1
|
Morimoto M, Maishi N, Tsumita T, Alam MT, Kikuchi H, Hida Y, Yoshioka Y, Ochiya T, Annan DA, Takeda R, Kitagawa Y, Hida K. miR-1246 in tumor extracellular vesicles promotes metastasis via increased tumor cell adhesion and endothelial cell barrier destruction. Front Oncol 2023; 13:973871. [PMID: 37124539 PMCID: PMC10130374 DOI: 10.3389/fonc.2023.973871] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Background Tumor blood vessels play a key role in tumor metastasis. We have previously reported that tumor endothelial cells (TECs) exhibit abnormalities compared to normal endothelial cells. However, it is unclear how TECs acquire these abnormalities. Tumor cells secrete extracellular vesicles (EVs) to create a suitable environment for themselves. We have previously identified miR-1246 to be more abundant in high metastatic melanoma EVs than in low metastatic melanoma EVs. In the current study, we focused on miR-1246 as primarily responsible for acquiring abnormalities in TECs and examined whether the alteration of endothelial cell (EC) character by miR-1246 promotes cancer metastasis. Methods We analyzed the effect of miR-1246 in metastatic melanoma, A375SM-EVs, in vivo metastasis. The role of tumor EV-miR-1246 in the adhesion between ECs and tumor cells and the EC barrier was addressed. Changes in the expression of adhesion molecule and endothelial permeability were examined. Results Intravenous administration of A375SM-EVs induced tumor cell colonization in the lung resulting in lung metastasis. In contrast, miR-1246 knockdown in A375SM decreased lung metastasis in vivo. miR-1246 transfection in ECs increased the expression of adhesion molecule ICAM-1 via activation of STAT3, followed by increased tumor cell adhesion to ECs. Furthermore, the expression of VE-Cadherin was downregulated in miR-1246 overexpressed EC. A375SM-EV treatment enhanced endothelial permeability. VE-Cadherin was validated as the potential target gene of miR-1246 via the target gene prediction database and 3' UTR assay. Conclusion miR-1246 in high metastatic tumor EVs promotes lung metastasis by inducing the adhesion of tumor cells to ECs and destroying the EC barrier.
Collapse
Affiliation(s)
- Masahiro Morimoto
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Takuya Tsumita
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Mohammad Towfik Alam
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Hiroshi Kikuchi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yusuke Yoshioka
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Ochiya
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Dorcas A. Annan
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Ryo Takeda
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- *Correspondence: Kyoko Hida,
| |
Collapse
|
2
|
Pleiotropic Roles of Atrial Natriuretic Peptide in Anti-Inflammation and Anti-Cancer Activity. Cancers (Basel) 2022; 14:cancers14163981. [PMID: 36010974 PMCID: PMC9406604 DOI: 10.3390/cancers14163981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The relationship between inflammation and carcinogenesis, as well as the response to anti-tumor therapy, is intimate. Atrial natriuretic peptides (ANPs) play a pivotal role in the homeostatic control of blood pressure, electrolytes, and water balance. In addition, ANPs exert immune-modulatory effects in the tissue microenvironment, thus exhibiting a fascinating ability to prevent inflammation-related tumorigenesis and cancer recurrence. In cancers, ANPs show anti-proliferative effects through several molecular pathways. Furthermore, ANPs attenuate the side effects of cancer therapy. Therefore, ANPs have potential therapeutic value in tumors. Here, we summarized the roles of ANPs in diverse aspects of the immune system and the molecular mechanisms underlying the anti-cancer effects of ANPs, contributing to the development of ANP-based anti-cancer agents. Abstract The atrial natriuretic peptide (ANP), a cardiovascular hormone, plays a pivotal role in the homeostatic control of blood pressure, electrolytes, and water balance and is approved to treat congestive heart failure. In addition, there is a growing realization that ANPs might be related to immune response and tumor growth. The anti-inflammatory and immune-modulatory effects of ANPs in the tissue microenvironment are mediated through autocrine or paracrine mechanisms, which further suppress tumorigenesis. In cancers, ANPs show anti-proliferative effects through several molecular pathways. Furthermore, ANPs attenuate the side effects of cancer therapy. Therefore, ANPs act on several hallmarks of cancer, such as inflammation, angiogenesis, sustained tumor growth, and metastasis. In this review, we summarized the contributions of ANPs in diverse aspects of the immune system and the molecular mechanisms underlying the anti-cancer effects of ANPs.
Collapse
|
3
|
Hakim M, Kermanshah L, Abouali H, Hashemi HM, Yari A, Khorasheh F, Alemzadeh I, Vossoughi M. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies. Biophys Rev 2022; 14:517-543. [PMID: 35528034 PMCID: PMC9043145 DOI: 10.1007/s12551-022-00944-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has long been a leading cause of death. The primary tumor, however, is not the main cause of death in more than 90% of cases. It is the complex process of metastasis that makes cancer deadly. The invasion metastasis cascade is the multi-step biological process of cancer cell dissemination to distant organ sites and adaptation to the new microenvironment site. Unraveling the metastasis process can provide great insight into cancer death prevention or even treatment. Microfluidics is a promising platform, that provides a wide range of applications in metastasis-related investigations. Cell culture microfluidic technologies for in vitro modeling of cancer tissues with fluid flow and the presence of mechanical factors have led to the organ-on-a-chip platforms. Moreover, microfluidic systems have also been exploited for capturing and characterization of circulating tumor cells (CTCs) that provide crucial information on the metastatic behavior of a tumor. We present a comprehensive review of the recent developments in the application of microfluidics-based systems for analysis and understanding of the metastasis cascade from a wider perspective.
Collapse
Affiliation(s)
- Maziar Hakim
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Leyla Kermanshah
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hesam Abouali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hanieh Mohammad Hashemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Yari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Farhad Khorasheh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Yamamichi T, Ichinose J, Omura K, Hashimoto K, Matsuura Y, Nakao M, Okumura S, Ikeda N, Mun M. Impact of postoperative complications on the long-term outcome in lung cancer surgery. Surg Today 2022; 52:1254-1261. [PMID: 35041090 DOI: 10.1007/s00595-022-02452-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/26/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Postoperative complications have a significant impact on perioperative outcomes; however, their association with the long-term prognosis remains unclear. We evaluated the impact of postoperative complications on the long-term outcomes after curative surgery in lung cancer patients. METHODS This study included 1129 patients with primary lung cancer who underwent lobectomy between April 2011 and March 2017. Univariate and multivariate analyses were performed to assess the association of postoperative complications with the overall and recurrence-free survival. RESULTS Postoperative complications were observed in 147 (13.0%) patients over a median follow-up period of 5-years. Compared to patients without complications, those with complications showed had worse long-term outcomes, including the 5-year overall survival (75.3% vs. 86.1%, p < 0.001) and 5-year recurrence-free survival (64.2% vs. 74.4%, p = 0.004). A multivariate analysis revealed that the incidence of postoperative complications was significantly associated with the overall survival (hazard ratio = 1.665, p = 0.006) and recurrence-free survival (hazard ratio = 1.416, p = 0.025) in all patients. The prognostic influence was greater in patients with pathological stages II and III cancer (overall survival: hazard ratio = 2.019, p = 0.005; recurrence-free survival: hazard ratio = 1.90, p = 0.001) than in those with pathological stage I cancer. CONCLUSION Postoperative complications are independent predictors of the overall and recurrence-free survival in lung cancer patients, especially advanced-stage cancer patients.
Collapse
Affiliation(s)
- Takashi Yamamichi
- Department of Thoracic Surgical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
- Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Junji Ichinose
- Department of Thoracic Surgical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Kenshiro Omura
- Department of Thoracic Surgical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Kohei Hashimoto
- Department of Thoracic Surgical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Yosuke Matsuura
- Department of Thoracic Surgical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Masayuki Nakao
- Department of Thoracic Surgical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Sakae Okumura
- Department of Thoracic Surgical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Norihiko Ikeda
- Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Mingyon Mun
- Department of Thoracic Surgical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| |
Collapse
|
5
|
Colapkulu-Akgul N, Ozemir IA, Beyazadam D, Alimoglu O. Perioperative Short Term Prophylaxis against Deep Vein Thrombosis after Major Abdominal Cancer Surgery: Retrospective Cohort Study. Vasc Specialist Int 2021; 37:45. [PMID: 35008064 PMCID: PMC8752334 DOI: 10.5758/vsi.210065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022] Open
Abstract
Purpose The aim of this study is to evaluate the outcomes of pharmacological thromboprophylaxis given for short-term duration to the patients who underwent major abdominal surgery for colorectal and gastric cancer. Methods Materials and This retrospective cohort study was performed in consecutive patients who underwent major abdominal surgery for colorectal and gastric cancer and received short-term pharmacological thromboprophylaxis during hospital stay were enrolled. Complete duplex ultrasonography of the lower limbs was performed for all patients to investigate both symptomatic and asymptomatic deep vein thrombosis (DVT). Results Overall, 278 patients were evaluated for inclusion and 62 colorectal and 27 gastric cancer patients were enrolled. Of 89 patients, the incidence of total and symptomatic DVT was 4.5% and 2.2%, respectively. The patients with symptomatic DVT were diagnosed within the first four months. The incidence of coronary artery disease, mucinous adenocarcinoma and vascular tumor invasion were significantly higher in patients with DVT (P-values<0.001, 0.009, and 0.02, respectively). Conclusion Short-term pharmacological thromboprophylaxis after major abdominal surgery for colorectal and gastric cancer does not increase symptomatic DVT rates of patients with low Caprini score. Postoperative DVT surveillance may benefit patients with coronary artery disease, mucinous adenocarcinoma or vascular invasion of the tumor.
Collapse
Affiliation(s)
| | - Ibrahim Ali Ozemir
- Department of General Surgery, Istanbul Medeniyet University, Goztepe Prof Dr Suleyman Yalcin City Hospital, Istanbul, Turkey
| | - Damla Beyazadam
- Department of General Surgery, Istanbul Medeniyet University, Goztepe Prof Dr Suleyman Yalcin City Hospital, Istanbul, Turkey
| | - Orhan Alimoglu
- Department of General Surgery, Istanbul Medeniyet University, Goztepe Prof Dr Suleyman Yalcin City Hospital, Istanbul, Turkey
| |
Collapse
|
6
|
Rodenburg WS, van Buul JD. Rho GTPase signalling networks in cancer cell transendothelial migration. VASCULAR BIOLOGY 2021; 3:R77-R95. [PMID: 34738075 PMCID: PMC8558887 DOI: 10.1530/vb-21-0008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023]
Abstract
Rho GTPases are small signalling G-proteins that are central regulators of cytoskeleton dynamics, and thereby regulate many cellular processes, including the shape, adhesion and migration of cells. As such, Rho GTPases are also essential for the invasive behaviour of cancer cells, and thus involved in several steps of the metastatic cascade, including the extravasation of cancer cells. Extravasation, the process by which cancer cells leave the circulation by transmigrating through the endothelium that lines capillary walls, is an essential step for metastasis towards distant organs. During extravasation, Rho GTPase signalling networks not only regulate the transmigration of cancer cells but also regulate the interactions between cancer and endothelial cells and are involved in the disruption of the endothelial barrier function, ultimately allowing cancer cells to extravasate into the underlying tissue and potentially form metastases. Thus, targeting Rho GTPase signalling networks in cancer may be an effective approach to inhibit extravasation and metastasis. In this review, the complex process of cancer cell extravasation will be discussed in detail. Additionally, the roles and regulation of Rho GTPase signalling networks during cancer cell extravasation will be discussed, both from a cancer cell and endothelial cell point of view.
Collapse
Affiliation(s)
- Wessel S Rodenburg
- Molecular Cell Biology Lab at Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab at Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands.,Leeuwenhoek Centre for Advanced Microscopy, Section Molecular Cytology at Swammerdam Institute for Life Sciences at University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Alvarado-Estrada K, Marenco-Hillembrand L, Maharjan S, Mainardi VL, Zhang YS, Zarco N, Schiapparelli P, Guerrero-Cazares H, Sarabia-Estrada R, Quinones-Hinojosa A, Chaichana KL. Circulatory shear stress induces molecular changes and side population enrichment in primary tumor-derived lung cancer cells with higher metastatic potential. Sci Rep 2021; 11:2800. [PMID: 33531664 PMCID: PMC7854722 DOI: 10.1038/s41598-021-82634-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death and disease worldwide. However, while the survival for patients with primary cancers is improving, the ability to prevent metastatic cancer has not. Once patients develop metastases, their prognosis is dismal. A critical step in metastasis is the transit of cancer cells in the circulatory system. In this hostile microenvironment, variations in pressure and flow can change cellular behavior. However, the effects that circulation has on cancer cells and the metastatic process remain unclear. To further understand this process, we engineered a closed-loop fluidic system to analyze molecular changes induced by variations in flow rate and pressure on primary tumor-derived lung adenocarcinoma cells. We found that cancer cells overexpress epithelial-to-mesenchymal transition markers TWIST1 and SNAI2, as well as stem-like marker CD44 (but not CD133, SOX2 and/or NANOG). Moreover, these cells display a fourfold increased percentage of side population cells and have an increased propensity for migration. In vivo, surviving circulatory cells lead to decreased survival in rodents. These results suggest that cancer cells that express a specific circulatory transition phenotype and are enriched in side population cells are able to survive prolonged circulatory stress and lead to increased metastatic disease and shorter survival.
Collapse
Affiliation(s)
- Keila Alvarado-Estrada
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Lina Marenco-Hillembrand
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Valerio Luca Mainardi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Laboratory of Biological Structures Mechanics (LaBS), Department of Chemistry, Material and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Milan, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Natanael Zarco
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Paula Schiapparelli
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Hugo Guerrero-Cazares
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Rachel Sarabia-Estrada
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Kaisorn L Chaichana
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
8
|
Zhang F, Liu W, Zhou S, Jiang L, Wang K, Wei Y, Liu A, Wei W, Liu S. Investigation of Environmental Pollutant-Induced Lung Inflammation and Injury in a 3D Coculture-Based Microfluidic Pulmonary Alveolus System. Anal Chem 2020; 92:7200-7208. [PMID: 32233451 DOI: 10.1021/acs.analchem.0c00759] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The health impact of environmental pollution involving an increase in human diseases has been subject to extensive study in recent decades. The methodology in biomimetic investigation of these pathophysiologic events is still in progress to uncover the gaps in knowledge associated with pollution and its influences on health. Herein, we describe a comprehensive evaluation of environmental pollutant-caused lung inflammation and injury using a microfluidic pulmonary alveolus platform with alveolar-capillary interfaces. We performed a microfluidic three-dimensional coculture with physiological microenvironment simulation at microscale control and demonstrated a reliable reconstruction of tissue layers including alveolar epithelium and microvascular endothelium with typical mechanical, structural, and junctional integrity, as well as viability. On-chip detection and analysis of pulmonary alveolus responses focusing on various inflammatory and injurious dynamics to the respective pollutant stimulations were achieved in the coculture-based microfluidic pulmonary alveolus model, in comparison with common on-chip monoculture and off-chip culture tools. We confirmed the synergistic effects of the epithelial and endothelial interfaces on the stimuli resistance and verified the importance of creating complex tissue microenvironments in vitro to explore pollution-involved human pathology. We believe the microfluidic approach presents great promise in environmental monitoring, drug discovery, and tissue engineering.
Collapse
Affiliation(s)
- Fen Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wenming Liu
- School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Sisi Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ling Jiang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Kan Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuanqing Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Anran Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
9
|
Osmani N, Follain G, García León MJ, Lefebvre O, Busnelli I, Larnicol A, Harlepp S, Goetz JG. Metastatic Tumor Cells Exploit Their Adhesion Repertoire to Counteract Shear Forces during Intravascular Arrest. Cell Rep 2019; 28:2491-2500.e5. [DOI: 10.1016/j.celrep.2019.07.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 05/28/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022] Open
|
10
|
Bregenzer ME, Horst EN, Mehta P, Novak CM, Raghavan S, Snyder CS, Mehta G. Integrated cancer tissue engineering models for precision medicine. PLoS One 2019; 14:e0216564. [PMID: 31075118 PMCID: PMC6510431 DOI: 10.1371/journal.pone.0216564] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tumors are not merely cancerous cells that undergo mindless proliferation. Rather, they are highly organized and interconnected organ systems. Tumor cells reside in complex microenvironments in which they are subjected to a variety of physical and chemical stimuli that influence cell behavior and ultimately the progression and maintenance of the tumor. As cancer bioengineers, it is our responsibility to create physiologic models that enable accurate understanding of the multi-dimensional structure, organization, and complex relationships in diverse tumor microenvironments. Such models can greatly expedite clinical discovery and translation by closely replicating the physiological conditions while maintaining high tunability and control of extrinsic factors. In this review, we discuss the current models that target key aspects of the tumor microenvironment and their role in cancer progression. In order to address sources of experimental variation and model limitations, we also make recommendations for methods to improve overall physiologic reproducibility, experimental repeatability, and rigor within the field. Improvements can be made through an enhanced emphasis on mathematical modeling, standardized in vitro model characterization, transparent reporting of methodologies, and designing experiments with physiological metrics. Taken together these considerations will enhance the relevance of in vitro tumor models, biological understanding, and accelerate treatment exploration ultimately leading to improved clinical outcomes. Moreover, the development of robust, user-friendly models that integrate important stimuli will allow for the in-depth study of tumors as they undergo progression from non-transformed primary cells to metastatic disease and facilitate translation to a wide variety of biological and clinical studies.
Collapse
Affiliation(s)
- Michael E. Bregenzer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eric N. Horst
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Caymen M. Novak
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shreya Raghavan
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Catherine S. Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, School of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
11
|
Ma S, Fu A, Lim S, Chiew GGY, Luo KQ. MnSOD mediates shear stress-promoted tumor cell migration and adhesion. Free Radic Biol Med 2018; 129:46-58. [PMID: 30193891 DOI: 10.1016/j.freeradbiomed.2018.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/07/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022]
Abstract
Circulation of cancer cells in the bloodstream is a vital step for distant metastasis, during which cancer cells are exposed to hemodynamic shear stress (SS). The actions of SS on tumor cells are complicated and not fully understood. We previously reported that fluidic SS was able to promote migration of breast cancer cells by elevating the cellular ROS level. In this study, we further investigated the mechanisms regulating SS-promoted cell migration and identified the role of MnSOD in the related pathway. We found that SS could enhance tumor cell adhesion to extracellular matrix and endothelial monolayer, and MnSOD also regulated this process. Briefly, SS stimulates the generation of mitochondrial superoxide in tumor cells. MnSOD then converts superoxide into hydrogen peroxide, which activates ERK1/2 to promote tumor cell migration and activates FAK to promote tumor cell adhesion. Combining our previous and present studies, we present experimental evidence on the pro-metastatic effects of hemodynamic SS and reveal the underlying mechanism. Our findings provide new insights into the nature of cancer metastasis and the understanding of tumor cell responses to external stresses and have valuable implications for cancer therapy development.
Collapse
Affiliation(s)
- Shijun Ma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Afu Fu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | | | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
12
|
Cancer-Associated Thrombosis: An Overview of Mechanisms, Risk Factors, and Treatment. Cancers (Basel) 2018; 10:cancers10100380. [PMID: 30314362 PMCID: PMC6209883 DOI: 10.3390/cancers10100380] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer-associated thrombosis is a major cause of mortality in cancer patients, the most common type being venous thromboembolism (VTE). Several risk factors for developing VTE also coexist with cancer patients, such as chemotherapy and immobilisation, contributing to the increased risk cancer patients have of developing VTE compared with non-cancer patients. Cancer cells are capable of activating the coagulation cascade and other prothrombotic properties of host cells, and many anticancer treatments themselves are being described as additional mechanisms for promoting VTE. This review will give an overview of the main thrombotic complications in cancer patients and outline the risk factors for cancer patients developing cancer-associated thrombosis, focusing on VTE as it is the most common complication observed in cancer patients. The multiple mechanisms involved in cancer-associated thrombosis, including the role of anticancer drugs, and a brief outline of the current treatment for cancer-associated thrombosis will also be discussed.
Collapse
|
13
|
Hu J, Zhou Y, Obayemi JD, Du J, Soboyejo WO. An investigation of the viscoelastic properties and the actin cytoskeletal structure of triple negative breast cancer cells. J Mech Behav Biomed Mater 2018; 86:1-13. [DOI: 10.1016/j.jmbbm.2018.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/30/2022]
|
14
|
Novak C, Horst E, Mehta G. Review: Mechanotransduction in ovarian cancer: Shearing into the unknown. APL Bioeng 2018; 2:031701. [PMID: 31069311 PMCID: PMC6481715 DOI: 10.1063/1.5024386] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer remains a deadly diagnosis with an 85% recurrence rate and a 5-year survival rate of only 46%. The poor outlook of this disease has improved little over the past 50 years owing to the lack of early detection, chemoresistance and the complex tumor microenvironment. Within the peritoneal cavity, the presence of ascites stimulates ovarian tumors with shear stresses. The stiff environment found within the tumor extracellular matrix and the peritoneal membrane are also implicated in the metastatic potential and epithelial to mesenchymal transition (EMT) of ovarian cancer. Though these mechanical cues remain highly relevant to the understanding and treatment of ovarian cancers, our current knowledge of their biological processes and their clinical relevance is deeply lacking. Seminal studies on ovarian cancer mechanotransduction have demonstrated close ties between mechanotransduction and ovarian cancer chemoresistance, EMT, enhanced cancer stem cell populations, and metastasis. This review summarizes our current understanding of ovarian cancer mechanotransduction and the gaps in knowledge that exist. Future investigations on ovarian cancer mechanotransduction will greatly improve clinical outcomes via systematic studies that determine shear stress magnitude and its influence on ovarian cancer progression, metastasis, and treatment.
Collapse
Affiliation(s)
- Caymen Novak
- Department of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109-2800,
USA
| | | | - Geeta Mehta
- Author to whom correspondence should be addressed:
| |
Collapse
|
15
|
Sarkar S, Peng CC, Kuo CW, Chueh DY, Wu HM, Liu YH, Chen P, Tung YC. Study of oxygen tension variation within live tumor spheroids using microfluidic devices and multi-photon laser scanning microscopy. RSC Adv 2018; 8:30320-30329. [PMID: 35546825 PMCID: PMC9085395 DOI: 10.1039/c8ra05505j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/21/2018] [Indexed: 11/24/2022] Open
Abstract
Three-dimensional cell spheroid culture using microfluidic devices provides a convenient in vitro model for studying tumour spheroid structures and internal microenvironments. Recent studies suggest that oxygen deprived zones inside solid tumors are responsible for stimulating local cytokines and endothelial vasculature proliferation during angiogenesis. In this work, we develop an integrated approach combining microfluidic devices and multi-photon laser scanning microscopy (MPLSM) to study variations in oxygen tension within live spheroids of human osteosarcoma cells. Uniform shaped, size-controlled spheroids are grown and then harvested using a polydimethylsiloxane (PDMS) based microfluidic device. Fluorescence live imaging of the harvested spheroids is performed using MPLSM and a commercially available oxygen sensitive dye, Image-iT Red, to observe the oxygen tension variation within the spheroids and those co-cultured with monolayers of human umbilical vein endothelial cells (HUVECs). Oxygen tension variations are observed within the spheroids with diameters ranging from 90 ± 10 μm to 140 ± 10 μm. The fluorescence images show that the low-oxygenated cores diminish when spheroids are co-cultured with HUVEC monolayers for 6 hours to 8 hours. In the experiments, spheroids subjected to HUVEC conditioned medium treatment and with a cell adherent substrate are also measured and analyzed to study their significance on oxygen tension within the spheroids. The results show that the oxygenation within the spheroids is improved when the spheroids are cultured under those conditions. Our work presents an efficient method to study oxygen tension variation within live tumor spheroids under the influence of endothelial cells and conditioned medium. The method can be exploited for further investigation of tumor oxygen microenvironments during angiogenesis.
Collapse
Affiliation(s)
- Sreerupa Sarkar
- Department of Engineering and System Science, National Tsing Hua University Hsinchu 30013 Taiwan
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
- Taiwan International Graduate Program (TIGP), Nano Science and Technology Program Taiwan
| | - Chien-Chung Peng
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Hsiao-Mei Wu
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Yuan-Hsuan Liu
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
- Taiwan International Graduate Program (TIGP), Nano Science and Technology Program Taiwan
- College of Engineering, Chang Gung University Taoyuan 33302 Taiwan
| |
Collapse
|
16
|
Kühlbach C, da Luz S, Baganz F, Hass VC, Mueller MM. A Microfluidic System for the Investigation of Tumor Cell Extravasation. Bioengineering (Basel) 2018; 5:E40. [PMID: 29882894 PMCID: PMC6027408 DOI: 10.3390/bioengineering5020040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/05/2023] Open
Abstract
Metastatic dissemination of cancer cells is a very complex process. It includes the intravasation of cells into the metastatic pathways, their passive distribution within the blood or lymph flow, and their extravasation into the surrounding tissue. Crucial steps during extravasation are the adhesion of the tumor cells to the endothelium and their transendothelial migration. However, the molecular mechanisms that are underlying this process are still not fully understood. Novel three dimensional (3D) models for research on the metastatic cascade include the use of microfluidic devices. Different from two dimensional (2D) models, these devices take cell⁻cell, structural, and mechanical interactions into account. Here we introduce a new microfluidic device in order to study tumor extravasation. The device consists of three different parts, containing two microfluidic channels and a porous membrane sandwiched in between them. A smaller channel together with the membrane represents the vessel equivalent and is seeded separately with primary endothelial cells (EC) that are isolated from the lung artery. The second channel acts as reservoir to collect the migrated tumor cells. In contrast to many other systems, this device does not need an additional coating to allow EC growth, as the primary EC that is used produces their own basement membrane. VE-Cadherin, an endothelial adherence junction protein, was expressed in regular localization, which indicates a tight barrier function and cell⁻cell connections of the endothelium. The EC in the device showed in vivo-like behavior under flow conditions. The GFP-transfected tumor cells that were introduced were of epithelial or mesenchymal origin and could be observed by live cell imaging, which indicates tightly adherent tumor cells to the endothelial lining under different flow conditions. These results suggest that the new device can be used for research on molecular requirements, conditions, and mechanism of extravasation and its inhibition.
Collapse
Affiliation(s)
- Claudia Kühlbach
- Department of Mechanical und Medical Engineering, Hochschule Furtwangen University, Villingen-Schwenningen 78054, Germany.
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - Sabrina da Luz
- Hahn-Schickard, Villingen-Schwenningen 78054, Germany, .
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - Volker C Hass
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK.
- HFU Hochschule Furtwangen, Department Medical and Life Science, Villingen-Schwenningen 78054, Germany.
| | - Margareta M Mueller
- Department of Mechanical und Medical Engineering, Hochschule Furtwangen University, Villingen-Schwenningen 78054, Germany.
| |
Collapse
|
17
|
Myung JH, Park SJ, Wang AZ, Hong S. Integration of biomimicry and nanotechnology for significantly improved detection of circulating tumor cells (CTCs). Adv Drug Deliv Rev 2018; 125:36-47. [PMID: 29247765 PMCID: PMC6800256 DOI: 10.1016/j.addr.2017.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/29/2017] [Accepted: 12/08/2017] [Indexed: 12/28/2022]
Abstract
Circulating tumor cells (CTCs) have received a great deal of scientific and clinical attention as a biomarker for diagnosis and prognosis of many types of cancer. Given their potential significance in clinics, a variety of detection methods, utilizing the recent advances in nanotechnology and microfluidics, have been introduced in an effort of achieving clinically significant detection of CTCs. However, effective detection and isolation of CTCs still remain a tremendous challenge due to their extreme rarity and phenotypic heterogeneity. Among many approaches that are currently under development, this review paper focuses on a unique, promising approach that takes advantages of naturally occurring processes achievable through application of nanotechnology to realize significant improvement in sensitivity and specificity of CTC capture. We provide an overview of successful outcome of this biomimetic CTC capture system in detection of tumor cells from in vitro, in vivo, and clinical pilot studies. We also emphasize the clinical impact of CTCs as biomarkers in cancer diagnosis and predictive prognosis, which provides a cost-effective, minimally invasive method that potentially replaces or supplements existing methods such as imaging technologies and solid tissue biopsy. In addition, their potential prognostic values as treatment guidelines and that ultimately help to realize personalized therapy are discussed.
Collapse
Affiliation(s)
- Ja Hye Myung
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, United States
| | - Sin-Jung Park
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, United States
| | - Andrew Z Wang
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, United States; Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Seoul 03706, Republic of Korea.
| |
Collapse
|
18
|
Fu BM. Tumor Metastasis in the Microcirculation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:201-218. [PMID: 30315547 DOI: 10.1007/978-3-319-96445-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tumor cell metastasis through blood circulation is a complex process and is one of the great challenges in cancer research as metastatic spread is responsible for ∼90% of cancer-related mortality. Tumor cell intravasation into, arrest and adhesion at, and extravasation from the microvessel walls are critical steps in metastatic spread. Understanding these steps may lead to new therapeutic concepts for tumor metastasis. Vascular endothelium forming the microvessel wall and the glycocalyx layer at its surface are the principal barriers to and regulators of the material exchange between circulating blood and body tissues. The cleft between adjacent endothelial cells is the principal pathway for water and solute transport through the microvessel wall in health. Recently, this cleft has been found to be the location for tumor cell adhesion and extravasation. The blood-flow-induced hydrodynamic factors such as shear rates and stresses, shear rate and stress gradients, as well as vorticities, especially at the branches and turns of microvasculatures, also play important roles in tumor cell arrest and adhesion. This chapter therefore reports the current advances from in vivo animal studies and in vitro culture cell studies to demonstrate how the endothelial integrity or microvascular permeability, hydrodynamic factors, microvascular geometry, cell adhesion molecules, and surrounding extracellular matrix affect critical steps of tumor metastasis in the microcirculation.
Collapse
Affiliation(s)
- Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA.
| |
Collapse
|
19
|
Krog BL, Henry MD. Biomechanics of the Circulating Tumor Cell Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:209-233. [PMID: 30368755 DOI: 10.1007/978-3-319-95294-9_11] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circulating tumor cells (CTCs) exist in a microenvironment quite different from the solid tumor tissue microenvironment. They are detached from matrix and exposed to the immune system and hemodynamic forces leading to the conclusion that life as a CTC is "nasty, brutish, and short." While there is much evidence to support this assertion, the mechanisms underlying this are much less clear. In this chapter we will specifically focus on biomechanical influences on CTCs in the circulation and examine in detail the question of whether CTCs are mechanically fragile, a commonly held idea that is lacking in direct evidence. We will review multiple lines of evidence indicating, perhaps counterintuitively, that viable cancer cells are mechanically robust in the face of exposures to physiologic shear stresses that would be encountered by CTCs during their passage through the circulation. Finally, we present emerging evidence that malignant epithelial cells, as opposed to their benign counterparts, possess specific mechanisms that enable them to endure these mechanical stresses.
Collapse
Affiliation(s)
- Benjamin L Krog
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Pathology and Urology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
20
|
Jassam SA, Maherally Z, Smith JR, Ashkan K, Roncaroli F, Fillmore HL, Pilkington GJ. CD15s/CD62E Interaction Mediates the Adhesion of Non-Small Cell Lung Cancer Cells on Brain Endothelial Cells: Implications for Cerebral Metastasis. Int J Mol Sci 2017; 18:ijms18071474. [PMID: 28698503 PMCID: PMC5535965 DOI: 10.3390/ijms18071474] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/29/2023] Open
Abstract
Expression of the cell adhesion molecule (CAM), Sialyl Lewis X (CD15s) correlates with cancer metastasis, while expression of E-selectin (CD62E) is stimulated by TNF-α. CD15s/CD62E interaction plays a key role in the homing process of circulating leukocytes. We investigated the heterophilic interaction of CD15s and CD62E in brain metastasis-related cancer cell adhesion. CD15s and CD62E were characterised in human brain endothelium (hCMEC/D3), primary non-small cell lung cancer (NSCLC) (COR-L105 and A549) and metastatic NSCLC (SEBTA-001 and NCI-H1299) using immunocytochemistry, Western blotting, flow cytometry and immunohistochemistry in human brain tissue sections. TNF-α (25 pg/mL) stimulated extracellular expression of CD62E while adhesion assays, under both static and physiological flow live-cell conditions, explored the effect of CD15s-mAb immunoblocking on adhesion of cancer cell–brain endothelium. CD15s was faintly expressed on hCMEC/D3, while high levels were observed on primary NSCLC cells with expression highest on metastatic NSCLC cells (p < 0.001). CD62E was highly expressed on hCMEC/D3 cells activated with TNF-α, with lower levels on primary and metastatic NSCLC cells. CD15s and CD62E were expressed on lung metastatic brain biopsies. CD15s/CD62E interaction was localised at adhesion sites of cancer cell–brain endothelium. CD15s immunoblocking significantly decreased cancer cell adhesion to brain endothelium under static and shear stress conditions (p < 0.001), highlighting the role of CD15s–CD62E interaction in brain metastasis.
Collapse
Affiliation(s)
- Samah A Jassam
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Zaynah Maherally
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - James R Smith
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Keyoumars Ashkan
- Neuro-Surgery, King's College Hospital, Denmark Hill, London SE5 9RS, UK.
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Oxford Road, Manchester M13 9PT, UK.
| | - Helen L Fillmore
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Geoffrey J Pilkington
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| |
Collapse
|
21
|
Moore TL, Hauser D, Gruber T, Rothen-Rutishauser B, Lattuada M, Petri-Fink A, Lyck R. Cellular Shuttles: Monocytes/Macrophages Exhibit Transendothelial Transport of Nanoparticles under Physiological Flow. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18501-18511. [PMID: 28517937 DOI: 10.1021/acsami.7b03479] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A major hurdle in the development of biomedical nanoparticles (NP) is understanding how they interact with complex biological systems and navigate biological barriers to arrive at pathological targets. It is becoming increasingly evident that merely controlling particle physicochemical properties may not be sufficient to mediate particle biodistribution in dynamic environments. Thus, researchers are increasingly turning toward more complex but likewise more physiological in vitro systems to study particle--cell/particle-system interactions. An emerging paradigm is to utilize naturally migratory cells to act as so-called "Trojan horses" or cellular shuttles. We report here the use of monocytes/macrophages to transport NP across a confluent endothelial cell layer using a microfluidic in vitro model. With a custom-built flow chamber, we showed that physiological shear stress, when compared to low flow or static conditions, increased NP uptake by macrophages. We further provided a mathematical explanation for the effect of flow on NP uptake, namely that the physical exposure times of NP to cells is dictated by shear stress (i.e., flow rate) and results in increased particle uptake under flow. This study was extended to a multicellular, hydrodynamic in vitro model. Because monocytes are cells that naturally translocate across biological barriers, we utilized a monocyte/macrophage cell line as cellular NP transporters across an endothelial layer. In this exploratory study, we showed that monocyte/macrophage cells adhere to an endothelial layer and dynamically interact with the endothelial cells. The monocytes/macrophages took up NP and diapedesed across the endothelial layer with NP accumulating within the cellular uropod. These data illustrate that monocytes/macrophages may therefore act as active shuttles to deliver particles across endothelial barriers.
Collapse
Affiliation(s)
| | | | - Thomas Gruber
- Theodor Kocher Institute, Universität Bern , 3000 Bern, Switzerland
| | | | | | | | - Ruth Lyck
- Theodor Kocher Institute, Universität Bern , 3000 Bern, Switzerland
| |
Collapse
|
22
|
Nojiri T, Yamamoto H, Hamasaki T, Onda K, Ohshima K, Shintani Y, Okumura M, Kangawa K. A multicenter randomized controlled trial of surgery alone or surgery with atrial natriuretic peptide in lung cancer surgery: study protocol for a randomized controlled trial. Trials 2017; 18:183. [PMID: 28427456 PMCID: PMC5397773 DOI: 10.1186/s13063-017-1928-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/04/2017] [Indexed: 02/02/2023] Open
Abstract
Background Postoperative cancer recurrence is a major problem following curative surgery. In a previous retrospective study of lung cancer surgery, we reported that administration of atrial natriuretic peptide (ANP) during the perioperative period reduced postoperative recurrence. We demonstrated that ANP inhibited the adhesion of cancer cells to vascular endothelium as a vasoprotective action. The objective of this study is to evaluate the effects of ANP on the incidence of postoperative cancer recurrence in lung cancer surgery. Methods/design The present study is a multicenter, randomized trial with two parallel groups of patients with lung cancer comparing surgery alone and surgery with ANP administration for 3 days during the perioperative period. A total of 500 patients will be enrolled from 10 Japanese institutions. The primary endpoint is 2-year relapse-free survival (RFS). The secondary endpoints are 2-year cancer-specific RFS, 5-year RFS, overall survival, the incidence of postoperative complications, and the completion rate of ANP treatment. Discussion The principal question addressed in this trial is whether ANP with its vasoprotective action can reduce cancer recurrence following lung cancer surgery. Trial registration UMIN Clinical Trials Registry identifier: UMIN000018480. Registered on 31 July 2015. Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-1928-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takashi Nojiri
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan. .,Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2 (L5) Yamadaoka, Suita-City, Osaka, 565-0871, Japan. .,Department of General Thoracic Surgery, National Hospital Organization Toneyama Hospital, 5-1-1 Toneyama, Toyonaka-City, Osaka, 560-8552, Japan.
| | - Haruko Yamamoto
- Center for Advancing Clinical and Translational Sciences, National Cerebral and Cardiovascular Center, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan
| | - Toshimitsu Hamasaki
- Department of Data Science, National Cerebral and Cardiovascular Center, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan
| | - Kaori Onda
- Center for Advancing Clinical and Translational Sciences, National Cerebral and Cardiovascular Center, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan
| | - Kikuko Ohshima
- Department of Data Science, National Cerebral and Cardiovascular Center, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2 (L5) Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Meinoshin Okumura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2 (L5) Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| | | |
Collapse
|
23
|
Wieland E, Rodriguez-Vita J, Liebler SS, Mogler C, Moll I, Herberich SE, Espinet E, Herpel E, Menuchin A, Chang-Claude J, Hoffmeister M, Gebhardt C, Brenner H, Trumpp A, Siebel CW, Hecker M, Utikal J, Sprinzak D, Fischer A. Endothelial Notch1 Activity Facilitates Metastasis. Cancer Cell 2017; 31:355-367. [PMID: 28238683 DOI: 10.1016/j.ccell.2017.01.007] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 09/28/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
Abstract
Endothelial cells (ECs) provide angiocrine factors orchestrating tumor progression. Here, we show that activated Notch1 receptors (N1ICD) are frequently observed in ECs of human carcinomas and melanoma, and in ECs of the pre-metastatic niche in mice. EC N1ICD expression in melanoma correlated with shorter progression-free survival. Sustained N1ICD activity induced EC senescence, expression of chemokines and the adhesion molecule VCAM1. This promoted neutrophil infiltration, tumor cell (TC) adhesion to the endothelium, intravasation, lung colonization, and postsurgical metastasis. Thus, sustained vascular Notch signaling facilitates metastasis by generating a senescent, pro-inflammatory endothelium. Consequently, treatment with Notch1 or VCAM1-blocking antibodies prevented Notch-driven metastasis, and genetic ablation of EC Notch signaling inhibited peritoneal neutrophil infiltration in an ovarian carcinoma mouse model.
Collapse
Affiliation(s)
- Elfriede Wieland
- Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Juan Rodriguez-Vita
- Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sven S Liebler
- Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Vascular Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, Heidelberg University Hospital, Vascular Oncology and Metastasis (A190), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Iris Moll
- Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefanie E Herberich
- Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Vascular Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer (A010), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance and the German Cancer Consortium (DKTK), Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Esther Herpel
- Tissue Bank of the National Center for Tumor Diseases (NCT) Heidelberg, Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Amitai Menuchin
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel Aviv, Israel
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology (C020), German Cancer Research Center, 69120 Heidelberg, Germany; Research Group Genetic Cancer Epidemiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research (C070), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoffer Gebhardt
- Clinical Cooperation Unit Dermato-Oncology (G300), German Cancer Research Center (DKFZ), Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 69120 Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research (C070), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Division of Preventive Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer (A010), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance and the German Cancer Consortium (DKTK), Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University and Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Jochen Utikal
- Clinical Cooperation Unit Dermato-Oncology (G300), German Cancer Research Center (DKFZ), Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 69120 Heidelberg, Germany
| | - David Sprinzak
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel Aviv, Israel
| | - Andreas Fischer
- Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Vascular Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Echtler K, Konrad I, Lorenz M, Schneider S, Hofmaier S, Plenagl F, Stark K, Czermak T, Tirniceriu A, Eichhorn M, Walch A, Enders G, Massberg S, Schulz C. Platelet GPIIb supports initial pulmonary retention but inhibits subsequent proliferation of melanoma cells during hematogenic metastasis. PLoS One 2017; 12:e0172788. [PMID: 28253287 PMCID: PMC5333841 DOI: 10.1371/journal.pone.0172788] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/09/2017] [Indexed: 01/27/2023] Open
Abstract
Platelets modulate the process of cancer metastasis. However, current knowledge on the direct interaction of platelets and tumor cells is mostly based on findings obtained in vitro. We addressed the role of the platelet fibrinogen receptor glycoprotein IIb (integrin αIIb) for experimental melanoma metastasis in vivo. Highly metastatic B16-D5 melanoma cells were injected intravenously into GPIIb-deficient (GPIIb-/-) or wildtype (WT) mice. Acute accumulation of tumor cells in the pulmonary vasculature was assessed in real-time by confocal videofluorescence microscopy. Arrest of tumor cells was dramatically reduced in GPIIb-/- mice as compared to WT. Importantly, we found that mainly multicellular aggregates accumulated in the pulmonary circulation of WT, instead B16-D5 aggregates were significantly smaller in GPIIb-/- mice. While pulmonary arrest of melanoma was clearly dependent on GPIIb in this early phase of metastasis, we also addressed tumor progression 10 days after injection. Inversely, and unexpectedly, we found that melanoma metastasis was now increased in GPIIb-/- mice. In contrast, GPIIb did not regulate local melanoma proliferation in a subcutaneous tumor model. Our data suggest that the platelet fibrinogen receptor has a differential role in the modulation of hematogenic melanoma metastasis. While platelets clearly support early steps in pulmonary metastasis via GPIIb-dependent formation of platelet-tumor-aggregates, at a later stage its absence is associated with an accelerated development of melanoma metastases.
Collapse
Affiliation(s)
- Katrin Echtler
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ildiko Konrad
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michael Lorenz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität, Munich, Germany
| | - Simon Schneider
- Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sebastian Hofmaier
- Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Florian Plenagl
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität, Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Czermak
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität, Munich, Germany
| | - Anca Tirniceriu
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität, Munich, Germany
| | - Martin Eichhorn
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität, Munich, Germany
- Chirurgische Klinik, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Georg Enders
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität, Munich, Germany
- * E-mail:
| |
Collapse
|
25
|
Nojiri T, Hamasaki T, Inoue M, Shintani Y, Takeuchi Y, Maeda H, Okumura M. Long-Term Impact of Postoperative Complications on Cancer Recurrence Following Lung Cancer Surgery. Ann Surg Oncol 2016; 24:1135-1142. [PMID: 27785660 DOI: 10.1245/s10434-016-5655-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND Postoperative complications are associated with poor cancer-specific survival in various types of cancer surgery. Recent studies suggest that systemic inflammation induced by surgical trauma can accelerate the adhesion of circulating tumor cells to the vascular endothelium of distant organs, resulting in early cancer recurrence. We investigated the impact of postoperative cardiopulmonary complications on cancer recurrence following lung cancer surgery. METHODS From a prospective database of 675 consecutive patients who underwent curative surgery for lung cancer between 2007 and 2012, the incidence of postoperative cardiopulmonary complications, white blood cell counts, and C-reactive protein levels were evaluated in the acute phase after surgery. Four patients had both cardiovascular and respiratory complications. The remaining 671 patients were divided into 3 groups: patients without cardiopulmonary complications; those with cardiovascular complications; and those with respiratory complications. The incidence of cancer recurrence was compared among the three groups. RESULTS Postoperative cardiovascular or respiratory complications were identified in 94 (14%) or 25 (4%) patients, respectively. Postoperative white blood cell counts and C-reactive protein levels were significantly higher in those with postoperative respiratory complications than in those without. There was a significantly higher incidence of cancer recurrence in those with postoperative respiratory complications than in those without (48.0 vs. 16.8%; p < 0.0001). Multiple regression analysis adjusted for age, sex, and pathological staging showed that the incidence of postoperative respiratory complications was a significant predictor of cancer recurrence. CONCLUSIONS The presence of respiratory complications following lung cancer surgery was a significant predictor of cancer recurrence.
Collapse
Affiliation(s)
- Takashi Nojiri
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan. .,Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan. .,Department of General Thoracic Surgery, National Hospital Organization Toneyama Hospital, Toyonaka, Osaka, Japan.
| | - Toshimitsu Hamasaki
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Masayoshi Inoue
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yukiyasu Takeuchi
- Department of General Thoracic Surgery, National Hospital Organization Toneyama Hospital, Toyonaka, Osaka, Japan
| | - Hajime Maeda
- Department of General Thoracic Surgery, National Hospital Organization Toneyama Hospital, Toyonaka, Osaka, Japan
| | - Meinoshin Okumura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
26
|
Ciasca G, Papi M, Minelli E, Palmieri V, De Spirito M. Changes in cellular mechanical properties during onset or progression of colorectal cancer. World J Gastroenterol 2016; 22:7203-7214. [PMID: 27621568 PMCID: PMC4997642 DOI: 10.3748/wjg.v22.i32.7203] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/11/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) development represents a multistep process starting with specific mutations that affect proto-oncogenes and tumour suppressor genes. These mutations confer a selective growth advantage to colonic epithelial cells that form first dysplastic crypts, and then malignant tumours and metastases. All these steps are accompanied by deep mechanical changes at the cellular and the tissue level. A growing consensus is emerging that such modifications are not merely a by-product of the malignant progression, but they could play a relevant role in the cancer onset and accelerate its progression. In this review, we focus on recent studies investigating the role of the biomechanical signals in the initiation and the development of CRC. We show that mechanical cues might contribute to early phases of the tumour initiation by controlling the Wnt pathway, one of most important regulators of cell proliferation in various systems. We highlight how physical stimuli may be involved in the differentiation of non-invasive cells into metastatic variants and how metastatic cells modify their mechanical properties, both stiffness and adhesion, to survive the mechanical stress associated with intravasation, circulation and extravasation. A deep comprehension of these mechanical modifications may help scientist to define novel molecular targets for the cure of CRC.
Collapse
|
27
|
Zhao J, Mitrofan CG, Appleby SL, Morrell NW, Lever AML. Disrupted Endothelial Cell Layer and Exposed Extracellular Matrix Proteins Promote Capture of Late Outgrowth Endothelial Progenitor Cells. Stem Cells Int 2016; 2016:1406304. [PMID: 27413378 PMCID: PMC4927957 DOI: 10.1155/2016/1406304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/12/2016] [Accepted: 05/29/2016] [Indexed: 01/11/2023] Open
Abstract
Late outgrowth endothelial progenitor cells (LO-EPC) possess a high proliferative potential, differentiate into vascular endothelial cells (EC), and form networks, suggesting they play a role in vascular repair. However, due to their scarcity in the circulation there is a requirement for ex vivo expansion before they could provide a practical cell therapy and it is currently unclear if they would home and engraft to an injury site. Using an in vitro flow system we studied LO-EPC under simulated injury conditions including EC activation, ischaemia, disrupted EC integrity, and exposed basement membrane. Perfused LO-EPC adhered to discontinuous EC paracellularly at junctional regions between adjacent cells under shear stress 0.7 dyn/cm(2). The interaction was not adhesion molecule-dependent and not enhanced by EC activation. LO-EPC expressed high levels of the VE-Cadherin which may explain these findings. Ischaemia reperfusion injury decreased the interaction with LO-EPC due to cell retraction. LO-EPC interacted with exposed extracellular matrix (ECM) proteins, fibronectin and vitronectin. The interaction was mediated by integrins α5β3, αvβ1, and αvβ3. This study has demonstrated that an injured local environment presents sufficient adhesive signals to capture flow perfused LO-EPC in vitro and that LO-EPC have properties consistent with their potential role in vascular repair.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Sarah L. Appleby
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Nicholas W. Morrell
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Andrew M. L. Lever
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
28
|
Takeishi N, Imai Y, Ishida S, Omori T, Kamm RD, Ishikawa T. Cell adhesion during bullet motion in capillaries. Am J Physiol Heart Circ Physiol 2016; 311:H395-403. [PMID: 27261363 DOI: 10.1152/ajpheart.00241.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/31/2016] [Indexed: 01/13/2023]
Abstract
A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis.
Collapse
Affiliation(s)
- Naoki Takeishi
- Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Japan
| | - Yohsuke Imai
- School of Engineering, Tohoku University, Aoba, Sendai, Japan;
| | - Shunichi Ishida
- Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Japan
| | - Toshihiro Omori
- School of Engineering, Tohoku University, Aoba, Sendai, Japan
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Takuji Ishikawa
- Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Japan; School of Engineering, Tohoku University, Aoba, Sendai, Japan
| |
Collapse
|
29
|
Rankin KS, Frankel D. Hyaluronan in cancer - from the naked mole rat to nanoparticle therapy. SOFT MATTER 2016; 12:3841-8. [PMID: 27079782 DOI: 10.1039/c6sm00513f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hyaluronan, a glycosaminoglycan, abundant in the tumour microenvironment, is a key player in many processes associated with cancer. Recently the cancer resistance of the naked mole rat has been attributed to the presence of an ultra-high molecular weight form of this molecule. The physical properties of this multifunctional biopolymer have been extensively studied in the context of synovial joints. However, relatively little has been reported with regard to the soft matter properties of hyaluronan in relation to cancer. In this review we examine the role of hyaluronan in cancer, paying particular attention to its mechanical interactions with malignant cells and its soft matter properties. In addition we discuss the use of hyaluronan based gels to study cancer invasion as well as nanoparticle based strategies for disease treatment.
Collapse
Affiliation(s)
- Kenneth S Rankin
- Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
30
|
Spencer A, Spruell C, Nandi S, Wong M, Creixell M, Baker AB. A high-throughput mechanofluidic screening platform for investigating tumor cell adhesion during metastasis. LAB ON A CHIP 2016; 16:142-52. [PMID: 26584160 PMCID: PMC4691538 DOI: 10.1039/c5lc00994d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The metastatic spread of cancer is a major barrier to effective and curative therapies for cancer. During metastasis, tumor cells intravasate into the vascular system, survive in the shear forces and immunological environment of the circulation, and then extravasate into secondary tumor sites. Biophysical forces are potent regulators of cancer biology and are key in many of the steps of metastasis. In particular, the adhesion of circulating cells is highly dependent upon competing forces between cell adhesion receptors and the shear stresses due to fluid flow. Conventional in vitro assays for drug development and the mechanistic study of metastasis are often carried out in the absence of fluidic forces and, consequently, are poorly representative of the true biology of metastasis. Here, we present a novel high-throughput approach to studying cell adhesion under flow that uses a multi-well, mechanofluidic flow system to interrogate adhesion of cancer cell to endothelial cells, extracellular matrix and platelets under physiological shear stresses. We use this system to identify pathways and compounds that can potentially be used to inhibit cancer adhesion under flow by screening anti-inflammatory compounds, integrin inhibitors and a kinase inhibitor library. In particular, we identify several small molecule inhibitors of FLT-3 and AKT that are potent inhibitors of cancer cell adhesion to endothelial cells and platelets under flow. In addition, we found that many kinase inhibitors lead to increased adhesion of cancer cells in flow-based but not static assays. This finding suggests that even compounds that reduce cell proliferation might also enhance cancer cell adhesion during metastasis. Overall, our results validate a novel platform for investigating the mechanisms of cell adhesion under biophysical flow conditions and identify several potential inhibitors of cancer cell adhesion during metastasis.
Collapse
Affiliation(s)
- A Spencer
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| | - C Spruell
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| | - S Nandi
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| | - M Wong
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| | - M Creixell
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| | - A B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA. and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
31
|
Gaddes ER, Lee D, Gydush G, Wang Y, Dong C. Regulation of fibrin-mediated tumor cell adhesion to the endothelium using anti-thrombin aptamer. Exp Cell Res 2015; 339:417-26. [PMID: 26481421 DOI: 10.1016/j.yexcr.2015.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/29/2015] [Accepted: 10/09/2015] [Indexed: 12/27/2022]
Abstract
Molecular intervention during transient stages of various metastatic pathways may lead to development of promising therapeutic technologies. One of such involves soluble fibrin (sFn) that has been implicated as a cross-linker between circulating blood or tumor cells and endothelial cell receptors, promoting cell arrest on the endothelium during circulation. sFn generation is a result of thrombin-mediated fibrinogen (Fg) cleavage due to either vascular injuries or a tumor microenvironment. For cancer therapy, thrombin-mediated conversions of Fg to sFn thus serve as potential intervention points to decrease circulating tumor cell adhesion to the endothelium and subsequent metastatic events. The purpose of this work was to investigate the function of an anti-thrombin oligonucleotide aptamer in reducing tumor cell arrest. Both molecular and cellular interactions were examined to demonstrate the binding and inhibitory effects of anti-thrombin aptamer. The results show that the aptamer is capable of inhibiting thrombin-mediated Fg conversion, thereby reducing sFn-mediated tumor cell adhesion in a concentration-dependent manner. Notably, the aptamer is able to bind thrombin under dynamic flow conditions and reduce tumor cell adhesive events at various physiological shear rates. This study further indicates that oligonucleotide aptamers hold great promise as therapeutic regulators of tumor cell adhesion, and consequently, metastatic activity.
Collapse
Affiliation(s)
- Erin R Gaddes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Deborah Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory Gydush
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
32
|
Yasmin-Karim S, King MR, Messing EM, Lee YF. E-selectin ligand-1 controls circulating prostate cancer cell rolling/adhesion and metastasis. Oncotarget 2015; 5:12097-110. [PMID: 25301730 PMCID: PMC4322988 DOI: 10.18632/oncotarget.2503] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/16/2014] [Indexed: 12/18/2022] Open
Abstract
Circulating prostate cancer (PCa) cells preferentially roll and adhere on bone marrow vascular endothelial cells, where abundant E-selectin and stromal cell-derived factor 1 (SDF-1) are expressed, subsequently initiating a cascade of activation events that eventually lead to the development of metastases. To elucidate the roles of circulating PCa cells' rolling and adhesion behaviors in cancer metastases, we applied a dynamic cylindrical flow-based microchannel device that is coated with E-selectin and SDF-1, mimicking capillary endothelium. Using this device we captured a small fraction of rolling PCa cells. These rolling cells display higher static adhesion ability, more aggressive cancer phenotypes and stem-like properties. Importantly, mice received rolling PCa cells, but not floating PCa cells, developed cancer metastases. Genes coding for E-selectin ligands and genes associated with cancer stem cells and metastasis were elevated in rolling PCa cells. Knock down of E-selectin ligand 1(ESL-1), significantly impaired PCa cells' rolling capacity and reduced cancer aggressiveness. Moreover, ESL-1 activates RAS and MAP kinase signal cascade, consequently inducing the downstream targets. In summary, circulating PCa cells' rolling capacity contributes to PCa metastasis, and that is in part controlled by ESL-1.
Collapse
Affiliation(s)
- Sayeda Yasmin-Karim
- Departments of Urology and Pathology and Laboratory Medicine, and Chemical Engineering, University of Rochester, Rochester, NY 14642
| | - Michael R King
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Edward M Messing
- Departments of Urology and Pathology and Laboratory Medicine, and Chemical Engineering, University of Rochester, Rochester, NY 14642
| | - Yi-Fen Lee
- Departments of Urology and Pathology and Laboratory Medicine, and Chemical Engineering, University of Rochester, Rochester, NY 14642
| |
Collapse
|
33
|
Azevedo AS, Follain G, Patthabhiraman S, Harlepp S, Goetz JG. Metastasis of circulating tumor cells: favorable soil or suitable biomechanics, or both? Cell Adh Migr 2015; 9:345-56. [PMID: 26312653 DOI: 10.1080/19336918.2015.1059563] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metastasis is the end product of a multistep process where cancer cells disseminate and home themselves in distant organs. Tumor cell extravasation is a rare, inefficient and transient event in nature and makes its studies very difficult. Noteworthy, little is known about how cancer cells arrest, adhere and pass through the endothelium of capillaries. Moreover, the key events driving metastatic growth in specific organs are not well understood. Thus, although metastasis is the leading cause of cancer-related death, how cancer cells acquire their abilities to colonize distant organs and why they do so in specific locations remain central questions in the understanding of this deadly disease. In this review, we would like to confront 2 concepts explaining the efficiency and location of metastatic secondary tumors. While the "seed and soil" hypothesis states that metastasis occurs at sites where the local microenvironment is favorable, the "mechanical" concept argues that metastatic seeding occurs at sites of optimal flow patterns. In addition, recent evidence suggests that the primary event driving tumor cell arrest before extravasation is mostly controlled by blood circulation patterns as well as mechanical cues during the process of extravasation. In conclusion, the organ tropism displayed by cancer cells during metastatic colonization is a multi-step process, which is regulated by the delivery and survival of circulating tumor cells (CTCs) through blood circulation, the ability of these CTCs to adhere and cross the physical barrier imposed by the endothelium and finally by the suitability of the soil to favor growth of secondary tumors.
Collapse
Affiliation(s)
- Ana Sofia Azevedo
- a Inserm U1109; MN3T ; Strasbourg , France.,b Université de Strasbourg ; Strasbourg , France.,c LabEx Medalis; Université de Strasbourg ; Strasbourg , France.,d Fédération de Médecine Translationnelle de Strasbourg (FMTS) ; Strasbourg , France
| | - Gautier Follain
- a Inserm U1109; MN3T ; Strasbourg , France.,b Université de Strasbourg ; Strasbourg , France.,c LabEx Medalis; Université de Strasbourg ; Strasbourg , France.,d Fédération de Médecine Translationnelle de Strasbourg (FMTS) ; Strasbourg , France
| | - Shankar Patthabhiraman
- a Inserm U1109; MN3T ; Strasbourg , France.,b Université de Strasbourg ; Strasbourg , France.,c LabEx Medalis; Université de Strasbourg ; Strasbourg , France.,d Fédération de Médecine Translationnelle de Strasbourg (FMTS) ; Strasbourg , France
| | - Sébastien Harlepp
- b Université de Strasbourg ; Strasbourg , France.,e IPCMS UMR7504 ; Strasbourg , France.,f LabEx NIE; Université de Strasbourg ; Strasbourg , France
| | - Jacky G Goetz
- a Inserm U1109; MN3T ; Strasbourg , France.,b Université de Strasbourg ; Strasbourg , France.,c LabEx Medalis; Université de Strasbourg ; Strasbourg , France.,d Fédération de Médecine Translationnelle de Strasbourg (FMTS) ; Strasbourg , France
| |
Collapse
|
34
|
Che SPY, DeLeonardis C, Shuler ML, Stokol T. Tissue factor-expressing tumor cells can bind to immobilized recombinant tissue factor pathway inhibitor under static and shear conditions in vitro. PLoS One 2015; 10:e0123717. [PMID: 25849335 PMCID: PMC4388665 DOI: 10.1371/journal.pone.0123717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 03/06/2015] [Indexed: 01/10/2023] Open
Abstract
Mammary tumors and malignant breast cancer cell lines over-express the coagulation factor, tissue factor (TF). High expression of TF is associated with a poor prognosis in breast cancer. Tissue factor pathway inhibitor (TFPI), the endogenous inhibitor of TF, is constitutively expressed on the endothelium. We hypothesized that TF-expressing tumor cells can bind to immobilized recombinant TFPI, leading to arrest of the tumor cells under shear in vitro. We evaluated the adhesion of breast cancer cells to immobilized TFPI under static and shear conditions (0.35 – 1.3 dyn/cm2). We found that high-TF-expressing breast cancer cells, MDA-MB-231 (with a TF density of 460,000/cell), but not low TF-expressing MCF-7 (with a TF density of 1,400/cell), adhered to recombinant TFPI, under static and shear conditions. Adhesion of MDA-MB-231 cells to TFPI required activated factor VII (FVIIa), but not FX, and was inhibited by a factor VIIa-blocking anti-TF antibody. Under shear, adhesion to TFPI was dependent on the TFPI-coating concentration, FVIIa concentration and shear stress, with no observed adhesion at shear stresses greater than 1.0 dyn/cm2. This is the first study showing that TF-expressing tumor cells can be captured by immobilized TFPI, a ligand constitutively expressed on the endothelium, under low shear in vitro. Based on our results, we hypothesize that TFPI could be a novel ligand mediating the arrest of TF-expressing tumor cells in high TFPI-expressing vessels under conditions of low shear during metastasis.
Collapse
Affiliation(s)
- Sara P. Y. Che
- Department of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY, United States of America
| | - Christine DeLeonardis
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Michael L. Shuler
- Department of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY, United States of America
| | - Tracy Stokol
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
35
|
Atrial natriuretic peptide prevents cancer metastasis through vascular endothelial cells. Proc Natl Acad Sci U S A 2015; 112:4086-91. [PMID: 25775533 PMCID: PMC4386325 DOI: 10.1073/pnas.1417273112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most patients suffering from cancer die of metastatic disease. Surgical removal of solid tumors is performed as an initial attempt to cure patients; however, surgery is often accompanied with trauma, which can promote early recurrence by provoking detachment of tumor cells into the blood stream or inducing systemic inflammation or both. We have previously reported that administration of atrial natriuretic peptide (ANP) during the perioperative period reduces inflammatory response and has a prophylactic effect on postoperative cardiopulmonary complications in lung cancer surgery. Here we demonstrate that cancer recurrence after curative surgery was significantly lower in ANP-treated patients than in control patients (surgery alone). ANP is known to bind specifically to NPR1 [also called guanylyl cyclase-A (GC-A) receptor]. In mouse models, we found that metastasis of GC-A-nonexpressing tumor cells (i.e., B16 mouse melanoma cells) to the lung was increased in vascular endothelium-specific GC-A knockout mice and decreased in vascular endothelium-specific GC-A transgenic mice compared with control mice. We examined the effect of ANP on tumor metastasis in mice treated with lipopolysaccharide, which mimics systemic inflammation induced by surgical stress. ANP inhibited the adhesion of cancer cells to pulmonary arterial and micro-vascular endothelial cells by suppressing the E-selectin expression that is promoted by inflammation. These results suggest that ANP prevents cancer metastasis by inhibiting the adhesion of tumor cells to inflamed endothelial cells.
Collapse
|
36
|
Modelling the metastatic cascade by in vitro microfluidic platforms. ACTA ACUST UNITED AC 2015; 49:21-9. [PMID: 25759320 DOI: 10.1016/j.proghi.2015.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 02/07/2023]
Abstract
The metastatic cascade comprises the following steps in sequential manner: the future metastatic cell has to leave the primary tumor mass, degrade the surrounding extracellular matrix, extravasate and circulate within in the bloodstream. Thereafter it has to attach to the endothelium of a target organ, intravasate into the connective tissue and has to proliferate to form a clinically detectable metastasis. We overview the in vitro microfluidic platforms modelling the metastatic cascade and the evolution towards systems capable of recapitulating all the steps by a single comprehensive model.
Collapse
|
37
|
Shirure VS, Liu T, Delgadillo LF, Cuckler CM, Tees DFJ, Benencia F, Goetz DJ, Burdick MM. CD44 variant isoforms expressed by breast cancer cells are functional E-selectin ligands under flow conditions. Am J Physiol Cell Physiol 2014; 308:C68-78. [PMID: 25339657 DOI: 10.1152/ajpcell.00094.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adhesion of circulating tumor cells to vascular endothelium is mediated by specialized molecules that are functional under shear forces exerted by hematogenous flow. Endothelial E-selectin binding to glycoforms of CD44 mediates shear-resistant cell adhesion in numerous physiological and pathological conditions. However, this pathway is poorly understood in breast cancer and is the focus of the present investigation. All breast cancer cell lines used in this study strongly expressed CD44. In particular, BT-20 cells expressed CD44s and multiple CD44v isoforms, whereas MDA-MB-231 cells predominantly expressed CD44s but weakly expressed CD44v isoforms. CD44 expressed by BT-20, but not MDA-MB-231, cells possessed E-selectin ligand activity as detected by Western blotting and antigen capture assays. Importantly, CD44 expressed by intact BT-20 cells were functional E-selectin ligands, regulating cell rolling and adhesion under physiological flow conditions, as found by shRNA-targeted silencing of CD44. Antigen capture assays strongly suggest greater shear-resistant E-selectin ligand activity of BT-20 cell CD44v isoforms than CD44s. Surprisingly, CD44 was not recognized by the HECA-452 MAb, which detects sialofucosylated epitopes traditionally expressed by selectin ligands, suggesting that BT-20 cells express a novel glycoform of CD44v as an E-selectin ligand. The activity of this glycoform was predominantly attributed to N-linked glycans. Furthermore, expression of CD44v as an E-selectin ligand correlated with high levels of fucosyltransferase-3 and -6 and epithelial, rather than mesenchymal, cell phenotype. Together, these data demonstrate that expression of CD44 as a functional E-selectin ligand may be important in breast cancer metastasis.
Collapse
Affiliation(s)
- Venktesh S Shirure
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - Tiantian Liu
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - Luis F Delgadillo
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - Chaz M Cuckler
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - David F J Tees
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio; Department of Physics and Astronomy, College of Arts and Sciences, Ohio University, Athens, Ohio; and
| | - Fabian Benencia
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Douglas J Goetz
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio; Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - Monica M Burdick
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio; Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio;
| |
Collapse
|
38
|
Gakhar G, Bander NH, Nanus DM. In vitro method to observe E-selectin-mediated interactions between prostate circulating tumor cells derived from patients and human endothelial cells. J Vis Exp 2014:51468. [PMID: 24894373 PMCID: PMC4188216 DOI: 10.3791/51468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Metastasis is a process in which tumor cells shed from the primary tumor intravasate blood vascular and lymphatic system, thereby, gaining access to extravasate and form a secondary niche. The extravasation of tumor cells from the blood vascular system can be studied using endothelial cells (ECs) and tumor cells obtained from different cell lines. Initial studies were conducted using static conditions but it has been well documented that ECs behave differently under physiological flow conditions. Therefore, different flow chamber assemblies are currently being used to studying cancer cell interactions with ECs. Current flow chamber assemblies offer reproducible results using either different cell lines or fluid at different shear stress conditions. However, to observe and study interactions with rare cells such as circulating tumor cells (CTCs), certain changes are required to be made to the conventional flow chamber assembly. CTCs are a rare cell population among millions of blood cells. Consequently, it is difficult to obtain a pure population of CTCs. Contamination of CTCs with different types of cells normally found in the circulation is inevitable using present enrichment or depletion techniques. In the present report, we describe a unique method to fluorescently label circulating prostate cancer cells and study their interactions with ECs in a self-assembled flow chamber system. This technique can be further applied to observe interactions between prostate CTCs and any protein of interest.
Collapse
Affiliation(s)
- Gunjan Gakhar
- Department of Medicine, Weill Cornell Medical College
| | - Neil H Bander
- Department of Urology, Weill Cornell Medical College
| | - David M Nanus
- Department of Medicine, Weill Cornell Medical College;
| |
Collapse
|
39
|
Abstract
Hematogenous metastasis is still a poorly understood phenomenon. The rate-limiting step within the metastatic cascade is not yet clear although it may be estimated that the extravasation of circulating tumor cells is a step of crucial importance, as most tumor cells that are shed into circulation undergo apoptosis. The process of extravasation includes a cascade of consecutive steps, starting with adhesion of tumor cells circulating in the bloodstream to endothelial cells, mimicking leukocyte adhesion and transmigration. Endothelial cell selectin-leukocyte glycan interaction occurs when leukocytes adhere to endothelial cells under conditions of shear stress. As there are parallels between cancer cell endothelial interactions with leukocyte endothelial cell systems an experimental setup has been developed in which adhesion of small cell lung carcinoma adhesive properties can be analyzed under physiological shear stress conditions during their attachment to E- and P-selection.
Collapse
|
40
|
Uppal A, Wightman SC, Ganai S, Weichselbaum RR, An G. Investigation of the essential role of platelet-tumor cell interactions in metastasis progression using an agent-based model. Theor Biol Med Model 2014; 11:17. [PMID: 24725600 PMCID: PMC4022382 DOI: 10.1186/1742-4682-11-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/04/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Metastatic tumors are a major source of morbidity and mortality for most cancers. Interaction of circulating tumor cells with endothelium, platelets and neutrophils play an important role in the early stages of metastasis formation. These complex dynamics have proven difficult to study in experimental models. Prior computational models of metastases have focused on tumor cell growth in a host environment, or prediction of metastasis formation from clinical data. We used agent-based modeling (ABM) to dynamically represent hypotheses of essential steps involved in circulating tumor cell adhesion and interaction with other circulating cells, examine their functional constraints, and predict effects of inhibiting specific mechanisms. METHODS We developed an ABM of Early Metastasis (ABMEM), a descriptive semi-mechanistic model that replicates experimentally observed behaviors of populations of circulating tumor cells, neutrophils, platelets and endothelial cells while incorporating representations of known surface receptor, autocrine and paracrine interactions. Essential downstream cellular processes were incorporated to simulate activation in response to stimuli, and calibrated with experimental data. The ABMEM was used to identify potential points of interdiction through examination of dynamic outcomes such as rate of tumor cell binding after inhibition of specific platelet or tumor receptors. RESULTS The ABMEM reproduced experimental data concerning neutrophil rolling over endothelial cells, inflammation-induced binding between neutrophils and platelets, and tumor cell interactions with these cells. Simulated platelet inhibition with anti-platelet drugs produced unstable aggregates with frequent detachment and re-binding. The ABMEM replicates findings from experimental models of circulating tumor cell adhesion, and suggests platelets play a critical role in this pre-requisite for metastasis formation. Similar effects were observed with inhibition of tumor integrin αV/β3. These findings suggest that anti-platelet or anti-integrin therapies may decrease metastasis by preventing stable circulating tumor cell adhesion. CONCLUSION Circulating tumor cell adhesion is a complex, dynamic process involving multiple cell-cell interactions. The ABMEM successfully captures the essential interactions necessary for this process, and allows for in-silico iterative characterization and invalidation of proposed hypotheses regarding this process in conjunction with in-vitro and in-vivo models. Our results suggest that anti-platelet therapies and anti-integrin therapies may play a promising role in inhibiting metastasis formation.
Collapse
Affiliation(s)
| | | | | | | | - Gary An
- Department of Surgery, The University of Chicago Medicine, 5841 S, Maryland Avenue, MC 5094 S-032, Chicago, IL 60637, USA.
| |
Collapse
|
41
|
Gakhar G, Navarro VN, Jurish M, Lee GY, Tagawa ST, Akhtar NH, Seandel M, Geng Y, Liu H, Bander NH, Giannakakou P, Christos PJ, King MR, Nanus DM. Circulating tumor cells from prostate cancer patients interact with E-selectin under physiologic blood flow. PLoS One 2013; 8:e85143. [PMID: 24386459 PMCID: PMC3874033 DOI: 10.1371/journal.pone.0085143] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/23/2013] [Indexed: 11/25/2022] Open
Abstract
Hematogenous metastasis accounts for the majority of cancer-related deaths, yet the mechanism remains unclear. Circulating tumor cells (CTCs) in blood may employ different pathways to cross blood endothelial barrier and establish a metastatic niche. Several studies provide evidence that prostate cancer (PCa) cell tethering and rolling on microvascular endothelium via E-selectin/E-selectin ligand interactions under shear flow theoretically promote extravasation and contribute to the development of metastases. However, it is unknown if CTCs from PCa patients interact with E-selectin expressed on endothelium, initiating a route for tumor metastases. Here we report that CTCs derived from PCa patients showed interactions with E-selectin and E-selectin expressing endothelial cells. To examine E-selectin-mediated interactions of PCa cell lines and CTCs derived from metastatic PCa patients, we used fluorescently-labeled anti-prostate specific membrane antigen (PSMA) monoclonal antibody J591-488 which is internalized following cell-surface binding. We employed a microscale flow device consisting of E-selectin-coated microtubes and human umbilical vein endothelial cells (HUVECs) on parallel-plate flow chamber simulating vascular endothelium. We observed that J591-488 did not significantly alter the rolling behavior in PCa cells at shear stresses below 3 dyn/cm(2). CTCs obtained from 31 PCa patient samples showed that CTCs tether and stably interact with E-selectin and E-selectin expressing HUVECs at physiological shear stress. Interestingly, samples collected during disease progression demonstrated significantly more CTC/E-selectin interactions than samples during times of therapeutic response (p=0.016). Analysis of the expression of sialyl Lewis X (sLe(x)) in patient samples showed that a small subset comprising 1.9-18.8% of CTCs possess high sLe(x) expression. Furthermore, E-selectin-mediated interactions between prostate CTCs and HUVECs were diminished in the presence of anti-E-selectin neutralizing antibody. CTC-Endothelial interactions provide a novel insight into potential adhesive mechanisms of prostate CTCs as a means to initiate metastasis.
Collapse
Affiliation(s)
- Gunjan Gakhar
- Deparment of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York, United States of America
| | - Vicente N. Navarro
- Department of Urology, Weill Cornell Medical College, New York, New York, United States of America
| | - Madelyn Jurish
- Deparment of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York, United States of America
| | - Guang Yu. Lee
- Deparment of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York, United States of America
| | - Scott T. Tagawa
- Deparment of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York, United States of America
- Department of Urology, Weill Cornell Medical College, New York, New York, United States of America
- Weill Cornell Cancer Center, Weill Cornell Medical College, New York, New York, United States of America
| | - Naveed H. Akhtar
- Deparment of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York, United States of America
| | - Marco Seandel
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Yue Geng
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - He Liu
- Department of Urology, Weill Cornell Medical College, New York, New York, United States of America
| | - Neil H. Bander
- Department of Urology, Weill Cornell Medical College, New York, New York, United States of America
- Weill Cornell Cancer Center, Weill Cornell Medical College, New York, New York, United States of America
| | - Paraskevi Giannakakou
- Deparment of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York, United States of America
- Weill Cornell Cancer Center, Weill Cornell Medical College, New York, New York, United States of America
| | - Paul J. Christos
- Division of Biostatistics and Epidemiology, Department of Public Health, Weill Cornell Medical College, New York, New York, United States of America
| | - Michael R. King
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - David M. Nanus
- Deparment of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York, United States of America
- Department of Urology, Weill Cornell Medical College, New York, New York, United States of America
- Weill Cornell Cancer Center, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
42
|
Mitchell MJ, King MR. Physical biology in cancer. 3. The role of cell glycocalyx in vascular transport of circulating tumor cells. Am J Physiol Cell Physiol 2013; 306:C89-97. [PMID: 24133067 PMCID: PMC3919988 DOI: 10.1152/ajpcell.00285.2013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Circulating tumor cells (CTCs) in blood are known to adhere to the luminal surface of the microvasculature via receptor-mediated adhesion, which contributes to the spread of cancer metastasis to anatomically distant organs. Such interactions between ligands on CTCs and endothelial cell-bound surface receptors are sensitive to receptor-ligand distances at the nanoscale. The sugar-rich coating expressed on the surface of CTCs and endothelial cells, known as the glycocalyx, serves as a physical structure that can control the spacing and, thus, the availability of such receptor-ligand interactions. The cancer cell glycocalyx can also regulate the ability of therapeutic ligands to bind to CTCs in the bloodstream. Here, we review the role of cell glycocalyx on the adhesion and therapeutic treatment of CTCs in the bloodstream.
Collapse
Affiliation(s)
- Michael J Mitchell
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | |
Collapse
|
43
|
Rousseau MC, Hsu RYC, Spicer JD, McDonald B, Chan CHF, Perera RM, Giannias B, Chow SC, Rousseau S, Law S, Ferri LE. Lipopolysaccharide-induced toll-like receptor 4 signaling enhances the migratory ability of human esophageal cancer cells in a selectin-dependent manner. Surgery 2013; 154:69-77. [PMID: 23809486 DOI: 10.1016/j.surg.2013.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 03/13/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Esophageal cancer is an aggressive malignancy, and emerging data suggest that postoperative infections may promote cancer progression. Systemic exposure to lipopolysaccharide (LPS), a Gram-negative bacterial antigen involved in such infections, has been shown to increase cancer cell adhesion to the hepatic sinusoids in vivo. We investigated the direct impact of LPS on the migratory ability of esophageal cancer cells via the LPS receptor toll-like receptor 4 (TLR4). METHODS Human esophageal squamous carcinoma cell lines and immortalized normal esophageal mucosa cells were tested for TLR4 surface expression by reverse transcription polymerase chain reaction (RT-PCR) and flow cytometry. TLR4 signaling in response to LPS stimulation was tested in these cells by measuring p38 MAP kinase phosphorylation on Western blot. The impact of TLR4 signaling was measured by static adhesion assays in vitro and on early in vivo migration by intravital microscopy of the liver. RESULTS Upon LPS stimulation, phosphorylation of p38 was detected in the human esophageal cancer cells HKESC-2. Also, LPS-stimulated HKESC-2 cells showed a twofold increased adhesion to fibronectin and to hepatic sinusoidal endothelium. These effects were abolished by TLR4 inhibition using the small-molecule inhibitor eritoran. Adhesion to fibronectin and hepatic sinusoidal endothelium was also diminished by blockade of p38 phosphorylation and inhibitors of selectin-selectin ligand binding. CONCLUSION LPS can increase the migratory ability of human esophageal cancer cells by increasing their adhesive properties through TLR4 signaling and selectin ligands. TLR4, p38, and selectin blockade may therefore prove to be a new therapeutic strategy for this aggressive malignancy.
Collapse
Affiliation(s)
- Mathieu C Rousseau
- LD McLean Surgical Research Laboratories, Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Goncharova V, Khaldoyanidi SK. A novel three-dimensional flow chamber device to study chemokine-directed extravasation of cells circulating under physiological flow conditions. J Vis Exp 2013:e50959. [PMID: 23893091 PMCID: PMC3805051 DOI: 10.3791/50959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Extravasation of circulating cells from the bloodstream plays a central role in many physiological and pathophysiological processes, including stem cell homing and tumor metastasis. The three-dimensional flow chamber device (hereafter the 3D device) is a novel in vitro technology that recreates physiological shear stress and allows each step of the cell extravasation cascade to be quantified. The 3D device consists of an upper compartment in which the cells of interest circulate under shear stress, and a lower compartment of static wells that contain the chemoattractants of interest. The two compartments are separated by porous inserts coated with a monolayer of endothelial cells (EC). An optional second insert with microenvironmental cells of interest can be placed immediately beneath the EC layer. A gas exchange unit allows the optimal CO2 tension to be maintained and provides an access point to add or withdraw cells or compounds during the experiment. The test cells circulate in the upper compartment at the desired shear stress (flow rate) controlled by a peristaltic pump. At the end of the experiment, the circulating and migrated cells are collected for further analyses. The 3D device can be used to examine cell rolling on and adhesion to EC under shear stress, transmigration in response to chemokine gradients, resistance to shear stress, cluster formation, and cell survival. In addition, the optional second insert allows the effects of crosstalk between EC and microenvironmental cells to be examined. The translational applications of the 3D device include testing of drug candidates that target cell migration and predicting the in vivo behavior of cells after intravenous injection. Thus, the novel 3D device is a versatile and inexpensive tool to study the molecular mechanisms that mediate cellular extravasation.
Collapse
|
45
|
Warrick JW, Young EWK, Schmuck EG, Saupe KW, Beebe DJ. High-content adhesion assay to address limited cell samples. Integr Biol (Camb) 2013; 5:720-7. [PMID: 23426645 PMCID: PMC3832292 DOI: 10.1039/c3ib20224k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell adhesion is a broad topic in cell biology that involves physical interactions between cells and other cells or the surrounding extracellular matrix, and is implicated in major research areas including cancer, development, tissue engineering, and regenerative medicine. While current methods have contributed significantly to our understanding of cell adhesion, these methods are unsuitable for tackling many biological questions requiring intermediate numbers of cells (10(2)-10(5)), including small animal biopsies, clinical samples, and rare cell isolates. To overcome this fundamental limitation, we developed a new assay to quantify the adhesion of ~10(2)-10(3) cells at a time on engineered substrates, and examined the adhesion strength and population heterogeneity via distribution-based modeling. We validated the platform by testing adhesion strength of cancer cells from three different cancer types (breast, prostate, and multiple myeloma) on both IL-1β activated and non-activated endothelial monolayers, and observed significantly increased adhesion for each cancer cell type upon endothelial activation, while identifying and quantifying distinct subpopulations of cell-substrate interactions. We then applied the assay to characterize adhesion of primary bone marrow stromal cells to different cardiac fibroblast-derived matrix substrates to demonstrate the ability to study limited cell populations in the context of cardiac cell-based therapies. Overall, these results demonstrate the sensitivity and robustness of the assay as well as its ability to enable extraction of high content, functional data from limited and potentially rare primary samples. We anticipate this method will enable a new class of biological studies with potential impact in basic and translational research.
Collapse
Affiliation(s)
- Jay W. Warrick
- University of Wisconsin, Biomedical Engineering, Madison, WI. Fax: XX XXXX XXXX; Tel: XX XXXX XXXX
| | - Edmond W. K. Young
- University of Wisconsin, Biomedical Engineering, Madison, WI. Fax: XX XXXX XXXX; Tel: XX XXXX XXXX
| | - Eric G. Schmuck
- University of Wisconsin, School of Medicine and Public Health, Madison, WI
| | - Kurt W. Saupe
- University of Wisconsin, School of Medicine and Public Health, Madison, WI
| | - David J. Beebe
- University of Wisconsin, Biomedical Engineering, Madison, WI. Fax: XX XXXX XXXX; Tel: XX XXXX XXXX
| |
Collapse
|
46
|
Mitchell MJ, King MR. Computational and experimental models of cancer cell response to fluid shear stress. Front Oncol 2013; 3:44. [PMID: 23467856 PMCID: PMC3587800 DOI: 10.3389/fonc.2013.00044] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/18/2013] [Indexed: 11/14/2022] Open
Abstract
It has become evident that mechanical forces play a key role in cancer metastasis, a complex series of steps that is responsible for the majority of cancer-related deaths. One such force is fluid shear stress, exerted on circulating tumor cells by blood flow in the vascular microenvironment, and also on tumor cells exposed to slow interstitial flows in the tumor microenvironment. Computational and experimental models have the potential to elucidate metastatic behavior of cells exposed to such forces. Here, we review the fluid-generated forces that tumor cells are exposed to in the vascular and tumor microenvironments, and discuss recent computational and experimental models that have revealed mechanotransduction phenomena that may play a role in the metastatic process.
Collapse
Affiliation(s)
- Michael J Mitchell
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
47
|
Negishi Y, Hamano N, Tsunoda Y, Oda Y, Choijamts B, Endo-Takahashi Y, Omata D, Suzuki R, Maruyama K, Nomizu M, Emoto M, Aramaki Y. AG73-modified Bubble liposomes for targeted ultrasound imaging of tumor neovasculature. Biomaterials 2012; 34:501-7. [PMID: 23088840 DOI: 10.1016/j.biomaterials.2012.09.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/23/2012] [Indexed: 12/14/2022]
Abstract
Ultrasound imaging is a widely used imaging technique. The use of contrast agents has become an indispensible part of clinical ultrasound imaging, and molecular imaging via ultrasound has recently attracted significant attention. We recently reported that "Bubble liposomes" (BLs) encapsulating US imaging gas liposomes were suitable for ultrasound imaging and gene delivery. The 12 amino acid AG73 peptide derived from the laminin α1 chain is a ligand for syndecans, and syndecan-2 is highly expressed in blood vessels. In this study, we prepared AG73 peptide-modified BLs (AG73-BLs) and assessed their specific attachment and ultrasound imaging ability for blood vessels in vitro and in vivo. First, we assessed the specific attachment of AG73-BLs in vitro, using flow cytometry and microscopy. AG73-BLs showed specific attachment compared with non-labeled or control peptide-modified BLs. Next, we examined ultrasound imaging in tumor-bearing mice. When BLs were administered, contrast imaging of AG73-BLs was sustainable for up to 4 min, while contrast imaging of non-labeled BLs was not observed. Thus, it is suggested that AG73-BLs may become useful ultrasound contrast agents in the clinic for diagnosis based on ultrasound imaging.
Collapse
Affiliation(s)
- Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ghislin S, Obino D, Middendorp S, Boggetto N, Alcaide-Loridan C, Deshayes F. LFA-1 and ICAM-1 expression induced during melanoma-endothelial cell co-culture favors the transendothelial migration of melanoma cell lines in vitro. BMC Cancer 2012; 12:455. [PMID: 23039186 PMCID: PMC3495854 DOI: 10.1186/1471-2407-12-455] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 10/01/2012] [Indexed: 11/10/2022] Open
Abstract
Background Patients with metastatic melanoma have a poor median rate of survival. It is therefore necessary to increase our knowledge about melanoma cell dissemination which includes extravasation, where cancer cells cross the endothelial barrier. Extravasation is well understood during travelling of white blood cells, and involves integrins such as LFA-1 (composed of two chains, CD11a and CD18) expressed by T cells, while ICAM-1 is induced during inflammation by endothelial cells. Although melanoma cell lines cross endothelial cell barriers, they do not express LFA-1. We therefore hypothesized that melanoma-endothelial cell co-culture might induce the LFA-1/ICAM ligand/receptor couple during melanoma transmigration. Methods A transwell approach has been used as well as blocking antibodies against CD11a, CD18 and ICAM-1. Data were analyzed with an epifluorescence microscope. Fluorescence intensity was quantified with the ImageJ software. Results We show here that HUVEC-conditioned medium induce cell-surface expression of LFA-1 on melanoma cell lines. Similarly melanoma-conditioned medium activates ICAM-1 expression in endothelial cells. Accordingly blocking antibodies of ICAM-1, CD11a or CD18 strongly decrease melanoma transmigration. We therefore demonstrate that melanoma cells can cross endothelial monolayers in vitro due to the induction of ICAM-1 and LFA-1 occurring during the co-culture of melanoma and endothelial cells. Our data further suggest a role of LFA-1 and ICAM-1 in the formation of melanoma cell clumps enhancing tumor cell transmigration. Conclusion Melanoma-endothelial cell co-culture induces LFA-1 and ICAM-1 expression, thereby favoring in vitro melanoma trans-migration.
Collapse
Affiliation(s)
- Stephanie Ghislin
- Team Regulation des Reponses Immunitaires, Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, F-75205, France
| | | | | | | | | | | |
Collapse
|
49
|
Shirure VS, Reynolds NM, Burdick MM. Mac-2 binding protein is a novel E-selectin ligand expressed by breast cancer cells. PLoS One 2012; 7:e44529. [PMID: 22970241 PMCID: PMC3435295 DOI: 10.1371/journal.pone.0044529] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 08/03/2012] [Indexed: 12/01/2022] Open
Abstract
Hematogenous metastasis involves the adhesion of circulating tumor cells to vascular endothelium of the secondary site. We hypothesized that breast cancer cell adhesion is mediated by interaction of endothelial E-selectin with its glycoprotein counter-receptor(s) expressed on breast cancer cells. At a hematogenous wall shear rate, ZR-75-1 breast cancer cells specifically adhered to E-selectin expressing human umbilical vein endothelial cells when tested in parallel plate flow chamber adhesion assays. Consistent with their E-selectin ligand activity, ZR-75-1 cells expressed flow cytometrically detectable epitopes of HECA-452 mAb, which recognizes high efficiency E-selectin ligands typified by sialofucosylated moieties. Multiple E-selectin reactive proteins expressed by ZR-75-1 cells were revealed by immunoprecipitation with E-selectin chimera (E-Ig chimera) followed by Western blotting. Mass spectrometry analysis of the 72 kDa protein, which exhibited the most prominent E-selectin ligand activity, corresponded to Mac-2 binding protein (Mac-2BP), a heretofore unidentified E-selectin ligand. Immunoprecipitated Mac-2BP expressed sialofucosylated epitopes and possessed E-selectin ligand activity when tested by Western blot analysis using HECA-452 mAb and E-Ig chimera, respectively, demonstrating that Mac-2BP is a novel high efficiency E-selectin ligand. Furthermore, silencing the expression of Mac-2BP from ZR-75-1 cells by shRNA markedly reduced their adhesion to E-selectin expressing cells under physiological flow conditions, confirming the functional E-selectin ligand activity of Mac-2BP on intact cells. In addition to ZR-75-1 cells, several other E-selectin ligand positive breast cancer cell lines expressed Mac-2BP as detected by Western blot and flow cytometry, suggesting that Mac-2BP may be an E-selectin ligand in a variety of breast cancer types. Further, invasive breast carcinoma tissue showed co-localized expression of Mac-2BP and HECA-452 antigens by fluorescence microscopy, underscoring the possible role of Mac-2BP as an E-selectin ligand. In summary, breast cancer cells express Mac-2BP as a novel E-selectin ligand, potentially revealing a new prognostic and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Venktesh S. Shirure
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States of America
| | - Nathan M. Reynolds
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States of America
| | - Monica M. Burdick
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States of America
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States of America
- * E-mail:
| |
Collapse
|
50
|
Burdick MM, Henson KA, Delgadillo LF, Choi YE, Goetz DJ, Tees DFJ, Benencia F. Expression of E-selectin ligands on circulating tumor cells: cross-regulation with cancer stem cell regulatory pathways? Front Oncol 2012; 2:103. [PMID: 22934288 PMCID: PMC3422812 DOI: 10.3389/fonc.2012.00103] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/02/2012] [Indexed: 12/19/2022] Open
Abstract
Although significant progress has been made in the fight against cancer, successful treatment strategies have yet to be developed to combat those tumors that have metastasized to distant organs. Poor characterization of the molecular mechanisms of cancer spread is a major impediment to designing predictive diagnostics and effective clinical interventions against late stage disease. In hematogenous metastasis, it is widely suspected that circulating tumor cells (CTCs) express specific adhesion molecules that actively initiate contact with the vascular endothelium lining the vessel walls of the target organ. This "tethering" is mediated by ligands expressed by CTCs that bind to E-selectin expressed by endothelial cells. However, it is currently unknown whether expression of functional E-selectin ligands on CTCs is related to cancer stem cell regulatory or maintenance pathways, particularly epithelial-to-mesenchymal transition and the reverse, mesenchymal-to-epithelial transition. In this hypothesis and theory article, we explore the potential roles of these mechanisms on the dynamic regulation of selectin ligands mediating CTC trafficking during metastasis.
Collapse
Affiliation(s)
- Monica M Burdick
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University Athens, OH, USA
| | | | | | | | | | | | | |
Collapse
|