1
|
Huang JH, Lourenço BN, Coleman AE. The renin-angiotensin-aldosterone system in kidney diseases of cats and dogs. Vet J 2025; 309:106287. [PMID: 39672318 DOI: 10.1016/j.tvjl.2024.106287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
The renin-angiotensin-aldosterone system (RAAS) has a well-established key pathophysiologic role in kidney diseases, and pharmacotherapy targeting this system is a mainstay of treatment of affected human beings, cats, and dogs. Several studies have evaluated the circulating RAAS in animals with spontaneous or experimentally induced kidney diseases. Evidence supporting the activation of this system has been demonstrated in some - but not all - studies and individuals, and the interindividual variability in circulating RAAS markers is high. Advances over the last few decades have expanded our understanding of the system, which now includes the existence of a counterbalancing "alternative" RAAS and tissular renin-angiotensin systems (RASs), the latter regulated independently of the circulating endocrine RAAS. The local RAS in the kidney, termed the intrarenal RAS, is currently recognized as an important regulator of kidney function and mediator of kidney disease. In general, information on the intrarenal RAS is lacking in cats and dogs with kidney diseases; however, existing limited data suggest its activation. Despite the inconsistent evidence for circulating RAAS activation in chronic kidney diseases, RAAS inhibitors have proven effective for the treatment of its common comorbidities, systemic arterial hypertension and renal proteinuria, in both cats and dogs. Further research of the circulating RAAS, the intrarenal RAS, and the interplay between these systems in the context of kidney diseases in companion animals might contribute to the development or refinement of future treatment strategies.
Collapse
Affiliation(s)
- Jane Hc Huang
- Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens 30601, USA
| | - Bianca N Lourenço
- Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens 30601, USA.
| | - Amanda E Coleman
- Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens 30601, USA
| |
Collapse
|
2
|
Alkhaleq HA, Hacker I, Karram T, Hamoud S, Kabala A, Abassi Z. Potential Nephroprotective Effect of uPA against Ischemia/Reperfusion-Induced Acute Kidney Injury in αMUPA Mice and HEK-293 Cells. Biomedicines 2024; 12:2323. [PMID: 39457635 PMCID: PMC11505258 DOI: 10.3390/biomedicines12102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The incidence of acute kidney injury (AKI) has been steadily increasing. Despite its high prevalence, there is no pathogenetically rational therapy for AKI. This deficiency stems from the poor understanding of the pathogenesis of AKI. Renal ischemia/hypoxia is one of the leading causes of clinical AKI. This study investigates whether αMUPA mice, overexpressing the urokinase plasminogen activator (uPA) gene are protected against ischemic AKI, thus unraveling a potential renal damage treatment target. Methods: We utilized an in vivo model of I/R-induced AKI in αMUPA mice and in vitro experiments of uPA-treated HEK-293 cells. We evaluated renal injury markers, histological changes, mRNA expression of inflammatory, apoptotic, and autophagy markers, as compared with wild-type animals. Results: the αMUPA mice exhibited less renal injury post-AKI, as was evident by lower SCr, BUN, and renal NGAL and KIM-1 along attenuated adverse histological alterations. Notably, the αMUPA mice exhibited decreased levels pro-inflammatory, fibrotic, apoptotic, and autophagy markers like TGF-β, IL-6, STAT3, IKB, MAPK, Caspase-3, and LC3. By contrast, ACE-2, p-eNOS, and PGC1α were higher in the kidneys of the αMUPA mice. In vitro results of the uPA-treated HEK-293 cells mirrored the in vivo findings. Conclusions: These results indicate that uPA modulates key pathways involved in AKI, offering potential therapeutic targets for mitigating renal damage.
Collapse
Affiliation(s)
- Heba Abd Alkhaleq
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel; (H.A.A.); (I.H.); (A.K.)
| | - Israel Hacker
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel; (H.A.A.); (I.H.); (A.K.)
| | - Tony Karram
- Department of Vascular Surgery, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Shadi Hamoud
- Internal Medicine E, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Aviva Kabala
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel; (H.A.A.); (I.H.); (A.K.)
| | - Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel; (H.A.A.); (I.H.); (A.K.)
- Laboratory Medicine, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
3
|
Schiffrin EL, Navar LG, Ferrario CM. Oscar A. Carretero, MD (1936-2024). Hypertension 2024; 81:e47-e48. [PMID: 38630796 DOI: 10.1161/hypertensionaha.124.22855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Affiliation(s)
- Ernesto L Schiffrin
- Lady Davis Institute of Medical Research, Department of Medicine, Sir Mortimer B. Davies-Jewish General Hospital, Montreal, QC, Canada (E.L.S.)
- Department of Medicine, McGill University, Montreal, QC, Canada (E.L.S.)
| | - Luis Gabriel Navar
- Department of Physiology and Hypertension and Renal Center, Tulane University, New Orleans, LA (L.G.N.)
| | - Carlos M Ferrario
- Department of Surgery, Atrium Health Wake Forest Baptist-Wake Forest School of Medicine, Winston Salem, NC (C.M.F.)
| |
Collapse
|
4
|
The role of nitric oxide in sepsis-associated kidney injury. Biosci Rep 2022; 42:231441. [PMID: 35722824 PMCID: PMC9274646 DOI: 10.1042/bsr20220093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis is one of the leading causes of acute kidney injury (AKI), and several mechanisms including microcirculatory alterations, oxidative stress, and endothelial cell dysfunction are involved. Nitric oxide (NO) is one of the common elements to all these mechanisms. Although all three nitric oxide synthase (NOS) isoforms are constitutively expressed within the kidneys, they contribute in different ways to nitrergic signaling. While the endothelial (eNOS) and neuronal (nNOS) isoforms are likely to be the main sources of NO under basal conditions and participate in the regulation of renal hemodynamics, the inducible isoform (iNOS) is dramatically increased in conditions such as sepsis. The overexpression of iNOS in the renal cortex causes a shunting of blood to this region, with consequent medullary ischemia in sepsis. Differences in the vascular reactivity among different vascular beds may also help to explain renal failure in this condition. While most of the vessels present vasoplegia and do not respond to vasoconstrictors, renal microcirculation behaves differently from nonrenal vascular beds, displaying similar constrictor responses in control and septic conditions. The selective inhibition of iNOS, without affecting other isoforms, has been described as the ideal scenario. However, iNOS is also constitutively expressed in the kidneys and the NO produced by this isoform is important for immune defense. In this sense, instead of a direct iNOS inhibition, targeting the NO effectors such as guanylate cyclase, potassium channels, peroxynitrite, and S-nitrosothiols, may be a more interesting approach in sepsis-AKI and further investigation is warranted.
Collapse
|
5
|
Kannenkeril D, Jung S, Ott C, Striepe K, Kolwelter J, Schmieder RE, Bosch A. Association of Noise Annoyance with Measured Renal Hemodynamic Changes. Kidney Blood Press Res 2021; 46:323-330. [PMID: 33915548 DOI: 10.1159/000515527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/28/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic mental stress is recognized as a modifiable risk factor for cardiovascular disease. The aim of this study was to demonstrate that noise annoyance-induced stress is associated with changes in renal hemodynamics. METHODS Renal hemodynamic parameters were measured using steady-state input clearance with infusion of para-aminohippuric acid and inulin in individuals with normal, high normal, and elevated blood pressure. All individuals ranked subjective annoyance due to noise in everyday life on a 7-grade Likert scale. The median of all rankings was used as a cutoff point to divide the group into noise-annoyed and non-noise-annoyed individuals. Different renal hemodynamic parameters were calculated based on the Gomez equation. RESULTS Noise-annoyed individuals (n = 58) showed lower renal plasma flow (599 ± 106 vs. 663 ± 124 mL/min, p = 0.009), lower renal blood flow (1,068 ± 203 vs. 1,172 ± 225 mL/min, p = 0.047), higher filtration fraction (22.7 ± 3.3 vs. 21.3 ± 3.0, p = 0.012), higher renal vascular resistance (88.9 ± 25.6 vs. 75.8 ± 22.9 mm Hg/[mL/min], p = 0.002), and higher resistance of afferent arteriole (2,439.5 ± 1,253.4 vs. 1,849.9 ± 1,242.0 dyn s-1 cm-5, p = 0.001) compared to non-noise-annoyed individuals (n = 55). There was no difference in measured glomerular filtration rate (133 ± 11.8 vs. 138 ± 15 mL/min, p = 0.181), resistance of efferent arteriole (2,419.4 ± 472.2 vs. 2,245.8 ± 370.3 dyn s-1 cm-5, p = 0.060), and intraglomerular pressure (64.0 ± 3.1 vs. 64.6 ± 3.5 mm Hg, p = 0.298) between the groups. After adjusting for age, renal plasma flow, renal blood flow, and renal vascular resistance remained significantly different between the groups, with a trend in increased afferent arteriolar resistance and filtration fraction. CONCLUSION In this study, noise annoyance was associated with reduced renal perfusion attributed to increased renal vascular resistance predominantly at the afferent site. Long-term consequences of this renal hemodynamic pattern due to noise annoyance need to be investigated.
Collapse
Affiliation(s)
- Dennis Kannenkeril
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Susanne Jung
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Cardiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian Ott
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Nephrology and Hypertension, Paracelsus Medical University, Nürnberg, Germany
| | - Kristina Striepe
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julie Kolwelter
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Cardiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Roland E Schmieder
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Agnes Bosch
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
6
|
Saito K, Fujii H, Kono K, Hirabayashi K, Yamatani S, Watanabe K, Goto S, Komatsu S, Fukumoto T, Nishi S. Changes in blood pressure during treatment with the tyrosine kinase inhibitor lenvatinib. Clin Kidney J 2020; 14:325-331. [PMID: 33564435 PMCID: PMC7857786 DOI: 10.1093/ckj/sfaa137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
Background Within the class of tyrosine kinase inhibitors (TKIs), which are used for the treatment of numerous advanced cancers, lenvatinib is associated with a higher prevalence of hypertension (HT) compared with other TKIs. In this study, we investigated the effect of lenvatinib on blood pressure (BP) and associated factors. Methods This single-centre, retrospective observational study included 25 consecutive patients treated with lenvatinib for unresectable hepatocellular carcinoma from April 2018 to December 2018 at the study institution. We assessed changes in BP using ambulatory BP monitoring, urinary sodium excretion, kidney function, use of antihypertensive agents and diuretics, and fluid retention following treatment initiation with lenvatinib. Results At 1 week after treatment initiation, the mean BP and the percentage of patients with riser pattern significantly increased compared with those at the baseline. Although there were no significant changes at 1 week, urinary sodium excretion (153.4 ± 51.7 and 112.5 ± 65.0 mEq/day at 1 and 3 weeks, respectively, P < 0.05) and estimated glomerular filtration rate significantly decreased and the number of patients with fluid retention increased at 3 weeks. Furthermore, patients with fluid retention had significantly higher BP or required more intensive BP treatment compared with those without fluid retention. Conclusions Lenvatinib might lead to HT without fluid retention soon after the initiation of treatment, subsequently leading to a reduction in urinary sodium excretion, thereby contributing to a rise in BP by fluid retention.
Collapse
Affiliation(s)
- Kei Saito
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideki Fujii
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keiji Kono
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken Hirabayashi
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Yamatani
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kentaro Watanabe
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shunsuke Goto
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shohei Komatsu
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Fukumoto
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinichi Nishi
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
7
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Song J, Wang L, Fan F, Wei J, Zhang J, Lu Y, Fu Y, Wang S, Juncos LA, Liu R. Role of the Primary Cilia on the Macula Densa and Thick Ascending Limbs in Regulation of Sodium Excretion and Hemodynamics. Hypertension 2017; 70:324-333. [PMID: 28607127 PMCID: PMC5507816 DOI: 10.1161/hypertensionaha.117.09584] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 01/28/2023]
Abstract
We investigated the significance of the primary cilia on the macula densa and thick ascending limb (TAL) in regulation of renal hemodynamics, sodium excretion, and blood pressure in this study. A tissue-specific primary cilia knock-out (KO) mouse line was generated by crossing NKCC2-Cre mice with IFT88-Δ/flox mice (NKCC2CRE; IFT88Δ/flox), in which the primary cilia were deleted from the macula densa and TAL. NO generation was measured with a fluorescent dye (4,5-diaminofluorescein diacetate) in isolated perfused juxtaglomerular apparatus. Deletion of the cilia reduced NO production by 56% and 42% in the macula densa and TAL, respectively. NO generation by the macula densa was inhibited by both a nonselective and a selective nitric oxide synthesis inhibitors, whereas TAL-produced NO was inhibited by a nonselective and not by a selective NO synthesis 1 inhibitor. The tubuloglomerular feedback response was enhanced in the KO mice both in vitro measured with isolated perfused juxtaglomerular apparatuses and in vivo measured with micropuncture. In response to an acute volume expansion, the KO mice exhibited limited glomerular filtration rate elevation and impaired sodium excretion compared with the wild-type mice. The mean arterial pressure measured with telemetry was the same for wild-type and KO mice fed a normal salt diet. After a high salt diet, the mean arterial pressure increased by 17.4±1.6 mm Hg in the KO mice. On the basis of these findings, we concluded that the primary cilia on the macula densa and TAL play an essential role in the control of sodium excretion and blood pressure.
Collapse
Affiliation(s)
- Jiangping Song
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Lei Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Fan Fan
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Jin Wei
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Jie Zhang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Yan Lu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Yiling Fu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Shaohui Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Luis A Juncos
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.)
| | - Ruisheng Liu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (J.S., L.W., J.W., J.Z., S.W., R.L.); State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S.); and Department of Pharmacology and Medicine, University of Mississippi Medical Center, Jackson (F.F., Y.L., Y.F., L.A.J.).
| |
Collapse
|
9
|
Srisawat U, Kongrat S, Muanprasat C, Chatsudthipong V. Losartan and Sodium Nitroprusside Effectively Protect against Renal Impairments after Ischemia and Reperfusion in Rats. Biol Pharm Bull 2016; 38:753-62. [PMID: 25947921 DOI: 10.1248/bpb.b14-00860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemia and subsequent reperfusion are known to impair renal function. We examined several agents that might prevent renal impairment or enhance the recovery of renal function after ischemia/reperfusion injury in rats. Different degrees of preventive effects were observed in rats treated with captopril, BQ-123 (endothelin type A receptor antagonist), sodium nitroprusside (SNP, a nitric oxide donor), and losartan (angiotensin II type 1 receptor antagonist). Only minimal changes in renal morphology were observed after treatment with losartan, SNP, captopril, and BQ-123 compared with control animals. On the other hand, lesions were prominent in the N(G)-nitro-L-arginine-methyl ester (L-NAME)- and L-arginine-treated rats. The Na(+)-K(+) ATPase activity of ischemic kidneys was, however, preserved in all treatment groups, except in those treated with L-arginine and L-NAME, which showed a marked reduction in Na(+)-K(+) ATPase activity. Our post-treatment data suggest that losartan and SNP have the greatest potential for therapeutic use to mitigate post-ischemic renal damage and functional impairment.
Collapse
Affiliation(s)
- Umarat Srisawat
- Department of Physiology, Faculty of Science, Mahidol University
| | | | | | | |
Collapse
|
10
|
Ito S. In Vitro Study of the Juxtaglomerular Apparatus and Its Implications in the Chronic Kidney Disease. Hypertension 2015; 65:970-5. [DOI: 10.1161/hypertensionaha.114.04365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/09/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Sadayoshi Ito
- From the Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Lima ILB, Rodrigues AFAC, Bergamaschi CT, Campos RR, Hirata AE, Tufik S, Xylaras BDP, Visniauskas B, Chagas JR, Gomes GN. Chronic sleep restriction during pregnancy--repercussion on cardiovascular and renal functioning of male offspring. PLoS One 2014; 9:e113075. [PMID: 25405471 PMCID: PMC4236130 DOI: 10.1371/journal.pone.0113075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 10/19/2014] [Indexed: 12/21/2022] Open
Abstract
Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi – tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127±2.6 (19); OCSR: 144±2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: −2.6±0.15 (9); OCRS: −1.6±0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4±15 (18); OSR: 60.2±3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4±0.2 (10); OCSR: 7.4±0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring.
Collapse
Affiliation(s)
- Ingrid L. B. Lima
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | - Cássia T. Bergamaschi
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Ruy R. Campos
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Aparecida E. Hirata
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Beatriz D. P. Xylaras
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Bruna Visniauskas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Jair R. Chagas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brasil
| | - Guiomar N. Gomes
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
- * E-mail:
| |
Collapse
|
12
|
Ito S. [111th Scientific Meeting of the Japanese Society of Internal Medicine Presidential Lecture; Evolution and diseases]. ACTA ACUST UNITED AC 2014; 103:2029-39. [PMID: 27522751 DOI: 10.2169/naika.103.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Ren Y, D'Ambrosio MA, Garvin JL, Peterson EL, Carretero OA. Mechanism of impaired afferent arteriole myogenic response in Dahl salt-sensitive rats: role of 20-HETE. Am J Physiol Renal Physiol 2014; 307:F533-8. [PMID: 24990891 DOI: 10.1152/ajprenal.00283.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The afferent arteriole (Af-Art) controls glomerular capillary pressure, an important determinant of glomerular injury. Af-Art myogenic response is mediated by ATP, and ATP signaling is in turn mediated by 20-HETE. Dahl salt-sensitive rats (Dahl SS) have decreased renal 20-HETE production. We hypothesized that Dahl SS have an impaired myogenic response and constrictor response to ATP, due to decreased 20-HETE. Af-Arts from Dahl SS or Dahl salt-resistant rats (Dahl SR) were microdissected and perfused. When myogenic response was induced by increasing Af-Art perfusion pressure from 60 to 140 mmHg, luminal Af-Art diameter decreased in Dahl SR but not in Dahl SS (-3.1 ± 0.8 vs. 0.5 ± 0.8 μm, P < 0.01). The 20-HETE antagonist 20-HEDE (10(-6) M) blocked the myogenic response in Dahl SR but had no effect in Dahl SS. Addition of a subconstrictor concentration of 20-HETE (but not a subconstrictor concentration of norepinephrine) restored the myogenic response in Dahl SS. We then perfused Af-Arts at 60 mmHg and tested the effects of the ATP analog α,β-methylene-ATP (10(-6) M). Maximum ATP-induced constriction was attenuated in Dahl SS compared with Dahl SR (1.5 ± 0.5 vs. 7.4 ± 0.8 μm, P < 0.001). 20-HEDE attenuated ATP-induced Af-Art constriction in Dahl SR but not in Dahl SS, and consequently, ATP-induced constriction was no longer different between strains. In conclusion, Dahl SS have an impaired myogenic response and ATP-induced Af-Art constriction due to a decrease in Af-Art 20-HETE. The impaired myogenic responses may contribute to the nephrosclerosis that develops in Dahl SS.
Collapse
Affiliation(s)
- YiLin Ren
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Martin A D'Ambrosio
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Jeffrey L Garvin
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; and
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan;
| |
Collapse
|
14
|
Han KH, Jung JY, Chung KY, Kim H, Kim J. Nitric oxide synthesis in the adult and developing kidney. Electrolyte Blood Press 2014; 4:1-7. [PMID: 24459479 PMCID: PMC3894539 DOI: 10.5049/ebp.2006.4.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO) is synthesized within the adult and developing kidney and plays a critical role in the regulation of renal hemodynamics and tubule function. In the adult kidney, the regulation of NO synthesis is very cell type specific and subject to distinct control mechanisms of NO synthase (NOS) isoforms. Endothelial NOS (eNOS) is expressed in the endothelial cells of glomeruli, peritubular capillaries, and vascular bundles. Neuronal NOS (nNOS) is expressed in the tubular epithelial cells of the macula densa and inner medullary collecting duct. Furthermore, in the immature kidney, the expression of eNOS and nNOS shows unique patterns distinct from that is observed in the adult. This review will summarize the localization and presumable function of NOS isoforms in the adult and developing kidney.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Department of Anatomy, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Ju-Young Jung
- Department of Anatomy, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Ku-Yong Chung
- Department of Surgery, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Hyang Kim
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Jin Kim
- Department of Anatomy and MRC for Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
15
|
Kasai M, Miyazaki T, Takenaka T, Yanagisawa H, Suzuki H. Excessive zinc intake increases systemic blood pressure and reduces renal blood flow via kidney angiotensin II in rats. Biol Trace Elem Res 2012; 150:285-90. [PMID: 22752877 DOI: 10.1007/s12011-012-9472-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 06/21/2012] [Indexed: 01/13/2023]
Abstract
This study investigated the effects of excess zinc intake on the mean arterial pressure (MAP), renal blood flow (RBF), inulin clearance (IC), serum zinc level, serum angiotensin-converting enzyme (ACE) activity, and kidney angiotensin II (AT II) levels in rats. Experiments were performed on male Sprague-Dawley rats maintained for 4 weeks on a diet containing either 5 mg/100 g (control group), 50 mg/100 g (Zn50 group), or 200 mg/100 g (Zn200 group) zinc carbonate. Serum zinc levels significantly increased to 126.5 % in the Zn50 group and 198.1 % in the Zn200 group compared with controls. MAP significantly increased to 107.8 % in the Zn50 group and 114.5 % in the Zn200 group again compared with controls. Although the difference in serum ACE activity was independent of the serum zinc levels, the kidney AT II levels increased significantly to 137.2 % in the Zn50 group and 174.4 % in the Zn200 group compared with the controls. RBF was decreased significantly to 74.4 % in the Zn50 group and 69.7 % in the Zn200 group compared with the controls. IC values were significantly decreased to 69.6 % in the Zn50 group and 52.7 % in the Zn200 group as compared with control levels. Combined together, these results show that excessive Zn intake reduced IC and RBF and increased MAP and kidney AT II levels, suggesting that excessive Zn intake reduces renal function.
Collapse
Affiliation(s)
- Miyoko Kasai
- Community Health Science Center, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | | | | | | | | |
Collapse
|
16
|
Abstract
Endothelial cells are essential regulators of vascular tone. They accomplish this by sensing humoral mediators and transducing their effects to the underlying vascular smooth muscle as well as by synthesizing vasoactive molecules that act in a paracrine fashion. In the kidney, the local release of these endothelial mediators, together with the concourse of specialized endothelial cells in the glomerulus, contribute to regulate renal blood flow, glomerular filtration, and tubular function that are intimately linked to sodium balance because they mutually influence each other. Ultimately, renal circulation and tubular function have a profound influence in systemic blood pressure as a result of the overall regulation of volume homeostasis.
Collapse
|
17
|
Massey KJ, Hong NJ, Garvin JL. Angiotensin II stimulates superoxide production in the thick ascending limb by activating NOX4. Am J Physiol Cell Physiol 2012; 303:C781-9. [PMID: 22875785 DOI: 10.1152/ajpcell.00457.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin II (ANG II) stimulates production of superoxide (O(2)(-)) by NADPH oxidase (NOX) in medullary thick ascending limbs (TALs). There are three isoforms of the catalytic subunit (NOX1, 2, and 4) known to be expressed in the kidney. We hypothesized that NOX2 mediates ANG II-induced O(2)(-) production by TALs. To test this, we measured NOX1, 2, and 4 mRNA and protein by RT-PCR and Western blot in TAL suspensions from rats and found three catalytic subunits expressed in the TAL. We measured O(2)(-) production using a lucigenin-based assay. To assess the contribution of NOX2, we measured ANG II-induced O(2)(-) production in wild-type and NOX2 knockout mice (KO). ANG II increased O(2)(-) production by 346 relative light units (RLU)/mg protein in the wild-type mice (n = 9; P < 0.0007 vs. control). In the knockout mice, ANG II increased O(2)(-) production by 290 RLU/mg protein (n = 9; P < 0.007 vs. control). This suggests that NOX2 does not contribute to ANG II-induced O(2)(-) production (P < 0.6 WT vs. KO). To test whether NOX4 mediates the effect of ANG II, we selectively decreased NOX4 expression in rats using an adenovirus that expresses NOX4 short hairpin (sh)RNA. Six to seven days after in vivo transduction of the kidney outer medulla, NOX4 mRNA was reduced by 77%, while NOX1 and NOX2 mRNA was unaffected. In control TALs, ANG II stimulated O(2)(-) production by 96%. In TALs transduced with NOX4 shRNA, ANG II-stimulated O(2)(-) production was not significantly different from the baseline. We concluded that NOX4 is the main catalytic isoform of NADPH oxidase that contributes to ANG II-stimulated O(2)(-) production by TALs.
Collapse
Affiliation(s)
- Katherine J Massey
- Hypertension and Vascular Research Division, Dept. of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
18
|
Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis*. Crit Care Med 2012; 40:2368-75. [DOI: 10.1097/ccm.0b013e3182514be9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Lu Y, Fu Y, Ge Y, Juncos LA, Reckelhoff JF, Liu R. The vasodilatory effect of testosterone on renal afferent arterioles. ACTA ACUST UNITED AC 2012; 9:103-11. [PMID: 22445695 DOI: 10.1016/j.genm.2012.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/09/2012] [Accepted: 02/19/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sex differences exist in a variety of cardiovascular and renal diseases, and testosterone may contribute to the discrepancy. Afferent arterioles (Af-Arts) are the major resistance vessels in the kidney, and they play an important role in the development of renal injury and hypertension. OBJECTIVE We sought to determine the acute effect and underlying mechanism(s) of action of testosterone on Af-Arts. METHODS The mRNA expression of androgen receptors (ARs) in microdissected Af-Arts was measured by reverse transcription-polymerase chain reaction (RT-PCR). An in vitro microperfusion model was used to measure the diameter of Af-Arts in mice. Nitric oxide (NO) was evaluated by an NO-sensitive fluorescent dye, 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. RESULTS Testosterone had no effect on microperfused Af-Arts when added to the bath. Therefore, we preconstricted the Af-Arts to approximately 30% with norepinephrine (10(-6) M); administration of testosterone (10(-9)-10(-7) M) subsequently dilated the Af-Arts in a dose-dependent manner (P < 0.001; n = 7). The AR mRNA was expressed in microdissected Af-Arts measured by RT-PCR. An AR antagonist, flutamide (10(-5) M), totally blocked the testosterone (10(-8) M)-induced vasodilator effect. Mean (SEM) NO production of the Af-Art wall was increased when testosterone was added to the bath solution after norepinephrine treatment, from 278.4 (12.1) U/min to 351.2 (33.1) U/min (P < 0.05; n = 3). In the presence of NO inhibition with N(G)-nitro-L-arginine methyl ester (3 × 10(-4) M), the testosterone-induced dilatation was blunted compared with norepinephrine (P < 0.05). CONCLUSIONS Testosterone dilated preconstricted mouse Af-Arts in a dose-dependent manner by activation of ARs and partially mediated by NO.
Collapse
Affiliation(s)
- Yan Lu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Carlström M, Wilcox CS, Welch WJ. Adenosine A2A receptor activation attenuates tubuloglomerular feedback responses by stimulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 2010; 300:F457-64. [PMID: 21106859 DOI: 10.1152/ajprenal.00567.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine A(2) receptors have been suggested to modulate tubuloglomerular feedback (TGF) responses by counteracting adenosine A(1) receptor-mediated vasoconstriction, but the mechanisms are unclear. We tested the hypothesis that A(2A) receptor activation blunts TGF by release of nitric oxide in the juxtaglomerular apparatus (JGA). Maximal TGF responses were measured in male Sprague-Dawley rats as changes in proximal stop-flow pressure (ΔP(SF)) in response to increased perfusion of the loop of Henle (0 to 40 nl/min) with artificial tubular fluid (ATF). The maximal TGF response was studied after 5 min intratubular perfusion (10 nl/min) with ATF or ATF + A(2A) receptor agonist (CGS-21680; 10(-7) mol/l). The interaction with nitric oxide synthase (NOS) isoforms was tested by perfusion with a nonselective NOS inhibitor [N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME); 10(-3) mol/l] or a selective neuronal NOS (nNOS) inhibitor [N(ω)-propyl-L-arginine (L-NPA); 10(-6) mol/l] alone, and with the A(2A) agonist. Blood pressure, urine flow, and P(SF) at 0 nl/min were similar among the groups. The maximal TGF response (ΔP(SF)) with ATF alone (12.3 ± 0.6 mmHg) was attenuated by selective A(2A) stimulation (9.5 ± 0.4 mmHg). L-NAME enhanced maximal TGF responses (18.9 ± 0.4 mmHg) significantly more than L-NPA (15.2 ± 0.7 mmHg). Stimulation of A(2A) receptors did not influence maximal TGF response during nonselective NOS inhibition (19.0 ± 0.4) but attenuated responses during nNOS inhibition (10.3 ± 0.4 mmHg). In conclusion, adenosine A(2A) receptor activation attenuated TGF responses by stimulation of endothelial NOS (eNOS), presumably in the afferent arteriole. Moreover, NO derived from both eNOS and nNOS in the JGA may blunt TGF responses.
Collapse
Affiliation(s)
- Mattias Carlström
- Division of Nephrology and Hypertension, and Hypertension, Kidney & Vascular Research Center, Georgetown University, Washington, DC 20057, USA
| | | | | |
Collapse
|
22
|
Ren Y, D'Ambrosio MA, Garvin JL, Carretero OA. Angiotensin II enhances connecting tubule glomerular feedback. Hypertension 2010; 56:636-42. [PMID: 20696981 DOI: 10.1161/hypertensionaha.110.153692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing Na delivery to epithelial Na channels (ENaCs) in the connecting tubule (CNT) causes dilation of the afferent arteriole (Af-Art), a process we call CNT glomerular feedback (CTGF). Angiotensin II (Ang II) stimulates ENaC in the collecting duct via Ang II type 1 receptors. We hypothesized that Ang II in the CNT lumen enhances CTGF by activation of Ang II type 1 receptors, protein kinase C and ENaC. Rabbit afferent arterioles and their adherent CNT were microperfused and preconstricted with norepinephrine. Each experiment involved generating 2 consecutive concentration-response curves by increasing NaCl in the CNT lumen. During the control period, the maximum dilation of the afferent arteriole was 7.9±0.4 μm, and the concentration of NaCl in the CNT needed to achieve half maximal response (EC(50)) was 34.7±5.2 mmol/L. After adding Ang II (10(-9) mol/L) to the CNT lumen, the maximal response was 9.5±0.7 μm and the EC(50) was 11.6±1.3 mmol/L (P=0.01 versus control). Losartan, an Ang II type 1 antagonist (10(-6) mol/L) blocked the stimulatory effect of Ang II; PD123319, an Ang II type 2 antagonist (10(-6) mol/L), did not. The protein kinase C inhibitor staurosporine (10(-8) mol/L) added to the CNT inhibited the stimulatory effect of Ang II. The ENaC inhibitor benzamil (10(-6) mol/L) prevented both CTGF and its stimulation by Ang II. We concluded that Ang II in the CNT lumen enhances CTGF via activation of Ang II type 1 and that this effect requires activation of protein kinase C and ENaC. Potentiation of CTGF by Ang II could help preserve glomerular filtration rate in the presence of renal vasoconstriction.
Collapse
Affiliation(s)
- Yilin Ren
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
23
|
Ren Y, D'Ambrosio MA, Liu R, Pagano PJ, Garvin JL, Carretero OA. Enhanced myogenic response in the afferent arteriole of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2010; 298:H1769-75. [PMID: 20363886 DOI: 10.1152/ajpheart.00537.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spontaneously hypertensive rats (SHRs) have normal glomerular capillary pressure even though renal perfusion pressure is higher, suggesting that preglomerular vessels exhibit abnormally high resistance. This may be due to increased superoxide (O(2)(-)) production, which contributes to the vasoconstriction in hypertension. We tested the hypothesis that the myogenic response of the afferent arteriole (Af-Art) is exaggerated in SHRs because of increased levels of reactive oxygen species (ROS). Single Af-Arts were microdissected from kidneys of SHRs and Wistar-Kyoto (WKY) rats and microperfused in vitro. When perfusion pressure in the Af-Art was increased stepwise from 60 to 140 mmHg, the luminal diameter decreased by 8.4 + or - 2.9% in WKY Af-Arts but fell by 29.3 + or - 5.6% in SHR Af-Arts. To test whether ROS production is enhanced during myogenic response in SHRs, we measured chloromethyl-dichlorodihydrofluorescein diacetate acetyl ester (CM-H(2)DCFDA) florescence before and after increasing intraluminal pressure from 60 to 140 mmHg. Pressure-induced increases in ROS were fourfold greater in SHR Af-Arts compared with WKY Af-Arts (SHR, 48.0 + or - 2.2%; and WKY, 12.2 + or - 0.3%). To test whether O(2)(-) contributes to the myogenic response in SHRs, either the membrane-permeant O(2)(-) scavenger Tempol or the nox2-based NADPH oxidase (NOX2) inhibitor gp91ds-tat were added to the Af-Art lumen and bath and the myogenic response was tested before and after treatment. Both Tempol (10(-4) M) and gp91ds-tat (10(-5) M) significantly attenuated the pressure-induced constriction in SHR Af-Arts but not in WKY Af-Arts. We conclude that 1) pressure-induced constriction is exaggerated in SHR Af-Arts, 2) NOX2-derived O(2)(-) may contribute to the enhanced myogenic response, and 3) O(2)(-) exerts little influence on the myogenic response under normotensive conditions.
Collapse
Affiliation(s)
- YiLin Ren
- Hypertension and Vascular Research Division, Dept. of Internal Medicine, Henry Ford Hospital, 2799 W. Grand Blvd., Detroit, MI 48202, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Jaziri R, Aubert R, Roussel R, Emery N, Maimaitiming S, Bellili N, Miot A, Saulnier PJ, Travert F, Hadjadj S, Marre M, Fumeron F. Association of ADIPOQ genetic variants and plasma adiponectin isoforms with the risk of incident renal events in type 2 diabetes. Nephrol Dial Transplant 2010; 25:2231-7. [PMID: 20083470 DOI: 10.1093/ndt/gfp771] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Adiponectin levels are high in cases of diabetic nephropathy, but it remains unclear whether these high levels are a cause or a consequence of the disease. We investigated the possible association of polymorphisms in the adiponectin gene and baseline adiponectin levels with the incidence of renal events in subjects with type 2 diabetes. METHODS We studied three adiponectin polymorphisms (-11391G > A, +45T > G and +276G > T) in 3086 subjects with type 2 diabetes and high levels of albumin excretion from the diabetes, hypertension, microalbuminuria or proteinuria, cardiovascular events and ramipril (DIABHYCAR) trial. Baseline concentrations of total adiponectin and of adiponectin isoforms were determined in cases with incident renal events and in controls matched for sex, age, body mass index (BMI) and adiponectin genotype. We used another cohort of type 2 diabetes patients-the survie, diabète de type 2 et génétique(SURDIAGENE) study (n = 1004)-for the replication of genetic data. RESULTS In DIABHYCAR, the -11391A and +45G alleles were associated with a higher incidence of renal events [hazard ratio (HR) = 1.73; 95% confidence interval (CI), 1.10-2.71; and HR = 1.68; 95% CI, 1.14-2.47, respectively]. The haplotype containing susceptibility alleles, -11391A/+45G/+276G, was more frequent in cases with renal events (5.1% vs. 1.9% in those without, P = 0.005). In SURDIAGENE, the -11391A/+45G/+276G haplotype was also associated with renal events (5.6% vs. 1.9% in those without, P = 0.03). In DIABHYCAR, all isoforms were more abundant in subjects carrying the -11391A or +45G alleles. Medium- (MMW) and low-molecular weight (LMW) isoforms were more abundant in cases with renal events. CONCLUSIONS In subjects with type 2 diabetes and early renal dysfunction, adiponectin gene variants are determinants of the renal risk. The -11391A and +45G alleles may affect renal risk by leading to high circulating adiponectin concentrations, at least those of MMW and LMW isoforms.
Collapse
Affiliation(s)
- Riphed Jaziri
- INSERM, U695, Genetic Determinants for Type 2 Diabetes and Its Vascular Complications, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fesler P, Ribstein J. Altération modérée de la fonction rénale et risque cardiovasculaire. Rev Med Interne 2009; 30:585-91. [DOI: 10.1016/j.revmed.2008.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 10/05/2008] [Indexed: 11/17/2022]
|
26
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Brands MW, Labazi H. Role of glomerular filtration rate in controlling blood pressure early in diabetes. Hypertension 2008; 52:188-94. [PMID: 18606911 DOI: 10.1161/hypertensionaha.107.090647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Michael W Brands
- Department of Physiology, CA-3098, Medical College of Georgia, Augusta, GA 30912-3000, USA.
| | | |
Collapse
|
28
|
Ruggenenti P, Bettinaglio P, Pinares F, Remuzzi G. Angiotensin converting enzyme insertion/deletion polymorphism and renoprotection in diabetic and nondiabetic nephropathies. Clin J Am Soc Nephrol 2008; 3:1511-25. [PMID: 18550651 DOI: 10.2215/cjn.04140907] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite the huge amount of studies looking for candidate genes, the ACE gene remains the unique, well-characterized locus clearly associated with pathogenesis and progression of chronic kidney disease, and with response to treatment with drugs that directly interfere with the renin angiotensin system (RAS), such as angiotensin converting enzyme (ACE) inhibitors and angiotensin II receptor antagonists (ARA). The II genotype is protective against development and progression of type I and type II nephropathy and is associated with a slower progression of nondiabetic proteinuric kidney disease. ACE inhibitors are particularly effective at the stage of normoalbuminuria or microalbuminuria in both type I and type II diabetics with the II genotype, whereas the DD genotype is associated with a better response to ARA therapy in overt nephropathy of type II diabetes and to ACE inhibitors in male patients with nondiabetic proteinuric nephropathies. The role of other RAS or non-RAS polymorphisms and their possible interactions with different ACE I/D genotypes are less clearly defined. Thus, evaluating the ACE I/D polymorphism is a reliable tool to identify patients at risk and those who may benefit the most of renoprotective therapy with ACE inhibitors or ARA. This may guide pharmacologic therapy in individual patients and help design clinical trials in progressive nephropathies. Moreover, it might help optimize prevention and intervention strategies at population levels, in particular, in countries where resources are extremely limited and 1 million patients continue to die every year of cardiovascular or renal disease.
Collapse
Affiliation(s)
- Piero Ruggenenti
- Clinical Research Centre for Rare Diseases Aldo e Cele Daccò, Mario Negri Institute for Pharmacological Research, Villa Camozzi, Ranica, Italy
| | | | | | | |
Collapse
|
29
|
Fujimoto S, Satoh M, Horike H, Hatta H, Haruna Y, Kobayashi S, Namikoshi T, Arakawa S, Tomita N, Kashihara N. Olmesartan ameliorates progressive glomerular injury in subtotal nephrectomized rats through suppression of superoxide production. Hypertens Res 2008; 31:305-13. [PMID: 18360051 DOI: 10.1291/hypres.31.305] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Angiotensin type 1 receptor blockers are more effective than other antihypertensive agents in slowing the progression of renal disease. Angiotensin II (Ang II) induces production of NAD(P)H oxidase-dependent superoxide in vascular and mesangial cells, but the direct role of Ang II in glomerular superoxide production remains unknown. Here we examined the effect of Ang II on superoxide production both ex vivo and in vivo. Ang II increased superoxide generation in isolated normal glomeruli in a dose-dependent manner, and co-incubation with olmesartan, an angiotensin type 1 receptor blocker, suppressed such increase. Subtotal nephrectomized rats (Nx, n=8) showed impaired renal function, increased glomerular sclerosis, and significantly high superoxide production in glomeruli. These changes were inhibited in olmesartan-treated (n=8), but not hydralazine-treated (n=8) Nx rats. Oxidative stress and nitrosative stress were observed in Nx glomeruli, as evidenced by increased levels of carbonyl protein and nitrotyrosine formation, respectively. These changes were inhibited by 8-week treatment with olmesartan. The apoptosis observed in Nx glomeruli was also suppressed by olmesartan. Superoxide generation in Nx glomeruli was blocked by an NAD(P)H oxidase inhibitor, diphenylene iodinium. The mRNA expression levels of two NAD(P)H oxidase subunits were increased in Nx, and olmesartan significantly reduced the mRNA expression levels. These results indicate that Ang II directly induced superoxide production through activation of NAD(P)H oxidase, and olmesartan would inhibit superoxide production and oxidative stress independent of its blood pressure-lowering effect. These findings support the notion that superoxide plays a primary role in glomerular injury in chronic kidney disease.
Collapse
Affiliation(s)
- Sohachi Fujimoto
- Division of Nephrology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Evereklioglu C, Ozbek E, Cekmen M, Mehmet N, Duygulu F, Ozkiris A, Calip M, Er H, Turkoz Y. Urinary nitric oxide levels are increased and correlated with plasma concentrations in patients with Behçet's disease: is it a new urinary activity marker? Nephrology (Carlton) 2008; 8:231-8. [PMID: 15012709 DOI: 10.1046/j.1440-1797.2003.00180.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) is a free radical and serves many functions within the kidney. Excess NO causes glomerular injury. Behçet's disease (BD) is a systemic immunoinflammatory vasculitis, affecting every organ in the body including the kidneys (subclinic glomerulonephritis). We investigated the role of urinary total nitrite levels (end product of NO) in BD and evaluated whether urinary concentrations were correlated with its plasma levels or disease activity. Thirty-six consecutive Behçet's patients (19 men, 17 women; 35.9 years), and 20 age- and sex-matched healthy control volunteers (12 men, eight women; 33.2 years) were divided into an active (n = 16) and inactive (n = 20) period. Urinary and serum NO levels ( micromol/mg urinary creatinine) were higher in BD patients (4.1 +/- 0.3) than control subjects (1.7 +/- 0.2; P < 0.001). Serum NO levels in Behçet's patients and control subjects were 51.3 +/- 9.8 and 21.7 +/- 7.3 micromol/L, respectively (P < 0.001). Active patients had higher urinary NO excretion (4.9 +/- 0.3) than inactive patients (3.3 +/- 0.3; P < 0.01). Urinary NO levels were correlated with its serum levels (r2 = 0.69, P < 0.001). Higher urinary NO levels found in BD may be produced by the kidney as a result of an inflammatory stimulation. As excess NO is toxic to the tissues, increased NO levels may play a role in mediating subclinic glomerular injury of such patients. However, we could not determine the exact site(s) of NO synthesis by the kidney, such as the glomeruli, blood vessels and/or the tubular cells. Whatever the source, urinary NO levels may be used as a new activity marker in the diagnosis and follow up of BD by serial measurements.
Collapse
Affiliation(s)
- Cem Evereklioglu
- Department of Ophthalmology, Erciyes University Medical Faculty, Kayseri, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
32
|
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 2007; 59:251-87. [PMID: 17878513 DOI: 10.1124/pr.59.3.3] [Citation(s) in RCA: 885] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, the focus of interest on the role of the renin-angiotensin system (RAS) in the pathophysiology of hypertension and organ injury has changed to a major emphasis on the role of the local RAS in specific tissues. In the kidney, all of the RAS components are present and intrarenal angiotensin II (Ang II) is formed by independent multiple mechanisms. Proximal tubular angiotensinogen, collecting duct renin, and tubular angiotensin II type 1 (AT1) receptors are positively augmented by intrarenal Ang II. In addition to the classic RAS pathways, prorenin receptors and chymase are also involved in local Ang II formation in the kidney. Moreover, circulating Ang II is actively internalized into proximal tubular cells by AT1 receptor-dependent mechanisms. Consequently, Ang II is compartmentalized in the renal interstitial fluid and the proximal tubular compartments with much higher concentrations than those existing in the circulation. Recent evidence has also revealed that inappropriate activation of the intrarenal RAS is an important contributor to the pathogenesis of hypertension and renal injury. Thus, it is necessary to understand the mechanisms responsible for independent regulation of the intrarenal RAS. In this review, we will briefly summarize our current understanding of independent regulation of the intrarenal RAS and discuss how inappropriate activation of this system contributes to the development and maintenance of hypertension and renal injury. We will also discuss the impact of antihypertensive agents in preventing the progressive increases in the intrarenal RAS during the development of hypertension and renal injury.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Medicine, Director of the Molecular Core in Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA.
| | | | | | | |
Collapse
|
33
|
Brands MW, Bell TD, Fleming C, Labazi H, Sturgis LC. LACK OF BLOOD PRESSURE SALT-SENSITIVITY SUPPORTS A PREGLOMERULAR SITE OF ACTION OF NITRIC OXIDE IN TYPE I DIABETIC RATS. Clin Exp Pharmacol Physiol 2007; 34:475-9. [PMID: 17439418 DOI: 10.1111/j.1440-1681.2007.04597.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. The relationship between sodium intake and blood pressure is affected differently by changes in angiotensin (Ang) II and preglomerular resistance, and this study measured that relationship to evaluate the link between nitric oxide and blood pressure early in diabetes. 2. Rats were chronically instrumented, placed on high-sodium (HS = 12 mEq/d) or low-sodium (LS = 0.07 mEq/d) intake diets and assigned to either vehicle- (V) or Nomega-nitro-L-arginine methyl ester- (L-NAME; L) treated groups. Mean arterial pressure (MAP) was measured 18 h/day for a 6-day control and 14-day streptozotocin diabetic period in each animal. 3. The MAP of the control period averaged 95 +/- 1 and 94 +/- 1 mmHg in the LSV and HSV rats and 116 +/- 2 and 124 +/- 1 mmHg in the LSL and HSL rats, respectively (LSL vs HSL was significant at P < 0.05). Diabetes increased MAP only in the LSL and HSL rats to 141 +/- 2 mmHg and 152 +/- 2, respectively, similar to our previous reports, and those respective 25 and 28 mmHg increases were a parallel shift in the pressure natriuresis relationship. However, the apparent difference between the LSL and HSL groups when compared was a parallel of the control MAP difference. Plasma renin activity (PRA) in the control period averaged 1.5 +/- 0.5 and 8.1 +/- 1.8 ng AI/mL per h in the HSV and LSV rats, and 0.8 +/- 0.2 and 2.8 +/- 0.5 ng AI/mL per h in the HSL and LSL rats, respectively, and increased similarly by 4.6-fold in the HSL and 4.8-fold in the LSL rats during diabetes. Glomerular filtration rate (GFR) increased in the vehicle but not the L-NAME-treated groups, consistent with our previous reports. 4. Thus, the hypertension caused by the onset of diabetes in L-NAME-treated rats was not salt-sensitive. The normal modulation of PRA by salt intake and the failure of GFR to increase are consistent with our hypothesis that nitric oxide may protect against hypertension early in diabetes by preventing preglomerular vasoconstriction by AngII.
Collapse
Affiliation(s)
- Michael W Brands
- Department of Physiology and the Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912-3000, USA.
| | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The balance of angiotensin II and nitric oxide determines the sensitivity of the tubuloglomerular feedback mechanism, renal vascular resistance and filtration rate. Angiotensin II induces nitric oxide release, but the role of angiotensin II receptors here is not fully understood. Further, the angiotensin II-nitric oxide interaction can be modulated by reactive oxygen species. This review focuses on the angiotensin II-nitric oxide interaction and their modulation by reactive oxygen species in the control of renal blood flow. RECENT FINDINGS Ideas about the role of angiotensin II type 1 and angiotensin II type 2 receptors are extended by the observation of angiotensin II type 1-mediated nitric oxide release with direct effects on vascular tone, tubuloglomerular feedback and sympathetic neurotransmission. Angiotensin receptors elicit disparate effects on intrarenal circulation. Angiotensin II-nitric oxide interactions are modulated by reactive oxygen species, as shown by angiotensin II type 1-mediated activation of superoxide and depression of antioxidant enzymes leading to reduced nitric oxide concentration - mechanisms that may be also important in angiotensin II-dependent hypertension. SUMMARY Recent studies show that angiotensin II stimulates the nitric oxide system via angiotensin II type 1 and angiotensin II type 2 receptors, whereas receptors exert different effects on renal and medullary flow. The interaction via angiotensin II type 1 is modulated by reactive oxygen species.
Collapse
Affiliation(s)
- Andreas Patzak
- Johannes-Müller-Institute of Physiology, Humboldt-University of Berlin, University Hospital Charité, Berlin, Germany
| | | |
Collapse
|
35
|
Abstract
There is increasing evidence for the pathophysiological importance of aldosterone in renal diseases. Studies have so far demonstrated that aldosterone exerts deleterious renal effects by inducing oxidative stress, endothelial dysfunction, inflammation and fibrosis through a mineralocorticoid receptor (MR)-dependent genomic mechanisms. On the other hand, a number of recent studies provided evidence that aldosterone can act through a rapid non-genomic mechanism in cardiovascular tissues including the kidney, though the relative importance of such actions in renal diseases remains to be determined. We have recently found that physiological concentrations of aldosterone cause rapid vasoconstriction in the renal microcirculation. The vasoconstrictor actions were compatible with non-genomic; the major characteristics was its relatively early onset (apparent within 5min), which was not affected by either actinomycin D or cycloheximide (inhibitors of transcription or protein synthesis). Thus, in addition to genomic actions, such non-genomic vasoconstrictor actions in the renal microcirculation may contribute to the deleterious renal effects of aldosterone in renal diseases.
Collapse
Affiliation(s)
- Shuji Arima
- Department of Vascular and Geriatric Medicine, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan.
| |
Collapse
|
36
|
Maitland K, Bridges L, Davis WP, Loscalzo J, Pointer MA. Different Effects of Angiotensin Receptor Blockade on End-Organ Damage in Salt-Dependent and Salt-Independent Hypertension. Circulation 2006; 114:905-11. [PMID: 16923758 DOI: 10.1161/circulationaha.106.622316] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Although angiotensin II type 1 receptor blockers have emerged as effective antihypertensive agents, it is not known how efficacious these agents are in treating hypertension-associated target organ damage.
Methods and Results—
The present study was undertaken to compare the effect of angiotensin type 1 receptor inhibition on the progression of the organ damage observed in 2 models of hypertension, namely, salt-sensitive and nitric oxide synthase inhibition–mediated hypertension. Effective (16.4 μmol/kg) and ineffective (0.8 to 4.9 μmol/kg) antihypertensive doses of candesartan cilexetil were initiated after hypertension was established. Both low- and high-dose candesartan cilexetil significantly reduced cardiac and renal damage in the nitric oxide synthase inhibitor model of hypertension (
P
<0.05 versus untreated); however, high-dose candesartan caused a significant increase in renal damage in the Dahl salt-sensitive model of hypertension (
P
<0.05 versus untreated). Interestingly, the beneficial end-organ effects of candesartan in the nitric oxide synthase inhibition model were independent of sustained antihypertensive actions of candesartan, whereas the exacerbation of renal injury with candesartan in the Dahl salt-sensitive model was inversely related to its blood pressure–lowering effect.
Conclusions—
These data show that angiotensin type 1 blockade reduces injury in the
l
-nitroarginine methyl ester model but increases tissue injury in the salt-sensitive model. These data suggest that angiotensin II via angiotensin type 1 receptor activation contributes to organ damage in nitric oxide–deficient salt-independent hypertension but is protective in salt-induced hypertension. These data further suggest that (1) renal injury may evolve independently of blood pressure and (2) the effectiveness of an antihypertensive agent in ameliorating renal injury may depend on the etiology of the hypertension.
Collapse
Affiliation(s)
- Karlene Maitland
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Mass, USA
| | | | | | | | | |
Collapse
|
37
|
Sochett EB, Cherney DZI, Curtis JR, Dekker MG, Scholey JW, Miller JA. Impact of renin angiotensin system modulation on the hyperfiltration state in type 1 diabetes. J Am Soc Nephrol 2006; 17:1703-9. [PMID: 16672313 DOI: 10.1681/asn.2005080872] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The initial stages of diabetic nephropathy are characterized by glomerular hyperfiltration and hypertension, processes that have been linked to initiation and progression of renal disease. Renin angiotensin system (RAS) blockade is commonly used to modify the hyperfiltration state and delay progression of renal disease. Despite this therapy, many patients progress to ESRD, suggesting heterogeneity in the response to RAS modulation. The role of the RAS in the hyperfiltration state in adolescents with uncomplicated type 1 diabetes was examined, segregated on the basis of the presence of hyperfiltration. Baseline renal hemodynamic function was characterized in 22 patients. Eleven patients exhibited glomerular hyperfiltration (GFR>or=135 ml/min), and in the remaining 11 patients, the GFR was <130 ml/min. Renal hemodynamic function was assessed in response to a graded angiotensin II (AngII) infusion during euglycemic conditions and again after 21 d of angiotensin-converting enzyme (ACE) inhibition with enalapril. AngII infusion under euglycemic conditions resulted in a significant decline in GFR and renal plasma flow in the hyperfiltration group but not in the normofiltration group. After ACE inhibition, GFR fell but did not normalize in the hyperfiltration group; the normofiltration group showed no change. These data show significant differences in renal hemodynamic function between hyperfiltering and normofiltering adolescents with type 1 diabetes at baseline, after AngII infusion and ACE inhibition. The response to ACE inhibition and AngII in hyperfiltering patients suggests that vasodilation may complement RAS activation in causing the hyperfiltration state. The interaction between glomerular vasoconstrictors and vasodilators requires examination in future studies.
Collapse
Affiliation(s)
- Etienne B Sochett
- Division of Endocrinology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 2N2, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Peripheral pulse pressure (PP) is a marker of aging-associated arterial stiffening after the fifth decade. In addition, PP has emerged as a strong predictor of cardiovascular morbidity and mortality. A study of the relationship between renal function and aging of the arterial system using reliable methods of estimating renal haemodynamics (effective renal plasma flow) and function (glomerular filtration rate; GFR) was thus undertaken in a large number of never-treated individuals with essential hypertension. In 212 patients with isolated systolic hypertension, there was an inverse correlation between GFR and PP, but the correlation did not persist after adjustment for age. In fact, the deleterious effect of PP on GFR was observed, independent of age and mean arterial pressure, only in patients aged 60 years and over. In contrast, no clear influence of PP on GFR was detected in patients aged 40 years and over but less than 60 years and in those younger than 40 years. It is thus proposed that PP may have a detrimental influence on the age-related decline in GFR. Prospective studies on the influence of antihypertensive agents with possible effects on peripheral and central PP on the progressive decline of GFR are required.
Collapse
Affiliation(s)
- Albert Mimran
- Department of Medicine, Centre Hospitalier Universitaire, Montpellier, France.
| |
Collapse
|
39
|
Abstract
Recent studies provide evidence that aldosterone (Aldo) accelerates hypertension, proteinuria and glomerulosclerosis in animal models of chronic renal failure. Although the underlying mechanisms are not well defined, Aldo may exert these deleterious renal effects by elevating renal vascular resistance (RVR) and glomerular capillary pressure (P(GC)). To test this possibility, we studied the action of Aldo on rabbit afferent (Af-) and efferent arterioles (Ef-Arts), crucial vascular segments to the control of glomerular hemodynamics. Aldo caused rapid (within 5 min) constriction in both arterioles. The constriction was not affected by spironolactone but was reproduced by membrane-impermeable albumin-conjugated Aldo, suggesting that vasoconstrictor actions are non-genomic. This notion was further supported by the finding that neither actinomycin D nor cycloheximide had effect. The vasoconstrictor action of Aldo on Af-Arts was inhibited by nifedipine (L-type calcium channel blocker), whereas that on Ef-Arts was inhibited by efonidipine (both L- and T-type calcium channel blocker) but not nifedipine. Disrupting the endothelium or nitric oxide (NO) synthesis inhibition augmented the vasoconstriction in Af-Arts, demonstrating that endothelium-derived NO modulates the vasoconstrictor actions of Aldo. Thus, Aldo causes non-genomic vasoconstriction via calcium mobilization thorough L- or T-type calcium channels in Af- or Ef-Arts, respectively. These vasoconstrictor actions on the glomerular microcirculation may play an important role in the pathophysiology and progression of renal diseases by elevating RVR and P(GC), especially when endothelium functions are impaired. In addition to our study, this review describes recent findings on the rapid cardiovascular actions of Aldo, with a particular attention to the renal hemodynamics.
Collapse
Affiliation(s)
- Shuji Arima
- Department of Vascular and Geriatric Medicine, Kinki University School of Medicine, Osaka-Sayama, Japan.
| |
Collapse
|
40
|
Weekers L, Bouhanick B, Hadjadj S, Gallois Y, Roussel R, Pean F, Ankotche A, Chatellier G, Alhenc-Gelas F, Lefebvre PJ, Marre M. Modulation of the renal response to ACE inhibition by ACE insertion/deletion polymorphism during hyperglycemia in normotensive, normoalbuminuric type 1 diabetic patients. Diabetes 2005; 54:2961-7. [PMID: 16186399 DOI: 10.2337/diabetes.54.10.2961] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ACE inhibition protects kidney function, but ACE insertion/deletion (I/D) polymorphism affects renal prognosis in type 1 diabetic patients. ACE genotype may influence the renal benefits of ACE inhibition. We studied the impact of ACE I/D polymorphism on the renal hemodynamic changes induced by ACE inhibition in type 1 diabetes. We studied renal hemodynamics (glomerular filtration rate [GFR], effective renal plasma flow [ERPF], filtration fraction [GFR/ERPF], mean arterial pressure [MAP], and total renal resistances [MAP/ERPF]) repeatedly during normoglycemia and then hyperglycemia in 12 normotensive, normoalbuminuric type 1 diabetes and the II genotype (associated with nephroprotection) versus 22 age- and sex-matched subjects with the ACE D allele after three randomly allocated 2- to 6-week periods on placebo, 1.25 mg/day ramipril, and 5 mg/day ramipril in a double-blind, cross-over study. During normoglycemia, the hemodynamic changes induced by ramipril were similar in both genotypes. During hyperglycemia, the changes induced by ramipril were accentuated in the II genotype group and attenuated dose dependently in the D allele group (treatment-genotype interaction P values for ERPF, 0.018; MAP, 0.018; and total renal resistances, 0.055). These results provide a basis to different renal responses to ACE inhibition according to ACE genotype in type 1 diabetes.
Collapse
Affiliation(s)
- Laurent Weekers
- Department of Medicine, Centre Hospitalier Universitaire du Sart Tilman, Liege, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Patzak A, Bontscho J, Lai E, Kupsch E, Skalweit A, Richter CM, Zimmermann M, Thöne-Reineke C, Joehren O, Godes M, Steege A, Hocher B. Angiotensin II sensitivity of afferent glomerular arterioles in endothelin-1 transgenic mice. Nephrol Dial Transplant 2005; 20:2681-9. [PMID: 16188896 DOI: 10.1093/ndt/gfi136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Although endothelin I (ET-1) is a very potent vasoconstrictor, ET-1 transgenic (ET-1 tg) mice are not hypertensive. This might be due to higher bioavailability of nitric oxide (NO) in ET-1 tg, which counteracts the effect of vasoconstrictors. We hypothesized lower angiotensin II (Ang II) sensitivity of afferent arterioles in ET-1 tg. METHODS Afferent arterioles were manually dissected and microperfused. Changes of the luminal diameter due to application of vasoactive substances were used for assessment of the reactivity of afferent arterioles. We investigated the effect of L-NAME, an unspecific NO synthase inhibitor, on basal tone, and the sensitivity of afferent arterioles to Ang II with and without pre-treatment with L-NAME. The renin-angiotensin-system was characterized by expression analysis of angiotensin-receptors and renin at the mRNA level. RESULTS L-NAME reduced afferent arterioles diameters similarly in ET-1 tg and wild-types (WT). Ang II sensitivity determined by calculation of EC50 for Ang II was less in ET-1 tg compared with WT (P<0.05). Ang II reduced luminal diameters to a lesser extent in ET-1 tg compared to WT (P<0.05). After pre-treatment with L-NAME, Ang II sensitivity and maximum constriction of afferent arterioles were similar in ET-1 tg and WT. The expression of renin- and Ang II-receptor-mRNA in the kidney did not differ between either group. CONCLUSION The loss of differences in the maximum constriction and Ang II sensitivity of afferent arterioles between ET-1 tg and WT in the absence of NO suggests pronounced NO effects in afferent arterioles of ET-1 tg. This might contribute to the maintenance of normal renal arteriolar tone in ET-1 tg mice.
Collapse
Affiliation(s)
- Andreas Patzak
- Johannes-Müller-Institut für Physiologie, Humboldt-Universität zu Berlin, Universitätsklinikum Charité, Tucholskystr. 2, 10117 Berlin.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Patzak A, Lai E, Persson PB, Persson AEG. ANGIOTENSIN II-NITRIC OXIDE INTERACTION IN GLOMERULAR ARTERIOLES. Clin Exp Pharmacol Physiol 2005; 32:410-4. [PMID: 15854150 DOI: 10.1111/j.1440-1681.2005.04203.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
1. Resistance changes of the afferent and efferent arterioles determine blood flow and filtration rate in the kidney. The tone of both vessels results from the influence of nerves and humoral and paracrine factors, through a balance of constrictor and dilator systems. Angiotensin (Ang) II and nitric oxide (NO) are important factors determining vascular tone. 2. In the present review, we show that, in addition to the basal production of NO, a specific and significant AngII-induced release of NO occurs in glomerular arterioles. Data from investigations of arteriolar contraction, as well as from fluorescence measurements of NO, in the presence of selective angiotensin AT(1) and AT(2) receptor antagonists indicate an AT(1) receptor-stimulated release of NO in afferent arterioles. 3. The AngII-induced liberation of NO could prevent glomerular arterioles from a marked constriction, particularly in situations of high AngII levels in the kidney.
Collapse
Affiliation(s)
- Andreas Patzak
- Johannes-Müller-Institute of Physiology, Humboldt-University of Berlin, University Hospital Charité, Berlin, Germany.
| | | | | | | |
Collapse
|
43
|
van der Linde NAJ, Boomsma F, van den Meiracker AH. Role of nitric oxide in modulating systemic pressor responses to different vasoconstrictors in man. J Hypertens 2005; 23:1009-15. [PMID: 15834287 DOI: 10.1097/01.hjh.0000166842.65097.b1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Animal studies suggest that nitric oxide (NO) attenuates responses to endogenous vasoconstrictors. We investigated whether this also holds true in man by monitoring pressor responses to different vasoconstrictors during nitric oxide synthase (NOS) inhibition. METHODS Systemic hemodynamic responses to intravenous infusions of three doses (each for 5 min) of angiotensin II (AngII) (2, 4 and 8 ng/kg per min), noradrenaline (NOR) (10, 30 and 70 ng/kg per min) and phenylephrine (PE) (0.5, 1.0 and 1.5 microg/kg per min) were monitored in 44 healthy subjects during saline. A second dose-response curve was obtained during NOS inhibition with a subpressor dose of N- nitro-L-arginine-methyl ester (L-NAME) (5 microg/kg per min) or during a systemic NO clamp using combined systemic infusions of L-NAME (12.5 microg/kg per min) and nitroprusside. Blood pressure was measured in the brachial artery and other hemodynamic parameters were derived from this signal. RESULTS Mean arterial pressure (MAP) increased 2 +/- 2, 6 +/- 1 and 16 +/- 2 mmHg in response to AngII during saline, 7 +/- 6, 15 +/- 5 and 26 +/- 6 mmHg during the subpressor dose of L-NAME (P < 0.05) and 11 +/- 10, 18 +/- 7 and 25 +/- 6 mmHg during the systemic NO clamp (P < 0.001). These augmented responses of MAP were due to enhanced increments in systemic vascular resistance. Infusions of NOR and PE during saline resulted in dose-dependent increments in MAP and systemic vascular resistance. These increments were of comparable magnitude as those seen during AngII, but were not affected by NOS inhibition. CONCLUSION Our findings show that the systemic pressor response evoked by AngII, but not by NOR or PE, is enhanced during NOS inhibition, suggesting that AngII is associated with increased NO release that counteracts its blood pressure rising effect.
Collapse
|
44
|
Verhave JC, Fesler P, du Cailar G, Ribstein J, Safar ME, Mimran A. Elevated Pulse Pressure Is Associated With Low Renal Function in Elderly Patients With Isolated Systolic Hypertension. Hypertension 2005; 45:586-91. [PMID: 15738348 DOI: 10.1161/01.hyp.0000158843.60830.cf] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the past decade, pulse pressure has emerged as a strong predictor of cardiovascular morbidity and mortality. During aging, elevation of pulse pressure is a consequence of stiffening of the arterial wall. The relationship between pulse pressure and the renal aging process was studied in a cohort of 212 patients with never-treated isolated systolic hypertension. Glomerular filtration rate and effective renal plasma flow were measured using constant infusion of technetium 99m (
99m
Tc)-DTPA and
131
I-ortho-iodohippurate, respectively, and timed urine collections. The relationship between pulse pressure and renal function was studied using a linear regression model in the total population and in 40 to 49, 50 to 59, and 60 years and older age categories. In the whole population, there was an inverse relationship between pulse pressure and glomerular filtration rate; however, this relation did not persist after adjustment for age. In fact, the inverse relationship between pulse pressure and glomerular filtration rate was only present in patients 60 years of age or older. This relationship in elderly patients remained after adjustment for age, gender, MAP, and cardiovascular risk factors (
P
=0.006). It is suggested that pulse pressure, a marker of arterial stiffening, may have a detrimental influence on the age-related decline in glomerular filtration rate, after 60 years of age in patients with never-treated isolated systolic hypertension.
Collapse
|
45
|
Fujitsuka N, Goto K, Takeda S, Aburada M. The diuretic effect of Sairei-to is mediated by nitric oxide production in pentobarbital-anesthetized rats. J Pharmacol Sci 2004; 94:185-91. [PMID: 14978357 DOI: 10.1254/jphs.94.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Sairei-to (TJ-114), a Japanese traditional medicine, has been used clinically for the treatment of various edematous disorders. The inhibitory effect on edema may be dependent on the diuretic response to TJ-114. This study was conducted to clarify the mechanism of diuresis. Pentobarbital-anesthetized rats were infused with a saline solution intravenously (0.4 mL/30 min). Urine was collected through a bladder cannula for 30 min. Intraduodenal administration of TJ-114 (0.5 - 1.5 g/kg) resulted in a dose-dependent increase of urine volume with insignificant urinary sodium excretion and significant urea excretion, but no effect on mean arterial blood pressure. Furthermore, TJ-114 significantly increased urinary levels of NO(2) + NO(3). In addition, intraperitoneal pre-treatment with 6 mg/kg of N(G)-nitro-L-arginine methyl ester inhibited the increase in urine volume, urinary urea excretion, and urinary levels of NO(2) + NO(3) in the rats treated with TJ-114. These results suggest that TJ-114 induces a diuretic response via production of NO.
Collapse
Affiliation(s)
- Naoki Fujitsuka
- Medicinal Evaluation Laboratory, Tsumura Research Institute, Ibaraki, Japan.
| | | | | | | |
Collapse
|
46
|
Patzak A, Kleinmann F, Lai EY, Kupsch E, Skelweit A, Mrowka R. Nitric oxide counteracts angiotensin II induced contraction in efferent arterioles in mice. ACTA ACUST UNITED AC 2004; 181:439-44. [PMID: 15283756 DOI: 10.1111/j.1365-201x.2004.01316.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Efferent arterioles (Ef) are one of the final control elements in glomerular haemodynamics. The influence of nitric oxide (NO) on Ef remains ambiguous. METHODS To test the hypothesis that endothelial NO plays an important role in this context, afferent arterioles (Af) and Ef of wild-type mice (WT), and Ef of mice lacking the endothelial NO synthetase [eNOS(-/-)] were perfused. Perfusion was performed in Ef via Af (orthograde) as well as from the distal end of Ef (retrograde), which provides an estimate for the importance of substances derived from the glomerulus. Angiotensin II (Ang II) was added in doses ranging from 10(-12) to 10(-6) mol L(-1) to the bath solution. RESULTS Ang II reduced the luminal diameter of Af to 68 +/- 7 and in Ef to 55 +/- 8% during orthograde, and to 35 +/- 6% during retrograde perfusion (10(-6) mol L(-1) Ang II) in WT. Pre-treatment with N(G)-Nitro-L-arginine-methylester (l-NAME) (10(-4) mol L(-1)) increased the Ang II sensitivity in retrograde (17 +/- 9%) and orthograde perfused Ef (19 +/- 9%). The Ang II sensitivity was enhanced in eNOS(-/-) mice compared with WT, too. Already at a dose of Ang II 10(-9) mol L(-1), luminal diameters diminished to 8 +/- 7 and 7 +/- 4%. CONCLUSION The increased Ang II sensitivity during L-NAME pre-treatment and in eNOS(-/-) mice indicates a strong counteraction of endothelial derived NO on Ang II induced contraction in Ef. Moreover, Ef are similarly sensitive to Ang II during either retrograde or orthograde perfusion in the absence of NO effects, suggesting that NO mediates, at least in part, the action of potential vasodilatory substances from the glomerulus.
Collapse
Affiliation(s)
- A Patzak
- Johannes-Müller-Institute of Physiology, Humboldt-University of Berlin, University Hospital Charité, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Leopoldo Raij
- Nephrology-Hypertension Division, Veterans Affairs Medical Center and University of Miami School of Medicine, Miami, Florida 33125, USA.
| |
Collapse
|
48
|
Sorensen CM, Leyssac PP, Salomonsson M, Skott O, Holstein-Rathlou NH. ANG II-induced downregulation of RBF after a prolonged reduction of renal perfusion pressure is due to pre- and postglomerular constriction. Am J Physiol Regul Integr Comp Physiol 2004; 286:R865-73. [PMID: 14715487 DOI: 10.1152/ajpregu.00424.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous experiments from our laboratory showed that longer-lasting reductions in renal perfusion pressure (RPP) are associated with a gradual decrease in renal blood flow (RBF) that can be abolished by clamping plasma ANG II concentration ([ANG II]). The aim of the present study was to investigate the mechanisms behind the RBF downregulation in halothane-anesthetized Sprague-Dawley rats during a 30-min reduction in RPP to 88 mmHg. During the 30 min of reduced RPP we also measured glomerular filtration rate (GFR), proximal tubular pressure (Pprox), and proximal tubular flow rate (QLP). Early distal tubular fluid conductivity was measured as an estimate of early distal [NaCl] ([NaCl]ED), and changes in plasma renin concentration (PRC) over time were measured. During 30 min of reduced RPP, RBF decreased gradually from 6.5 ± 0.3 to 6.0 ± 0.3 ml/min after 5 min (NS) to 5.2 ± 0.2 ml/min after 30 min ( P < 0.05). This decrease occurred in parallel with a gradual increase in PRC from 38.2 ± 11.0 × 10-5to 87.1 ± 25.1 × 10-5Goldblatt units (GU)/ml after 5 min ( P < 0.05) to 158.5 ± 42.9 × 10-5GU/ml after 30 min ( P < 0.01). GFR, Pprox, and [NaCl]EDall decreased significantly after 5 min and remained low. Estimates of pre- and postglomerular resistances showed that the autoregulatory mechanisms initially dilated preglomerular vessels to maintain RBF and GFR. However, after 30 min of reduced RPP, both pre- and postglomerular resistance had increased. We conclude that the decrease in RBF over time is caused by increases in both pre- and postglomerular resistance due to rising plasma renin and ANG II concentrations.
Collapse
Affiliation(s)
- Charlotte Mehlin Sorensen
- Dept. of Medical Physiology, The Panum Institute, 10.5, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
49
|
Ozawa Y, Hayashi K, Wakino S, Kanda T, Homma K, Takamatsu I, Tatematsu S, Yoshioka K, Saruta T. Free Radical Activity Depends on Underlying Vasoconstrictors in Renal Microcirculation. Clin Exp Hypertens 2004; 26:219-29. [PMID: 15132300 DOI: 10.1081/ceh-120030231] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We examined the role of free radicals in renal microvascular tone induced by various vasoactive stimuli. Isolated perfused rat hydronephrotic kidneys were used for direct visualization of renal microcirculation. The effect of tempol on angiotensin II-, norepinephrine-, KCl-, and pressure-induced afferent arteriolar constriction was evaluated. Under angiotensin II-induced constriction, tempol (3 mmol/L) caused 57 +/- 8% dilation of afferent arterioles. In contrast, tempol elicited only 38 +/- 8% and 26 +/- 9% dilation of norepinephrine- and KCl-induced constriction. Similarly, myogenic response induced by elevating renal arterial pressure from 80 to 180 mmHg was resistant to the vasodilator action of tempol (22 +/- 7% inhibition). Furthermore, tempol failed to reverse nitro-L-arginine methylester-induced afferent constriction, nor had vasodilator effect on the angiotensin II-induced constriction in the presence of nitro-L-arginine methylester. In contrast, nitroprusside elicited marked vasodilation of angiotensin II- (97 +/- 5% reversal) and norepinephrine-induced afferent constriction (89 +/- 6% reversal), but had less effect on KCl- (46 +/- 8% reversal) and pressure-induced constriction (26 +/- 9% reversal). These different actions were also observed when polyethylene-glycolated superoxide dismutase was used as an antioxidant. In conclusion, the role of free radicals in afferent arteriolar tone varies, depending on the underlying vasoconstrictor stimuli, with greater contribution of free radicals to angiotensin II-induced constriction. The heterogeneity in the responsiveness to free radical scavengers is attributed to both magnitude of free radicals produced and sensitivity of the underlying vasoconstrictors to nitric oxide.
Collapse
Affiliation(s)
- Yuri Ozawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Delles C, Klingbeil AU, Schneider MP, Handrock R, Schäufele T, Schmieder RE. The role of nitric oxide in the regulation of glomerular haemodynamics in humans. Nephrol Dial Transplant 2004; 19:1392-7. [PMID: 15004251 DOI: 10.1093/ndt/gfh187] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND According to experimental data, the afferent glomerular arteriole is particularly under control of nitric oxide (NO). By use of pharmacological manoeuvres, we examined whether this finding holds true in the human renal circulation in vivo. METHODS Seventy-seven volunteers (aged 50+/-9 years) with mild to moderate essential hypertension (n = 57) or arterial normotension (n = 20) were examined. Basal NO activity in the renal circulation was assessed by the change of renal plasma flow (RPF) through systemic infusion of the NO synthase inhibitor, N(G)-monomethyl-L-arginine (L-NMMA; 4.25 mg/kg). Hypertensive patients were treated over 8 weeks with either the calcium-channel blocker amlodipine or the AT(1)-receptor blocker valsartan, primarily dilating the afferent and efferent arteriole, respectively. Subsequently, renal haemodynamics and NO activity in the renal circulation were determined again. RESULTS L-NMMA reduced RPF in normotensive (by 57+/-70 ml/min/1.73 m(2); P<0.01) and hypertensive subjects (by 46+/-56 ml/min/1.73 m(2); P<0.001) with no significant difference between the two groups. The decrease of RPF through L-NMMA was closely related with the glomerular filtration rate (GFR; r = 0.39, P<0.001). Administration of amlodipine increased GFR by 7.1+/-12.1 ml/min/1.73 m(2); (P<0.01) and in parallel reduced the response of RPF to L-NMMA to 19+/-48 ml/min/1.73 m(2); (P<0.05). In contrast, valsartan maintained GFR and left the response of RPF to L-NMMA unchanged. CONCLUSIONS NO plays an important role in the regulation of human glomerular haemodynamics, probably with a greater contribution to afferent than to efferent arteriolar tone in man.
Collapse
Affiliation(s)
- Christian Delles
- Department of Medicine IV/4, University of Erlangen-Nuremburg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|