1
|
Kang SH, Ham HY, Hong CW, Song DK. Glycine induces enhancement of bactericidal activity of neutrophils. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:229-238. [PMID: 35766001 PMCID: PMC9247710 DOI: 10.4196/kjpp.2022.26.4.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
Abstract
Severe bacterial infections are frequently accompanied by depressed neutrophil functions. Thus, agents that increase the microbicidal activity of neutrophils could add to a direct antimicrobial therapy. Lysophosphatidylcholine augments neutrophil bactericidal activity via the glycine (Gly)/glycine receptor (GlyR) α2/TRPM2/p38 mitogen-activated protein kinase (MAPK) pathway. However, the direct effect of glycine on neutrophil bactericidal activity was not reported. In this study, the effect of glycine on neutrophil bactericidal activity was examined. Glycine augmented bactericidal activity of human neutrophils (EC50 = 238 μM) in a strychnine (a GlyR antagonist)-sensitive manner. Glycine augmented bacterial clearance in mice, which was also blocked by strychnine (0.4 mg/kg, s.c.). Glycine enhanced NADPH oxidase-mediated reactive oxygen species (ROS) production and TRPM2-mediated [Ca2+]i increase in neutrophils that had taken up E. coli. Glycine augmented Lucifer yellow uptake (fluid-phase pinocytosis) and azurophil granule-phagosome fusion in neutrophils that had taken up E. coli in an SB203580 (a p38 MAPK inhibitor)-sensitive manner. These findings indicate that glycine augments neutrophil microbicidal activity by enhancing azurophil granule-phagosome fusion via the GlyRα2/ROS/calcium/p38 MAPK pathway. We suggest that glycine could be a useful agent for increasing neutrophil bacterial clearance.
Collapse
Affiliation(s)
- Shin-Hae Kang
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hwa-Yong Ham
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
2
|
Basok SS, Schepetkin IA, Khlebnikov AI, Lutsyuk AF, Kirichenko TI, Kirpotina LN, Pavlovsky VI, Leonov KA, Vishenkova DA, Quinn MT. Synthesis, Biological Evaluation, and Molecular Modeling of Aza-Crown Ethers. Molecules 2021; 26:molecules26082225. [PMID: 33921479 PMCID: PMC8069214 DOI: 10.3390/molecules26082225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Synthetic and natural ionophores have been developed to catalyze ion transport and have been shown to exhibit a variety of biological effects. We synthesized 24 aza- and diaza-crown ethers containing adamantyl, adamantylalkyl, aminomethylbenzoyl, and ε-aminocaproyl substituents and analyzed their biological effects in vitro. Ten of the compounds (8, 10–17, and 21) increased intracellular calcium ([Ca2+]i) in human neutrophils, with the most potent being compound 15 (N,N’-bis[2-(1-adamantyl)acetyl]-4,10-diaza-15-crown-5), suggesting that these compounds could alter normal neutrophil [Ca2+]i flux. Indeed, a number of these compounds (i.e., 8, 10–17, and 21) inhibited [Ca2+]i flux in human neutrophils activated by N-formyl peptide (fMLF). Some of these compounds also inhibited chemotactic peptide-induced [Ca2+]i flux in HL60 cells transfected with N-formyl peptide receptor 1 or 2 (FPR1 or FPR2). In addition, several of the active compounds inhibited neutrophil reactive oxygen species production induced by phorbol 12-myristate 13-acetate (PMA) and neutrophil chemotaxis toward fMLF, as both of these processes are highly dependent on regulated [Ca2+]i flux. Quantum chemical calculations were performed on five structure-related diaza-crown ethers and their complexes with Ca2+, Na+, and K+ to obtain a set of molecular electronic properties and to correlate these properties with biological activity. According to density-functional theory (DFT) modeling, Ca2+ ions were more effectively bound by these compounds versus Na+ and K+. The DFT-optimized structures of the ligand-Ca2+ complexes and quantitative structure-activity relationship (QSAR) analysis showed that the carbonyl oxygen atoms of the N,N’-diacylated diaza-crown ethers participated in cation binding and could play an important role in Ca2+ transfer. Thus, our modeling experiments provide a molecular basis to explain at least part of the ionophore mechanism of biological action of aza-crown ethers.
Collapse
Affiliation(s)
- Stepan S. Basok
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Science of Ukraine, 65080 Odessa, Ukraine; (S.S.B.); (A.F.L.); (T.I.K.)
| | - Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Andrei I. Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.I.K.); (V.I.P.); (D.A.V.)
| | - Anatoliy F. Lutsyuk
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Science of Ukraine, 65080 Odessa, Ukraine; (S.S.B.); (A.F.L.); (T.I.K.)
| | - Tatiana I. Kirichenko
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Science of Ukraine, 65080 Odessa, Ukraine; (S.S.B.); (A.F.L.); (T.I.K.)
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Victor I. Pavlovsky
- Kizhner Research Center, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.I.K.); (V.I.P.); (D.A.V.)
- Innovative Pharmacology Research, LLC, Tomsk 634021, Russia;
| | - Klim A. Leonov
- Innovative Pharmacology Research, LLC, Tomsk 634021, Russia;
| | - Darya A. Vishenkova
- Kizhner Research Center, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.I.K.); (V.I.P.); (D.A.V.)
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
- Correspondence: ; Tel.: +406-994-4707; Fax: +406-994-4303
| |
Collapse
|
3
|
Forrest OA, Ingersoll SA, Preininger MK, Laval J, Limoli DH, Brown MR, Lee FE, Bedi B, Sadikot RT, Goldberg JB, Tangpricha V, Gaggar A, Tirouvanziam R. Frontline Science: Pathological conditioning of human neutrophils recruited to the airway milieu in cystic fibrosis. J Leukoc Biol 2018; 104:665-675. [PMID: 29741792 DOI: 10.1002/jlb.5hi1117-454rr] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
Recruitment of neutrophils to the airways, and their pathological conditioning therein, drive tissue damage and coincide with the loss of lung function in patients with cystic fibrosis (CF). So far, these key processes have not been adequately recapitulated in models, hampering drug development. Here, we hypothesized that the migration of naïve blood neutrophils into CF airway fluid in vitro would induce similar functional adaptation to that observed in vivo, and provide a model to identify new therapies. We used multiple platforms (flow cytometry, bacteria-killing, and metabolic assays) to characterize functional properties of blood neutrophils recruited in a transepithelial migration model using airway milieu from CF subjects as an apical chemoattractant. Similarly to neutrophils recruited to CF airways in vivo, neutrophils migrated into CF airway milieu in vitro display depressed phagocytic receptor expression and bacterial killing, but enhanced granule release, immunoregulatory function (arginase-1 activation), and metabolic activities, including high Glut1 expression, glycolysis, and oxidant production. We also identify enhanced pinocytic activity as a novel feature of these cells. In vitro treatment with the leukotriene pathway inhibitor acebilustat reduces the number of transmigrating neutrophils, while the metabolic modulator metformin decreases metabolism and oxidant production, but fails to restore bacterial killing. Interestingly, we describe similar pathological conditioning of neutrophils in other inflammatory airway diseases. We successfully tested the hypothesis that recruitment of neutrophils into airway milieu from patients with CF in vitro induces similar pathological conditioning to that observed in vivo, opening new avenues for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Osric A Forrest
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sarah A Ingersoll
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marcela K Preininger
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Julie Laval
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Dominique H Limoli
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Milton R Brown
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Frances E Lee
- Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | - Ruxana T Sadikot
- Department of Medicine, Emory University, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Vin Tangpricha
- Department of Medicine, Emory University, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
4
|
The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol Mol Biol Rev 2018; 82:82/1/e00057-17. [PMID: 29436479 DOI: 10.1128/mmbr.00057-17] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comprising the majority of leukocytes in humans, neutrophils are the first immune cells to respond to inflammatory or infectious etiologies and are crucial participants in the proper functioning of both innate and adaptive immune responses. From their initial appearance in the liver, thymus, and spleen at around the eighth week of human gestation to their generation in large numbers in the bone marrow at the end of term gestation, the differentiation of the pluripotent hematopoietic stem cell into a mature, segmented neutrophil is a highly controlled process where the transcriptional regulators C/EBP-α and C/EBP-ε play a vital role. Recent advances in neutrophil biology have clarified the life cycle of these cells and revealed striking differences between neonatal and adult neutrophils based on fetal maturation and environmental factors. Here we detail neutrophil ontogeny, granulopoiesis, and neutrophil homeostasis and highlight important differences between neonatal and adult neutrophil populations.
Collapse
|
5
|
Abstract
Granules are essential for the ability of neutrophils to fulfill their role in innate immunity. Granule membranes contain proteins that react to environmental cues directing neutrophils to sites of infection and initiate generation of bactericidal oxygen species. Granules are densely packed with proteins that contribute to microbial killing when liberated to the phagosome or extracellularly. Granules are, however, highly heterogeneous and are traditionally subdivided into azurophil granules, specific granules, and gelatinase granules in addition to secretory vesicles. This review will address issues pertinent to formation of granules, which is a process intimately connected to maturation of neutrophils from their precursors in the bone marrow. We further discuss possible mechanisms by which decisions are made regarding sorting of proteins to constitutive secretion or storage in granules and how degranulation of granule subsets is regulated.
Collapse
Affiliation(s)
- Jack B Cowland
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, Copenhagen, Denmark
| | - Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, Copenhagen, Denmark.,The University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
The neutrophil-recruiting chemokine GCP-2/CXCL6 is expressed in cystic fibrosis airways and retains its functional properties after binding to extracellular DNA. Mucosal Immunol 2016; 9:112-23. [PMID: 25993443 DOI: 10.1038/mi.2015.43] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/02/2015] [Indexed: 02/06/2023]
Abstract
Infections in cystic fibrosis (CF), often involving Pseudomonas aeruginosa, result from a dysregulated airway immunity where one hallmark is the accumulation of necrotic and apoptotic immune cells, in particular neutrophils. In addition, neutrophils actively release DNA, forming neutrophil extracellular traps (NETs) that contain antimicrobial proteins. Altogether, free DNA in complex with actin accumulates in the airway lumen, resulting in highly viscous sputum that provides an anionic matrix, binding cationic antimicrobial proteins. In this study, granulocyte chemotactic protein 2 (GCP-2)/CXCL6, a neutrophil-activating chemokine with bactericidal properties, was detected in the airway epithelium of CF patients and was also present in azurophilic and specific granules of neutrophils. Elastase of neutrophils, but not of P. aeruginosa, completely degraded CXCL6 (chemokine (C-X-C motif) ligand 6). In addition, CXCL6 colocalized with extracellular DNA in both CF sputa and in in vitro-formed NETs. In vitro, CXCL6 bound DNA with a KD of 2,500 nM. Interestingly, both the bactericidal and the receptor-activating properties of CXCL6 (against neutrophils) remained largely unaffected in the presence of DNA. However, the chemotactic properties of CXCL6 were reduced by the presence of DNA. Taken together, CXCL6 is expressed in CF, retaining its functional properties even after binding to the anionic scaffold that extracellular DNA provides in CF.
Collapse
|
7
|
Green JN, Kettle AJ, Winterbourn CC. Protein chlorination in neutrophil phagosomes and correlation with bacterial killing. Free Radic Biol Med 2014; 77:49-56. [PMID: 25236747 DOI: 10.1016/j.freeradbiomed.2014.08.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/06/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
Abstract
Neutrophils ingest and kill bacteria within phagocytic vacuoles. We investigated where they produce hypochlorous acid (HOCl) following phagocytosis by measuring conversion of protein tyrosine residues to 3-chlorotyrosine. We also examined how varying chloride availability affects the relationship between HOCl formation in the phagosome and bacterial killing. Phagosomal proteins, isolated following ingestion of opsonized magnetic beads, contained 11.4 Cl-Tyr per thousand tyrosine residues. This was 12 times higher than the level in proteins from the rest of the neutrophil and ~6 times higher than previously recorded for protein from ingested bacteria. These results indicate that HOCl production is largely localized to the phagosomes and a substantial proportion reacts with phagosomal protein before reaching the microbe. This will in part detoxify the oxidant but should also form chloramines which could contribute to the killing mechanism. Neutrophils were either suspended in chloride-free gluconate buffer or pretreated with formyl-Met-Leu-Phe, a procedure that has been reported to deplete intracellular chloride. These treatments, alone or in combination, decreased both chlorination in phagosomes and killing of Staphylococcus aureus by up to 50%. There was a strong positive correlation between the two effects. Killing was predominantly oxidant and myeloperoxidase dependent (88% inhibition by diphenylene iodonium and 78% by azide). These results imply that lowering the chloride concentration limits HOCl production and oxidative killing. They support a role for HOCl generation, rather than an alternative myeloperoxidase activity, in the killing process.
Collapse
Affiliation(s)
- Jessie N Green
- Department of Pathology, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, New Zealand
| | - Anthony J Kettle
- Department of Pathology, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, New Zealand
| | - Christine C Winterbourn
- Department of Pathology, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, New Zealand.
| |
Collapse
|
8
|
Arnett E, Vadia S, Nackerman CC, Oghumu S, Satoskar AR, McLeish KR, Uriarte SM, Seveau S. The pore-forming toxin listeriolysin O is degraded by neutrophil metalloproteinase-8 and fails to mediate Listeria monocytogenes intracellular survival in neutrophils. THE JOURNAL OF IMMUNOLOGY 2013; 192:234-44. [PMID: 24319266 DOI: 10.4049/jimmunol.1301302] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The pore-forming toxin listeriolysin O (LLO) is a major virulence factor secreted by the facultative intracellular pathogen Listeria monocytogenes. This toxin facilitates L. monocytogenes intracellular survival in macrophages and diverse nonphagocytic cells by disrupting the internalization vesicle, releasing the bacterium into its replicative niche, the cytosol. Neutrophils are innate immune cells that play an important role in the control of infections, yet it was unknown if LLO could confer a survival advantage to L. monocytogenes in neutrophils. We report that LLO can enhance the phagocytic efficiency of human neutrophils and is unable to protect L. monocytogenes from intracellular killing. To explain the absence of L. monocytogenes survival in neutrophils, we hypothesized that neutrophil degranulation leads to the release of LLO-neutralizing molecules in the forming phagosome. In support of this, L. monocytogenes is a potent inducer of neutrophil degranulation, since its virulence factors, such as LLO, facilitate granule exocytosis. Within the first few minutes of interaction with L. monocytogenes, granules can fuse with the plasma membrane at the bacterial interaction site before closure of the phagosome. Furthermore, granule products directly degrade LLO, irreversibly inhibiting its activity. The matrix metalloproteinase-8, stored in secondary granules, was identified as an endoprotease that degrades LLO, and blocking neutrophil proteases increased L. monocytogenes intracellular survival. In conclusion, we propose that LLO degradation by matrix metalloproteinase-8 during phagocytosis protects neutrophil membranes from perforation and contributes to maintaining L. monocytogenes in a bactericidal phagosome from which it cannot escape.
Collapse
Affiliation(s)
- Eusondia Arnett
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Maitra D, Shaeib F, Abdulhamid I, Abdulridha RM, Saed GM, Diamond MP, Pennathur S, Abu-Soud HM. Myeloperoxidase acts as a source of free iron during steady-state catalysis by a feedback inhibitory pathway. Free Radic Biol Med 2013; 63:90-8. [PMID: 23624305 PMCID: PMC3863623 DOI: 10.1016/j.freeradbiomed.2013.04.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/01/2013] [Accepted: 04/08/2013] [Indexed: 02/07/2023]
Abstract
Myeloperoxidase (MPO) is a heme-containing enzyme that generates hypochlorous acid (HOCl) from chloride (Cl(-)) and hydrogen peroxide (H₂O₂). It is implicated in the pathology of several chronic inflammatory conditions such as cardiovascular and pulmonary diseases and cancer. Recently we have shown that HOCl can destroy the heme prosthetic group of hemoproteins. Here, we investigated whether the HOCl formed during steady-state catalysis is able to destroy the MPO heme moiety and thereby function as a major source of free iron. UV-visible spectra and H₂O₂-specific electrode measurements recorded during steady-state HOCl synthesis by MPO showed that the degree of MPO heme destruction increased after multiple additions of H₂O₂ (10 µM), precluding the enzyme from functioning at maximum activity (80-90% inhibition). MPO heme destruction occurred only in the presence of Cl(-). Stopped-flow measurements revealed that the HOCl-mediated MPO heme destruction was complex and occurred through transient ferric species whose formation and decay kinetics indicated it participates in heme destruction along with subsequent free iron release. MPO heme depletion was confirmed by the buildup of free iron utilizing the ferrozine assay. Hypochlorous acid, once generated, first equilibrates in the solution as a whole before binding to the heme iron and initiating heme destruction. Eliminating HOCl from the MPO milieu by scavenging HOCl, destabilizing the MPO-Compound I-Cl complex that could be formed during catalysis, and/or inhibiting MPO catalytic activity partially or completely protects MPO from HOCl insults. Collectively, this study elucidates the bidirectional relationship between MPO and HOCl, which highlights the potential role of MPO as a source of free iron.
Collapse
Affiliation(s)
- Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Faten Shaeib
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | | | - Rasha M. Abdulridha
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA 30912, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Corresponding author. Fax: 313 577 8554. (H. M. Abu-Soud)
| |
Collapse
|
10
|
Rørvig S, Østergaard O, Heegaard NHH, Borregaard N. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: correlation with transcriptome profiling of neutrophil precursors. J Leukoc Biol 2013; 94:711-21. [PMID: 23650620 DOI: 10.1189/jlb.1212619] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophils are indispensable in the innate immune defense against invading microorganisms. Neutrophils contain SVs and several subsets of granules that are essential for their function. Proteins present in neutrophil SVs and granules are synthesized during terminal granulopoiesis in the bone marrow. The heterogeneity of granules, as determined by marker proteins characteristic of each granule subset, is thought to result from differences in the biosynthetic windows of major classes of granule proteins, a process referred to as targeting by timing. Qualitative proteomic analysis of neutrophil granules, SVs, and plasma membrane has been performed before. Here, we performed subcellular fractionation on freshly isolated human neutrophils by nitrogen cavitation and density centrifugation on a four-layer Percoll gradient. Granule subsets were pooled and subjected to SDS-PAGE, and gel pieces were in-gel-digested with trypsin. The resulting peptides were analyzed using LTQ Orbitrap XL tandem MS. A total of 1292 unique proteins were identified and grouped, according to the neutrophil fraction, in which they displayed maximal expression. In addition to various known neutrophil proteins, several uncharacterized proteins were found, as well as proteins not described previously in neutrophils. To study the correlation between mRNA expression in neutrophil precursors and the localization of their cognate proteins, the distribution of 126 identified proteins was compared with their mRNA expression profiles. The neutrophil subcellular proteome profiles presented here may be used as a database in combination with the mRNA array database to predict and test the presence and localization of proteins in neutrophil granules and membranes.
Collapse
Affiliation(s)
- Sara Rørvig
- 2.Department of Hematology, University of Copenhagen, Rigshospitalet-9322, 20 Juliane Mariesvej, 2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
11
|
Hong CW, Kim TK, Ham HY, Nam JS, Kim YH, Zheng H, Pang B, Min TK, Jung JS, Lee SN, Cho HJ, Kim EJ, Hong IH, Kang TC, Lee J, Oh SB, Jung SJ, Kim SJ, Song DK. Lysophosphatidylcholine Increases Neutrophil Bactericidal Activity by Enhancement of Azurophil Granule-Phagosome Fusion via Glycine·GlyRα2/TRPM2/p38 MAPK Signaling. THE JOURNAL OF IMMUNOLOGY 2010; 184:4401-13. [DOI: 10.4049/jimmunol.0902814] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Uriarte SM, Jog NR, Luerman GC, Bhimani S, Ward RA, McLeish KR. Counterregulation of clathrin-mediated endocytosis by the actin and microtubular cytoskeleton in human neutrophils. Am J Physiol Cell Physiol 2009; 296:C857-67. [PMID: 19176760 DOI: 10.1152/ajpcell.00454.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have recently reported that disruption of the actin cytoskeleton enhanced N-formylmethionyl-leucyl-phenylalanine (fMLP)-stimulated granule exocytosis in human neutrophils but decreased plasma membrane expression of complement receptor 1 (CR1), a marker of secretory vesicles. The present study was initiated to determine if reduced CR1 expression was due to fMLP-stimulated endocytosis, to determine the mechanism of this endocytosis, and to examine its impact on neutrophil functional responses. Stimulation of neutrophils with fMLP or ionomycin in the presence of latrunculin A resulted in the uptake of Alexa fluor 488-labeled albumin and transferrin and reduced plasma membrane expression of CR1. These effects were prevented by preincubation of the cells with sucrose, chlorpromazine, or monodansylcadaverine (MDC), inhibitors of clathrin-mediated endocytosis. Sucrose, chlorpromazine, and MDC also significantly inhibited fMLP- and ionomycin-stimulated specific and azurophil granule exocytosis. Disruption of microtubules with nocodazole inhibited endocytosis and azurophil granule exocytosis stimulated by fMLP in the presence of latrunculin A. Pharmacological inhibition of phosphatidylinositol 3-kinase, ERK1/2, and PKC significantly reduced fMLP-stimulated transferrin uptake in the presence of latrunculin A. Blockade of clathrin-mediated endocytosis had no significant effect on fMLP-stimulated phosphorylation of ERK1/2 in neutrophils pretreated with latrunculin A. From these data, we conclude that the actin cytoskeleton functions to limit microtubule-dependent, clathrin-mediated endocytosis in stimulated human neutrophils. The limitation of clathrin-mediated endocytosis by actin regulates the extent of both specific and azurophilic granule exocytosis.
Collapse
Affiliation(s)
- Silvia M Uriarte
- Department of Medicine, University of Louisville, Louisville, KY, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Bunbury A, Potolicchio I, Maitra R, Santambrogio L. Functional analysis of monocyte MHC class II compartments. FASEB J 2008; 23:164-71. [PMID: 18815360 DOI: 10.1096/fj.08-109439] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circulating monocytes, as dendritic cell and macrophage precursors, exhibit several functions usually associated with antigen-presenting cells, such as phagocytosis and presence of endosomal/lysosomal degradative compartments particularly enriched in Lamp-1, MHC class II molecules, and other proteins related to antigen processing and MHC class II loading [MHC class II compartments (MIICs)]. Ultrastructural analysis of these organelles indicates that, differently from the multivesicular bodies present in dendritic cells, in monocytes the MIICs are characterized by a single perimetral membrane surrounding an electron-dense core. Analysis of their content reveals enrichment in myeloperoxidase, an enzyme classically associated with azurophilic granules in granulocytes and mast cell secretory lysosomes. Elevation in intracellular free calcium levels in monocytes induced secretion of beta-hexosaminidase, cathepsins, and myeloperoxidase in the extracellular milieu; surface up-regulation of MHC class II molecules; and appearance of lysosomal resident proteins. The Ca(2+)-regulated surface transport mechanism of MHC class II molecules observed in monocytes is different from the tubulovesicular organization of the multivesicular bodies previously reported in dendritic cells and macrophages. Hence, in monocytes, MHC class II-enriched organelles combine degradative functions typical of lysosomes and regulated secretion typical of secretory lysosomes. More important, Ca(2+)-mediated up-regulation of surface MHC class II molecules is accompanied by extracellular release of lysosomal resident enzymes.
Collapse
Affiliation(s)
- Allyson Bunbury
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
14
|
Busetto S, Trevisan E, Decleva E, Dri P, Menegazzi R. Chloride movements in human neutrophils during phagocytosis: characterization and relationship to granule release. THE JOURNAL OF IMMUNOLOGY 2007; 179:4110-24. [PMID: 17785850 DOI: 10.4049/jimmunol.179.6.4110] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chloride ion efflux is an early event occurring after exposure of human neutrophils to several soluble agonists. Under these circumstances, a rapid and reversible fall in the high basal intracellular chloride (Cl-i) levels is observed. This event is thought to play a crucial role in the modulation of several critical neutrophil responses including activation and up-regulation of adhesion molecules, cell attachment and spreading, cytoplasmic alkalinization, and activation of the respiratory burst. At present, however, no data are available on chloride ion movements during neutrophil phagocytosis. In this study, we provide evidence that phagocytosis of Candida albicans opsonized with either whole serum, complement-derived opsonins, or purified human IgG elicits an early and long-lasting Cl- efflux accompanied by a marked, irreversible loss of Cl-i. Simultaneous assessment of Cl- efflux and phagocytosis in cytochalasin D-treated neutrophils indicated that Cl- efflux occurs without particle ingestion. These results suggest that engagement of immune receptors is sufficient to promote chloride ion movements. Several structurally unrelated chloride channel blockers inhibited phagocytosis-induced Cl- efflux as well as the release of azurophilic-but not specific-granules. It implicates that different neutrophil secretory compartments display distinct sensitivity to Cl-i modifications. Intriguingly, inhibitors of Cl- exchange inhibited cytosolic Ca2+ elevation, whereas Cl- efflux was not impaired in Ca2+-depleted neutrophils. We also show that FcgammaR(s)- and CR3/CR1-mediated Cl- efflux appears to be dependent on protein tyrosine phosphorylation but independent of PI3K and phospholipase C activation.
Collapse
Affiliation(s)
- Sara Busetto
- Department of Physiology and Pathology, University of Trieste, Trieste, Italy
| | | | | | | | | |
Collapse
|
15
|
Golden JW, Schiff LA. Neutrophil elastase, an acid-independent serine protease, facilitates reovirus uncoating and infection in U937 promonocyte cells. Virol J 2005; 2:48. [PMID: 15927073 PMCID: PMC1180477 DOI: 10.1186/1743-422x-2-48] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 05/31/2005] [Indexed: 01/29/2023] Open
Abstract
Background Mammalian reoviruses naturally infect their hosts through the enteric and respiratory tracts. During enteric infections, proteolysis of the reovirus outer capsid protein σ3 is mediated by pancreatic serine proteases. In contrast, the proteases critical for reovirus replication in the lung are unknown. Neutrophil elastase (NE) is an acid-independent, inflammatory serine protease predominantly expressed by neutrophils. In addition to its normal role in microbial defense, aberrant expression of NE has been implicated in the pathology of acute respiratory distress syndrome (ARDS). Because reovirus replication in rodent lungs causes ARDS-like symptoms and induces an infiltration of neutrophils, we investigated the capacity of NE to promote reovirus virion uncoating. Results The human promonocyte cell line U937 expresses NE. Treatment of U937 cells with the broad-spectrum cysteine-protease inhibitor E64 [trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane] and with agents that increase vesicular pH did not inhibit reovirus replication. Even when these inhibitors were used in combination, reovirus replicated to significant yields, indicating that an acid-independent non-cysteine protease was capable of mediating reovirus uncoating in U937 cell cultures. To identify the protease(s) responsible, U937 cells were treated with phorbol 12-myristate 13-acetate (PMA), an agent that induces cellular differentiation and results in decreased expression of acid-independent serine proteases, including NE and cathepsin (Cat) G. In the presence of E64, reovirus did not replicate efficiently in PMA-treated cells. To directly assess the role of NE in reovirus infection of U937 cells, we examined viral growth in the presence of N-Ala-Ala-Pro-Val chloromethylketone, a NE-specific inhibitor. Reovirus replication in the presence of E64 was significantly reduced by treatment of cells with the NE inhibitor. Incubation of virions with purified NE resulted in the generation of infectious subviron particles that did not require additional intracellular proteolysis. Conclusion Our findings reveal that NE can facilitate reovirus infection. The fact that it does so in the presence of agents that raise vesicular pH supports a model in which the requirement for acidic pH during infection reflects the conditions required for optimal protease activity. The capacity of reovirus to exploit NE may impact viral replication in the lung and other tissues during natural infections.
Collapse
Affiliation(s)
- Joseph W Golden
- Department of Microbiology, University of Minnesota, Mayo Mail Code 196, 420 Delaware St. S.E., Minneapolis, Minnesota 55455, USA
| | - Leslie A Schiff
- Department of Microbiology, University of Minnesota, Mayo Mail Code 196, 420 Delaware St. S.E., Minneapolis, Minnesota 55455, USA
| |
Collapse
|
16
|
Frasch SC, Henson PM, Nagaosa K, Fessler MB, Borregaard N, Bratton DL. Phospholipid Flip-Flop and Phospholipid Scramblase 1 (PLSCR1) Co-localize to Uropod Rafts in Formylated Met-Leu-Phe-stimulated Neutrophils. J Biol Chem 2004; 279:17625-33. [PMID: 14766753 DOI: 10.1074/jbc.m313414200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Movement of phosphatidylserine (PS) to the plasma membrane outer leaflet is a nearly universal marker of apoptosis and occurs during activation of many cells. Neutrophils stimulated with the chemotactic peptide formylated Met-Leu-Phe (fMLP) demonstrated transient PS exposure. Stimulated outward movement of PS was accompanied by enhanced inward movement of several phosphorylcholine lipid probes and was associated with enhanced FM 1-43 staining indicative of phospholipid packing changes. Unlike apoptosis, inward movement of exogenously added fluorescent PS did not decline, and DNA was not cleaved during fMLP stimulation. Movement of phospholipids occurred within minutes following stimulation, was independent of endocytosis/pinocytosis, and was consistent with bidirectional, transbilayer phospholipid flip-flop. While the role of phospholipid scramblase 1 (PLSCR1) is controversial in flip-flop, we sought evidence for its role in enhanced phospholipid movements during fMLP stimulation. Using antibodies to the carboxyl-terminal domain of PLSCR1, its presence in the plasma membranes of non-permeabilized neutrophils was confirmed by flow cytometry. Additionally subcellular fractionation demonstrated that PLSCR1 was also located in secretory vesicles and tertiary and secondary granules. Activation of neutrophils with fMLP, however, did not significantly alter surface labeling suggesting that stimulated phospholipid flip-flop does not require additional mobilization of PLSCR1 to the plasma membrane. As expected for palmitoylated proteins, PLSCR1 was enriched in detergent-insoluble membranes and co-localized with raft markers at the neutrophil uropod after stimulation. Of note, PS exposure, phospholipid uptake, and FM 1-43 staining also localized to the uropod following stimulation demonstrating that both PLSCR1 and phospholipid flip-flop characterize this specialized domain of polarized neutrophils.
Collapse
Affiliation(s)
- S Courtney Frasch
- Department of Pediatrics, Division of Cell Biology, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | | | | | |
Collapse
|
17
|
Botelho RJ, Tapper H, Furuya W, Mojdami D, Grinstein S. Fc gamma R-mediated phagocytosis stimulates localized pinocytosis in human neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4423-9. [PMID: 12370376 DOI: 10.4049/jimmunol.169.8.4423] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Engulfment of IgG-coated particles by neutrophils and macrophages is an essential component of the innate immune response. This process, known as phagocytosis, is triggered by clustering of FcgammaR at sites where leukocytes make contact with the opsonized particles. We found that phagocytosis is accompanied by a burst of fluid phase pinocytosis, which is largely restricted to the immediate vicinity of the phagosomal cup. FcgammaR-induced pinocytosis preceded and appeared to be independent of phagosomal sealing. Accordingly, fluid phase uptake was accentuated by actin depolymerization, which precludes phagocytosis. Stimulation of pinocytosis required phosphatidylinositol 3-kinase activity and was eliminated when changes in the cytosolic free Ca(2+) concentration were prevented. Because stimulation of FcgammaR also induces secretion, which is similarly calcium and phosphatidylinositol 3-kinase dependent, we studied the possible relationship between these events. Neutrophil fragments devoid of secretory granules (cytoplasts) were prepared by sedimentation through Ficoll gradients. Cytoplasts could perform FcgammaR-mediated phagocytosis, which was not accompanied by activation of pinocytosis. This observation suggests that granule exocytosis is required for stimulation of pinocytosis. Analysis of the cytosolic Ca(2+) dependence of secretion and pinocytosis suggests that primary (lysosomal) granule exocytosis is the main determinant of pinocytosis during FcgammaR stimulation. Importantly, primary granules are secreted in a polarized fashion near forming phagosomes. Focal pinocytosis during particle engulfment may contribute to Ag processing and presentation and/or to retrieval of components of the secretory machinery. Alternatively, it may represent an early event in the remodeling of the phagosomal membrane, leading to phagosomal maturation.
Collapse
Affiliation(s)
- Roberto J Botelho
- Program in Cell Biology, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
18
|
Borelli V, Perrotta MG, Vita F, Soranzo MR, Zabucchi G. A new assay to monitor the degranulation process in phagocytizing human neutrophils. Inflammation 2002; 26:45-60. [PMID: 11936755 DOI: 10.1023/a:1014473813304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
oxidation, we set up a method for measuring MPO intraphagosomal release in human neutrophils. The method is based on the passive engulfment of DAB together with the phagocytosable particle. Inside the vacuole, this substrate is oxidized by MPO released from the azurophilic granules. The colorimetrical evaluation of the amount of DAB oxidized allows for cheap, rapid quantification of MPO intraphagosomal secretion in whole cells. Using this method, we show that the degranulation process, involving azurophilic granules, can be monitored carefully during phagocytosis. It takes place after the ingestion of zymosan particles opsonized with normal human serum, as well as during IgG-mediated phagocytosis and under conditions where beta2 integrins are blocked. However our findings also show that the extent of intraphagosomal secretion depends on either the extent of opsonization or the type of receptor engaged during the phagocytic event.
Collapse
Affiliation(s)
- Violetta Borelli
- Dipartimento di Fisiologia e Patologia, Università di Trieste, Italy
| | | | | | | | | |
Collapse
|
19
|
Menegazzi R, Busetto S, Cramer R, Dri P, Patriarca P. Role of intracellular chloride in the reversible activation of neutrophil beta 2 integrins: a lesson from TNF stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4606-14. [PMID: 11035103 DOI: 10.4049/jimmunol.165.8.4606] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The process of beta(2) integrin activation, which enhances the interaction of these heterodimers with ligands, plays a crucial role in the adherence-dependent neutrophilic polymorphonuclear leukocytes' (PMN) responses to TNF. Our previous observation, showing that a marked decrease of the high basal Cl(-) content (Cl(-)(i)) is an essential step in the TNF-induced activation of PMN, stimulated this study, which investigates the role of alterations of Cl(-)(i) in the activation of beta(2) integrins triggered by TNF. Here we show that TNF enhances the expression of activation-specific neoepitopes of beta(2) integrins, namely, epitope 24, a unique epitope present on all three leukocyte integrin alpha subunits, and epitope CBRM1/5, localized to the I domain on the alpha-chain of Mac-1 (CD11bCD18). Moreover, we demonstrate that the conformational changes underlying the expression of the neoepitopes are dependent on a drop in Cl(-)(i) because 1) inhibition of Cl(-)(i) decrease is invariably accompanied by inhibition of beta(2) integrin activation, 2) Cl(-)(i) decrease induced by means other than agonist stimulation, i.e., by placing PMN in Cl(-)-free buffers, activates beta(2) integrins, and 3) restoration of the original Cl(-)(i) levels is accompanied by deactivation of beta(2) integrins. We also show that Cl(-)(i) decrease is required for TNF-induced cytoplasmic alkalinization, but such a rise in pH(i) does not seem to be relevant for beta(2) integrin activation. The results of our study emphasize the role of Cl(-) as a new PMN "second messenger."
Collapse
Affiliation(s)
- R Menegazzi
- Department of Physiology and Pathology, University of Trieste, Trieste, Italy.
| | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Esteban C. Dell'Angelica
- Cell Biology and Metabolism BranchNational Institute of Child Health and Human DevelopmentNational Institutes of Health Bethesda Maryland 20892‐5430 USA
| | - Chris Mullins
- Cell Biology and Metabolism BranchNational Institute of Child Health and Human DevelopmentNational Institutes of Health Bethesda Maryland 20892‐5430 USA
| | - Steve Caplan
- Cell Biology and Metabolism BranchNational Institute of Child Health and Human DevelopmentNational Institutes of Health Bethesda Maryland 20892‐5430 USA
| | - Juan S. Bonifacino
- Cell Biology and Metabolism BranchNational Institute of Child Health and Human DevelopmentNational Institutes of Health Bethesda Maryland 20892‐5430 USA
| |
Collapse
|
21
|
Calafat J, Janssen H, Knol EF, Malm J, Egesten A. The bactericidal/permeability-increasing protein (BPI) is membrane-associated in azurophil granules of human neutrophils, and relocation occurs upon cellular activation. APMIS 2000; 108:201-8. [PMID: 10752689 DOI: 10.1034/j.1600-0463.2000.d01-45.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neutrophilic granulocytes contain the 55 kDa bactericidal/permeability-increasing protein (BPI). BPI binds to lipopolysaccharides (LPS), and exerts bacteriostatic and bactericidal effects against a wide variety of Gram-negative bacterial species. We have investigated the subcellular location of BPI in immature and mature neutrophils using cryotechnique for immunoelectron microscopy. BPI was found to colocate with myeloperoxidase (MPO), a marker for azurophil granules, and it also showed the same pattern of distribution as CD63, a transmembrane-anchored protein. This suggests that BPI is membrane-associated in the azurophil granules in neutrophils. Its presence in azurophil granules was further confirmed by the finding of BPI in the azurophil granules of neutrophil promyelocytes of the bone marrow. Induction of selective release of azurophilic granules by the Na-ionophore monensin resulted in fusion of endosomes with azurophil granules, leading to the formation of large vacuoles containing MPO, CD63, and BPI. After phagocytosis of serum-treated zymosan (STZ), BPI was detected in phagosomes, both in association with membranes as well as in the lumen, suggesting the release of BPI into activated compartments. The results show that BPI is present in azurophil granules, is probably primarily membrane-associated, and is relocated after activation, following the same route as MPO and CD63.
Collapse
Affiliation(s)
- J Calafat
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam
| | | | | | | | | |
Collapse
|
22
|
Williams RM, Shear JB, Zipfel WR, Maiti S, Webb WW. Mucosal mast cell secretion processes imaged using three-photon microscopy of 5-hydroxytryptamine autofluorescence. Biophys J 1999; 76:1835-46. [PMID: 10096882 PMCID: PMC1300160 DOI: 10.1016/s0006-3495(99)77343-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The secretion process of the mucosal mast cell line RBL-2H3 was imaged using infrared three photon excitation (3PE) of serotonin (5-hydroxytryptamine, 5-HT) autofluorescence, a measurement previously difficult because of the technical intractability of deep UV optics. Images of prestimulation 5-HT distributions were analyzed in loaded cell populations (those incubated in a 5-HT-rich medium overnight) and in unloaded populations and were found to be strictly quantifiable by comparison with bulk population high-performance liquid chromatography measurements. Antigenically stimulated cells were observed to characteristically ruffle and spread as granular 5-HT disappeared with no detectable granule movement. Individual cells exhibited highly heterogeneous release kinetics, often with quasi-periodic bursts. Neighboring granule disappearances were correlated, indicative of either spatially localized signaling or granule-granule interactions. In one-half of the granule release events, weak residual fluorescence was visible suggestive of leftover 5-HT still bound to the granule matrix. The terminal stages of secretion (>300 s) consisted primarily of unresolved granules and remainder 5-HT leakage from already released granules.
Collapse
Affiliation(s)
- R M Williams
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | |
Collapse
|
23
|
Verghese MW, Boucher RC. Effects of ion composition and tonicity on human neutrophil antibacterial activity. Am J Respir Cell Mol Biol 1998; 19:920-8. [PMID: 9843926 DOI: 10.1165/ajrcmb.19.6.3290] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Infants with cystic fibrosis (CF) often are infected with Staphylococcus aureus (S. aur.), which is followed by colonization with Pseudomonas aeruginosa (P. aerug.). In spite of an excessive, neutrophil-dominated inflammatory response in the respiratory tract, patients with CF often succumb to pulmonary infections with P. aerug. Because peripheral blood neutrophils of these patients have normal functions, we examined whether hypothesized alterations of the airway surface liquids (ASL) in these patients significantly impair neutrophil bactericidal activity in the microenvironment of the CF lung. The ionic composition of CF ASL is still not entirely defined and has been speculated to be abnormally high or abnormally low in Na+ and Cl- concentrations; estimates of osmolarities have ranged from 200 (hypo-osmolar) to 285 (iso-osmolar) to > 300 meq/L (hyper-osmolar). Our data indicate that bacterial killing activity of human peripheral blood neutrophils against P. aerug. or S. aur. is not decreased in buffers in which NaCl was replaced with equimolar concentrations of choline Cl, KCl, or N-methyl-D-glucamine chloride to maintain isotonicity. Amiloride or benzamil, known modulators of Na+ transport in neutrophils, did not interfere with this neutrophil function. Deviations from isotonicity of +/- 50% also failed to diminish bactericidal activity of neutrophils significantly. In contrast, superoxide production and enzyme secretion in response to the chemotactic peptide N-formylmethionylleucylphenylalanine appeared to be sensitive to the ionic milieu of the assay buffers. Our results suggest that the postulated alterations in the ionic composition of ASL in CF lungs are insufficient to explain why neutrophils fail to clear infections with P. aerug. in these patients.
Collapse
Affiliation(s)
- M W Verghese
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Division of Pulmonary Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA.
| | | |
Collapse
|
24
|
|
25
|
|
26
|
Gullberg U, Andersson E, Garwicz D, Lindmark A, Olsson I. Biosynthesis, processing and sorting of neutrophil proteins: insight into neutrophil granule development. Eur J Haematol 1997; 58:137-53. [PMID: 9150707 DOI: 10.1111/j.1600-0609.1997.tb00940.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neutrophil granulocytes are specialized phagocytic cells that carry a collection of granules for regulated secretion, each with distinct constituents. The granules can be classified as azurophil (primary), developed first, followed in time by specific (secondary) granules gelatinase granules, and secretory vesicles. Stage- and tissue-specific transcription factors govern the successive expression of genes for granule proteins to allow storage of the gene products in these organelle categories whose packaging is separated in time. Many of the granule proteins, in particular those of the heterogeneous lysosome-like azurophil granules, are subject to extensive post-translational proteolytic processing into mature proteins, most commonly as a post-sorting event. A selective aggregation of proteins destined for storage in granules, as discussed in this review, would facilitate their retention and eliminate a need for distinct sorting motifs on each granule protein. Aggregation of granule proteins, that are often cationic, would be assisted by the anionic serglycin proteoglycans present in neutrophils. The antibacterial granule proteins can serve as models for antibiotics and some of them possess a potentially useful therapeutic ability to bind and neutralize endotoxin. Because aberrant expression of transcription factors regulating the synthesis of granule proteins is often found in leukemia, the clarification of mechanisms regulating the timed expression of granule proteins will shed light on the maturation block in myeloid leukemias.
Collapse
Affiliation(s)
- U Gullberg
- Department of Medicine, Research Department 2, University Hospital, Lund, Sweden
| | | | | | | | | |
Collapse
|
27
|
Menegazzi R, Busetto S, Dri P, Cramer R, Patriarca P. Chloride ion efflux regulates adherence, spreading, and respiratory burst of neutrophils stimulated by tumor necrosis factor-alpha (TNF) on biologic surfaces. J Biophys Biochem Cytol 1996; 135:511-22. [PMID: 8896606 PMCID: PMC2121051 DOI: 10.1083/jcb.135.2.511] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chloride ion efflux is an early event occurring after exposure of neutrophilic polymorphonuclear leukocytes (PMN) in suspension to several agonists, including cytokines such as tumor necrosis factor-alpha (TNF) and granulocyte/macrophage-colony stimulating factor (Shimizu, Y., R.H. Daniels, M.A. Elmore, M.J. Finnen, M.E. Hill, and J.M. Lackie. 1993. Biochem. Pharmacol. 9:1743-1751). We have studied TNF-induced Cl- movements in PMN residing on fibronectin (FN) (FN-PMN) and their relationships to adherence, spreading, and activation of the respiratory burst. Occupancy of the TNF-R55 and engagement of beta 2 integrins cosignaled for an early, marked, and prolonged Cl- efflux that was accompanied by a fall in intracellular chloride levels (Cl-i). A possible causal relationship between Cl- efflux, adherence, and respiratory burst was first suggested by kinetic studies, showing that TNF-induced Cl- efflux preceded both the adhesive and metabolic response, and was then confirmed by inhibition of all three responses by pretreating PMN with inhibitors of Cl- efflux, such as ethacrynic acid. Moreover, Cl- efflux induced by means other than TNF treatment, i.e., by using Cl(-)-free media, was followed by increased adherence, spreading, and metabolic activation, thus mimicking TNF effects. These studies provide the first evidence that a drastic decrease of Cl-i in FN-PMN may represent an essential step in the cascade of events leading to activation of proadhesive molecules, reorganization of the cytoskeleton network, and assembly of the O2(-)-forming NADPH oxidase.
Collapse
Affiliation(s)
- R Menegazzi
- Instituto di Patologia Generale, Università di Trieste, Italy
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- H Tapper
- Department of Cell and Molecular Biology, Lund University, Sweden.
| |
Collapse
|
29
|
Timoshenko AV, Kayser K, Drings P, André S, Dong X, Kaltner H, Schneller M, Gabius HJ. Carbohydrate-binding proteins (plant/human lectins and autoantibodies from human serum) as mediators of release of lysozyme, elastase, and myeloperoxidase from human neutrophils. RESEARCH IN EXPERIMENTAL MEDICINE. ZEITSCHRIFT FUR DIE GESAMTE EXPERIMENTELLE MEDIZIN EINSCHLIESSLICH EXPERIMENTELLER CHIRURGIE 1995; 195:153-62. [PMID: 8570910 DOI: 10.1007/bf02576784] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Analysis of cell surface glycosylation not only provides information about cell properties such as their state of differentiation or histogenetic lineage. The carbohydrate chains also provide potentially functional binding sites to endogenous carbohydrate-binding proteins. This interaction can elicit consequent signalling processes. Because of the importance of neutrophils in the host defence system, we monitored the effect of the binding of such sugar receptors to their cell surface on the release of the enzymatic activities of lysozyme, elastase, and myeloperoxidase. Besides the mannose-binding lectin concanavalin A and the immunomodulatory alpha/beta-galactoside-binding lectin from Viscum album L., three preparations of human sugar receptors - beta-galactoside-binding lectin (M(r) 14 kDa) and two affinity-purified polyclonal IgG fractions from serum with the capacity to recognize alpha- or beta-galactosides, respectively - were used. Two animal lectins from chicken liver and intestine that bind beta-galactosides, as well as the lectin-like human serum amyloid P component, were included in order to assess the importance of slight differences in ligand recognition. Cytochalasin B-enhanced enzyme release was invariably seen with the two plant lectins and the chicken liver beta-galactoside-binding lectin, but the related intestinal lectin did not increase enzyme release. The mammalian homologue of these avian lectins triggered lysozyme secretion, and the lactoside-binding IgG fraction enhanced the amount of extracellular elastase activity slightly but significantly. Thus, the actual lectin, not the nominal specificity of sugar receptors, is crucial for elucidation of responses. Due to the highly stimulatory activity of the two plant lectins, neutrophils from patients with non-cancerous diseases and from patients with lung cancer were monitored for the extent of lectin-mediated enzyme release. Only the concanavalin A-mediated reactivity of the neutrophils was associated with the type of disease.
Collapse
Affiliation(s)
- A V Timoshenko
- Department of Biophysics, Belarusian State University, Minsk, Belarus
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Möhn H, Le Cabec V, Fischer S, Maridonneau-Parini I. The src-family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation. Biochem J 1995; 309 ( Pt 2):657-65. [PMID: 7626033 PMCID: PMC1135781 DOI: 10.1042/bj3090657] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process.
Collapse
Affiliation(s)
- H Möhn
- LPTF, Centre National de la Recherche Scientifique, UPR 8221, Toulouse, France
| | | | | | | |
Collapse
|
31
|
Fine DM, Lo CF, Aguillar L, Blackmon DL, Montrose MH. Cellular chloride depletion inhibits cAMP-activated electrogenic chloride fluxes in HT29-18-C1 cells. J Membr Biol 1995; 145:129-41. [PMID: 7563015 DOI: 10.1007/bf00237371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cyclic AMP-activated chloride fluxes have been analyzed in HT29-18-C1 cells (a clonal cell line derived from a human colon carcinoma) using measurements of cell volume (electronic cell sizing), cell chloride content (chloride titrator) and intracellular chloride activity (6-methoxy-N-(3-sulfopropyl)quinolinium; SPQ). HT29-18-C1 was shown to mediate polarized chloride transport. In unstimulated cells, the apical membrane was impermeable to chloride and net chloride flux was mediated by basolateral furosemide-sensitive transport. Forskolin (10 microM) increased furosemide-insensitive chloride permeability of the apical membrane, and decreased steady-state intracellular chloride concentration approximately 9%. Cellular chloride depletion (substitution of medium chloride by nitrate or gluconate), caused greater than fourfold reduction in cellular chloride concentration. When chloride-depleted cells were returned to normal medium, cells regained chloride and osmolytes via bumetanide-sensitive transport, but forskolin did not stimulate bumetanide-insensitive chloride uptake. The inhibition of cAMP-activated chloride reuptake was not explained by limiting cation conductance, cell shrinkage, choice of substitute anion, or decreased generation of cAMP in chloride-depleted cells. When cells with normal chloride content were depolarized (135 mM medium potassium + 10 microM valinomycin), cAMP activated electrogenic chloride uptake permselective for Cl- approximately Br- > NO3- > I-. The electrogenic transport pathway was inhibited in chloride-depleted cells. Results suggest that chloride depletion limits activation of electrogenic chloride flux.
Collapse
Affiliation(s)
- D M Fine
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|