1
|
Chagari B, Shi LJ, Dao E, An A, Chen MH, Bao Y, Shi W. Genetic connection of carotid atherosclerosis with coat color and body weight in an intercross between hyperlipidemic mouse strains. Physiol Genomics 2022; 54:166-176. [PMID: 35384748 PMCID: PMC9109791 DOI: 10.1152/physiolgenomics.00006.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
Atherosclerosis in the carotid artery is a major cause of ischemic stroke and has a strong genetic component. The aim of this study was to identify genetic factors contributing to carotid atherosclerosis. One hundred fifty-four female F2 mice were generated from an intercross between LP/J and BALB/cJ Apoe-null (Apoe-/-) mice and fed 12 wk of Western diet. Atherosclerotic lesions, body weight, and coat color were measured and genotyping was performed using miniMUGA genotyping arrays. A significant quantitative trait locus (QTL) on chromosome (Chr) 7, named Cath20, and five suggestive QTL on Chr 6, 12, 13, 15, and X were identified for carotid lesions. Three significant QTL, Bwfq2, Bw1n, Bwtq6, on Chr 2, 7, and 15 were identified for body weight. Two significant QTL, Chop2 and Albc2, on Chr 4 and 7 were identified for coat color, with Tyr, encoding tyrosinase, being the causal gene of Albc2. Cath20 overlapped with or was close to QTL Bw1n and Albc2 on Chr7. Carotid lesion sizes were significantly correlated with body weight and graded coat color in F2 mice. Cath20 on Chr7 disappeared after adjustment for coat color but remained after adjustment for body weight. Tyr was abundantly expressed in atherosclerotic lesions. These results demonstrate genetic connections of carotid atherosclerosis with body weight and coat color in hyperlipidemic mice and suggest a potential role for Tyr in carotid atherosclerosis.
Collapse
Affiliation(s)
- Bilhan Chagari
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Lisa J Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Evelyn Dao
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Alexander An
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Mei-Hua Chen
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Yongde Bao
- Department of Microbiology, University of Virginia, Charlottesville, Virginia
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
2
|
Kim JH, Kim MM. The relationship between melanin production and lipofuscin formation in Tyrosinase gene knockout melanocytes using CRISPR/Cas9 system. Life Sci 2021; 284:119915. [PMID: 34453947 DOI: 10.1016/j.lfs.2021.119915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Age spots are a significant phenotypic marker of aging formed by lipofuscin. Melanin is another skin pigment molecule responsible for skin aging. The present study aims to investigate the relationship between melanin production and lipofuscin synthesis in normal mouse melanoma cell line B16F1 cells and Tyrosinase (TYR) gene knockout cells. TYR gene KO cells were successfully developed using CRISPR/Cas9 system and confirmed by Sanger DNA sequencing analysis. Furthermore, the melanin production and lipofuscin formation were validated through RT-PCR and Western blot analysis. The expression levels of gene microphthalmia-associated transcription factor (MITF), Tyrosinase, tyrosine-related protein-1 (TRP-1), tyrosine-related protein-2 (TRP-2), and antioxidant proteins such as methionine sulfoxide reductase A (MSRA), Catalase and Glutathione reductase (GR) related to melanogenesis was found to be decreased in TYR gene KO cells compared with normal cells. Moreover, lipofuscin formation was increased in TYR gene KO cells compared to normal cells. Therefore, the above findings suggest that melanin production and lipofuscin formation could be linked by the TYR gene in melanocytes.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Applied Chemistry, Dong-Eui University, Busan 614-714, Republic of Korea
| | - Moon-Moo Kim
- Department of Applied Chemistry, Dong-Eui University, Busan 614-714, Republic of Korea.
| |
Collapse
|
3
|
Soleiman A, Lukschal A, Hacker S, Aumayr K, Hoetzenecker K, Lichtenauer M, Moser B, Untersmayr E, Horvat R, Ankersmit HJ. Myocardial lipofuscin-laden lysosomes contain the apoptosis marker caspase-cleaved cytokeratin-18. Eur J Clin Invest 2008; 38:708-12. [PMID: 18837795 DOI: 10.1111/j.1365-2362.2008.02000.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Acute coronary syndrome is related to increased circulatory concentration of soluble apoptosis specific caspase-cleaved cytokeratin-18 (ccCK-18). Potential cardiac sources of this intermediate filament derivative have not been investigated to date. MATERIALS AND METHODS Paraffin embedded tissue of normal myocardium, and chronically damaged samples of ischaemic, congestive and hypertrophic cardiomyopathy were analysed by histology and by CK-8, CK-18, ccCK-18 immunohistochemistry (each group, n = 15). Antibody specificity of the ccCK-18 antibody M30 was checked by immunoblotting on lysed myocardium and enriched myocardial lysosomes. RESULTS ccCK-18 and CK-18 but not CK-8 were present in all forms of cardiomyopathy, most prominently in ischaemic cardiomyopathy while only traces were detectable immunohistochemically in normal myocardium. Weak CK-18 and strong ccCK-18 staining co-localized to lysosomes with cardiac age pigment lipofuscin. Weak staining of CK-18 was detected in the cytoplasm of coronary endothelia. CONCLUSION Our study reveals that cardiac lipofuscin-laden lysosomes contain ccCK-18, a marker of apoptosis and its precursor CK-18. This ccCK-18 pool might contribute to increased systemic levels of ccCK-18 in acute coronary syndrome thus monitoring myocardial damage.
Collapse
Affiliation(s)
- A Soleiman
- Clinical Institute of Pathology, General Hospital Vienna, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Estrada-Smith D, Collins AR, Wang X, Crockett C, Castellani L, Lusis AJ, Davis RC. Impact of chromosome 2 obesity loci on cardiovascular complications of insulin resistance in LDL receptor-deficient C57BL/6 mice. Diabetes 2006; 55:2265-71. [PMID: 16873689 DOI: 10.2337/db06-0377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous characterization of mouse chromosome 2 identified genomic intervals that influence obesity, insulin resistance, and dyslipidemia. For this, resistant CAST/Ei (CAST) alleles were introgressed onto a susceptible C57BL/6J background to generate congenic strains with CAST alleles encompassing 67-162 Mb (multigenic obesity 6 [MOB6]) and 84-180 Mb (MOB5) from mouse chromosome 2. To examine the effects of each congenic locus on atherosclerosis and glucose disposal, we bred each strain onto a sensitizing LDL receptor-null (LDLR(-/-)) C57BL/6J background to predispose them to hypercholesterolemia and insulin resistance. LDLR(-/-) congenics and controls were characterized for measures of atherogenesis, insulin sensitivity, and obesity. We identified a genomic interval unique to the MOB6 congenic (72-84 Mb) that dramatically decreased atherosclerosis by approximately threefold and decreased insulin resistance. This region also reduced adiposity twofold. Conversely, the congenic region unique to MOB5 (162-180 Mb) increased insulin resistance but had little effect on atherosclerosis and adiposity. The MOB congenic intervals are concordant to human and rat quantitative trait loci influencing diabetes and atherosclerosis traits. Thus, our results define a strategy for studying the poorly understood interactions between diabetes and atherosclerosis and for identifying genes underlying the cardiovascular complications of insulin resistance.
Collapse
|
5
|
Fabisiak JP, Ritov VB, Kagan VE. Reversible thiol-dependent activation of ryanodine-sensitive Ca2+ release channel by etoposide (VP-16) phenoxyl radical. Antioxid Redox Signal 2000; 2:73-82. [PMID: 11232603 DOI: 10.1089/ars.2000.2.1-73] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Many phenolic compounds can act as antioxidants by donating a proton to peroxyl radicals and quenching lipid peroxidation. Phenoxyl radicals produced this way or from metabolism by peroxidases, tyrosinase, or mixed-function oxidases, however, may react with sulfhydryl groups of proteins and other endogenous thiols. In this regard, phenolic compounds may have cytotoxic potential instead of antioxidant effects. We employed the anticancer drug, etoposide (VP-16), as a model phenolic compound to study the sensitivity of ryanodine-sensitive Ca2+ channel (RyR) to VP-16 phenoxyl radicals. The combination of VP-16 and tyrosinase, used to generate the etoposide phenoxyl radical, produced marked Ca2+ release from Ca2+-loaded RyR-rich vesicles prepared from terminal cisternae fraction of sarcoplasmic reticulum (SR). This effect was reversed by the SH-reagent, dithiothreitol (DTT), suggesting that cysteines within the RyR-protein complex were targets for modification by VP-16 phenoxyl radicals. VP-16/tyrosinase-induced release of Ca2+ was attenuated in vesicles prepared from longitudinal SR, which contain relatively little RyR. The effects of the VP-16 phenoxyl radical on Ca2+-ATPase in SR vesicles resembled those observed with caffeine or 4,4'-dithiodipyridine, both of which activate RyR Ca2+ release and lead to activation of Ca2+-ATPase via prolonged Ca2+ cycling. The addition of ruthenium red returned Ca2+-ATPase to its original level. Thus, under these conditions Ca2+-ATPase was not directly affected by VP-16 phenoxyl radical. The hypersensitive SH-groups on RyR are shown to be targets for oxidation of VP-16 phenoxyl radical, and suggest that other phenolic compounds could similarly disrupt Ca2+ homeostasis.
Collapse
Affiliation(s)
- J P Fabisiak
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, PA 15238, USA. fabs+@pitt.edu
| | | | | |
Collapse
|
6
|
Leitinger N, Tyner TR, Oslund L, Rizza C, Subbanagounder G, Lee H, Shih PT, Mackman N, Tigyi G, Territo MC, Berliner JA, Vora DK. Structurally similar oxidized phospholipids differentially regulate endothelial binding of monocytes and neutrophils. Proc Natl Acad Sci U S A 1999; 96:12010-5. [PMID: 10518567 PMCID: PMC18403 DOI: 10.1073/pnas.96.21.12010] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously have demonstrated that oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), a component of minimally modified low density lipoprotein (MM-LDL), activates endothelial cells to bind monocytes. 1-Palmitoyl-2- (5-oxovaleroyl)-sn-glycero-3-phosphorylcholine (POVPC) and 1- palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine (PGPC), which are present in OxPAPC, MM-LDL, and atherosclerotic lesions, were shown to have a major role in the activation of endothelial cells. We now demonstrate that these two highly similar molecules have dramatically different effects on leukocyte endothelial interactions. POVPC is a potent regulator of monocyte-specific endothelial interactions. Treatment of endothelial cells with POVPC increased monocyte binding by inducing the surface expression of the connecting segment 1 domain of fibronectin; no increase in neutrophil binding was observed. In addition, POVPC strongly inhibited lipopolysaccharide-mediated induction of neutrophil binding and expression of E-selectin protein and mRNA. This inhibition was mediated by a protein kinase A-dependent pathway, resulting in down-regulation of NF-kappaB-dependent transcription. In contrast, PGPC induced both monocyte and neutrophil binding and expression of E-selectin and vascular cell adhesion molecule 1. We present evidence to suggest that the two phospholipids act by different novel receptors present in Xenopus laevis oocytes and that POVPC, but not PGPC, stimulates a cAMP-mediated pathway. At concentrations equal to that present in MM-LDL, the effect of POVPC dominates and inhibits PGPC-induced neutrophil binding and E-selectin expression in endothelial cells. In summary, our data provide evidence that both POVPC and PGPC are important regulators of leukocyte-endothelial interactions and that POVPC may play a dominant role in a number of chronic inflammatory processes where oxidized phospholipids are known to be present.
Collapse
Affiliation(s)
- N Leitinger
- Department of Medicine, University of California, Los Angeles, CA 90095-1679, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD. The combined role of P- and E-selectins in atherosclerosis. J Clin Invest 1998; 102:145-52. [PMID: 9649568 PMCID: PMC509076 DOI: 10.1172/jci3001] [Citation(s) in RCA: 319] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
P- and E-selectins are adhesion molecules mediating the first step in leukocyte extravasation. Because their function in leukocyte adhesion is overlapping, we hypothesized that there might be a combined effect of these selectins on the development of atherosclerotic lesions. We bred P- and E-selectin-double-deficient mice onto the low-density lipoprotein receptor (LDLR)-deficient background (LDLR-/- P/E-/-) and compared lesion development in these mice to that in mice wild type for both selectins (LDLR-/- P/E+/+). After 8 wk on atherogenic diet, the LDLR-/- P/E-/- mice developed fatty streaks in the aortic sinus that were five times smaller than those in LDLR-/- P/E+/+ mice. The density of macrophages in the fatty streaks was comparable between LDLR-/- P/E+/+ and LDLR-/- P/E-/- mice. After 22 wk on the diet, the lesions spread throughout the aorta but this process was delayed in LDLR-/- P/E-/- mice. At 37 wk on diet, the lesions progressed to the fibrous plaque stage in both genotypes. However, the lesions in the aortic sinus in LDLR-/- P/E-/- mice were 40% smaller and less calcified than those of LDLR-/- P/E +/+ mice. Our results suggest that P- and E-selectins together play an important role in both early and advanced stages of atherosclerotic lesion development.
Collapse
Affiliation(s)
- Z M Dong
- Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
8
|
Qiao JH, Fishbein MC, Demer LL, Lusis AJ. Genetic determination of cartilaginous metaplasia in mouse aorta. Arterioscler Thromb Vasc Biol 1995; 15:2265-72. [PMID: 7489252 DOI: 10.1161/01.atv.15.12.2265] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Calcification frequently occurs in atherosclerotic plaques in humans, but the cellular and genetic factors contributing to this pathological trait are unknown. We previously reported that the arterial calcification among inbred strains is genetically determined, and we now report that cartilaginous metaplasia, associated with the presence of arterial chondrocytes that express type II collagen, may underlie this calcification. Both uncalcified and calcified cartilaginous metaplasia were often colocalized with aortic atheromatous lesions and calcification, and clear genetic differences were observed in the occurrence of aortic cartilaginous metaplasia among inbred strains. Analysis of a genetic cross between strains C57BL/6J (exhibiting aortic cartilaginous metaplasia) and C3H/HeJ (no aortic cartilaginous metaplasia) revealed a recessive inheritance pattern; thus, F1 mice were entirely devoid of cartilaginous metaplasia, in common with the C3H/HeJ parental strain. Analyses of an F2 cross and a set of recombinant inbred strains derived from parental strains C57BL/6J and C3H/HeJ were consistent with a major gene effect exhibiting incomplete penetrance. The occurrence of aortic calcification was correlated with the occurrence of cartilaginous metaplasia in these genetic crosses, suggesting a link between the traits. Finally, we observed widespread calcified cartilaginous metaplasia within spontaneous atherosclerotic lesions in mice targeted for a null mutation in the apoE gene, suggesting that cartilaginous metaplasia is a potential pathway for artery wall calcification associated with the atherosclerotic plaque.
Collapse
Affiliation(s)
- J H Qiao
- Department of Medicine, University of California, Los Angeles 90024-1679, USA
| | | | | | | |
Collapse
|
9
|
Shih DM, Welch C, Lusis AJ. New insights into atherosclerosis from studies with mouse models. MOLECULAR MEDICINE TODAY 1995; 1:364-72. [PMID: 9415182 DOI: 10.1016/s1357-4310(95)93834-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Atherosclerosis is a disease of the large arteries that is the cause of heart disease and stroke. It is a highly complex disorder with multiple genetic and environmental influences. The mouse model has proved very useful for studying atherosclerosis because genetic analysis and planned genetic modification are feasible in this organism. In this brief review, some recent findings are summarized and future prospects using mouse models to study atherosclerosis-related traits are discussed.
Collapse
Affiliation(s)
- D M Shih
- Department of Medicine, University of California, Los Angeles 90095, USA
| | | | | |
Collapse
|
10
|
Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, Watson AD, Lusis AJ. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 1995; 91:2488-96. [PMID: 7729036 DOI: 10.1161/01.cir.91.9.2488] [Citation(s) in RCA: 1083] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The clinical events resulting from atherosclerosis are directly related to the oxidation of lipids in LDLs that become trapped in the extracellular matrix of the subendothelial space. These oxidized lipids activate an NF kappa B-like transcription factor and induce the expression of genes containing NF kappa B binding sites. The protein products of these genes initiate an inflammatory response that initially leads to the development of the fatty streak. The progression of the lesion is associated with the activation of genes that induce arterial calcification, which changes the mechanical characteristics of the artery wall and predisposes to plaque rupture at sites of monocytic infiltration. Plaque rupture exposes the flowing blood to tissue factor in the lesion, and this induces thrombosis, which is the proximate cause of the clinical event. There appear to be potent genetically determined systems for preventing lipid oxidation, inactivating biologically important oxidized lipids, and/or modulating the inflammatory response to oxidized lipids that may explain the differing susceptibility of individuals and populations to the development of atherosclerosis. Enzymes associated with HDL may play an important role in protecting against lipid oxidation in the artery wall and may account in part for the inverse relation between HDL and risk for atherosclerotic clinical events.
Collapse
Affiliation(s)
- J A Berliner
- Atherosclerosis Research Unit, University of California School of Medicine, Los Angeles 90024-1736, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hyman RW, Frank S, Warden CH, Daluiski A, Heller R, Lusis AJ. Quantitative trait locus analysis of susceptibility to diet-induced atherosclerosis in recombinant inbred mice. Biochem Genet 1994; 32:397-407. [PMID: 7748156 DOI: 10.1007/bf00566060] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Quantitative trait locus (QTL) analysis is a statistical method that can be applied to identify loci making a significant impact on a phenotype. For the phenotype of susceptibility to diet-induced atherosclerosis in the mouse, we have studied four quantitative traits: area of aortic fatty streaks and serum concentrations of high-density lipoprotein-bound cholesterol (HDL-cholesterol), apolipoprotein A-I, and apolipoprotein A-II (apo A-II). QTL analysis revealed a significant locus on chromosome 1 distal impacting serum apo A-II concentration on a high-fat diet and serum HDL-cholesterol concentration on a chow diet. This locus is presumably Apoa-2, the structural gene for apo A-II. QTL analysis of aortic fatty streaks failed to reveal a significant locus.
Collapse
Affiliation(s)
- R W Hyman
- Stanford DNA Sequence and Technology Center, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | |
Collapse
|
12
|
Liao F, Andalibi A, Qiao JH, Allayee H, Fogelman AM, Lusis AJ. Genetic evidence for a common pathway mediating oxidative stress, inflammatory gene induction, and aortic fatty streak formation in mice. J Clin Invest 1994; 94:877-84. [PMID: 8040344 PMCID: PMC296170 DOI: 10.1172/jci117409] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In a previous survey of inbred mouse strains on an atherogenic diet, we observed that the susceptibility to aortic atherosclerotic lesion formation was associated with the accumulation of lipid peroxidation products, induction of inflammatory genes, and the activation of NF-kB-like transcription factors (Liao, F., A. Andalibi, F. C. deBeer, A. M. Fogelman, and A.J. Lusis. 1993. J. Clin. Invest. 91:2572-2579). We hypothesized that the inflammation-related processes were stimulated by oxidized lipids, since injection of minimally oxidized LDL (MM-LDL) activated the same set of genes. We now report that the induction of inflammatory genes and activation of NF-kB-like transcription factors cosegregate with aortic atherosclerotic lesion formation in BXH recombinant inbred strains derived from parental C57BL/6J (susceptible) and C3H/HeJ (resistant) mice. In addition, the accumulation of hepatic conjugated dienes exhibited a significant correlation with inflammatory gene activation. These results provide strong evidence for the role of inflammatory mediators inducible by oxidative stress in atherogenesis. They also suggest that a major gene contributing to aortic lesion development in this mouse model, designated Ath-1, may control either the accumulation of lipid peroxides in tissues or the cellular responses to such lipid peroxides.
Collapse
Affiliation(s)
- F Liao
- Department of Medicine, University of California, Los Angeles, School of Medicine 90024
| | | | | | | | | | | |
Collapse
|