart Circ Physiol 2004; 286:H2103-12. [PMID: 14751855 DOI: 10.1152/ajpheart.01118.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin and insulin-like growth factor I (IGF-I) both play important roles in vascular remodeling. Moreover, nitric oxide (NO) is well established as a counterregulatory agent that opposes the actions of several vascular agonists, in part by decreasing smooth muscle motility. We tested the hypothesis that NO blocks insulin or IGF-I-induced rat aortic smooth muscle cell motility via a mechanism involving the attenuation of agonist-induced elevation of hydrogen peroxide levels and cGMP as mediator. Insulin or IGF-I induced an increase of hydrogen peroxide levels and cell motility. Both effects were blocked by catalase or diphenyleneiodonium, indicating that hydrogen peroxide elevation is necessary for induction of cell motility. Two NO donors mimicked the effects of catalase, indicating that NO decreases cell motility by suppressing agonist-induced elevation of hydrogen peroxide. A cGMP analogue mimicked the effect of NO, whereas a guanyl cyclase inhibitor blocked the effect of NO on hydrogen peroxide levels, indicating that elevation of cGMP is both necessary and sufficient to account for the reduction of hydrogen peroxide levels. A NO donor as well as a cGMP analogue attenuated insulin-stimulated NADPH activity, indicating that NO decreases hydrogen peroxide levels by inhibiting the generation of superoxide, via a cGMP-mediated mechanism. Finally, exogenous hydrogen peroxide increased cell motility and reversed the inhibitory effect of cGMP. These results support the view that NO plays an antioxidant role via reduction of hydrogen peroxide in cultured rat aortic smooth muscle cells and that this effect is both necessary and sufficient to account for its capacity to decrease cell motility.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antioxidants/metabolism
- Aorta, Thoracic/cytology
- Catalase/metabolism
- Cell Movement/drug effects
- Cell Movement/physiology
- Cells, Cultured
- Cyclic GMP/metabolism
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Female
- Guanylate Cyclase/antagonists & inhibitors
- Hydrogen Peroxide/metabolism
- Hydrogen Peroxide/pharmacology
- Hypoglycemic Agents/pharmacology
- Insulin/pharmacology
- Insulin-Like Growth Factor I/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- NADPH Oxidases/metabolism
- Nitric Oxide/metabolism
- Oxadiazoles/pharmacology
- Oxidants/metabolism
- Oxidants/pharmacology
- Phosphorylation/drug effects
- Protein Serine-Threonine Kinases
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Quinoxalines/pharmacology
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Daming Zhuang
- Dept. of Physiology, University of Tennessee Heath Science Center, Memphis, TN 38103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Okumura S, Kohama K, Kim S, Iwao H, Miki N, Taira E. Induction of gicerin/CD146 in the rat carotid artery after balloon injury. Biochem Biophys Res Commun 2004; 313:902-6. [PMID: 14706627 DOI: 10.1016/j.bbrc.2003.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gicerin is a cell adhesion molecule belonging to the immunoglobulin superfamily. It is reported that the human homologous molecule, CD146, is expressed in the endothelial cells. Here, we found that the expression of gicerin was increased in the rat carotid arteries after balloon injury. Immunohistochemical analysis demonstrated that the expression of gicerin protein was increased in the medial smooth muscle cells prior to the formation of neointima one week after the injury and was also increased in the luminal edge of the neointima after two weeks. We employed A10 cells, a cell line derived from rat aortic smooth muscle cell, and examined the effect of growth factors on the expression of gicerin, such as IGF-1, PDGF-BB, and bFGF. We found that IGF-1, but not PDGF-BB and bFGF, significantly increases the expression of gicerin protein in A10 cells. These suggest gicerin might be involved in the arteriosclerotic neointima formation in the artery.
Collapse
Affiliation(s)
- Shigeki Okumura
- Department of Pharmacology, Osaka University Medical School, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Delafontaine P, Song YH, Li Y. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler Thromb Vasc Biol 2003; 24:435-44. [PMID: 14604834 DOI: 10.1161/01.atv.0000105902.89459.09] [Citation(s) in RCA: 407] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The vascular insulin-like growth factor (IGF)-1 system includes the IGFs, the IGF-1 receptor (IGF-1R), and multiple binding proteins. This growth factor system exerts multiple physiologic effects on the vasculature through both endocrine and autocrine/paracrine mechanisms. The effects of IGF-1 are mediated principally through the IGF-1R but are modulated by complex interactions with multiple IGF binding proteins that themselves are regulated by phosphorylation, proteolysis, polymerization, and cell or matrix association. During the last decade, a significant body of evidence has accumulated, indicating that expression of the components of the IGF system are regulated by multiple factors, including growth factors, cytokines, lipoproteins, reactive oxygen species, and hemodynamic forces. In addition, cross-talk between the IGF system and other growth factors and integrin receptors has been demonstrated. There is accumulating evidence of a role for IGF-1 in multiple vascular pathologies, including atherosclerosis, hypertension, restenosis, angiogenesis, and diabetic vascular disease. This review will discuss the regulation of expression of IGF-1, IGF-1R, and IGF binding proteins in the vasculature and summarize evidence implicating involvement of this system in vascular diseases.
Collapse
Affiliation(s)
- Patrice Delafontaine
- Section of Cardiology, School of Medicine, Tulane University Medical Center, 1430 Tulane Ave, New Orleans, LA 70112-2699, USA.
| | | | | |
Collapse
|
28
|
Maile LA, Clemmons DR. Integrin-associated protein binding domain of thrombospondin-1 enhances insulin-like growth factor-I receptor signaling in vascular smooth muscle cells. Circ Res 2003; 93:925-31. [PMID: 14563713 DOI: 10.1161/01.res.0000101754.33652.b7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factor-I (IGF-I) stimulates vascular smooth muscle cell (SMC) proliferation and migration. The response of smooth muscle cells to IGF-I is determined not only by activation of the IGF-I receptor but also by at least three other transmembrane proteins, alphaVbeta3, integrin-associated protein (IAP), and SHPS-1. This regulation seems to be attributable to their ability to regulate the transfer of SHP-2 phosphatase, a key component of IGF-I signaling. Ligand occupancy of SHPS-1 with IAP is required for the recruitment and transfer of SHP-2 and subsequent signaling in response to IGF-I. The extracellular matrix protein thrombospondin-1 stimulates an increase in the cell proliferation response to IGF-I. Because thrombospondin-1 is a ligand for IAP, we wished to determine whether the enhancing effect of thrombospondin-1 was mediated through IAP binding. To examine the effect of thrombospondin-1 binding to IAP, we used a peptide termed 4N1K derived from the IAP binding site of thrombospondin-1. Preincubation with 4N1K increased IGF-I-stimulated mitogen-activated protein kinase activation and DNA synthesis. This enhancement seemed to be attributable to its ability to increase the duration of IGF-I-stimulated receptor and insulin receptor substrate-1 (IRS-1) phosphorylation. Preincubation with 4N1K delayed IGF-I stimulation of SHPS-1 phosphorylation (attributable to an alteration in IAP-SHPS-1 interaction), resulting in a delay in SHP-2 recruitment. This delay in SHP-2 transfer seems to account for the increase in the duration of IGF-I receptor phosphorylation and for enhanced downstream signaling. These observations support the conclusion that thrombospondin-1 and IGF-I seem to function coordinately in stimulating smooth muscle proliferation via the thrombospondin-1 interaction with IAP.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation
- Binding Sites/physiology
- CD47 Antigen
- Carrier Proteins/metabolism
- Cell Division/drug effects
- Cells, Cultured
- DNA/biosynthesis
- Enzyme Activation/drug effects
- Ligands
- Membrane Glycoproteins/metabolism
- Mitogen-Activated Protein Kinases/drug effects
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Neural Cell Adhesion Molecule L1/metabolism
- Peptide Fragments/chemistry
- Peptide Fragments/pharmacology
- Phosphorylation/drug effects
- Protein Binding/drug effects
- Protein Binding/physiology
- Protein Structure, Tertiary/physiology
- Receptor, IGF Type 1/metabolism
- Receptors, Immunologic
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Swine
- Thrombospondin 1/chemistry
- Thrombospondin 1/metabolism
Collapse
Affiliation(s)
- Laura A Maile
- Division of Endocrinology, University of North Carolina, Chapel Hill, NC 27599-7170, USA
| | | |
Collapse
|
29
|
Bayes-Genis A, Schwartz RS, Bale LK, Conover CA. Effects of insulin-like growth factor-I on cultured human coronary artery smooth muscle cells. Growth Horm IGF Res 2003; 13:246-253. [PMID: 12932745 DOI: 10.1016/s1096-6374(03)00013-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The growth-promoting effects of insulin-like growth factor-I (IGF-I) appear to be different in vascular smooth muscle cells from various segments of the arterial tree. Little information exists on human coronary artery smooth muscle cells (CoSMC), the primary elements of coronary atherosclerosis and post-angioplasty restenosis. In this study we determined the effects of IGF-I on cultured human CoSMC. Type I IGF receptors (IGF-R) were present on CoSMC as assessed by affinity cross-linking of 125I-IGF-I to monolayer cultures. IGF-I was a weak mitogen, 1.5-fold increase in [3H]thymidine incorporation, for CoSMC. However, IGF-I had a potent motility effect on CoSMC with a 314+/-12% increase in cell migration (P<0.001), comparable to that of 5% FBS. IGF-I-stimulated motility was partially inhibited by alphaIR-3, a specific IGF-R inhibitor (P<0.05). Addition of kistrin, a disintegrin, or LM609, a specific alpha(V)beta(3) integrin neutralizing antibody, abolished IGF-I-stimulated migration (P<0.001). This study indicates that IGF-I is a potent motility agent for human CoSMC via the alpha(V)beta(3) integrin receptor, but exerts little mitogenic effect. Because CoSMC migration plays a crucial role in atherosclerosis and restenosis, IGF-I blockade has the potential to limit lumen reduction.
Collapse
MESH Headings
- Cell Movement
- Cells, Cultured
- Coronary Vessels/cytology
- Humans
- Insulin-Like Growth Factor I/pharmacology
- Insulin-Like Growth Factor I/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Receptor, IGF Type 1/metabolism
Collapse
Affiliation(s)
- Antoni Bayes-Genis
- Division of Cardiovascular Diseases and Endocrine Research Unit , Mayo Clinic and Foundation, 200 First Street SW, 5-194 Joseph, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
30
|
Sasaoka T, Kikuchi K, Wada T, Sato A, Hori H, Murakami S, Fukui K, Ishihara H, Aota R, Kimura I, Kobayashi M. Dual role of SRC homology domain 2-containing inositol phosphatase 2 in the regulation of platelet-derived growth factor and insulin-like growth factor I signaling in rat vascular smooth muscle cells. Endocrinology 2003; 144:4204-14. [PMID: 12933696 DOI: 10.1210/en.2003-0190] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Src homology domain 2 (SH2)-containing inositol phosphatase 2 (SHIP2) possesses 5-phosphatase activity and an SH2 domain. The role of SHIP2 in platelet-derived growth factor (PDGF) and IGF-I signaling was studied by expressing wild-type (WT-) and a catalytically defective (Delta IP-) SHIP2 into rat aortic smooth muscle cells by adenovirus-mediated gene transfer. PDGF- and IGF-I-induced tyrosine phosphorylation of their respective receptors and phosphatidylinositol 3-kinase (PI3-kinase) activity were not affected by the expression of either WT- or Delta IP-SHIP2. SHIP2 possessed 5'-phosphatase activity to hydrolyze the PI3-kinase product phosphatidylinositol 3,4,5-trisphosphate in vivo. Akt and glycogen synthase kinase 3beta are known to be downstream molecules of PI3-kinase, leading to the antiapoptotic effect. Overexpression of WT-SHIP2 inhibited PDGF- and IGF-I-induced phosphorylation of these molecules and the protective effect of poly(ADP-ribose) polymerase degradation, whereas these phosphorylations and the protective effect were enhanced by the expression of Delta IP-SHIP2, which functions in a dominant negative fashion. Regarding the Ras-MAPK pathway, PDGF- and IGF-I-induced tyrosine phosphorylation of Shc was not affected by the expression of either WT- or Delta IP-SHIP2, whereas both expressed SHIP2 associated with Shc. Importantly, PDGF and IGF-I stimulation of Shc/Grb2 binding, MAPK activation, and 5-bromo-2'-deoxyuridine incorporation were all decreased in both WT- and Delta IP-SHIP2 expression. These results indicate that SHIP2 plays a negative regulatory role in PDGF and IGF-I signaling in vascular smooth muscle cells. As the bifunctional role, our results suggest that SHIP2 regulates PDGF- and IGF-I-mediated signaling downstream of PI3-kinase, leading to the antiapoptotic effect via 5-phosphatase activity, and that SHIP2 regulates the growth factor-induced Ras-MAPK pathway mainly via the SH2 domain.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adenoviridae/genetics
- Animals
- Antimetabolites/pharmacokinetics
- Aorta, Thoracic/cytology
- Bromodeoxyuridine/pharmacokinetics
- Cells, Cultured
- GRB2 Adaptor Protein
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Hypoglycemic Agents/pharmacology
- Insulin/pharmacology
- Insulin-Like Growth Factor I/pharmacology
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol Phosphates/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Platelet-Derived Growth Factor/pharmacology
- Poly(ADP-ribose) Polymerases/metabolism
- Protein Serine-Threonine Kinases
- Proteins/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Rats
- Signal Transduction/drug effects
- Signal Transduction/physiology
- src Homology Domains/physiology
Collapse
Affiliation(s)
- Toshiyasu Sasaoka
- Department of Clinical Pharmacology, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Su EJ, Cioffi CL, Stefansson S, Mittereder N, Garay M, Hreniuk D, Liau G. Gene therapy vector-mediated expression of insulin-like growth factors protects cardiomyocytes from apoptosis and enhances neovascularization. Am J Physiol Heart Circ Physiol 2003; 284:H1429-40. [PMID: 12505877 DOI: 10.1152/ajpheart.00885.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IGF-I and IGF-II are single-chain polypeptide growth factors that regulate pleiotropic cellular responses. We have characterized the effect of recombinant IGF proteins, as well as third-generation adenoviral vectors encoding either IGF-I or IGF-II genes, on cardiomyocyte apoptosis and on angiogenesis. We found that endothelial cells cultured in the presence of the extracellular protein laminin exhibit a robust response to IGF-I and -II proteins via enhanced cell migration and angiogenic outgrowth. Furthermore, IGF vectors greatly enhanced neovascularization in an in vivo Matrigel model. Transduction of cardiomyocytes with the IGF adenoviral vectors resulted in a dose- and time-dependent increase in the expression of IGF-I or IGF-II protein. This correlated with abrogation of apoptosis induced by ischemia-reoxygenation, ceramide, or heat shock with optimal inhibition of approximately 80%. We conclude that gene transfer of IGF-I and IGF-II is a plausible strategy for the local delivery of IGFs to treat ischemic heart disease and heart failure by stimulating angiogenesis and protecting cardiomyocytes from cell death.
Collapse
Affiliation(s)
- E J Su
- Genetic Therapy Incorporated, Gaithersburg, Maryland 20878, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Isenovic ER, Meng Y, Divald A, Milivojevic N, Sowers JR. Role of phosphatidylinositol 3-kinase/Akt pathway in angiotensin II and insulin-like growth factor-1 modulation of nitric oxide synthase in vascular smooth muscle cells. Endocrine 2002; 19:287-92. [PMID: 12624428 DOI: 10.1385/endo:19:3:287] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Revised: 10/22/2002] [Accepted: 10/29/2002] [Indexed: 11/11/2022]
Abstract
The aim of this study was to examine the role of the phosphatidylinositol 3-kinase (PI3K)/serine/threonine kinase Akt signaling pathway in mediating interactions between angiotensin II (Ang II) and insulin-like growth factor-1 (IGF-1) in regulation of inducible nitric oxide synthase (iNOS) in vascular smooth muscle cells (VSMCs). Exposure to 100 nM IGF-1 for 10 min resulted in increased insulin-receptor substrate-1 associated PI3K activity and Akt kinase activity, whereas 100 nM Ang II pretreatment for 5 min strikingly decreased these IGF-1 effects. NOS activity was also increased in VSMCs following exposure to IGF-1 (10 min up to 24 h). Pretreatment with Ang II for 5 min reduced IGF-1-induced NOS activity. IGF-1 treatment for 24 hr increased iNOS gene transcription, and Ang II pretreatment reduced this stimulation of iNOS gene expression by attenuating PI3K/Akt signaling. These results implicate PI3K/ Akt pathways in Ang II/IGF-1 regulation of iNOS in VSMCs.
Collapse
Affiliation(s)
- Esma R Isenovic
- Department of Biochemistry, SUNY-Health Science Center, Brooklyn, NY 11203, USA
| | | | | | | | | |
Collapse
|
33
|
Li H, Dimayuga P, Yamashita M, Yano J, Fournier M, Lewis M, Cercek B. Arterial injury in mice with severe insulin-like growth factor-1 (IGF-1) deficiency. J Cardiovasc Pharmacol Ther 2002; 7:227-33. [PMID: 12490968 DOI: 10.1177/107424840200700405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Insulin-like growth factor-1 plays a significant role in wound healing. Injury to the arterial wall is followed by a marked increase in insulin-like growth factor-1 expression and inhibition of insulin-like growth factor-1 action is associated with diminished intimal thickening after injury. METHODS AND RESULTS The role of insulin-like growth factor-1 in arterial response to cuff injury was investigated in genetically modified mice with severe insulin-like growth factor-1 deficiency ((m/m) mice). Tissue and serum insulin-like growth factor-1 was severely decreased, by 40% to 60% before the injury and by 50% to 60% following the arterial injury in insulin-like growth factor-1 (m/m) mice compared to control mice. Nevertheless, following the cuff induced injury to the carotid arteries, insulin-like growth factor-1 (m/m) mice had a similar number of proliferating medial cells 3 days after injury and similar neointimal thickening (0.019 +/- 0.015 C57BL/6J vs. 0.016 +/- 0.014 mm(2), P = 0.26) 21 days after injury compared to wild type C57BL/6J mice. The phases of the response to injury that are mediated by insulin-like growth factor-1 were studied with recombinant human insulin-like growth factor-1 in rats with balloon-injured femoral arteries. Treatment of rats with recombinant human insulin-like growth factor-1 increased neointimal thickening (0.0265 +/- 0.0099 vs 0.0156 +/- 0.0049 mm(2), P = 0.03), intimal smooth muscle cell numbers (195.6 +/- 40.2 vs 145.3 +/- 27.3; P = 0.03), and the ratio of proliferating intimal to medial smooth muscle cells (10.7 +/- 6.9 vs 3.0 +/- 2.1; P = 0.03) 7 days after injury compared to untreated rats. At 14 days neointimal area was similar in the 2 groups of rats. CONCLUSIONS The data in insulin-like growth factor-1 deficient mice suggest a relatively low threshold tissue concentration for insulin-like growth factor-1 to exhibit its role in vascular response to injury. The findings in rats treated with recombinant human insulin-like growth factor-1 suggest that insulin-like growth factor-1 is primarily involved in the early phases of neointimal formation.
Collapse
Affiliation(s)
- Hongyan Li
- Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Chaqour B, Han JS, Tamura I, Macarak E. Mechanical regulation of IGF-I and IGF-binding protein gene transcription in bladder smooth muscle cells. J Cell Biochem 2002; 84:264-77. [PMID: 11787055 DOI: 10.1002/jcb.10013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mechanical forces are well known to modulate smooth muscle cell growth and synthetic phenotype. The signals controlling this process are complex and potentially involve changes in the expression of peptide growth factor genes such as those of the insulin-like growth factor (IGF) system. This study was designed to investigate the mechanical regulation of IGF-I and the binding proteins for IGF (IGFBPs) in smooth muscle cells cultured on a deformable surface and subjected to cyclic stretch. Using the RNase protection assay, we found that the application of a cyclic biaxial strain to cells induced a 2.5- to 4-fold increase in IGF-I mRNA levels after 8 h and an even greater increase after 16-24 h of stretch. This change was not affected by variations in the magnitude of the applied strain but was attenuated ( approximately 40%) when cells were treated with antagonists for angiotensin II receptors. Furthermore, the transcript levels of the three major IGF binding proteins produced in smooth muscle cells, e.g., IGFBP-2, IGFBP-4, and IGFBP-5, varied between stretched and control cells. Both IGFBP-2 and IGFBP-4 mRNA levels were consistently reduced in stretched cells but remained comparable to those of the control cells when the angiotensin II transducing pathway was blocked by inhibitors prior to the application of mechanical strain. Conversely, the gene expression of IGFBP-5 was upregulated in stretched cells, and neutralizing antibodies to IGF-I blocked this activation. Similarly, pharmacologic inhibition of the phosphatidylinositol 3-kinase, an important component of the IGF receptor transduction pathway, inhibited IGFBP-5 gene expression in stretched cells. These results suggest that the downstream effects of mechanical strain on IGF-I and IGFBP transcript levels are mediated, to greater or lesser extent, either through an angiotensin II tranducing pathway or via a feedback loop involving the autocrine secretion of IGF-I itself.
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Histology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | |
Collapse
|
35
|
Smith EP, Kamyar A, Niu W, Wang J, Cercek B, Chernausek SD, Fagin JA. IGF-binding protein-4 expression and IGF-binding protein-4 protease activity are regulated coordinately in smooth muscle during postnatal development and after vascular injury. Endocrinology 2001; 142:4420-7. [PMID: 11564706 DOI: 10.1210/endo.142.10.8452] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies support a critical role for the paracrine IGF/IGF-binding protein system in the regulation of vascular smooth muscle cell growth. In this study we have explored the hypothesis that the abundance of individual IGF-binding proteins in smooth muscle is subject to regulation during postnatal life and in response to injury. IGF-binding protein-2 was the predominant binding protein secreted by neonatal rat vascular smooth muscle cells, whereas IGF-binding protein-4 was most prevalent in adult vascular smooth muscle cells coincident with increased IGF-binding protein-4 protease activity. After arterial injury, IGF-binding protein-4 mRNA increased, associated with greater IGF-binding protein-4 proteolytic activity, resulting in stable steady state levels of the IGF-binding protein-4 protein. Expression of pregnancy-associated plasma protein A mRNA, recently identified as an IGF-binding protein-4 protease, was expressed at higher levels in adult than neonatal vascular smooth muscle cell lines, but did not change significantly after arterial injury. The peak of immunoreactive pregnancy-associated plasma protein A from hydrophobic interaction chromatography fractions of smooth muscle cell-conditioned medium coincided, but did not fully overlap, with the fractions containing maximal IGF-binding protein-4 protease activity. In conclusion, our data point to a developmental switch from IGF-binding protein-2 to IGF-binding protein-4 in vascular smooth muscle cells postnatally. Moreover, IGF-binding protein-4 expression is coregulated with IGF-binding protein-4 protease activity, suggesting that biosynthesis and degradation of this binding protein are coordinated events important for regulating biological activity of IGF-I.
Collapse
Affiliation(s)
- E P Smith
- Division of Endocrinology, University of Cincinnati College of Medicine, Ohio 45267-0547, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhu B, Zhao G, Witte DP, Hui DY, Fagin JA. Targeted overexpression of IGF-I in smooth muscle cells of transgenic mice enhances neointimal formation through increased proliferation and cell migration after intraarterial injury. Endocrinology 2001; 142:3598-606. [PMID: 11459808 DOI: 10.1210/endo.142.8.8331] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The response of arterial smooth muscle cells to injury is governed by a complex series of events. Significant among them is the paracrine production of peptide growth factors. To determine the impact of local IGF-I gene expression on vascular injury, the left carotid arteries of SMP8-IGF-I mice (in which IGF-I is selectively overexpressed in smooth muscle cells by means of a smooth muscle alpha-actin promoter) and wild-type controls were injured mechanically with an epon resin probe. After 7 and 14 d, a progressive increase in medial area was seen in both SMP8-IGF-I and wild-type mice, but they were not significantly different from each other. However, by 14 d there was a more than 4-fold increase in neointimal area in transgenic vs. wild-type. The intima/media ratios were also strikingly increased at 14 d in the IGF-I-overexpressing animals. The mitotic index, determined in animals injected daily with bromodeoxyuridine for 3 d before death, was markedly elevated in both the media and neointima 7 d after injury in SMP8-IGF-I mice, but the effect had subsided by 14 d. Despite a higher rate of cell division, the relative increase in medial area was less in the SMP8-IGF-I mice than in wild-type mice at both 7 and 14 d, consistent with a stimulation of cell migration to the neointima. The experiments reported here provide compelling evidence that paracrine expression of IGF-I is a powerful stimulus for smooth muscle cell proliferation and migration in vivo.
Collapse
Affiliation(s)
- B Zhu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
37
|
Vecchione C, Colella S, Fratta L, Gentile MT, Selvetella G, Frati G, Trimarco B, Lembo G. Impaired insulin-like growth factor I vasorelaxant effects in hypertension. Hypertension 2001; 37:1480-5. [PMID: 11408398 DOI: 10.1161/01.hyp.37.6.1480] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factor I (IGF-I) can be considered a factor potentially involved in arterial hypertension not only for its growth-promoting features but also for its effects on vascular tone. Nevertheless, the actions of the hormone on vascular reactivity are still unexplored in hypertension. Therefore, the vasodilation induced by increasing doses of IGF-I and the modulation of norepinephrine vasoconstriction induced by low levels of the hormone were tested on aortic rings of spontaneously hypertensive and normotensive rats. The results indicate that the vasodilation evoked by IGF-I is impaired in hypertensive rats (Delta% of maximal vasorelaxation, 30+/-1 versus 41+/-1; P<0.01), and after the removal of endothelium or the inhibition of endothelial NO synthase, the vasodilation evoked by the hormone was blunted in both rat strains and became similar between hypertensive and normotensive rats (Delta% of maximal vasorelaxation, 21+/-1 versus 20+/-1; P=NS). Moreover, IGF-I does not show any effect on norepinephrine vasoconstriction in hypertensive rats, and this alteration may depend on the lack of sensitizing effect exerted by IGF-I on alpha(2)-adrenergic-evoked NO vasorelaxation. The defect in IGF-I vascular action is also present in young spontaneously hypertensive rats (age 5 weeks). In conclusion, our data demonstrate that IGF-I vasorelaxant properties are impaired in spontaneously hypertensive rats, suggesting that such defect may play a causative or permissive role in the development of hypertensive conditions.
Collapse
|
38
|
Tivesten A, Caidahl K, Kujacic V, Sun XY, Hedner T, Bengtsson BA, Isgaard J. Similar cardiovascular effects of growth hormone and insulin-like growth factor-I in rats after experimental myocardial infarction. Growth Horm IGF Res 2001; 11:187-195. [PMID: 11735233 DOI: 10.1054/ghir.2001.0202] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Accumulating data show that growth hormone (GH) and insulin-like growth factor-I (IGF-I) have major effects on the cardiovascular system. In the present study we have directly compared GH and IGF-I in an in vivo rat model of experimental myocardial infarction. Four weeks after ligation of the left coronary artery, male rats were treated with recombinant human (rh) GH 1.1 mg/kg per day, rhIGF-I 3.0 mg/kg per day or saline s.c. for 2 weeks. Transthoracic echocardiography was performed before and after the treatment period. Both GH and IGF-I reduced total peripheral resistance (P< 0.01), end-systolic wall stress (P< 0.01) and end-systolic short-axis area (P< 0.001 and P< 0.05). GH also increased area fractional shortening (P< 0.05). Stroke volume (SV) and SV index were improved by IGF-I (P< 0.0001), and SV tended to be increased by GH (P= 0.12). In conclusion, GH and IGF-I had similar beneficial effects on systolic function and peripheral resistance after experimental myocardial infarction.
Collapse
Affiliation(s)
- A Tivesten
- Research Centre for Endocrinology and Metabolism, Department of Internal Medicine, Gröna Stråket 8, Sahlgrenska University Hospital, S-413 45 Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
39
|
Bayes-Genis A, Schwartz RS, Lewis DA, Overgaard MT, Christiansen M, Oxvig C, Ashai K, Holmes DR, Conover CA. Insulin-like growth factor binding protein-4 protease produced by smooth muscle cells increases in the coronary artery after angioplasty. Arterioscler Thromb Vasc Biol 2001; 21:335-41. [PMID: 11231911 DOI: 10.1161/01.atv.21.3.335] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factor (IGF)-I stimulates vascular smooth muscle cell (VSMC) migration and proliferation, which are fundamental to neointimal hyperplasia in postangioplasty restenosis. IGF-I action is modulated by several high-affinity IGF binding proteins (IGFBPs). IGFBP-4 is the predominant IGFBP produced by VSMCs and is a potent inhibitor of IGF-I action. However, specific IGFBP-4 proteases can cleave IGFBP-4 and liberate active IGF-I. In this study, we document IGFBP-4 protease produced by human and porcine coronary artery VSMCs in culture as pregnancy-associated plasma protein-A (PAPP-A). This was shown by a distinctive IGFBP-4 cleavage pattern, specific inhibition of IGFBP-4 protease activity with PAPP-A polyclonal antibodies, and immunorecognition of PAPP-A by monoclonal antibodies. Furthermore, we found a 2-fold increase in IGFBP-4 protease activity in injured porcine VSMC cultures in vitro (P<0.05). We also evaluated IGFBP-4 protease/PAPP-A expression in vivo after coronary artery balloon injury. Twenty-five immature female pigs underwent coronary overstretch balloon injury, and vessels were examined at defined time points after the procedure. Abundant PAPP-A expression was observed in the cytoplasm of medial and neointimal cells 7, 14, and 28 days after angioplasty (P<0.01 vs control). The highest PAPP-A labeling indices were located in the neointima (36.1+/-2.1%) and the media (31.7+/-1.2%) 28 days after injury. Western blot analysis confirmed increased PAPP-A in injured vessels. PAPP-A, a regulator of IGF-I bioavailability through proteolysis of IGFBP-4, is thus expressed by VSMCs in vitro and in restenotic lesions in vivo. These results suggest a possible role for PAPP-A in neointimal hyperplasia.
Collapse
Affiliation(s)
- A Bayes-Genis
- Division of Cardiovascular Diseases, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fan WH, Pech M, Karnovsky MJ. Connective tissue growth factor (CTGF) stimulates vascular smooth muscle cell growth and migration in vitro. Eur J Cell Biol 2000; 79:915-23. [PMID: 11152282 DOI: 10.1078/0171-9335-00122] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Connective tissue growth factor (CTGF) was first identified as a 38-kDa cysteine-rich protein which can be specifically induced by TGF-beta and was recently found to be expressed abundantly in atherosclerotic lesions, but only marginally in normal vascular tissues. It was hypothesized that CTGF is one of the factors involved in the development of atherosclerotic lesions. In this study, we investigated the functions of CTGF protein in regulating the growth and migration of vascular smooth muscle cells (VSMC) and found that by overexpressing CTGF in VSMC, proliferation and migration rates were significantly increased. The accelerated growth and migration can be reversed by an anti-CTGF antibody. In addition, overexpression of CTGF also promotes VSMC to express more extracellular matrix protein collagen I and fibronectin. Our results indicate that CTGF is a growth factor for VSMC and it may play a similar role in promoting VSMC proliferation, migration, and formation of extracellular matrix, in vivo.
Collapse
Affiliation(s)
- W H Fan
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
41
|
Bayes-Genis A, Conover CA, Schwartz RS. The insulin-like growth factor axis: A review of atherosclerosis and restenosis. Circ Res 2000; 86:125-30. [PMID: 10666406 DOI: 10.1161/01.res.86.2.125] [Citation(s) in RCA: 292] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factors I and II (IGF-I and -II) and their regulatory proteins are secreted by cells of the cardiovascular system. They are growth promoters for arterial cells and mediators of cardiovascular disease. IGFs are bound to IGF binding proteins (IGFBPs), which modulate IGF ligand-receptor interaction and consequently to IGF action. IGFBPs are in turn posttranslationally modulated by specific proteases. This dynamic balance (IGFs, IGFBPs, and IGFBP proteases) constitutes the IGF axis and ultimately determines the extent of IGF-dependent cellular effects. Dysregulated actions of this axis influence coronary atherosclerosis through effects on vascular smooth muscle cell growth, migration, and extracellular matrix synthesis in the atherosclerotic plaque. IGF-I promotes macrophage chemotaxis, excess LDL cholesterol uptake, and release of proinflammatory cytokines. Endothelial cells also receive the effects of IGFs stimulating their migration and organization forming capillary networks. Neointimal hyperplasia of restenosis after coronary artery injury is also modulated by the IGF axis. IGFs stimulate vascular smooth muscle cell proliferation and migration to form the neointima and upregulate tropoelastin synthesis after disruption of the elastic layer. Understanding IGF axis regulation establishes a scientific basis for strategies directed to limit or reverse plaque growth and vulnerability in atherosclerosis and in the neointimal hyperplasia of restenosis.
Collapse
Affiliation(s)
- A Bayes-Genis
- Division of Cardiovascular Diseases, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
42
|
Anwar A, Zahid AA, Phillips L, Delafontaine P. Insulin-like growth factor binding protein-4 expression is decreased by angiotensin II and thrombin in rat aortic vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2000; 20:370-6. [PMID: 10669632 DOI: 10.1161/01.atv.20.2.370] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Insulin-like growth factor-I (IGF-I) is a ubiquitous peptide that regulates cellular growth and differentiation and is involved in vascular proliferative responses. The effects of IGF-I are modulated by several IGF-I binding proteins (IGFBPs), including IGFBP-4, the main IGFBP produced by vascular smooth muscle cells (VSMCs). We have previously shown that angiotensin II (Ang II)-induced and thrombin-induced mitogenesis in VSMCs is dependent on autocrine IGF-I. In addition, we have demonstrated that IGF-I and IGFBP-4 mRNA levels are upregulated in the hypertensive aorta of abdominally coarcted rats, a high-renin hypertension model. To obtain further insight into the IGF-I system and to specifically study changes in IGFBP-4, a known inhibitor of IGF-I action, VSMCs were incubated with Ang II or thrombin. Compared with control, Ang II induced an 87+/-2% downregulation of IGFBP-4 mRNA levels at 24 hours, with a 61+/-6% decrease of IGFBP-4 levels, as determined by Western ligand blot analysis. Thrombin had the same depressor effects (87+/-2% for the mRNA levels and 61+/-3% for the protein levels). Ang II and thrombin coincubation with (125)I-IGFBP-4 in the conditioned media failed to reveal any increase in fragmentation, indicating that proteolytic cleavage of IGFBP-4 was not involved in the observed effects. Exogenous recombinant human IGFBP-4 decreased thrombin-induced DNA synthesis of human aortic VSMCs by 64%, whereas anti-IGFBP-4 antibody potentiated thrombin-induced DNA synthesis. These data suggest that downregulation of IGFBP-4 expression in VSMCs may play a critical role in vascular growth response to Ang II and thrombin in normal and diseased states, by increasing the bioavailability of IGF-I for its cell-surface receptor.
Collapse
Affiliation(s)
- A Anwar
- Hôpital Cantonal Universitaire de Genève, Geneva, Switzerland.
| | | | | | | |
Collapse
|
43
|
Izhar U, Hasdai D, Richardson DM, Cohen P, Lerman A. Insulin and insulin-like growth factor-I cause vasorelaxation in human vessels in vitro. Coron Artery Dis 2000; 11:69-76. [PMID: 10715809 DOI: 10.1097/00019501-200002000-00012] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Insulin and insulin-like growth factor-I (IGF-I) are endogenous peptides with vasoactive activities. OBJECTIVE To evaluate the vasodilatory effects of insulin and IGF-I on human vessels taken from patients with and without noninsulin-dependent diabetes mellitus (NIDDM) and to elucidate their mechanisms of action. METHODS Vascular rings of human internal mammary artery (IMA) and saphenous vein harvested from 54 patients with and without NIDDM undergoing coronary bypass surgery were studied in vitro. RESULTS For samples from patients without NIDDM both insulin and IGF-I (10(-12)-10(-7) mol/l) evoked greater relaxation in IMA rings (30 +/- 4 and 29 +/- 6%, maximal relaxation +/- SEM, respectively) than they did in saphenous-vein rings (43 +/- 4 and 42 +/- 5%, respectively, P < 0.05 both for insulin and for IGF-I). Similar results were obtained with vessels from patients with NIDDM. Relaxation was not affected by the removal of the endothelium and by inhibition of the production of nitric oxide. However, the vascular relaxation caused by insulin and IGF-I was completely abolished by KCI, and was attenuated by the nonspecific potassium-channel blocker tetraethylammonium (for IMA rings, to 77 +/- 8 and 66 +/- 4% with insulin and IGF-I, respectively; for saphenous vein rings, 73 +/- 2 and 77 +/- 1% for insulin and IGF-I, respectively, P < 0.001). CONCLUSIONS Both insulin and IGF-I induced endothelial-independent, nitric oxide-independent vasorelaxation of rings from human IMA and saphenous veins, through a mechanism involving activation of potassium channels. This response remained intact in vessels from patients with NIDDM. This result supports the hypothesis that insulin and IGF-I play roles in the regulation of vascular tone in human vessels.
Collapse
Affiliation(s)
- U Izhar
- Division of Cardiovascular Disease, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
44
|
Leroith D, Blakesley VA, Werner H. Molecular Mechanisms of Insulin‐like Growth Factor I Receptor Function: Implications for Normal Physiology and Pathological States. Compr Physiol 1999. [DOI: 10.1002/cphy.cp070520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Clemmons DR, Horvitz G, Engleman W, Nichols T, Moralez A, Nickols GA. Synthetic alphaVbeta3 antagonists inhibit insulin-like growth factor-I-stimulated smooth muscle cell migration and replication. Endocrinology 1999; 140:4616-21. [PMID: 10499518 DOI: 10.1210/endo.140.10.7027] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Porcine aortic smooth cells respond to insulin-like growth factor-I (IGF-I) with increases in DNA synthesis and cell migration. Because ligand occupancy of the alphaVbeta3 integrin has been shown to be necessary for IGF-I to stimulate maximal increases in both processes, we determined whether synthetic alphaVbeta3 antagonists could inhibit IGF-I-stimulated actions on this cell type. Low-molecular-weight compounds that had been selected based on their ability to compete with vitronectin for binding to purified human alphaVbeta3 in vitro were analyzed for their ability to compete with 125I-kistrin (a known ligand for porcine alphaVbeta3) for binding to porcine alphaVbeta3. Nine compounds were screened, and five were found to be potent competitive inhibitors. The most potent compound, SC-69000, resulted in 88% competition at 10(-7) M and was nearly equipotent with echistatin. The compounds that were the most potent inhibitors of kistrin binding were tested for their capacity to inhibit the cell migration response to IGF-I. Three compounds caused between 81-88% inhibition of IGF-I-stimulated migration at 10(-7) M. To determine whether these compounds could inhibit other IGF-I-stimulated actions, their ability to inhibit IGF-I-stimulated [3H]-thymidine incorporation into DNA was analyzed. The four compounds that were the most potent inhibitors of cell migration also inhibited IGF-I-stimulated DNA replication. IGF-I stimulates the synthesis of IGF binding protein-5 by these cells. Preincubation with the four most active compounds also resulted in significant inhibition of the ability of IGF-I to stimulate IGF binding protein-5 synthesis. AlphaVbeta3 occupancy by the ligand vitronectin has been shown to enhance the capacity of IGF-I to activate its receptor tyrosine kinase. The four most active compounds were shown to inhibit IGF-I-stimulated IGF-I receptor autophosphorylation. These findings suggest that blockade of ligand occupancy of the alphaVbeta3 integrin globally inhibits several IGF-I-stimulated biologic actions and that synthetic inhibitors are very active in this regard. Because these compounds can be administered to whole animals, they should be very useful in determining whether blocking alphaVbeta3 occupancy in vivo results in alteration in responsiveness to IGF-I.
Collapse
Affiliation(s)
- D R Clemmons
- Department of Medicine, University of North Carolina at Chapel Hill, 27599-7170, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Hasdai D, Nielsen MF, Rizza RA, Holmes DR, Richardson DM, Cohen P, Lerman A. Attenuated in vitro coronary arteriolar vasorelaxation to insulin-like growth factor I in experimental hypercholesterolemia. Hypertension 1999; 34:89-95. [PMID: 10406829 DOI: 10.1161/01.hyp.34.1.89] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin and insulin-like growth factor (IGF) 1 affect coronary vasoactivity. Experimental hypercholesterolemia is associated with coronary atherogenesis and altered vasomotor regulation. Because the IGF axis is altered during atherogenesis, we postulated that experimental hypercholesterolemia is associated with an altered coronary vasoactive response to IGF-1 in vitro. Coronary arteries and arterioles from pigs fed either a normal or high-cholesterol diet for 10 weeks were contracted with endothelin-1 and relaxed with cumulative concentrations of insulin or IGF-1 (10(-12) to 10(-7) mol/L). Control arterioles were also incubated with the nitric oxide synthase inhibitor 10(-4) mol/L N(G)-monomethyl-L-arginine (L-NMMA) or the potassium channel blocker 10(-2) mol/L tetraethylammonium (TEA), contracted with endothelin-1, and relaxed with insulin or IGF-1. Experimental hypercholesterolemia (1) increased serum cholesterol (9.5+/-1.0 versus 1.9+/-0.08 mmol/L; P<0.0001), (2) caused coronary arterial and arteriolar endothelial dysfunction in vitro (attenuated vasorelaxation to bradykinin), (3) did not alter the epicardial response to either insulin (P=0.80) or IGF-1 (P=0.12), and (4) significantly attenuated the arteriolar response to IGF-1 (maximal relaxation of 79+/-6% versus 42+/-8%; P=0.01) but not insulin (43+/-6% versus 53+/-7%; P=0.99). Control arteriolar vasorelaxation to IGF-1 was attenuated by both L-NMMA (P<0.001) and TEA (P=0.01), whereas only L-NMMA attenuated insulin (P<0.001). Staining for IGF-1 and IGF binding protein 2 was increased (P<0.05) in arterioles of cholesterol-fed pigs. IGF-1 and insulin are therefore coronary arteriolar vasorelaxants through different mechanisms. Experimental hypercholesterolemia is associated with resistance to the coronary arteriolar vasorelaxing effects of IGF-1 but not insulin, in conjunction with increased ligand and binding-protein expression. The IGF axis may contribute to the altered coronary vasoactivity in hypercholesterolemia.
Collapse
Affiliation(s)
- D Hasdai
- Division of Internal Medicine and Cardiovascular Diseases, Division of Endocrinology, Endocrine Research Unit, Mayo Clinic and Foundation, Rochester, MN, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
There is considerable evidence that insulin and insulin-like growth factors regulate a number of important physiological functions in a variety of tissues, some not considered to be classically insulin sensitive. Impaired biological responses to insulin and related insulin-like growth factors are referred to as insulin resistance. Persons with insulin resistance often display clinical abnormalities other than impaired glucose tolerance, including central obesity, hypertension, dyslipidemia, microalbuminuria, and abnormal coagulation and fibrinolytic systems. The mechanisms leading to development of insulin resistance are not fully understood. However, in addition to abnormalities of phosphorylation processes, it appears that alterations in cellular cation metabolism contribute to diminished cellular actions of insulin (i.e., glucose transport and hemodynamic actions). This review focuses on known cellular cation abnormalities and associated insulin resistance and cardiovascular disease.
Collapse
Affiliation(s)
- J R Sowers
- Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
48
|
Kraemer R, Nguyen H, March KL, Hempstead B. NGF activates similar intracellular signaling pathways in vascular smooth muscle cells as PDGF-BB but elicits different biological responses. Arterioscler Thromb Vasc Biol 1999; 19:1041-50. [PMID: 10195934 DOI: 10.1161/01.atv.19.4.1041] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The signaling pathways that regulate smooth muscle cell migration and proliferation are incompletely understood. Smooth muscle cells express at least 3 families of receptor tyrosine kinases that mediate cell migration: platelet-derived growth factor (PDGF) receptors, the trk family of neurotrophin receptors, and insulin-like growth factor 1 receptor. The neurotrophin, nerve growth factor (NGF), and insulin-like growth factor 1 induce the migration but not the proliferation of smooth muscle cells, whereas PDGF-BB stimulates both responses. To determine whether distinct signaling pathways downstream of receptor tyrosine kinases specifically mediate smooth muscle cell migration or proliferation, the ligand-induced activation of different signaling pathways in smooth muscle cells was examined. NGF induces prolonged activation of the Shc/MAP kinase pathway and phospholipase Cgamma compared with PDGF-BB. The activation of phosphatidylinositol-3 kinase, however, was 10-fold greater in response to PDGF-BB compared with NGF. Insulin-like growth factor 1 activates only phosphatidylinositol-3 kinase. Pharmacological inhibitors of phosphatidylinositol-3 kinase, Wortmannin and LY294002, inhibit PDGF-BB and NGF-induced migration, whereas an inhibitor of MAP kinase kinase, PD98059, has no effect. Our results suggest that (1) different receptor tyrosine kinases use similar patterns of activation of signaling pathways to mediate distinct biological outcomes of cell migration and proliferation, (2) NGF activates signaling proteins in smooth muscle cells similar to those activated during NGF-induced neuronal differentiation, and (3) the combinatorial effects of different signaling pathways are important for the regulation of smooth muscle cell migration and proliferation. Further studies using mutant trk receptors will help to define the signal transduction pathways mediating NGF-induced smooth muscle cell migration.
Collapse
Affiliation(s)
- R Kraemer
- Department of Pathology, Cornell University Medical College, New York, NY, USA
| | | | | | | |
Collapse
|
49
|
Ludwig CU, Menke A, Adler G, Lutz MP. Fibroblasts stimulate acinar cell proliferation through IGF-I during regeneration from acute pancreatitis. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G193-8. [PMID: 9886995 DOI: 10.1152/ajpgi.1999.276.1.g193] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Pancreatic regeneration after caerulein-induced pancreatitis is characterized by transient fibroblast proliferation followed by replication of acinar cells. The mechanisms that coordinate regeneration are incompletely understood. In this study, we examine the role of insulin-like growth factor I (IGF-I). Acute edematous pancreatitis was induced in rats by 12 h caerulein infusion. Pancreatic IGF-I mRNA levels increased over 50-fold during regeneration, reaching a maximum at day 2. Immunohistochemically, IGF-I was localized to fibroblasts within the areas of interstitial tissue. IGF-I mRNA was demonstrated in primary cultures of pancreatic fibroblasts but not in cultured pancreatic acinar cells. However, with the use of Western blotting acinar cells did express IGF-I receptors. IGF-I stimulated 5-bromo-2'-deoxyuridine uptake and increased numbers of acinar cells in a dose-dependent manner. Stimulation was half maximal at 1.1 nM and completely inhibited by an IGF-I antagonist and by IGF binding protein-3 (IGFBP-3). Possible paracrine regulation was confirmed by stimulation of acinar cell proliferation with fibroblast-conditioned medium, which was partially inhibited by IGF-I antagonist or by IGFBP-3. We conclude that acinar cell proliferation during late regeneration from pancreatitis is mediated at least in part by paracrine release of IGF-I from fibroblasts.
Collapse
Affiliation(s)
- C U Ludwig
- Department of Internal Medicine I, University of Ulm, D-89070 Ulm, Germany
| | | | | | | |
Collapse
|
50
|
Nicosia RF, Villaschi S. Autoregulation of angiogenesis by cells of the vessel wall. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 185:1-43. [PMID: 9750264 DOI: 10.1016/s0074-7696(08)60148-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cells of the vessel wall can regulate angiogenesis by producing growth factors, proteolytic enzymes, extracellular matrix components, cell adhesion molecules, and vasoactive factors. This property enables preexisting blood vessels to generate new vessels in the absence of exogenous angiogenic stimuli. Vascular autoregulation of angiogenesis can be studied by culturing rat aortic or venous explants in collagen gels under serum-free conditions. In this system, the combined effect of injury and exposure of explants to collagen triggers a self-limited angiogenic response. Interactions among endothelial cells, smooth muscle cells, and fibroblasts play a critical role in the regulation of this process. This chapter reviews the literature on angiogenesis, focusing on the vessel wall as a highly specialized and plastic tissue capable of regenerating itself through autocrine, paracrine, and juxtacrine mechanisms.
Collapse
Affiliation(s)
- R F Nicosia
- Department of Pathology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19102, USA
| | | |
Collapse
|