1
|
Kundu A, Ghosh P, Bishayi B. Verapamil and tangeretin enhances the M1 macrophages to M2 type in lipopolysaccharide-treated mice and inhibits the P-glycoprotein expression by downregulating STAT1/STAT3 and upregulating SOCS3. Int Immunopharmacol 2024; 133:112153. [PMID: 38678669 DOI: 10.1016/j.intimp.2024.112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages. Natural products have been shown to decrease inflammation and expression of efflux transporters. However, no treatment is currently available to treat LPS induced sepsis. Verapamil and Tangeretin also reported to attenuate lipopolysaccharide-induced inflammation. However, the effects of verapamil or tangeretin on lipopolysaccharide (LPS)-induced sepsis and its detailed anti-inflammatory mechanism have not been reported. Here, we have determined that verapamil and tangeretin protects against LPS-induced sepsis by suppressing M1 macrophages populations and also through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression in macrophages. An hour before LPS (10 mg/kg) was administered; mice were given intraperitoneal injections of either verapamil (5 mg/kg) or tangeretin (5 mg/kg). The peritoneal macrophages from different experimental groups of mice were isolated. Hepatic, pulmonary and splenic morphometric analyses revealed that verapamil and tangeretin decreased the infiltration of neutrophils into the tissues. Verapamil and tangeritin also enhanced the activity of SOD, CAT, GRX and GSH level in all the tissues tested. verapamil or tangeretin pre-treated mice shifted M1 macrophages to M2 type possibly through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression. Hence, both these drugs have shown protective effects in sepsis via suppressing iNOS, COX-2, oxidative stress and NF-κB signaling in macrophages. Therefore, in our study we can summarize that mice were treated with either Vera or Tan before LPS administration cause an elevated IL-10 by the macrophages which enhances the SOCS3 expression, and thereby able to limits STAT1/STAT3 inter-conversion in the macrophages. As a result, NF-κB activity is also getting down regulated and ultimately mitigating the adverse effect of inflammation caused by LPS in resident macrophages. Whether verapamil or tangeretin offers such protection possibly through the inhibition of P-glycoprotein expression in macrophages needs clarification with the bio availability of these drugs under PGP inhibited conditions is a limitation of this study.
Collapse
Affiliation(s)
- Ayantika Kundu
- Department of Physiology, Immunology laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, INDIA
| | - Pratiti Ghosh
- Lab of Lifestyle and Stress Physiology, Head, Department of Physiology, West Bengal State University, North 24 Parganas, Malikapur, Berunanpukuria, Barasat, Kolkata, West Bengal 700126, INDIA.
| | - Biswadev Bishayi
- Professor, Department of Physiology, University of Calcutta. West Bengal, INDIA.
| |
Collapse
|
2
|
Kundu A, Ghosh P, Bishayi B. Vitexin along with verapamil downregulates efflux pump P-glycoprotein in macrophages and potentiate M1 to M2 switching via TLR4-NF-κB-TNFR2 pathway in lipopolysaccharide treated mice. Immunobiology 2024; 229:152767. [PMID: 38103391 DOI: 10.1016/j.imbio.2023.152767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
The lipopolysaccharide, a microbial toxin, is one of the major causative agents of sepsis. P-gp expression and its functions are altered during inflammation. LPS has been known to impair the functions of P-gp, an efflux transporter. But the effect of LPS on P-gp expression in murine peritoneal macrophages is poorly understood. Molecular docking studies reveal that vitexin is a potent substrate and verapamil a potent inhibitor of P-gp. In the present experimental study, the curative potential of vitexin as a fruit component and verapamil treated as a control inhibitor of P-gp was examined in a murine LPS sepsis model. The effects of vitexin and verapamil on P-gp expression in macrophages correlating with changes in macrophage polarization and associated functional responses during LPS induced sepsis were studied. Peritoneal macrophages of LPS (10 mg/kg body weight) challenged mice exhibited elevated levels of H2O2, superoxide, and NO in parallel with lower antioxidant activity. LPS treatment increased P-gp expression through increased TLR4/expression. However, LPS challenged mice treated with vitexin (5 mg/kg body weight) + verapamil (5 mg/kg body weight) showed higher anti-oxidant enzyme activity (SOD, CAT and GRx) resulting in reduced oxidative stress. This combination treatment also elevated TNFR2, concomitant with down-regulation of TLR4, NF-κB and P-gp expression in murine peritoneal macrophages, resulting in a switch from M1 to M2 polarisation of macrophages and reduced inflammatory responses. In conclusion, combined vitexin and verapamil treatment could be used as a promising therapy to regulate P-gp expression and protection against LPS mediated sepsis and inflammatory damages.
Collapse
Affiliation(s)
- Ayantika Kundu
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Pratiti Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
3
|
Buechel RR, Ciancone D, Bakula A, von Felten E, Schmidt GA, Patriki D, Gräni C, Wahl A, Manka R, Heidecker B, Benz DC, Giannopoulos AA, Pazhenkottil AP, Kaufmann PA. Long-term impact of myocardial inflammation on quantitative myocardial perfusion-a descriptive PET/MR myocarditis study. Eur J Nucl Med Mol Imaging 2023; 50:3609-3618. [PMID: 37391545 PMCID: PMC10547808 DOI: 10.1007/s00259-023-06314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/17/2023] [Indexed: 07/02/2023]
Abstract
PURPOSE Whether myocardial inflammation causes long-term sequelae potentially affecting myocardial blood flow (MBF) is unknown. We aimed to assess the effect of myocardial inflammation on quantitative MBF parameters, as assessed by 13N-ammonia positron emission tomography myocardial perfusion imaging (PET-MPI) late after myocarditis. METHODS Fifty patients with a history of myocarditis underwent cardiac magnetic resonance (CMR) imaging at diagnosis and PET/MR imaging at follow-up at least 6 months later. Segmental MBF, myocardial flow reserve (MFR), and 13N-ammonia washout were obtained from PET, and segments with reduced 13N-ammonia retention, resembling scar, were recorded. Based on CMR, segments were classified as remote (n = 469), healed (inflammation at baseline but no late gadolinium enhancement [LGE] at follow-up, n = 118), and scarred (LGE at follow-up, n = 72). Additionally, apparently healed segments but with scar at PET were classified as PET discordant (n = 18). RESULTS Compared to remote segments, healed segments showed higher stress MBF (2.71 mL*min-1*g-1 [IQR 2.18-3.08] vs. 2.20 mL*min-1*g-1 [1.75-2.68], p < 0.0001), MFR (3.78 [2.83-4.79] vs. 3.36 [2.60-4.03], p < 0.0001), and washout (rest 0.24/min [0.18-0.31] and stress 0.53/min [0.40-0.67] vs. 0.22/min [0.16-0.27] and 0.46/min [0.32-0.63], p = 0.010 and p = 0.021, respectively). While PET discordant segments did not differ from healed segments regarding MBF and MFR, washout was higher by ~ 30% (p < 0.014). Finally, 10 (20%) patients were diagnosed by PET-MPI as presenting with a myocardial scar but without a corresponding LGE. CONCLUSION In patients with a history of myocarditis, quantitative measurements of myocardial perfusion as obtained from PET-MPI remain altered in areas initially affected by inflammation. CMR = cardiac magnetic resonance; PET = positron emission tomography; LGE = late gadolinium enhancement.
Collapse
Affiliation(s)
- Ronny R Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, NUK A 12, 8091, Zurich, Switzerland.
| | - Domenico Ciancone
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, NUK A 12, 8091, Zurich, Switzerland
| | - Adam Bakula
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, NUK A 12, 8091, Zurich, Switzerland
| | - Elia von Felten
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, NUK A 12, 8091, Zurich, Switzerland
| | - Gian-Andrea Schmidt
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, NUK A 12, 8091, Zurich, Switzerland
| | - Dimitri Patriki
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, NUK A 12, 8091, Zurich, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Wahl
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Robert Manka
- Department of Cardiology, University and University Hospital of Zurich, Zurich, Switzerland
- Diagnostic and Interventional Radiology, University and University Hospital Zurich, Zurich, Switzerland
| | - Bettina Heidecker
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik C Benz
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, NUK A 12, 8091, Zurich, Switzerland
| | - Andreas A Giannopoulos
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, NUK A 12, 8091, Zurich, Switzerland
| | - Aju P Pazhenkottil
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, NUK A 12, 8091, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, NUK A 12, 8091, Zurich, Switzerland
| |
Collapse
|
4
|
Bosco F, Guarnieri L, Leo A, Tallarico M, Gallelli L, Rania V, Citraro R, De Sarro G. Audiogenic epileptic DBA/2 mice strain as a model of genetic reflex seizures and SUDEP. Front Neurol 2023; 14:1223074. [PMID: 37681009 PMCID: PMC10481168 DOI: 10.3389/fneur.2023.1223074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/14/2023] [Indexed: 09/09/2023] Open
Abstract
Epilepsy is a chronic neurological disease characterized by abnormal brain activity, which results in repeated spontaneous seizures. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of seizure-related premature death, particularly in drug-resistant epilepsy patients. The etiology of SUDEP is a structural injury to the brain that is not fully understood, but it is frequently associated with poorly controlled and repeated generalized tonic-clonic seizures (GTCSs) that cause cardiorespiratory and autonomic dysfunctions, indicating the involvement of the brainstem. Both respiratory and cardiac abnormalities have been observed in SUDEP, but not much progress has been made in their prevention. Owing to the complexity of SUDEP, experimental animal models have been used to investigate cardiac and/or respiratory dysregulation due to or associated with epileptic seizures that may contribute to death in humans. Numerous rodent models, especially mouse models, have been developed to better understand epilepsy and SUDEP physiopathology. This review synthesizes the current knowledge about dilute brown agouti coat color (DBA/2) mice as a possible SUDEP model because respiratory arrest (RA) and sudden death induced by audiogenic generalized seizures (AGSs) have been observed in these animals. Respiratory/cardiac dysfunction, brainstem arousal system dysfunction, and alteration of the neurotransmitter systems, which are observed in human SUDEP, have also been observed in these mice. In particular, serotonin (5-HT) alteration and adenosine neurotransmission appear to contribute to not only the pathophysiological mechanisms of medication but also seizure-related respiratory dysfunctions in this animal model. These neurotransmitter systems could be the relevant targets for medication development for chronic epilepsy and SUDEP prevention. We reviewed data on AGSs in DBA/2 mice and the relevance of this model of generalized tonic-clonic epilepsy to human SUDEP. Furthermore, the advantages of using this strain prone to AGSs for the identification of possible new therapeutic targets and treatment options have also been assessed.
Collapse
Affiliation(s)
- Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Martina Tallarico
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Luca Gallelli
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Rania
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
Russell T, Gangotia D, Barry G. Assessing the potential of repurposing ion channel inhibitors to treat emerging viral diseases and the role of this host factor in virus replication. Biomed Pharmacother 2022; 156:113850. [DOI: 10.1016/j.biopha.2022.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022] Open
|
6
|
Salem MA, Ezzat SM, Ahmed KA, Alseekh S, Fernie AR, Essam RM. A Comparative Study of the Antihypertensive and Cardioprotective Potentials of Hot and Cold Aqueous Extracts of Hibiscus sabdariffa L. in Relation to Their Metabolic Profiles. Front Pharmacol 2022; 13:840478. [PMID: 35281911 PMCID: PMC8905494 DOI: 10.3389/fphar.2022.840478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/26/2022] [Indexed: 12/25/2022] Open
Abstract
Ethnopharmacological relevance: Since ancient times, Hibiscus sabdariffa L. calyces have been used as a folk remedy for the treatment of hypertension. However, it is questionable as to whether there is a difference in the antihypertensive activity of the hot or cold aqueous extracts. Aim of the study: We designed this study to specify the best method for water extraction of the antihypertensive metabolites of H. sabdariffa and to confirm their in vivo antihypertensive capabilities. Materials and methods: The powdered dried calyces of H. sabdariffa were independently extracted with cold and hot water. A comparative study was performed between the cold and hot aqueous extracts of H. sabdariffa based on evaluation of the in vitro renin and angiotensin-converting enzyme (ACE) inhibition activities. Additionally, both extracts were subjected to an in vivo study for the evaluation of their antihypertensive activities in L-Nw-Nitro arginine methyl ester (L-NAME)–induced hypertensive rats. Further, a metabolomics study was also performed for both extracts to identify their chemical constituents. Results: The cold and hot extracts significantly reduced the angiotensin II, ACE, and aldosterone levels in the plasma. Furthermore, in the myocardium and aorta, decreased iNOS (inducible nitric oxide synthase) levels and elevated eNOS (endothelial nitric oxide synthase), as well as the rise in plasma NO levels, were reported with both extracts, but better results were displayed with the hot extract, leading to a potential antihypertensive effect. Additionally, the cold and hot Hibiscus extracts induced a cardioprotective effect through reducing necrosis, inflammation, and vacuolization that results from the induction of hypertension, an effect that was more prominent with the hot extract. Moreover, a comprehensive metabolomics approach using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC–MS/MS) was able to trace the metabolites in each extraction. Conclusion: The extracts showed different anthocyanin and phenolic compounds, but the hot extract showed higher contents of specific phenolics to which the superior antihypertensive and cardioprotective activities could be related.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Shibin Elkom, Egypt.,Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center for Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center for Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Galili U, Zhu Z, Chen J, Goldufsky JW, Schaer GL. Near Complete Repair After Myocardial Infarction in Adult Mice by Altering the Inflammatory Response With Intramyocardial Injection of α-Gal Nanoparticles. Front Cardiovasc Med 2021; 8:719160. [PMID: 34513957 PMCID: PMC8425953 DOI: 10.3389/fcvm.2021.719160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/30/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Neonatal mice, but not older mice, can regenerate their hearts after myocardial-infarction (MI), a process mediated by pro-reparative macrophages. α-Gal nanoparticles applied to skin wounds in adult-mice bind the anti-Gal antibody, activate the complement cascade and generate complement chemotactic peptides that recruit pro-reparative macrophages which are further activated by these nanoparticles. The recruited macrophages decrease wound healing time by ~50%, restore the normal skin structure and prevent fibrosis and scar formation in mice. Objectives: The objective of this study is to determine if α-gal nanoparticles injected into the reperfused myocardium after MI in adult-mice can induce myocardial repair that restores normal structure, similar to that observed in skin injuries. Methods and Results: MI was induced by occluding the mid-portion of the left anterior descending (LAD) coronary artery for 30 min. Immediately following reperfusion, each mouse received two 10 μl injections of 100 μg α-gal nanoparticles in saline into the LAD territory (n = 20), or saline for controls (n = 10). Myocardial infarct size was measured by planimetry following Trichrome staining and macrophage recruitment by hematoxylin-eosin staining. Left ventricular (LV) function was measured by echocardiography. Control mice displayed peak macrophage infiltration at 4-days, whereas treated mice had a delayed peak macrophage infiltration at 7-days. At 28-days, control mice demonstrated large transmural infarcts with extensive scar formation and poor contractile function. In contrast, mice treated with α-gal nanoparticles demonstrated after 28-days a marked reduction in infarct size (~10-fold smaller), restoration of normal myocardium structure and contractile function. Conclusions: Intramyocardial injection of α-gal nanoparticles post-MI in anti-Gal producing adult-mice results in near complete repair of the infarcted territory, with restoration of normal LV structure and contractile function. The mechanism responsible for this benefit likely involves alteration of the usual inflammatory response post-MI, as previously observed with regeneration of injured hearts in adult zebrafish, salamanders and neonatal mice.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Zhongkai Zhu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jiwang Chen
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Josef W Goldufsky
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Gary L Schaer
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
8
|
Shylesh C M S, V S A, S K K, P UD. Renin-angiotensin system modulators in COVID-19 patients with hypertension: friend or foe? Clin Exp Hypertens 2021; 44:1-10. [PMID: 34414841 DOI: 10.1080/10641963.2021.1963070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: ACE2, a component of the non-classic renin-angiotensin system (RAS), acts as a functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) spike protein, which enables the entry of the virus into the host cells. Non-classical ACE2 is one of two types of ACE2 that has a protective effect on vascular and respiratory cells. RAS modulators like angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are among the first-line treatment for hypertensive patients. An upregulation in ACE2 levels with RAS modulators was observed in few preclinical studies, which raised concerns regarding possible increased infectivity among patients treated with RAS modulators.Method: For shortlisting the outcome effects, open-ended, English-restricted databases, published literature, and various clinical studies performed utilizing RAS modulators in COVID 19 patients were considered. Conclusion: Current evidence reveals no increased risk of COVID-19 infection among hypertensive patients on ACEIs/ARBs compared to other antihypertensive medications. Several studies have demonstrated no detrimental effects of RAS modulators on clinical severity, hospital/intensive care unit stay, ventilation and mortality. Hence, we can conclude that neither ARBs nor ACEIs treatment will cause any side effects or undesirable interactions in COVID-19 infected hypertensive patients.
Collapse
Affiliation(s)
- Shakhi Shylesh C M
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041
| | - Arya V S
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041
| | - Kanthlal S K
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041
| | - Uma Devi P
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041
| |
Collapse
|
9
|
Burish MJ, Han C, Mawatari K, Wirianto M, Kim E, Ono K, Parakramaweera R, Chen Z, Yoo SH. The first-line cluster headache medication verapamil alters the circadian period and elicits sex-specific sleep changes in mice. Chronobiol Int 2021; 38:839-850. [PMID: 33829951 DOI: 10.1080/07420528.2021.1892127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Verapamil is the first-line preventive medication for cluster headache, an excruciating disorder with strong circadian features. Whereas second- and third-line preventives include known circadian modulators, such as melatonin, corticosteroids, and lithium, the circadian effects of verapamil are poorly understood. Here, we characterize the circadian features of verapamil using both in vitro and in vivo models. In Per2::LucSV reporter fibroblasts, treatment with verapamil (0.03-10 µM) showed a dose-dependent period shortening of the reporter rhythm which reached a nadir at 1 µM, and altered core clock gene expression at 10 µM. Mouse wheel-running activity with verapamil (1 mg/mL added to the drinking water) also resulted in significant period shortening and activity reduction in both male and female free-running wild-type C57BL6/J mice. The temporal patterns of activity reduction, however, differ between the two sexes. Importantly, piezo sleep recording revealed sexual dimorphism in the effects of verapamil on sleep timing and bout duration, with more pronounced adverse effects in female mice. We also found altered circadian clock gene expression in the cerebellum, hypothalamus, and trigeminal ganglion of verapamil-treated mice. Verapamil did not affect reporter rhythms in ex vivo suprachiasmatic nucleus (SCN) slices from Per2:Luc reporter mice, perhaps due to the exceptionally tight coupling in the SCN. Thus, verapamil affects both peripheral (trigeminal ganglion) and central (hypothalamus and cerebellum) nervous system structures involved in cluster headache pathophysiology, possibly with network effects instead of isolated SCN effects. These studies suggest that verapamil is a circadian modulator in laboratory models at both molecular and behavioral levels, and sex is an important biological variable for cluster headache medications. These observations highlight the circadian system as a potential convergent target for cluster headache medications with different primary mechanisms of action.
Collapse
Affiliation(s)
- Mark J Burish
- Department of Neurosurgery and Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, USA
| | - Chorong Han
- Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, USA
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Marvin Wirianto
- Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, USA
| | - Eunju Kim
- Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, USA
| | - Kaori Ono
- Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, USA
| | - Randika Parakramaweera
- Department of Neurosurgery and Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, USA
| | - Zheng Chen
- Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, USA
| | - Seung-Hee Yoo
- Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, USA
| |
Collapse
|
10
|
Yang H, Chi Y, Chen Z, Fan Y, Wu H, Hu X, Wu T, Xiao B, Zhang M. Differential Diagnosis and Hospital Emergency Management for Fastlane Treatment of Central Nervous System Infection Under the COVID-19 Epidemic in Changsha, China. Front Neurol 2020; 11:555202. [PMID: 33192989 PMCID: PMC7606862 DOI: 10.3389/fneur.2020.555202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023] Open
Abstract
Importance: Corona virus disease 2019 (COVID-19) has long latent period, strong infectivity, and non-specific symptoms and signs in the upper respiratory tract. Some initial neurological symptoms appear, including dizziness, headache, seizures, slurred speech, disturbance of consciousness, and limb paralysis among a few COVID-19 patients, which share similar manifestations with central nervous system (CNS) infection. Improving the diagnostic efficiency of suspected CNS infection patients on the basis of preventing and controlling COVID-19 plays a key role in preventing nosocomial and cross infections. This study intends to formulate a hospital emergency management system of fastlane treatment of CNS infection for epidemic prevention and control, aiming at providing references and guidelines for the government and medical institutions to improve the efficiency of treating CNS infection patients in the clinical practice during COVID-19. Observations: This study formulated a framework of a fastlane treatment of CNS infection based on the cooperation of resources and experience, aiming at the key and difficult problems faced by the hospital emergency management system during the COVID-19 outbreak in Changsha, China. The main problem of formulating the hospital emergency management system is efficiently identifying whether CNS infection was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The framework improves the efficiency of diagnosing and treating CNS infections by standardizing the diagnosis and treatment process of patients in emergency observation and strengthening the management of inpatient wards, aiming at assisting medical staff during clinical practice. Conclusions and Relevance: The hospital emergency management system of a fastlane treatment of CNS infection for epidemic prevention and control of the COVID-19 outbreak is a professional and multisystem project, which needs the cooperation of various resources and the experience of clinical leadership.
Collapse
Affiliation(s)
- Haojun Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | | | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Haiyue Wu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Xinhang Hu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Tong Wu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
11
|
Muhammad RN, Sallam N, El-Abhar HS. Activated ROCK/Akt/eNOS and ET-1/ERK pathways in 5-fluorouracil-induced cardiotoxicity: modulation by simvastatin. Sci Rep 2020; 10:14693. [PMID: 32895407 PMCID: PMC7477553 DOI: 10.1038/s41598-020-71531-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
5-Fluorouracil (5-FU) is used in the treatment of different solid tumors; however, its use is associated with rare, but serious cardiotoxicity. Nevertheless, the involvement of ROCK/NF-κB, Akt/eNOS and ET-1/ERK1/2 trajectories in the cardiotoxic effect and in the potential cardioprotective upshot of simvastatin has been elusive. Male Wistar rats were allocated into 5-FU (50 mg/kg/week; i.p, 6 weeks), simvastatin (15 mg/kg/day; p.o, 8 weeks) treated groups and simvastatin + 5-FU, besides the normal control group. 5-FU-induced cardiotoxicity boosted the serum level of N-terminal pro-brain (B-type) natriuretic peptide (NT-proBNP), aortic contents of endothelin (ET)-1 and thromboxane (TX) A2, as well as cardiac contents of NADPH oxidases (Nox), cyclooxygenase (COX)-2, malondialdehyde (MDA), phosphorylated Akt (p-Akt), phosphorylated extracellular signal-regulated kinase (p-ERK)1/2 and the protein expressions of rho-kinase (ROCK) and caspase-3. On the other hand, it suppressed cardiac reduced glutathione (GSH) and phosphorylated endothelial nitric oxide synthase (p-eNOS). Contrariwise, co-administration with simvastatin overcame these disturbed events and modulated the ROCK/NF-κB, Akt/eNOS and ET-1/ERK1/2 signaling pathways. This study highlights other mechanisms than coronary artery spasm in the 5-FU cardiotoxicity and reveals that NT-proBNP is a potential early marker in this case. Moreover, the cross-talk between ROCK/ NF-κB, ROS/COX-2/TXA2, Akt/eNOS and ET-1/ERK1/2 pathways contributes via different means to upsetting the vasoconstriction/vasodilatation equilibrium as well as endothelial cell function and finally leads to cardiomyocyte stress and death-the modulation of these trajectories offers simvastatin its potential cardio-protection against 5-FU.
Collapse
Affiliation(s)
- Radwa Nasser Muhammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Nada Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Hanan Salah El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, 11835, Egypt
| |
Collapse
|
12
|
Antwi-Amoabeng D, Beutler BD, Moody AE, Kanji Z, Gullapalli N, Rowan CJ. Management of hypertension in COVID-19. World J Cardiol 2020; 12:228-230. [PMID: 32547717 PMCID: PMC7283999 DOI: 10.4330/wjc.v12.i5.228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
The ACE2 receptor plays a central role in severe acute respiratory syndrome coronavirus 2 host cell entry and propagation. It has therefore been postulated that angiotensin converting enzyme inhibitors and angiotensin receptor blockers may upregulate ACE2 expression and thus increase susceptibility to infection. We suggest that alternative anti-hypertensive agents should be preferred among individuals who may be exposed to this increasingly common and potentially lethal virus.
Collapse
Affiliation(s)
- Daniel Antwi-Amoabeng
- Department of Internal Medicine, Reno School of Medicine, University of Nevada, Reno, NV 89052, United States
| | - Bryce D Beutler
- Department of Internal Medicine, Reno School of Medicine, University of Nevada, Reno, NV 89052, United States
| | - Alastair E Moody
- Department of Anesthesiology, University of Utah, Salt Lake City, UT 84132, United States
| | - Zahara Kanji
- Department of Internal Medicine, Reno School of Medicine, University of Nevada, Reno, NV 89052, United States
| | - Nageshwara Gullapalli
- Department of Internal Medicine, Reno School of Medicine, University of Nevada, Reno, NV 89052, United States
| | - Christopher J Rowan
- Department of Internal Medicine, Reno School of Medicine, University of Nevada, Reno, NV 89052, United States
- Renown Institute for Heart and Vascular Health, Reno, NV 89512, United States
| |
Collapse
|
13
|
Repeated generalized seizures can produce calcified cardiac lesions in DBA/1 mice. Epilepsy Behav 2019; 95:169-174. [PMID: 31063933 DOI: 10.1016/j.yebeh.2019.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
Studies suggest that cardiorespiratory dysfunction likely contributes to sudden unexpected death in epilepsy (SUDEP). Seizures result in autonomic and respiratory dysfunction, leading to sympathetic hyperactivity and respiratory distress, including apnea. While the heart is vulnerable to catecholamine surges and hypoxia, it remains unknown if repetitive generalized seizures lead to cardiac damage. DBA/1 mice exhibit seizure-induced respiratory arrest (S-IRA) following generalized audiogenic seizures (AGS), which can be resuscitated using a rodent ventilator. In the current study, we induced different numbers of S-IRA episodes in DBA/1 mice and determined the association of repeated S-IRA induction with cardiac damage using histology. After repetitive induction of 18 S-IRA, calcified lesions, as revealed by calcium (Ca2+)-specific alizarin red staining, were observed in the ventricular myocardium in 61.5% of DBA/1 mice, which was higher compared to mice with 5 S-IRA and 1 S-IRA as well as age-matched untested control mice. The incidence of lesions in mice with 9 S-IRA was only higher than that of control mice. Only 1-2, small lesions were observed in mice with 5 S-IRA and 1 S-IRA and in control mice. Larger lesions (>2500 μm2) were observed in mice with 9 and 18 S-IRA. The incidence of larger lesions was higher in mice with 18 S-IRA (53.8%) as compared to mice with 5 S-IRA and 1 S-IRA as well as with control mice, and the incidence of larger lesions in mice with 9 S-IRA was only higher than that of control mice. Repeated induction of S-IRA in DBA/1 mice can result in calcified necrotic lesions in the ventricles of the heart, and their incidence and size are dependent on the total number of S-IRA.
Collapse
|
14
|
Mohamed MZ, Hafez HM, Hassan M, Ibrahim MA. PI3K/Akt and Nrf2/HO-1 pathways involved in the hepatoprotective effect of verapamil against thioacetamide toxicity in rats. Hum Exp Toxicol 2018; 38:381-388. [PMID: 30526075 DOI: 10.1177/0960327118817099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver is a precious organ to maintain body life. Hepatotoxicity is a worldwide health problem that is still a challenge for research. Although countless pharmaceutical drugs and herbal compounds were screened for their hepatoprotective effects, the death from hepatotoxicity is increasing. Thus, there is continuous necessity of searching for the hepatoprotective effect of commonly used drugs. Accordingly, our aim was to examine a hepatoprotective potential for the antihypertensive drug, verapamil, and searching for new insights underlie its protective mechanism. Four groups of adult male rats were randomly arranged as controls, thioacetamide (TAA) hepatotoxic, and TAA + verapamil treated. Serum liver enzyme, hepatic antioxidant, lipid peroxidation, and inflammatory parameters were assessed. Gene relative expression for heme oxygenase-1 (HO-1), nuclear factor-erythroid 2-related factor 2 (Nrf2), phosphoinositide 3-kinase (PI3K), and serine/threonine-specific protein kinase (Akt) were quantified in hepatic tissue. TAA caused hepatic injury evident both histopathologically and biochemically by a decrease in all gene expressions. Verapamil alleviated the injury via its antioxidant and anti-inflammatory effects that were suggested to be via upregulation of the previous gene expressions. In conclusion, the calcium channel blocker, verapamil, that is used widely as antihypertensive exhibits a valuable hepatoprotective effect. The protection partially rests on activation of Nrf2/HO-1 and PI3K/Akt pathways.
Collapse
Affiliation(s)
- M Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - H M Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - M Hassan
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - M A Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
15
|
Ravi V, Jain A, Ahamed F, Fathma N, Desingu PA, Sundaresan NR. Systematic evaluation of the adaptability of the non-radioactive SUnSET assay to measure cardiac protein synthesis. Sci Rep 2018; 8:4587. [PMID: 29545554 PMCID: PMC5854694 DOI: 10.1038/s41598-018-22903-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/01/2018] [Indexed: 11/09/2022] Open
Abstract
Heart is a dynamic organ that undergoes remodeling in response to both physiological and pathological stimuli. One of the fundamental cellular processes that facilitates changes in the size and shape of this muscular organ is the protein synthesis. Traditionally changes in cardiac protein synthesis levels were measured by radiolabeled tracers. However, these methods are often cumbersome and suffer from radioactive risk. Recently a nonradioactive method for detecting protein synthesis under in vitro conditions called the Surface Sensing of Translation (SUnSET) was described in cell lines of mouse dendrites and T cells. In this work, we provide multiple lines of evidence that the SUnSET assay can be applied to reliably detect changes in protein synthesis both in isolated neonatal primary cardiomyocytes and heart. We successfully tracked the changes in protein synthesis by western blotting as well as immunohistochemical variants of the SUnSET assay. Applying the SUnSET assay, we measured the cardiac protein synthesis during the different ages of mice. Further, we successfully tracked the increase in cardiac protein synthesis during different stages of a well-established model for pathological hypertrophy. Overall, we propose SUnSET assay as a simple, reliable and robust method to measure protein synthesis in the cardiac milieu.
Collapse
Affiliation(s)
- Venkatraman Ravi
- Cardiovascular and Muscle Research Laboratory, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Aditi Jain
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Faiz Ahamed
- Cardiovascular and Muscle Research Laboratory, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Nowrin Fathma
- Cardiovascular and Muscle Research Laboratory, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Perumal Arumugam Desingu
- Cardiovascular and Muscle Research Laboratory, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Nagalingam R Sundaresan
- Cardiovascular and Muscle Research Laboratory, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India. .,Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
16
|
Abdullah CS, Li Z, Wang X, Jin ZQ. Depletion of T lymphocytes ameliorates cardiac fibrosis in streptozotocin-induced diabetic cardiomyopathy. Int Immunopharmacol 2016; 39:251-264. [PMID: 27494688 DOI: 10.1016/j.intimp.2016.07.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/11/2016] [Accepted: 07/26/2016] [Indexed: 11/18/2022]
Abstract
T cell infiltration has been associated with increased coronary heart disease risk in patients with diabetes mellitus. Effect of modulation of T cell trafficking on diabetes-induced cardiac fibrosis has yet to be determined. Therefore, our aim was to investigate the circulatory T cell depletion-mediated cardioprotection in streptozotocin-induced diabetic cardiomyopathy. Fingolimod (FTY720), an immunomodulatory drug, was tested in wild-type (WT) C57BL/6 and recombination activating gene 1 (Rag1) knockout (KO) mice without mature lymphocytes in streptozotocin-induced type 1 diabetic model. FTY720 (0.3mg/kg/day) was administered intraperitoneally daily for the first 4weeks with interim 3weeks then resumed for another 4weeks in 11weeks study period. T lymphocyte counts, cardiac histology, function, and fibrosis were examined in diabetic both WT and KO mice. FTY720 reduced both CD4(+) and CD8(+) T cells in diabetic WT mice. FTY720-treated diabetic WT mouse myocardium showed reduction in CD3 T cell infiltration and decreased expression of S1P1 and TGF-β1 in cardiac tissue. Fibrosis was reduced after FTY720 treatment in diabetic WT mice. Rag1 KO mice exhibited no CD4(+) and CD8(+) T cells in the blood and CD3 T cells in the heart. Diabetic Rag1 KO mouse hearts appeared no fibrosis and exhibited preserved myocardial contractility. FTY720-induced antifibrosis was abolished in diabetic Rag1 KO mice. These findings demonstrate that chronic administration with FTY720 induces lymphopenia and protects diabetic hearts in WT mice whereas FTY720 increases cardiac fibrosis and myocardial dysfunction in diabetic Rag1 KO mice without mature lymphocytes.
Collapse
Affiliation(s)
- Chowdhury S Abdullah
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Zhao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Xiuqing Wang
- Department of Biology and Microbiology, College of Agriculture and Biological Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Zhu-Qiu Jin
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA; Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA.
| |
Collapse
|
17
|
Multidrug resistance protein 1 reduces the aggregation of mutant huntingtin in neuronal cells derived from the Huntington's disease R6/2 model. Sci Rep 2015; 5:16887. [PMID: 26586297 PMCID: PMC4653614 DOI: 10.1038/srep16887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/16/2015] [Indexed: 11/13/2022] Open
Abstract
Mutant huntingtin (mHtt) aggregation in the nucleus is the most readily apparent phenotype and cause of neuronal death in Huntington’s disease (HD). Inhibiting mHtt aggregation reduces cell death in the brain and is thus a promising therapeutic approach. The results of the present study demonstrated that mHtt aggregation in the nucleus was altered by the activity of multidrug resistance protein 1 (MDR1), which was experimentally modulated by verapamil, siRNA and an expression vector. MDR1 detoxifies drugs and metabolites through its excretory functions in the membrane compartment, thereby protecting cells against death or senescence. When they were treated with verapamil, R6/2 mice showed a progressive decline in rotarod performance and increased mHtt aggregation in the brain. Using neuronal stem cells from R6/2 mice, we developed an in vitro HD model to test mHtt accumulation in the nuclei of neurons. When MDR1 activity in cells was decreased by verapamil or siRNA, mHtt aggregation in the nuclei increased, whereas the induction of MDR1 resulted in a decrease in mHtt aggregation. Thus, our data provide evidence that MDR1 plays an important role in the clearance of mHtt aggregation and may thus be a potential target for improving the survival of neurons in Huntington’s disease.
Collapse
|
18
|
Lu XL, Tong YF, Liu Y, Xu YL, Yang H, Zhang GY, Li XH, Zhang HG. Gαq protein carboxyl terminus imitation polypeptide GCIP-27 improves cardiac function in chronic heart failure rats. PLoS One 2015; 10:e0121007. [PMID: 25822412 PMCID: PMC4379177 DOI: 10.1371/journal.pone.0121007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 02/03/2015] [Indexed: 11/24/2022] Open
Abstract
Background Gαq protein carboxyl terminus imitation polypeptide (GCIP)-27 has been shown to alleviate pathological cardiomyocyte hypertrophy induced by various factors. Pathological cardiac hypertrophy increases the morbidity and mortality of cardiovascular diseases while it compensates for poor heart function. This study was designed to investigate the effects of GCIP-27 on heart function in rats with heart failure induced by doxorubicin. Methods and Results Forty-eight rats were randomly divided into the following six groups receiving vehicle (control), doxorubicin (Dox), losartan (6 mg/kg, i.g.) and three doses of GCIP-27 (10, 30, 90 μg/kg; i.p., bid), respectively. Heart failure was induced by Dox, which was administered at a 20 mg/kg cumulative dose. After 10 weeks of treatment, we observed that GCIP-27 (30, 90 μg/kg) significantly increased ejection fraction, fraction shortening, stroke volume and sarcoplasmic reticulum Ca2+ ATPase activity of Dox-treated hearts. Additionally, GCIP-27 decreased myocardial injury, heart weight index and left ventricular weight index, fibrosis and serum cardiac troponin-I concentration in Dox-treated mice. Immunohistochemistry, western blotting and real-time PCR experiments indicated that GCIP-27 (10–90 μg/kg) could markedly upregulate the protein expression of myocardial α-myosin heavy chain (MHC), Bcl-2, protein kinase C (PKC) ε and phosphorylated extracellular signal-regulated kinase (p-ERK) 1/2 as well as the mRNA expression of α-MHC, but downregulated the expression of β-MHC, Bax and PKC βII, and the mRNA expression levels of β-MHC in Dox-treated mice. It was also found that GCIP-27 (30, 90 μg/L) decreased cell size and protein content of cardiomyocytes significantly in vitro by comparison of Dox group. Conclusions GCIP-27 could effectively ameliorate heart failure development induced by Dox. PKC–ERK1/2 signaling might represent the underlying mechanism of the beneficial effects of GCIP-27.
Collapse
Affiliation(s)
- Xiao Lan Lu
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
- Department of Clinical Laboratory, First Affiliated Hospital of North Sichuan Medical College, Sichuan Nanchong 637000, China
| | - Yang Fei Tong
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Ya Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 40038, China
| | - Ya Li Xu
- Department of Ultrasound, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hua Yang
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Guo Yuan Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of North Sichuan Medical College, Sichuan Nanchong 637000, China
| | - Xiao-Hui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 40038, China
| | - Hai-Gang Zhang
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
- * E-mail:
| |
Collapse
|
19
|
Calcium channel autoantibodies predicted sudden cardiac death and all-cause mortality in patients with ischemic and nonischemic chronic heart failure. DISEASE MARKERS 2014; 2014:796075. [PMID: 24711674 PMCID: PMC3966345 DOI: 10.1155/2014/796075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to evaluate whether CC-AAbs levels could predict prognosis in CHF patients. A total of 2096 patients with CHF (841 DCM patients and 1255 ICM patients) and 834 control subjects were recruited. CC-AAbs were detected and the relationship between CC-AAbs and patient prognosis was analyzed. During a median follow-up time of 52 months, there were 578 deaths. Of these, sudden cardiac death (SCD) occurred in 102 cases of DCM and 121 cases of ICM. The presence of CC-AAbs in patients was significantly higher than that of controls (both P < 0.001). Multivariate analysis revealed that positive CC-AAbs could predict SCD (HR 3.191, 95% CI 1.598–6.369 for DCM; HR 2.805, 95% CI 1.488–5.288 for ICM) and all-cause mortality (HR 1.733, 95% CI 1.042–2.883 for DCM; HR 2.219, 95% CI 1.461–3.371 for ICM) in CHF patients. A significant association between CC-AAbs and non-SCD (NSCD) was found in ICM patients (HR = 1.887, 95% CI 1.081–3.293). Our results demonstrated that the presence of CC-AAbs was higher in CHF patients versus controls and corresponds to a higher incidence of all-cause death and SCD. Positive CC-AAbs may serve as an independent predictor for SCD and all-cause death in these patients.
Collapse
|
20
|
Fajardo G, Zhao M, Urashima T, Farahani S, Hu DQ, Reddy S, Bernstein D. Deletion of the β2-adrenergic receptor prevents the development of cardiomyopathy in mice. J Mol Cell Cardiol 2013; 63:155-64. [PMID: 23920331 DOI: 10.1016/j.yjmcc.2013.07.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 07/22/2013] [Accepted: 07/27/2013] [Indexed: 01/03/2023]
Abstract
Beta adrenergic receptor (β-AR) subtypes act through diverse signaling cascades to modulate cardiac function and remodeling. Previous in vitro studies suggest that β1-AR signaling is cardiotoxic whereas β2-AR signaling is cardioprotective, and may be the case during ischemia/reperfusion in vivo. The objective of this study was to assess whether β2-ARs also play a cardioprotective role in the pathogenesis of non-ischemic forms of cardiomyopathy. To dissect the role of β1 vs β2-ARs in modulating MLP (Muscle LIM Protein) cardiomyopathy, we crossbred MLP-/- with β1-/- or β2-/- mice. Deletion of the β2-AR improved survival, cardiac function, exercise capacity and myocyte shortening; by contrast haploinsufficency of the β1-AR reduced survival. Pathologic changes in Ca(2+) handling were reversed in the absence of β2-ARs: peak Ca(2+) and SR Ca(2+) were decreased in MLP-/- and β1+/-/MLP-/- but restored in β2-/-MLP-/-. These changes were associated with reversal of alterations in troponin I and phospholamban phosphorylation. Gi inhibition increased peak and baseline Ca(2+), recapitulating changes observed in the β2-/-/MLP-/-. The L-type Ca(2+) blocker verapamil significantly decreased cardiac function in β2-/-MLP-/- vs WT. We next tested if the protective effects of β2-AR ablation were unique to the MLP model using TAC-induced heart failure. Similar to MLP, β2-/- mice demonstrated delayed progression of heart failure with restoration of myocyte shortening and peak Ca(2+) and Ca(2+) release. Deletion of β2-ARs prevents the development of MLP-/- cardiomyopathy via positive modulation of Ca(2+) due to removal of inhibitory Gi signaling and increased phosphorylation of troponin I and phospholamban. Similar effects were seen after TAC. Unlike previous models where β2-ARs were found to be cardioprotective, in these two models, β2-AR signaling appears to be deleterious, potentially through negative regulation of Ca(2+) dynamics.
Collapse
Affiliation(s)
- Giovanni Fajardo
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Klopfleisch R. Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology--a systematic review. BMC Vet Res 2013; 9:123. [PMID: 23800279 PMCID: PMC3693904 DOI: 10.1186/1746-6148-9-123] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/19/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Histopathology has initially been and is still used to diagnose infectious, degenerative or neoplastic diseases in humans or animals. In addition to qualitative diagnoses semiquantitative scoring of a lesion`s magnitude on an ordinal scale is a commonly demanded task for histopathologists. Multiparametric, semiquantitative scoring systems for mouse models histopathology are a common approach to handle these questions and to include histopathologic information in biomedical research. RESULTS Inclusion criteria for scoring systems were a first description of a multiparametric, semiquantiative scoring systems which comprehensibly describe an approach to evaluate morphologic lesion. A comprehensive literature search using these criteria identified 153 originally designed semiquantitative scoring systems for the analysis of morphologic changes in mouse models covering almost all organs systems and a wide variety of disease models. Of these, colitis, experimental autoimmune encephalitis, lupus nephritis and collagen induced osteoarthritis colitis were the disease models with the largest number of different scoring systems. Closer analysis of the identified scoring systems revealed a lack of a rationale for the selection of the scoring parameters or a correlation between scoring parameter value and the magnitude of the clinical symptoms in most studies. CONCLUSION Although a decision for a particular scoring system is clearly dependent on the respective scientific question this review gives an overview on currently available systems and may therefore allow for a better choice for the respective project.
Collapse
Affiliation(s)
- Robert Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Agonist-like autoantibodies against calcium channel in patients with dilated cardiomyopathy. Heart Vessels 2011; 27:486-92. [PMID: 21814855 DOI: 10.1007/s00380-011-0176-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
Abstract
The calcium channel may be an important target in the autoimmune pathogenesis of dilated cardiomyopathy (DCM). The presence and function of serum autoantibodies against calcium channels (CC-AAbs) in patients with DCM were studied. Calcium-channel AAbs were detected in 80 patients with DCM and 80 controls by enzyme-linked immunosorbent assay (ELISA). Calcium-channel AAbs were further purified by affinity chromatography for characterization by immunoblotting and immunofluorescence. Voltage-clamp experiments were performed to identify the function of CC-AAbs. The presence of CC-AAbs was shown effectively by ELISA, and CC-AAbs were able specifically to bind to the calcium channel on the myocyte, confirmed by immunoblotting and immunofluorescence. Calcium currents were enhanced by CC-AAbs on Xenopus oocytes expressing human Ca(V)1.2 channels, which suggested CC-AAbs in patients with DCM were agonist-like. Our results suggest there are novel agonist-like CC-AAbs in patients with DCM. Calcium-channel AAbs might play an important role in the pathogenesis of DCM.
Collapse
|
23
|
Yuen S, Smith J, Caruso L, Balan M, Opavsky MA. The coxsackie-adenovirus receptor induces an inflammatory cardiomyopathy independent of viral infection. J Mol Cell Cardiol 2011; 50:826-40. [PMID: 21352828 DOI: 10.1016/j.yjmcc.2011.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 02/08/2011] [Accepted: 02/11/2011] [Indexed: 01/17/2023]
Abstract
The coxsackie-adenovirus receptor (CAR) is a viral receptor for Group B coxsackieviruses (CVBs) and adenoviruses. CAR has been linked with the innate immune response to CVB myocarditis, and with activation of inflammatory cells in vitro. We hypothesized that CAR activates signals that promote inflammation in the myocardium independent of viral infection. To test this we conditionally overexpressed murine CAR in cardiomyocytes of adult binary transgenic mice under the control of a tetracycline-responsive (tet-off) α-myosin heavy chain (αMtTA) promoter (mCAR(+)/αMtTA(+) mice). An inflammatory cardiomyopathy developed in both lines generated (6-mCAR(+)/αMtTA(+) and 12-mCAR(+)/αMtTA(+)) following withdrawal of doxycycline. Cardiac CAR was upregulated at 4weeks of age in 6-mCAR(+)/αMtTA(+) mice and induced a mild inflammatory infiltrate (score 1.3 of 4.0±0.3) at 6weeks, with 95% of mice surviving to that time. In the second line, 12-mCAR(+)/αMtTA(+) mice, CAR was upregulated in the majority of mice by 3weeks of age, and by 5weeks of age more severe cardiac inflammation (score 2.8 of 4.0±0.4) developed with only 56% of mice surviving. The cardiac inflammatory infiltrate was primarily natural killer cells and macrophages in both mCAR(+)/αMtTA(+) lines. A proinflammatory cytokine response with increased cardiac interferon-γ, interleukin (IL)-12, IL-1β, tumor necrosis factor-α and IL-6 was detected by real-time RT-PCR. CAR has been linked to signaling via the inflammatory mitogen-activated protein kinase (MAPK) cascades; therefore, we evaluated the response of these pathways in hearts with upregulated CAR. Both stress-activated JNK and p38MAPK were activated in mCAR(+)/αMtTA(+) hearts prior to onset of inflammation and in isolated mCAR(+)/αMtTA(+) cardiomyocytes. In conclusion, we show for the first time that CAR upregulation in the adult mouse heart induces cardiac inflammation reminiscent of early viral myocarditis. CAR-induced stress-activated MAPK signaling may contribute to the development of cardiac inflammation unrelated to viral infection per se.
Collapse
Affiliation(s)
- Stella Yuen
- Cell Biology Program, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
24
|
Shackley BS, Nguyen TP, Shivkumar K, Finn PJ, Fishbein MC. Idiopathic massive myocardial calcification: a case report and review of the literature. Cardiovasc Pathol 2010; 20:e79-83. [PMID: 20598909 DOI: 10.1016/j.carpath.2010.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 03/06/2010] [Accepted: 04/20/2010] [Indexed: 01/05/2023] Open
Abstract
We report a rare case of massive myocardial calcification in a 42-year-old male who presented with symptoms of congestive heart failure and arrhythmia. Myocardial calcification is most commonly associated with myocardial infarction or, less commonly, hypercalcemia. This case is particularly unusual due to the lack of any known predisposing risk factors, including normal coronary arteries, normal renal function, and normal serum calcium levels. Alternative etiologies are discussed accompanied by a review of the literature.
Collapse
Affiliation(s)
- Brit S Shackley
- Department of Pathology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1732, USA.
| | | | | | | | | |
Collapse
|
25
|
Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM, Butany J. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest 2009; 39:618-25. [PMID: 19453650 PMCID: PMC7163766 DOI: 10.1111/j.1365-2362.2009.02153.x] [Citation(s) in RCA: 648] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Angiotensin converting enzyme 2 (ACE2), a monocarboxylase that degrades angiotensin II to angiotensin 1-7, is also the functional receptor for severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) and is highly expressed in the lungs and heart. Patients with SARS also suffered from cardiac disease including arrhythmias, sudden cardiac death, and systolic and diastolic dysfunction. MATERIALS AND METHODS We studied mice infected with the human strain of the SARS-CoV and encephalomyocarditis virus and examined ACE2 mRNA and protein expression. Autopsy heart samples from patients who succumbed to the SARS crisis in Toronto (Canada) were used to investigate the impact of SARS on myocardial structure, inflammation and ACE2 protein expression. RESULTS Pulmonary infection with the human SARS-CoV in mice led to an ACE2-dependent myocardial infection with a marked decrease in ACE2 expression confirming a critical role of ACE2 in mediating SARS-CoV infection in the heart. The SARS-CoV viral RNA was detected in 35% (7/20) of autopsied human heart samples obtained from patients who succumbed to the SARS crisis during the Toronto SARS outbreak. Macrophage-specific staining showed a marked increase in macrophage infiltration with evidence of myocardial damage in patients who had SARS-CoV in their hearts. The presence of SARS-CoV in the heart was also associated with marked reductions in ACE2 protein expression. CONCLUSIONS Our data show that SARS-CoV can mediate myocardial inflammation and damage associated with down-regulation of myocardial ACE2 system, which may be responsible for the myocardial dysfunction and adverse cardiac outcomes in patients with SARS.
Collapse
Affiliation(s)
- G Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Both cocaine use and human immunodeficiency virus (HIV) infection alone have been associated with an increased incidence of cardiac dysfunction. Concomitant exposure to cocaine and HIV infection may exacerbate the cardiac toxicity of either agent alone, a hypothesis that is examined in this review article. A possible unifying hypothesis based on enhancement of adrenergic stimulation is proposed.
Collapse
Affiliation(s)
- G Soodini
- Charles A. Dana Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
27
|
Khazaei M, Moien-Afshari F, Laher I. Vascular endothelial function in health and diseases. ACTA ACUST UNITED AC 2008; 15:49-67. [PMID: 18434105 DOI: 10.1016/j.pathophys.2008.02.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 02/07/2008] [Accepted: 02/08/2008] [Indexed: 11/30/2022]
Abstract
The vascular endothelium constitutes approximately 1% of body mass (1kg) and has a surface area of approximately 5000m(2). The endothelium is a multifunctional endocrine organ strategically placed between the vessel wall and the circulating blood, and has a key role in vascular homeostasis. The endothelium is both a target for and mediator of cardiovascular disease. The endothelium releases several relaxing and constricting factors, which can affect vascular homeostasis. Endothelial dysfunction, whether caused by physical injury or cellular damage, leads to compensatory responses that alter the normal homeostatic properties of the endothelium. In this review, we summarized some physiological aspects of endothelial function and then we discussed endothelial dysfunction during some pathological conditions.
Collapse
Affiliation(s)
- M Khazaei
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | |
Collapse
|
28
|
Obata H, Yanagawa B, Tanaka K, Ohnishi S, Kataoka M, Miyahara Y, Ishibashi-Ueda H, Kodama M, Aizawa Y, Kangawa K, Nagaya N. CNP infusion attenuates cardiac dysfunction and inflammation in myocarditis. Biochem Biophys Res Commun 2007; 356:60-6. [PMID: 17336931 DOI: 10.1016/j.bbrc.2007.02.085] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 02/15/2007] [Indexed: 11/25/2022]
Abstract
Myocarditis is an acute inflammatory disease of the myocardium for which there is currently no specific therapy. We investigated the therapeutic potential of C-type natriuretic peptide (CNP) in acute experimental autoimmune myocarditis. One week after injection of porcine myosin into male Lewis rats, CNP (0.05 microg/kg/min) was continuously administered for 2 weeks. CNP infusion significantly increased maximum dP/dt, decreased left ventricular end-diastolic pressure, and improved fractional shortening compared with vehicle administration. In vehicle-treated hearts, severe necrosis and marked infiltration of CD68-positive inflammatory cells were observed. Myocardial and serum levels of monocyte chemoattractant protein-1 were elevated in myocarditis. However, these changes were attenuated by CNP infusion. In addition, treatment with CNP significantly increased myocardial capillary density. Guanylyl cyclase-B, a receptor for CNP, was expressed in myocarditic heart, and cyclic guanosine monophosphate was elevated by CNP infusion. In conclusion, CNP infusion attenuated cardiac function in acute myocarditis through anti-inflammatory and angiogenic effects.
Collapse
Affiliation(s)
- Hiroaki Obata
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Aly M, Wiltshire S, Chahrour G, Osti JCL, Vidal SM. Complex genetic control of host susceptibility to coxsackievirus B3-induced myocarditis. Genes Immun 2007; 8:193-204. [PMID: 17287827 DOI: 10.1038/sj.gene.6364374] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of viral myocarditis is a multifactorial process involving host genetics, viral genetics and the environment in which they interact. We have used a model of infection with coxsackievirus B3 (CVB3) to characterize the contribution of host genetics to viral myocarditis in mice of different genetic backgrounds but with a common H2 haplotype: A/J and B10.A-H2(a). Here we have used Evans blue dye as a quantitative biomarker for susceptibility to CVB3-induced myocarditis in addition to histopathological semiquantitative measures. We have found evidence of linkage between susceptibility to viral myocarditis and three loci. A locus on chromosome 1 centered on D1Mit200 was linked to sarcolemmal disruption in males (P=0.00005), a second locus on chromosome 4 centered on D4Mit81 was also linked to sarcolemmal disruption in males (P=0.0022). A third locus on distal chromosome 3 centered on D3Mit19 was linked to myocardial infiltration, with a logarithm of odds (LOD) score of 4.7 (P=0.0045), as well as sarcolemmal disruption in females (P=0.0015). These results provide strong evidence for the presence of loci contributing to the susceptibility of mice to viral myocarditis.
Collapse
Affiliation(s)
- M Aly
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
30
|
Stempien-Otero A, Plawman A, Meznarich J, Dyamenahalli T, Otsuka G, Dichek DA. Mechanisms of cardiac fibrosis induced by urokinase plasminogen activator. J Biol Chem 2006; 281:15345-51. [PMID: 16554301 DOI: 10.1074/jbc.m512818200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human hearts with end-stage failure and fibrosis have macrophage accumulation and elevated plasminogen activator activity. However, the mechanisms that link macrophage accumulation and plasminogen activator activity with cardiac fibrosis are unclear. We previously reported that mice with macrophage-targeted overexpression of urokinase plasminogen activator (SR-uPA+/o mice) develop cardiac macrophage accumulation by 5 weeks of age and cardiac fibrosis by 15 weeks. We used SR-uPA+/o mice to investigate mechanisms through which macrophage-expressed uPA causes cardiac macrophage accumulation and fibrosis. We hypothesized that: 1) macrophage accumulation and cardiac fibrosis in SR-uPA+/o mice are dependent on localization of uPA by the uPA receptor (uPAR); 2) activation of plasminogen by uPA and subsequent activation of transforming growth factor-beta1 (TGF-beta1) and matrix metalloproteinase (MMP)-2 and -9 by plasmin are critical pathways through which uPA-expressing macrophages accumulate in the heart and cause fibrosis; and 3) uPA-induced cardiac fibrosis can be attenuated by treatment with verapamil. To test these hypotheses, we bred the SR-uPA+/o transgene into mice deficient in either uPAR or plasminogen and measured cardiac macrophage accumulation and fibrosis. We also measured cardiac TGF-beta1 protein (total and active), Smad2 phosphorylation, and MMP activity after the onset of macrophage accumulation but before the onset of cardiac fibrosis. Finally, we treated mice with verapamil. Our studies revealed that plasminogen is necessary for uPA-induced cardiac fibrosis and macrophage accumulation but uPAR is not. We did not detect plasmin-mediated activation of TGF-beta1, MMP-2, or MMP-9 in hearts of SR-uPA+/o mice. However, verapamil treatment significantly attenuated both cardiac fibrosis and macrophage accumulation.
Collapse
Affiliation(s)
- April Stempien-Otero
- Department of Medicine, Division of Cardiology, University of Washington School of Medicine, Seattle, Washington, 98195, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Saraste A, Kytö V, Saraste M, Vuorinen T, Hartiala J, Saukko P. Coronary flow reserve and heart failure in experimental coxsackievirus myocarditis. A transthoracic Doppler echocardiography study. Am J Physiol Heart Circ Physiol 2006; 291:H871-5. [PMID: 16501009 DOI: 10.1152/ajpheart.01375.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to apply transthoracic Doppler echocardiography (TTDE) in mice to study coronary flow reserve (CFR), an index of coronary microvascular function, in mild and severe forms of experimental viral myocarditis. Regarding methodology, BALB/c mice were infected with cardiotropic coxsackieviruses causing either a mild (Nancy strain) or a severe (Woodruff strain) myocarditis. Left ventricular dimensions, fractional shortening, and CFR (ratio of left coronary artery flow velocity during maximal adenosine-induced vasodilatation to rest) were measured by TTDE before infection and again 1 or 2 wk after infection. As a result, the resting flow velocity did not change after infection. In contrast, CFR reduced significantly 1 wk after infection with either virus variant [from 2.5 (SD 0.3) to 1.4 (SD 0.1) in severe and from 2.4 (SD 0.4) to 2.1 (SD 0.3) in mild myocarditis], being significantly lower in the severe than mild myocarditis. CFR remained low in severe myocarditis 2 wk after infection. Fractional shortening decreased to the same levels 1 wk after infection with either virus variant [from 0.54 (SD 0.02) to 0.43 (SD 0.03) in severe and from 0.51 (SD 0.03) to 0.44 (SD 0.02) in mild myocarditis, P < 0.05]. However, 2 wk after infection, mice with severe myocarditis had enlarged left ventricles and lower fractional shortening [0.31 (SD 0.03)] than mice with mild myocarditis [0.47 (SD 0.02), P < 0.01]. In conclusion, CFR measured with TTDE is reduced in coxsackievirus myocarditis in mice. Low CFR is associated with progressive heart failure, indicating that dysfunction of coronary microcirculation is a determinant of poor outcome in viral myocarditis.
Collapse
Affiliation(s)
- Antti Saraste
- Department of Clinical Physiology, Turku University Central Hospital, Kiinamyllynkatu 6-8, 20520 Turku, Finland.
| | | | | | | | | | | |
Collapse
|
32
|
Wang JF, Meissner A, Malek S, Chen Y, Ke Q, Zhang J, Chu V, Hampton TG, Crumpacker CS, Abelmann WH, Amende I, Morgan JP. Propranolol ameliorates and epinephrine exacerbates progression of acute and chronic viral myocarditis. Am J Physiol Heart Circ Physiol 2005; 289:H1577-83. [PMID: 15923319 DOI: 10.1152/ajpheart.00258.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies point to important interactions between proinflammatory cytokines and neurohumoral mediators in heart failure. Here we investigate the influence of the β-adrenergic system on cytokines and neurohumoral factors and the sequelae of viral myocarditis. In an experimental model with virus-infected BALB/c mice, we studied the acute and chronic effects of epinephrine and propranolol on myocardial morphology, cytokine gene expression, and survival. BALB/c mice were inoculated with the encephalomyocarditis virus (EMCV) or sham inoculated with saline and followed for 30 days. Epinephrine increased the severity of inflammatory cell infiltration and myocardial necrosis induced by EMCV. Gene expression of TNF-α, IL-6, and IL-10 was markedly enhanced by epinephrine in EMCV-inoculated mice. Survival rate after 30 days was reduced to 40% in epinephrine-treated EMCV-inoculated mice compared with 70% in untreated EMCV-inoculated mice ( P < 0.05). Treatment with the β-blocker propranolol significantly decreased mortality, myocardial necrosis, and infiltration of inflammatory cells in EMCV-inoculated mice. Propranolol also suppressed gene expression of TNF-α, IL-6, and IL-10. A single dose of epinephrine 120 days after EMCV inoculation caused sudden death in 70% of infected mice; propranolol significantly reduced incidence of death to 33%. These results indicate that acute and chronic stages of viral myocarditis are modulated by the β-adrenergic system and its interactions with proinflammatory cytokines.
Collapse
Affiliation(s)
- Ju-Feng Wang
- Cardiovascular Division, Department of Medicine, and Harvard Thorndike Research Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Regulation of coronary vascular tone is critical for proper perfusion and function of the myocardium. Many disease processes result in compromised regulation of coronary vascular tone and impaired myocardial perfusion. A common result of coronary vascular dysfunction is the development of areas of replacement fibrosis within the myocardium and surrounding the vasculature. Both intravascular processes, such as coronary atherosclerosis and endothelial dysfunction, and extravascular processes, including compromised myocardial metabolism, hormone excesses, and altered local signaling, may result in coronary vascular dysregulation. Coronary occlusion events, in turn, lead to myocardial damage and the activation of inflammatory cells and fibroblasts. The role of fibroblasts in regulating myocardial fibrosis and the contribution of myofibroblasts, cells that have limited contractile potential while retaining many of the extracellular matrix regulating processes of the fibroblast, may also contribute to the development of myocardial disease. In this review we examine the recent literature on myocardial fibrosis and myofibroblast activity, highlighting the effects of several classes of cardiovascular agents on the remodeling process.
Collapse
Affiliation(s)
- Matthew T Wheeler
- Section of Cardiology, Department of Medicine, The University of Chicago, 5841 South Maryland Avenue, MC 6088, Chicago, IL 60637, USA
| | | |
Collapse
|
34
|
Choy JC, Lui AH, Moien-Afshari F, Wei K, Yanagawa B, McManus BM, Laher I. Coxsackievirus B3 infection compromises endothelial-dependent vasodilation of coronary resistance arteries. J Cardiovasc Pharmacol 2004; 43:39-47. [PMID: 14668566 DOI: 10.1097/00005344-200401000-00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The mechanisms of coronary artery dysfunction in coxsackievirus B3 (CVB3)-mediated viral myocarditis are poorly understood. We used pressure myography of mouse septal coronary arteries to determine the early and late effects of CVB3 infection on vascular function. Male CD-1 mice (age 6-7 weeks) were infected with CVB3 (1.75 x 10(10) pfu, i.p.). Control mice were injected with PBS. Mice were killed at 3, 7, and 42 days post infection, and the ventricular septal artery was dissected and mounted on a pressure myograph. Pressure-induced myogenic tone was similar in CVB3-infected and sham-infected mice at 3 and 7 days post infection. However, at 42 days post infection constriction of septal arteries to pressures equal to or less than 60 mm Hg was enhanced in CVB3-infected mice compared with sham controls. Agonist-induced vasodilation, as assessed by response to acetylcholine (1 nM-3 microM), was unaltered at early time points (days 3 and 7) in CVB3-infected mice. At later time points (day 42), there was a significant decrease in ACh-induced vasodilation in CVB3-infected mice. Bosentan, an ET-1 (ETA and ETB) receptor antagonist, did not completely ameliorate the reduced ACh-induced vasodilation in 42-day infected mice, indicating that ET-1 does not contribute to vascular dysfunction. Smooth muscle function, as measured by constriction to KCl or dilation to sodium nitroprusside, was unchanged in infected mice at early and late time points. Immunohistochemistry and ET-1 immunoassay were then performed to assess ET-1 levels in CVB3- and sham-infected hearts. There were no differences in ET-1 protein localization or levels at 42 days post infection in sham- and CVB3-infected animals. Finally, in situ hybridization and TUNEL staining were performed to assess viral localization and cell death in CVB3-infected hearts. There was no detectable CVB3 or TUNEL positivity in the endothelium of coronary arteries. Therefore, late impairment of endothelial-dependent vasorelaxation of coronary resistance vessels in CVB3-induced myocarditis does not appear to involve altered ET-1 expression but may be secondary to decreased stimulated NO secretion by the endothelium.
Collapse
Affiliation(s)
- Jonathan C Choy
- UBC McDonald Research Laboratories/The iCAPTUR4E Centre, Department of Pathology and Laboratory Medicine, St. Paul's Hospital/Providence Health Care-University of British Columbia, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Wheeler DS, Kooy NW. A formidable challenge: the diagnosis and treatment of viral myocarditis in children. Crit Care Clin 2003; 19:365-91. [PMID: 12848311 DOI: 10.1016/s0749-0704(03)00006-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It is generally well accepted that one third of patients with viral myocarditis experience a complete recovery of normal cardiac function, one third improve clinically but show residual cardiac dysfunction, and one third experience chronic heart failure and die or require heart transplantation. It is hoped that a better understanding of the underlying cause and pathogenesis of this disease will increase the number of patients who experience a complete recovery. New advances in both the diagnosis and treatment of viral myocarditis continue to enter clinical practice at a rapid pace, and it is likely that a genomic approach to the diagnostic evaluation and treatment of this disease will become possible in the near future. Viral myocarditis, however, will remain a significant diagnosticand therapeutic challenge to both physicians and scientists alike.
Collapse
Affiliation(s)
- Derek S Wheeler
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | |
Collapse
|
36
|
Yuan Z, Kishimoto C, Shioji K. Beneficial effects of low-dose benidipine in acute autoimmune myocarditis: suppressive effects on inflammatory cytokines and inducible nitric oxide synthase. Circ J 2003; 67:545-50. [PMID: 12808275 DOI: 10.1253/circj.67.545] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excessive production of nitric oxide (NO) by inducible NO synthase (iNOS) contributes to the progression of myocardial damage in myocarditis. Some dihydropyridine calcium channel blockers reportedly inhibit NO production and proinflammatory cytokines and the present study sought to clarify if a low dose of benidipine, a novel dihydropyridine calcium channel blocker, would ameliorate experimental autoimmune myocarditis (EAM). Rats with or without myocarditis were administered oral benidipine at a dose of 3 mg. kg(-1). day(-1) for 3 weeks. Low-dose benidipine did not decrease blood pressure significantly compared with the untreated group, but markedly reduced the severity of myocarditis. Myocardial interleukin-1beta (IL-1beta) expression and IL-1beta-positive cells were significantly less in rats with EAM that were treated with low-dose benidipine compared with untreated rats. Also, myocardial iNOS expression and iNOS-positive cells were markedly reduced in in the treated rats compared with the untreated group. Furthermore, myocardial NO production and nitrotyrosine expression were suppressed by the treatment in rats with EAM. The cardioprotection of low-dose benidipine may be caused by suppression of inflammatory cytokines and inhibition of NO production.
Collapse
Affiliation(s)
- Zuyi Yuan
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
37
|
Abstract
The newest treatment strategies for pediatric myocarditis have evolved from an understanding of the pathophysiology of myocyte damage. Although the initial stages of viral myocarditis apparently result from the direct cytopathic effects on the atrial and ventricular myocardium, later stages of progressive decompensation result from immune-mediated myocyte destruction common to many forms of myocarditis. Despite advances in the understanding of the role of genetics, immunologic mechanisms, and infectious causes of myocarditis, supportive therapy continues to remain the cornerstone of treatment. Presently, therapies include supportive management with anticongestive agents, antiviral medications, and therapies that attempt to interrupt the immunologic cascade. Clinical studies have yet to provide convincing evidence that the use of immunosuppressants and gamma-globulin favorably alters the outcome for pediatric patients with acute myocarditis. Ventricular assist devices and heart transplantation remain as treatment options for all pediatric patients with severe myocarditis resistant to all other therapies. Although this review will focus on viral myocarditis, the supportive strategies and surgical treatment options apply to most forms of cardiomyopathy.
Collapse
Affiliation(s)
- Daniel Levi
- Department of Pediatrics, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
38
|
Frishman WH, O'Brien M, Naseer N, Anandasabapathy S. Innovative drug treatments for viral and autoimmune myocarditis. HEART DISEASE (HAGERSTOWN, MD.) 2002; 4:171-83. [PMID: 12028603 DOI: 10.1097/00132580-200205000-00008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Myocarditis is a common cause of cardiomyopathy and is thought to account for 25% of all cases in humans. Unfortunately, the disease is difficult to detect clinically before a myopathic process ensues. Management of myocarditis-induced heart failure includes the standard regimen of diuretics, digoxin, angiotensin-converting enzyme inhibitors, angiotensin-II receptor blockers, and beta-adrenergic blockers. The management of myocarditis itself is dependent on the etiology of the illness. Treatments that are currently under investigation include immunosuppressants, nonsteroidal antiinflammatory agents, immunoglobulins, immunomodulation, antiadrenergics, calcium-channel blockers, angiotensin-converting enzyme inhibitors, nitric oxide inhibitors (e.g., aminoguanidine), and antivirals. Despite advances in treatment, more work needs to be done in the early detection of myocarditis. Additionally, better means need to be established for distinguishing between viral and noninfectious autoimmune forms of the disease, so that appropriate treatment can be instituted.
Collapse
Affiliation(s)
- William H Frishman
- Department of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
39
|
Mungrue IN, Gros R, You X, Pirani A, Azad A, Csont T, Schulz R, Butany J, Stewart DJ, Husain M. Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest 2002. [DOI: 10.1172/jci0213265] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Mungrue IN, Gros R, You X, Pirani A, Azad A, Csont T, Schulz R, Butany J, Stewart DJ, Husain M. Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest 2002; 109:735-43. [PMID: 11901182 PMCID: PMC150906 DOI: 10.1172/jci13265] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2001] [Accepted: 01/28/2002] [Indexed: 11/17/2022] Open
Abstract
Increased inducible nitric oxide synthase (iNOS) expression is a component of the immune response and has been demonstrated in cardiomyocytes in septic shock, myocarditis, transplant rejection, ischemia, and dilated cardiomyopathy. To explore whether the consequences of such expression are adaptive or pathogenic, we have generated a transgenic mouse model conditionally targeting the expression of a human iNOS cDNA to myocardium. Chronic cardiac-specific upregulation of iNOS in transgenic mice led to increased production of peroxynitrite. This was associated with a mild inflammatory cell infiltrate, cardiac fibrosis, hypertrophy, and dilatation. While iNOS-overexpressing mice infrequently developed overt heart failure, they displayed a high incidence of sudden cardiac death due to bradyarrhythmia. This dramatic cardiac phenotype was rescued by specific attenuation of transgene activity. These data implicate cardiomyocyte iNOS overexpression as sufficient to cause cardiomyopathy, bradyarrhythmia, and sudden cardiac death.
Collapse
Affiliation(s)
- Imran N Mungrue
- Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Acute myocarditis is characterized by the rapid development of life-threatening congestive heart failure and arrhythmias. Although the initial stages of this disorder apparently result from direct cytopathic effects on the atrial and ventricular myocardium, later stages of progressive decompensation may result from immune-mediated myocyte destruction. There has been recent improvement in understanding the role of this immunologic cascade. As a result, treatment now begins earlier in the course of the disease and can target both the virus and the immune response. Our ability to implement mechanical support in children as a bridge to transplant or recovery, even in children presenting in the final stages of their disease, has led to an improved outcome regarding morbidity and mortality.
Collapse
Affiliation(s)
- D Levi
- School of Medicine, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095-1743, USA
| | | |
Collapse
|
42
|
Cohn RD, Durbeej M, Moore SA, Coral-Vazquez R, Prouty S, Campbell KP. Prevention of cardiomyopathy in mouse models lacking the smooth muscle sarcoglycan-sarcospan complex. J Clin Invest 2001; 107:R1-7. [PMID: 11160141 PMCID: PMC199179 DOI: 10.1172/jci11642] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cardiomyopathy is a multifactorial disease, and the dystrophin-glycoprotein complex has been implicated in the pathogenesis of both hereditary and acquired forms of the disease. Using mouse models of cardiomyopathy made by ablating genes for components of the sarcoglycan complex, we show that long-term treatment with verapamil, a calcium channel blocker with vasodilator properties, can alleviate the severe cardiomyopathic phenotype, restoring normal serum levels for cardiac troponin I and normal cardiac muscle morphology. Interruption of verapamil treatment leads again to vascular dysfunction and acute myocardial necrosis, indicating that predilection for cardiomyopathy is a continuing process. In contrast, verapamil did not prevent cardiac muscle pathology in dystrophin-deficient mdx mice, which neither show a disruption of the sarcoglycan complex in vascular smooth muscle nor vascular dysfunction. Hence, our data strongly suggest that pharmacological intervention with verapamil merits investigation as a potential therapeutic option not only for patients with sarcoglycan mutations, but also for patients with idiopathic cardiomyopathy associated with myocardial ischemia not related to atherosclerotic coronary artery disease.
Collapse
Affiliation(s)
- R D Cohn
- Howard Hughes Medical Institute, Department of Physiology and Biophysics, Department of Neurology, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
43
|
Baughman KL. Influence of myocarditis on left ventricular function. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2000; 111:20-37. [PMID: 10881329 PMCID: PMC2194372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- K L Baughman
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
44
|
Opavsky MA, Penninger J, Aitken K, Wen WH, Dawood F, Mak T, Liu P. Susceptibility to myocarditis is dependent on the response of alphabeta T lymphocytes to coxsackieviral infection. Circ Res 1999; 85:551-8. [PMID: 10488058 DOI: 10.1161/01.res.85.6.551] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Viral myocarditis is an important cause of heart failure and dilated cardiomyopathy. T lymphocytes are implicated in myocardial damage in murine models of coxsackievirus B3 (CVB3) myocarditis. We used knockout mice lacking CD4 (CD4(-/-)), CD8 (CD8(-/-)), both coreceptors (CD4(-/-)CD8(-/-)), or the T-cell receptor beta chain (TCRbeta(-/-)) to address the contribution of T-cell subpopulations to host susceptibility to CVB3 myocarditis. Severity of disease was magnified in CD8(-/-) mice but attenuated in CD4(-/-) mice, consistent with a pathogenic role for CD4(+) lymphocytes. Elimination of both CD4 and CD8 molecules from T lymphocytes by genetic knockout better protected mice from myocarditis, demonstrating that both CD4(+) and CD8(+) T cells contribute to host susceptibility. The same benefit occurred in TCRbeta(-/-) mice, with prolonged survival and minimal myocardial disease observed after CVB3 infection. Elevated interferon-gamma and decreased tumor necrosis factor-alpha expression are associated with attenuated myocardial damage in CD4(-/-)CD8(-/-) mice. These results show that the presence of TCRalphabeta(+) T cells enhances host susceptibility to myocarditis. The severity of myocardial damage and associated mortality are dependent on the predominant T-cell type available to respond to CVB3 infection. One mechanism by which CD4(+) and CD8(+) T-cell subsets influence the pathogenesis of myocarditis may involve specific cytokine expression patterns.
Collapse
Affiliation(s)
- M A Opavsky
- Centre for Cardiovascular Research, The Toronto Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
After cardiac injury, there are changes in the cardiac myocyte morphology, function, matrix, and molecular gene expression. These all play an important role in remodeling of the injured heart, contributing to the progression toward heart failure. The role of the microvasculature in the progression toward heart failure is less well characterized. However, laboratory studies have established that there are important interactions between the microvascular endothelium and the myocyte. Furthermore, in a multitude of animal models of heart failure and cardiomyopathy, there is always an association with microvascular abnormalities. Reversal of these abnormalities is also associated with improvement in the cardiomyopathy. Major mediators that likely play an important role in the microvasculature include endothelin and nitric oxide. These are elaborated by both endothelium and myocyte compartments of the myocardium. Preliminary clinical studies already demonstrate that microvascular ischemia may have prognostic power in patients with nonischemic dilated cardiomyopathy. Results from these studies showed a reduction in mortality from treatment with amlodipine, suggesting a possible benefit based on changes in the microvasculature.
Collapse
Affiliation(s)
- P P Liu
- Toronto General Hospital, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
46
|
Freher M, Challapalli S, Pinto JV, Schwartz J, Bonow RO, Gheorgiade M. Current status of calcium channel blockers in patients with cardiovascular disease. Curr Probl Cardiol 1999; 24:236-340. [PMID: 10340116 DOI: 10.1016/s0146-2806(99)90000-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M Freher
- Division of Cardiology, Northwestern University Medical School, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
47
|
Zaidi SH, Hui CC, Cheah AY, You XM, Husain M, Rabinovitch M. Targeted overexpression of elafin protects mice against cardiac dysfunction and mortality following viral myocarditis. J Clin Invest 1999; 103:1211-9. [PMID: 10207173 PMCID: PMC408273 DOI: 10.1172/jci5099] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Serine elastases degrade elastin, stimulate vascular smooth muscle cell migration and proliferation, and are associated with myocardial damage. To evaluate the impact of elastase inhibition on cardiovascular development and disease, transgenic mice were created in which the mouse preproendothelin-1 promoter was used to target elafin overexpression to the cardiovascular system. To distinguish the transgene from endogenous elafin, constructs were made incorporating a FLAG sequence; the COOH-terminus FLAG-tagged elafin construct produced a stable, functionally active gene product and was used to create transgenic mice. Consistent with endothelin expression, abundant elafin mRNA was observed in transgenic F1 embryos (embryonic day 13.5) and in adult transgenic mice heart, trachea, aorta, kidney, lung, and skin, but not in liver, spleen, and intestine. Functional activity of the transgene was confirmed by heightened myocardial elastase inhibitory activity. No tissue abnormalities were detected by light microscopy or elastin content. However, injection of 10 plaque-forming units (PFU) of encephalomyocarditis virus resulted in death within 11 days in 10 out of 12 nontransgenic mice compared with one out of nine transgenic littermates. This reduced mortality was associated with better cardiac function and less myocardial inflammatory damage. Thus, elafin expression may confer a protective advantage in myocarditis and other inflammatory diseases.
Collapse
Affiliation(s)
- S H Zaidi
- Program in Cardiovascular Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Kawai C. From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death: learning from the past for the future. Circulation 1999; 99:1091-100. [PMID: 10051305 DOI: 10.1161/01.cir.99.8.1091] [Citation(s) in RCA: 357] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A progression from viral myocarditis to dilated cardiomyopathy has long been hypothesized, but the actual extent of this progression has been uncertain. However, a causal link between viral myocarditis and dilated cardiomyopathy has become more evident than before with the tremendous developments in the molecular analyses of autopsy and endomyocardial biopsy specimens, new techniques of viral gene amplification, and modern immunology. The persistence of viral RNA in the myocardium beyond 90 days after inoculation, confirmed by the method of polymerase chain reaction, has given us new insights into the pathogenesis of dilated cardiomyopathy. Moreover, new knowledge of T-cell-mediated immune responses in murine viral myocarditis has contributed a great deal to the understanding of the mechanisms of ongoing disease processes. Apoptotic cell death may provide the third concept to explain the pathogenesis of dilated cardiomyopathy, in addition to persistent viral RNA in the heart tissue and an immune system-mediated mechanism. Beneficial effects of alpha1-adrenergic blocking agents, carteolol, verapamil, and ACE inhibitors have been shown clinically and experimentally in the treatment of viral myocarditis and dilated cardiomyopathy. Antiviral agents should be more extensively investigated for clinical use. The rather discouraging results obtained to date with immunosuppressive agents in the treatment of viral myocarditis indicated the importance of sparing neutralizing antibody production, which may be controlled by B cells, and raised the possibility of promising developments in immunomodulating therapy.
Collapse
Affiliation(s)
- C Kawai
- Kyoto University and Kyoto Regional Study Center, Kyoto, Japan
| |
Collapse
|
49
|
Friedman BJ, Grinberg OY, Ratcliffe NR, Swartz HM, Hickey WF. Acute hemodynamic and coronary circulatory effects of experimental autoimmune myocarditis. Heart Vessels 1999; 13:58-62. [PMID: 9987638 DOI: 10.1007/bf01744587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Myocarditis and progression to cardiomyopathy is associated with focal spasm and reperfusion of the coronary microcirculation. Experimental autoimmune myocarditis (EAM), induced with cardiomyosin peptide-specific T cells in Lewis rats, was hypothesized to cause acute hemodynamic and coronary vasculature changes. Fifteen experimental animals (5 each at 1, 2, and 3 weeks after T-cell injection) and eight controls were studied using the constant pressure variant of the isolated heart. Coronary resistant decreased while coronary flow increased (P < 0.05) in EAM hearts after the first week. Rate-pressure product, +dP/dt and -dP/dt, decreased while the heart/body weight ratio increased (P < 0.05) compared with controls at 1 week but not at 2 or 3 weeks. Mean local myocardial PO2, which reflects local oxygen delivery and consumption, and MVO2 were not different for EAM hearts. However, compared with controls EAM myocardial PO2 varied more widely and was often beyond the usual range, suggesting the occurrence of localized hypoxic and hyperoxic areas. In summary, after the first week there was a significant decrease in coronary resistance in the EAM animals, which required higher flow to maintain a similar perfusion pressure. These changes in coronary resistance and flow along with the heterogeneity and extremes of local myocardial PO2 levels without a significant change in MVO2 may be explained by postulating development of low-resistance, high-flow hyperoxic areas which steal flow, thus causing hypoxia in other areas.
Collapse
Affiliation(s)
- B J Friedman
- Division of Cardiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | | | | | | |
Collapse
|
50
|
Lee JK, Zaidi SH, Liu P, Dawood F, Cheah AY, Wen WH, Saiki Y, Rabinovitch M. A serine elastase inhibitor reduces inflammation and fibrosis and preserves cardiac function after experimentally-induced murine myocarditis. Nat Med 1998; 4:1383-91. [PMID: 9846575 DOI: 10.1038/3973] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In viral myocarditis, inflammation and destruction of cardiac myocytes leads to fibrosis, causing progressive impairment in cardiac function. Here we show the etiologic importance of serine elastase activity in the pathophysiology of acute viral myocarditis and the therapeutic efficacy of an elastase inhibitor. In DBA/2 mice inoculated with the encephalomyocarditis virus, a more than 150% increase in myocardial serine elastase activity is observed. This is suppressed by a selective serine elastase inhibitor, ZD0892, which is biologically effective after oral administration. Mice treated with this compound had little evidence of microvascular constriction and obstruction associated with myocarditis-induced ischemia reperfusion injury, much less inflammation and necrosis, only mild fibrosis and myocardial collagen deposition, and normal ventricular function, compared with the infected nontreated group.
Collapse
Affiliation(s)
- J K Lee
- Research Institute, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|