1
|
Danialifar TF, Chumpitazi BP, Mehta DI, Di Lorenzo C. Genetic and acquired sucrase-isomaltase deficiency: A clinical review. J Pediatr Gastroenterol Nutr 2024; 78:774-782. [PMID: 38327254 DOI: 10.1002/jpn3.12151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
Genetic sucrase-isomaltase deficiency (GSID) is an inherited deficiency in the ability to digest sucrose and potentially starch due to mutations in the sucrase-isomaltase (SI) gene. Congenital sucrase-isomaltase deficiency is historically considered to be a rare condition affecting infants with chronic diarrhea as exposure to dietary sucrose begins. Growing evidence suggests that individuals with SI variants may present later in life, with symptoms overlapping with those of irritable bowel syndrome. The presence of SI genetic variants may, either alone or in combination, affect enzyme activity and lead to symptoms of different severity. As such, a more appropriate term for this inherited condition is GSID, with a recognition of a spectrum of severity and onset of presentation. Currently, disaccharidase assay on duodenal mucosal tissue homogenates is the gold standard in diagnosing SI deficiency. A deficiency in the SI enzyme can be present at birth (genetic) or acquired later, often in association with damage to the enteric brush-border membrane. Other noninvasive diagnostic alternatives such as sucrose breath tests may be useful but require further validation. Management of GSID is based on sucrose and potentially starch restriction tailored to the individual patients' tolerance and symptoms. As this approach may be challenging, additional treatment with commercially available sacrosidase is available. However, some patients may require continued starch restriction. Further research is needed to clarify the true prevalence of SI deficiency, the pathobiology of single SI heterozygous mutations, and to define optimal diagnostic and treatment algorithms in the pediatric population.
Collapse
Affiliation(s)
- Tanaz Farzan Danialifar
- Children's Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine of USC, Los Angeles, California, USA
| | - Bruno P Chumpitazi
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Devendra I Mehta
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, Florida, USA
| | - Carlo Di Lorenzo
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
2
|
Senftleber NK, Ramne S, Moltke I, Jørgensen ME, Albrechtsen A, Hansen T, Andersen MK. Genetic Loss of Sucrase-Isomaltase Function: Mechanisms, Implications, and Future Perspectives. Appl Clin Genet 2023; 16:31-39. [PMID: 36994449 PMCID: PMC10041990 DOI: 10.2147/tacg.s401712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Genetic variants causing loss of sucrase-isomaltase (SI) function result in malabsorption of sucrose and starch components and the condition congenital sucrase-isomaltase deficiency (CSID). The identified genetic variants causing CSID are very rare in all surveyed populations around the globe, except the Arctic-specific c.273_274delAG loss-of-function (LoF) variant, which is common in the Greenlandic Inuit and other Arctic populations. In these populations, it is, therefore, possible to study people with loss of SI function in an unbiased way to elucidate the physiological function of SI, and investigate both short-term and long-term health effects of reduced small intestinal digestion of sucrose and starch. Importantly, a recent study of the LoF variant in Greenlanders reported that adult homozygous carriers have a markedly healthier metabolic profile. These findings indicate that SI inhibition could potentially improve metabolic health also in individuals not carrying the LoF variant, which is of great interest considering the massive number of individuals with obesity and type 2 diabetes worldwide. Therefore, the objectives of this review, are 1) to describe the biological role of SI, 2) to describe the metabolic impact of the Arctic SI LoF variant, 3) to reflect on potential mechanisms linking reduced SI function to metabolic health, and 4) to discuss what knowledge is necessary to properly evaluate whether SI inhibition is a potential therapeutic target for improving cardiometabolic health.
Collapse
Affiliation(s)
- Ninna Karsbæk Senftleber
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Stina Ramne
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Marit Eika Jørgensen
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
- Centre for Public Health in Greenland, National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- Steno Diabetes Center Greenland, Nuuk, Greenland
| | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette K Andersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Correspondence: Mette K Andersen, University of Copenhagen, Blegdamsvej 3B, Mærsk Tårnet, 8. sal, 2200 København N., Copenhagen, Denmark, Tel +45 35325282, Email
| |
Collapse
|
3
|
Husein DM, Rizk S, Hoter A, Wanes D, D'Amato M, Naim HY. Severe pathogenic variants of intestinal sucrase-isomaltase interact avidly with the wild type enzyme and negatively impact its function and trafficking. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166523. [PMID: 35985447 DOI: 10.1016/j.bbadis.2022.166523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
Sucrase-isomaltase (SI) is the major disaccharidase of the small intestine, exhibiting a broad α-glucosidase activity profile. The importance of SI in gut health is typified by the development of sucrose and starch maldigestion in individuals carrying mutations in the SI gene, like in congenital sucrase-isomaltase deficiency (CSID). Common and rare defective SI gene variants (SIGVs) have also been shown to increase the risk of irritable bowel syndrome (IBS) with symptoms and clinical features similar to CSID and also in symptomatic heterozygote carriers. Here, we investigate the impact of the most abundant and highly pathogenic SIGVs that occur in heterozygotes on wild type SI (SIWT) by adapting an in vitro system that recapitulates SI gene heterozygosity. Our results demonstrate that pathogenic SI mutants interact avidly with SIWT, negatively impact its enzymatic function, alter the biosynthetic pattern and impair the trafficking behavior of the heterodimer. The in vitro recapitulation of a heterozygous state demonstrates potential for SIGVs to act in a semi-dominant fashion, by further reducing disaccharidase activity via sequestration of the SIWT copy into an inactive form of the enzymatic heterodimer. This study provides novel insights into the potential role of heterozygosity in the pathophysiology of CSID and IBS.
Collapse
Affiliation(s)
- Diab M Husein
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Abdullah Hoter
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Dalanda Wanes
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Mauro D'Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Hassan Y Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
4
|
Hoter A, Naim HY. The glucose-regulated protein GRP94 interacts avidly in the endoplasmic reticulum with sucrase-isomaltase isoforms that are associated with congenital sucrase-isomaltase deficiency. Int J Biol Macromol 2021; 186:237-243. [PMID: 34242650 DOI: 10.1016/j.ijbiomac.2021.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022]
Abstract
The glucose-regulated protein GRP94 is a molecular chaperone that is located in the endoplasmic reticulum (ER). Here, we demonstrate in pull down experiments an interaction between GRP94 and sucrase-isomaltase (SI), the most prominent disaccharidase of the small intestine. GRP94 binds to SI exclusively via its mannose-rich form compatible with an interaction occurring in the ER. We have also examined the interaction GRP94 to a panel of SI mutants that are associated with congenital sucrase-isomaltase deficiency (CSID). These mutants exhibited more efficient binding to GRP94 than wild type SI underlining a specific role of this chaperone in the quality control in the ER. In view of the hypoxic milieu of the intestine, we probed the interaction of GRP94 to SI and its mutants in cell culture under hypoxic conditions and observed a substantial increase in the binding of GRP94 to the SI mutants. The interaction of GRP94 to the major carbohydrate digesting enzyme and regulating its folding as well as retaining SI mutants in the ER points to a potential role of GRP94 in maintenance of intestinal homeostasis by chaperoning and stabilizing SI.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hassan Y Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
5
|
Smith H, Romero B, Flood E, Boney A. The patient journey to diagnosis and treatment of congenital sucrase-isomaltase deficiency. Qual Life Res 2021; 30:2329-2338. [PMID: 33772704 PMCID: PMC8298246 DOI: 10.1007/s11136-021-02819-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 11/12/2022]
Abstract
Purpose Congenital sucrase-isomaltase deficiency (CSID) is a rare genetic disorder characterized by a deficiency of the sucrase-isomaltase (SI) enzyme complex within the brush border membrane of the small intestine. Mutations in the SI gene result in abnormal synthesis and/or incorrect transport of the SI enzyme. Patients with CSID generally have reduced sucrase activity, but levels of isomaltase activity range from absent to almost normal. This study sought to better understand the experience of patients with CSID prior to, during, and after their diagnosis and its subsequent treatment with sacrosidase. Methods This was a cross-sectional interview study conducted in conjunction with a longitudinal, observational study of US patients prescribed and taking sacrosidase for at least three consecutive months as treatment for CSID. The observational study included both children and adults. Results This qualitative interview study explored the experiences of 43 adult and pediatric patients (n = 8 adults and n = 35 children/adolescents) with CSID pre-, during, and post-diagnosis. Findings suggest that a CSID diagnosis is particularly problematic given the disparate range of more commonly understood gastrointestinal (GI) disorders. After diagnosis and treatment with sacrosidase, participants reported considerable improvement in symptoms and health-related quality of life (HRQL), yet symptoms persist that continue to affect daily life, indicating areas of potential unmet need. Conclusion Educating clinicians about CSID may help improve the overall diagnosis experience. As this research is the first of its kind in CSID, additional research, qualitative and quantitative, will be important to furthering the understanding of HRQL impact and unmet need experienced by this population and identifying ways to best meet those needs.
Collapse
|
6
|
Zhou J, Zhao Y, Qian X, Cheng Y, Cai H, Chen M, Zhou S. Two Novel Mutations in the SI Gene Associated With Congenital Sucrase-Isomaltase Deficiency: A Case Report in China. Front Pediatr 2021; 9:731716. [PMID: 34926337 PMCID: PMC8675567 DOI: 10.3389/fped.2021.731716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Congenital sucrase-isomaltase deficiency (CSID) is an autosomal recessive inherited disease that leads to the maldigestion of disaccharides and is associated with mutation of the sucrase-isomaltase (SI) gene. Cases of CSID are not very prevalent in China or worldwide but are gradually being identified and reported. Case Presentation: We report a case involving a 14-month-old male who presented with failure to thrive that had begun after food diversification and was admitted for chronic diarrhea. We used a whole-exome sequencing (WES) approach to identify mutations in this patient's genome. WES revealed two novel heterozygous mutations in the SI gene, c.2626C > T (p.Q876*) and c.2872C > T (p.R958C), which were confirmed by Sanger DNA sequencing. With a strict sucrose- and starch-restricted diet, the patient's diarrhea was resolved, and he began to gain weight. Conclusions: We report a case of novel variants in the SI gene that caused CSID. This report provides valuable information for the clinical field, especially in China.
Collapse
Affiliation(s)
- Jianli Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yuzhen Zhao
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xia Qian
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yongwei Cheng
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Huabo Cai
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Moxian Chen
- Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Shaoming Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
7
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
8
|
Husein DM, Rizk S, Naim HY. Differential Effects of Sucrase-Isomaltase Mutants on Its Trafficking and Function in Irritable Bowel Syndrome: Similarities to Congenital Sucrase-Isomaltase Deficiency. Nutrients 2020; 13:nu13010009. [PMID: 33375084 PMCID: PMC7822125 DOI: 10.3390/nu13010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
Congenital sucrase-isomaltase deficiency (CSID) is a rare metabolic intestinal disorder with reduced or absent activity levels of sucrase-isomaltase (SI). Interestingly, the main symptoms of CSID overlap with those in irritable bowel syndrome (IBS), a common functional gastrointestinal disorder with unknown etiology. Recent advances in genetic screening of IBS patients have revealed rare SI gene variants that are associated with IBS. Here, we investigated the biochemical, cellular and functional phenotypes of several of these variants. The data demonstrate that the SI mutants can be categorized into three groups including immature, mature but slowly transported, and finally mature and properly transported but with reduced enzymatic activity. We also identified SI mutant phenotypes that are deficient but generally not as severe as those characterized in CSID patients. The variable effects on the trafficking and function of the mutations analyzed in this study support the view that both CSID and IBS are heterogeneous disorders, the severity of which is likely related to the biochemical phenotypes of the SI mutants as well as the environment and diet of patients. Our study underlines the necessity to screen for SI mutations in IBS patients and to consider enzyme replacement therapy as an appropriate therapy as in CSID.
Collapse
Affiliation(s)
- Diab M. Husein
- Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany;
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Beirut 1102-2801, Lebanon;
| | - Hassan Y. Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany;
- Correspondence: ; Tel.: +49-511-953-8780
| |
Collapse
|
9
|
Heterozygotes Are a Potential New Entity among Homozygotes and Compound Heterozygotes in Congenital Sucrase-Isomaltase Deficiency. Nutrients 2019; 11:nu11102290. [PMID: 31557950 PMCID: PMC6835860 DOI: 10.3390/nu11102290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Congenital sucrase-isomaltase deficiency (CSID) is an autosomal recessive disorder of carbohydrate maldigestion and malabsorption caused by mutations in the sucrase-isomaltase (SI) gene. SI, together with maltase-glucoamylase (MGAM), belongs to the enzyme family of disaccharidases required for breakdown of α-glycosidic linkages in the small intestine. The effects of homozygote and compound heterozygote inheritance trait of SI mutations in CSID patients have been well described in former studies. Here we propose the inclusion of heterozygote mutation carriers as a new entity in CSID, possibly presenting with milder symptoms. The hypothesis is supported by recent observations of heterozygote mutation carriers among patients suffering from CSID or patients diagnosed with functional gastrointestinal disorders. Recent studies implicate significant phenotypic heterogeneity depending on the character of the mutation and call for more research regarding the correlation of genetics, function at the cellular and molecular level and clinical presentation. The increased importance of SI gene variants in irritable bowel syndrome (IBS) or other functional gastrointestinal disorders FGIDs and their available symptom relief diets like fermentable oligo-, di-, mono-saccharides and polyols FODMAPs suggest that the heterozygote mutants may affect the disease development and treatment.
Collapse
|
10
|
Kamal NM, Khan HY, El-Shabrawi MH, Sherief LM. Congenital chloride losing diarrhea: A single center experience in a highly consanguineous population. Medicine (Baltimore) 2019; 98:e15928. [PMID: 31145360 PMCID: PMC6709049 DOI: 10.1097/md.0000000000015928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Congenital chloride losing diarrhea (CCLD) is a rare type of chronic watery diarrhea due to mutations in SLC26A3 gene leading to defective chloride-bicarbonate exchanges with the resultant loss of chloride and retention of bicarbonate.We aim to define pediatric Saudi CCLD patients' characteristics to achieve prompt diagnosis, management, follow up with good quality of life, and prevention of complications in these patients.We carried retrospective data review of demographic, clinical, laboratory, radiographic, and outcome of all pediatric patients fulfilling the criteria of CCLD over 10 years from 2004 to 2014 from a single center in Taif region, Saudi Arabia.Forty-nine patients fulfilled the criteria of CCLD from 21 families with more than one affected patient in the same family in 90% of them and positive consanguinity in 91% of the cohort. Most patients were born preterm with intrauterine growth restriction and usually neonatal intensive care unit (NICU) admissions with prematurity and its complications. Thirteen patients were discharged without diagnosis of CCLD and 3 were misdiagnosed as intestinal obstruction with unnecessary surgical intervention. Many complications do existed with renal complications being the most common with three patients received renal transplantation.Prematurity with abdominal distension and stool like urine were the commonest presentation of CCLD in Saudi children. Positive consanguinity and more than one affected sibling are present in most of our cohort.High index of suspicion by clinicians is a cornerstone for early diagnosis with subsequent favorable outcome.A multicenter national incidence study of CCLD in KSA and its genetic attributes is recommended. Premarital screening should be implemented specially for consanguineous marriage.
Collapse
Affiliation(s)
- Naglaa M. Kamal
- Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Egypt
- Pediatric Hepatology and Gastroenterology, Alhada Armed Forces Hospital, Taif, KSA
| | | | | | - Laila M. Sherief
- Pediatrics and Pediatric Hematology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
11
|
Tao YX, Conn PM. Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseases. Physiol Rev 2018; 98:697-725. [PMID: 29442594 DOI: 10.1152/physrev.00029.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
After synthesis, proteins are folded into their native conformations aided by molecular chaperones. Dysfunction in folding caused by genetic mutations in numerous genes causes protein conformational diseases. Membrane proteins are more prone to misfolding due to their more intricate folding than soluble proteins. Misfolded proteins are detected by the cellular quality control systems, especially in the endoplasmic reticulum, and proteins may be retained there for eventual degradation by the ubiquitin-proteasome system or through autophagy. Some misfolded proteins aggregate, leading to pathologies in numerous neurological diseases. In vitro, modulating mutant protein folding by altering molecular chaperone expression can ameliorate some misfolding. Some small molecules known as chemical chaperones also correct mutant protein misfolding in vitro and in vivo. However, due to their lack of specificity, their potential as therapeutics is limited. Another class of compounds, known as pharmacological chaperones (pharmacoperones), binds with high specificity to misfolded proteins, either as enzyme substrates or receptor ligands, leading to decreased folding energy barriers and correction of the misfolding. Because many of the misfolded proteins are misrouted but do not have defects in function per se, pharmacoperones have promising potential in advancing to the clinic as therapeutics, since correcting routing may ameliorate the underlying mechanism of disease. This review will comprehensively summarize this exciting area of research, surveying the literature from in vitro studies in cell lines to transgenic animal models and clinical trials in several protein misfolding diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| | - P Michael Conn
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| |
Collapse
|
12
|
Abstract
The history of maltose-active disaccharidases is closely related to the history of the sugar and starch industry. It began in the 19th century, when a shortage of cane sugar occurred in continental Europe, because Napoleon Bonaparte decreed that no goods could be imported from England to the countries he occupied. Other sugar sources had to be found, and it led to the identification of sugar beets as alternative source of sugar by Marggraf in 1774, to the detection of starch hydrolysis by diluted sulfuric acid by Kirchhoff in 1812, and to the starch digestion enzyme, α-amylase, by Payen in 1833. In the 20th century, Borkström's group in Sweden investigated the absorption of nutrients in human adults by transintubation techniques and found that the luminal concentration of invertase was small compared to that of α-amylase. They speculated that the major locus of this enzyme activity must be in the intestinal cells. Borkström's coworker, Dahlqvist, investigated the maltose-active enzymes in pig intestine, and a second group around Semenza studied the maltase-active enzymes in rabbit intestine. After the first descriptions of congenital sucrase-isomaltase deficiency in 1960 and 1961, the research on disaccharidases increased. Dahlqvist published the first quantitative method to measure these enzymes. Consecutive research led to the discovery of 4 maltases, which were later identified as 2 complex enzymes: the sucrase-isomaltase complex and the maltase-glucoamylase complex. The homology of the 2 enzyme complexes was later determined when the cDNA sequences of the 2 complexes in human intestine were identified.
Collapse
|
13
|
Abstract
The final step of carbohydrate digestion in the intestine is performed by 2 major α-glucosidases of the intestinal mucosa, sucrase-isomaltase (SI) and maltase-glucoamylase. Both of these enzymes are type II membrane glycoproteins, which share a significant level of homology in gene and protein structures and yet have differences in the posttranslational processing, substrate specificity and functional capacity. Insufficient activity of these disaccharidases particularly SI as a result of genetic mutations or secondary intestinal pathologies is associated with carbohydrate maldigestion and gastrointestinal intolerances. This review will discuss the maturation profiles of SI and maltase-glucoamylase relative to their functional capacities and deficiencies.
Collapse
|
14
|
Sakr M, Li XY, Sabeh F, Feinberg TY, Tesmer JJG, Tang Y, Weiss SJ. Tracking the Cartoon mouse phenotype: Hemopexin domain-dependent regulation of MT1-MMP pericellular collagenolytic activity. J Biol Chem 2018; 293:8113-8127. [PMID: 29643184 DOI: 10.1074/jbc.ra117.001503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/23/2018] [Indexed: 11/06/2022] Open
Abstract
Following ENU mutagenesis, a phenodeviant line was generated, termed the "Cartoon mouse," that exhibits profound defects in growth and development. Cartoon mice harbor a single S466P point mutation in the MT1-MMP hemopexin domain, a 200-amino acid segment that is thought to play a critical role in regulating MT1-MMP collagenolytic activity. Herein, we demonstrate that the MT1-MMPS466P mutation replicates the phenotypic status of Mt1-mmp-null animals as well as the functional characteristics of MT1-MMP-/- cells. However, rather than a loss-of-function mutation acquired as a consequence of defects in MT1-MMP proteolytic activity, the S466P substitution generates a misfolded, temperature-sensitive mutant that is abnormally retained in the endoplasmic reticulum (ER). By contrast, the WT hemopexin domain does not play a required role in regulating MT1-MMP trafficking, as a hemopexin domain-deletion mutant is successfully mobilized to the cell surface and displays nearly normal collagenolytic activity. Alternatively, when MT1-MMPS466P-expressing cells are cultured at a permissive temperature of 25 °C that depresses misfolding, the mutant successfully traffics from the ER to the trans-Golgi network (ER → trans-Golgi network), where it undergoes processing to its mature form, mobilizes to the cell surface, and expresses type I collagenolytic activity. Together, these analyses define the Cartoon mouse as an unexpected gain-of-abnormal function mutation, wherein the temperature-sensitive mutant phenocopies MT1-MMP-/- mice as a consequence of eliciting a specific ER → trans-Golgi network trafficking defect.
Collapse
Affiliation(s)
- Moustafa Sakr
- Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research institute (GEBRI), University of Sadat City, Sadat City, Egypt 32897
| | - Xiao-Yan Li
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Farideh Sabeh
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Tamar Y Feinberg
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - John J G Tesmer
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109; Departments of Medicinal Chemistry, Pharmacology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Yi Tang
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Stephen J Weiss
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109; Departments of Medicinal Chemistry, Pharmacology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
15
|
Henström M, Diekmann L, Bonfiglio F, Hadizadeh F, Kuech EM, von Köckritz-Blickwede M, Thingholm LB, Zheng T, Assadi G, Dierks C, Heine M, Philipp U, Distl O, Money ME, Belheouane M, Heinsen FA, Rafter J, Nardone G, Cuomo R, Usai-Satta P, Galeazzi F, Neri M, Walter S, Simrén M, Karling P, Ohlsson B, Schmidt PT, Lindberg G, Dlugosz A, Agreus L, Andreasson A, Mayer E, Baines JF, Engstrand L, Portincasa P, Bellini M, Stanghellini V, Barbara G, Chang L, Camilleri M, Franke A, Naim HY, D'Amato M. Functional variants in the sucrase-isomaltase gene associate with increased risk of irritable bowel syndrome. Gut 2018; 67:263-270. [PMID: 27872184 PMCID: PMC5563477 DOI: 10.1136/gutjnl-2016-312456] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE IBS is a common gut disorder of uncertain pathogenesis. Among other factors, genetics and certain foods are proposed to contribute. Congenital sucrase-isomaltase deficiency (CSID) is a rare genetic form of disaccharide malabsorption characterised by diarrhoea, abdominal pain and bloating, which are features common to IBS. We tested sucrase-isomaltase (SI) gene variants for their potential relevance in IBS. DESIGN We sequenced SI exons in seven familial cases, and screened four CSID mutations (p.Val557Gly, p.Gly1073Asp, p.Arg1124Ter and p.Phe1745Cys) and a common SI coding polymorphism (p.Val15Phe) in a multicentre cohort of 1887 cases and controls. We studied the effect of the 15Val to 15Phe substitution on SI function in vitro. We analysed p.Val15Phe genotype in relation to IBS status, stool frequency and faecal microbiota composition in 250 individuals from the general population. RESULTS CSID mutations were more common in patients than asymptomatic controls (p=0.074; OR=1.84) and Exome Aggregation Consortium reference sequenced individuals (p=0.020; OR=1.57). 15Phe was detected in 6/7 sequenced familial cases, and increased IBS risk in case-control and population-based cohorts, with best evidence for diarrhoea phenotypes (combined p=0.00012; OR=1.36). In the population-based sample, 15Phe allele dosage correlated with stool frequency (p=0.026) and Parabacteroides faecal microbiota abundance (p=0.0024). The SI protein with 15Phe exhibited 35% reduced enzymatic activity in vitro compared with 15Val (p<0.05). CONCLUSIONS SI gene variants coding for disaccharidases with defective or reduced enzymatic activity predispose to IBS. This may help the identification of individuals at risk, and contribute to personalising treatment options in a subset of patients.
Collapse
Affiliation(s)
- Maria Henström
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Lena Diekmann
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ferdinando Bonfiglio
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Fatemeh Hadizadeh
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Eva-Maria Kuech
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Louise B Thingholm
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Tenghao Zheng
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Ghazaleh Assadi
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Claudia Dierks
- Department of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Heine
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ute Philipp
- Department of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ottmar Distl
- Department of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mary E Money
- Internal Medicine Department, University of Maryland School of Medicine, Baltimore, Maryland, USA,Meritus Medical Center, Hagerstown, Maryland, USA
| | - Meriem Belheouane
- Max Planck Institute for Evolutionary Biology, Plön, Germany,Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Femke-Anouska Heinsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Joseph Rafter
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Gerardo Nardone
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Rosario Cuomo
- Diagnosis and Therapy of Digestive Motility Diseases, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Paolo Usai-Satta
- S.C. Gastroenterologia, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | | | - Matteo Neri
- Department of Medicine and Aging Sciences and CeSi, G. D'Annunzio University, Chieti, Italy
| | - Susanna Walter
- Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Magnus Simrén
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Center for Functional GI and Motility Disorders, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Pontus Karling
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bodil Ohlsson
- Division of Internal Medicine, Department of Clinical Sciences, Skåne University Hospital, Malmö, Sweden,Division of Internal Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Peter T Schmidt
- Department of Medicine, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Greger Lindberg
- Department of Medicine, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Aldona Dlugosz
- Department of Medicine, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Agreus
- Division for Family Medicine, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Anna Andreasson
- Division for Family Medicine, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden,Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Emeran Mayer
- Division of Digestive Diseases, Oppenheimer Center for the Neurobiology of Stress, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany,Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Massimo Bellini
- Gastrointestinal Unit, Department of Gastroenterology, University of Pisa, Pisa, Italy
| | - Vincenzo Stanghellini
- Department of Medical and Surgical Sciences, University of Bologna, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Lin Chang
- Division of Digestive Diseases, Oppenheimer Center for the Neurobiology of Stress, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mauro D'Amato
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden,BioDonostia Health Research Institute, San Sebastian and IKERBASQUE, Basque Science Foundation, Bilbao, Spain,Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Franz J, Grünebaum J, Schäfer M, Mulac D, Rehfeldt F, Langer K, Kramer A, Riethmüller C. Rhombic organization of microvilli domains found in a cell model of the human intestine. PLoS One 2018; 13:e0189970. [PMID: 29320535 PMCID: PMC5761853 DOI: 10.1371/journal.pone.0189970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/05/2017] [Indexed: 01/22/2023] Open
Abstract
Symmetry is rarely found on cellular surfaces. An exception is the brush border of microvilli, which are essential for the proper function of transport epithelia. In a healthy intestine, they appear densely packed as a 2D-hexagonal lattice. For in vitro testing of intestinal transport the cell line Caco-2 has been established. As reported by electron microscopy, their microvilli arrange primarily in clusters developing secondly into a 2D-hexagonal lattice. Here, atomic force microscopy (AFM) was employed under aqueous buffer conditions on Caco-2 cells, which were cultivated on permeable filter membranes for optimum differentiation. For analysis, the exact position of each microvillus was detected by computer vision; subsequent Fourier transformation yielded the type of 2D-lattice. It was confirmed, that Caco-2 cells can build a hexagonal lattice of microvilli and form clusters. Moreover, a second type of arrangement was discovered, namely a rhombic lattice, which appeared at sub-maximal densities of microvilli with (29 ± 4) microvilli / μm2. Altogether, the findings indicate the existence of a yet undescribed pattern in cellular organization.
Collapse
Affiliation(s)
- Jonas Franz
- Faculty of Physics, Georg-August-Universität, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Theoretical Neurophysics, Göttingen, Germany
| | - Jonas Grünebaum
- Institute for Pharmaceutical Technology and Biopharmacy, University of Münster, Münster, Germany
| | - Marcus Schäfer
- nanoAnalytics GmbH, Centre for Nanotechnology, Münster, Germany
| | - Dennis Mulac
- Institute for Pharmaceutical Technology and Biopharmacy, University of Münster, Münster, Germany
| | - Florian Rehfeldt
- Third Institute of Physics—Biophysics, Georg-August-Universität, Göttingen, Germany
| | - Klaus Langer
- Institute for Pharmaceutical Technology and Biopharmacy, University of Münster, Münster, Germany
| | - Armin Kramer
- Serend-ip GmbH, Centre for Nanotechnology, Münster, Germany
| | | |
Collapse
|
17
|
Gericke B, Schecker N, Amiri M, Naim HY. Structure-function analysis of human sucrase-isomaltase identifies key residues required for catalytic activity. J Biol Chem 2017. [DOI: 10.1074/jbc.m117.791939 [doi link]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
18
|
Gericke B, Schecker N, Amiri M, Naim HY. Structure-function analysis of human sucrase-isomaltase identifies key residues required for catalytic activity. J Biol Chem 2017; 292:11070-11078. [PMID: 28522605 DOI: 10.1074/jbc.m117.791939] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/18/2017] [Indexed: 12/30/2022] Open
Abstract
Sucrase-isomaltase (SI) is an intestinal membrane-associated α-glucosidase that breaks down di- and oligosaccharides to absorbable monosaccharides. SI has two homologous functional subunits (sucrase and isomaltase) that both belong to the glycoside hydrolase family 31 (GH31) and differ in substrate specificity. All GH31 enzymes share a consensus sequence harboring an aspartic acid residue as a catalytic nucleophile. Moreover, crystallographic structural analysis of isomaltase predicts that another aspartic acid residue functions as a proton donor in hydrolysis. Here, we mutagenized the predicted proton donor residues and the nucleophilic catalyst residues in each SI subunit. We expressed these SI variants in COS-1 cells and analyzed their structural, transport, and functional characteristics. All of the mutants revealed expression levels and maturation rates comparable with those of the wild-type species and the corresponding nonmutated subunits were functionally active. Thereby we determined rate and substrate specificity for each single subunit without influence from the other subunit. This approach provides a model for functional analysis of the single subunits within a multidomain protein, achieved without the necessity to express the individual subunits separately. Of note, we also found that glucose product inhibition regulates the activities of both SI subunits. We experimentally confirmed the catalytic function of the predicted proton donor residues, and sequence analysis suggested that these residues are located in a consensus region in many GH31 family members. In summary, these findings reveal the kinetic features specific for each human SI subunit and demonstrate that the activities of these subunits are regulated via product inhibition.
Collapse
Affiliation(s)
- Birthe Gericke
- From the Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| | - Natalie Schecker
- From the Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| | - Mahdi Amiri
- From the Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| | - Hassan Y Naim
- From the Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| |
Collapse
|
19
|
Congenital Sucrase-isomaltase Deficiency: A Novel Compound Heterozygous Mutation Causing Aberrant Protein Localization. J Pediatr Gastroenterol Nutr 2017; 64:770-776. [PMID: 27749612 PMCID: PMC8176889 DOI: 10.1097/mpg.0000000000001424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Congenital diarrheal disorders is a group of inherited enteropathies presenting in early life and requiring parenteral nutrition. In most cases, genetics may be the key for precise diagnosis. We present an infant girl with chronic congenital diarrhea that resolved after introduction of fructose-based formula but had no identified mutation in the SLC5A1 gene. Using whole exome sequencing (WES) we identified other mutations that better dictated dietary adjustments. METHODS WES of the patient and her parents was performed. The analysis focused on recessive model including compound heterozygous mutations. Sanger sequencing was used to validate identified mutations and to screen the patient's newborn sister and grandparents. Expression and localization analysis were performed in the patient's duodenal biopsies using immunohistochemistry. RESULTS Using WES we identified a new compound heterozygote mutation in sucrase-isomaltase (SI) gene; a maternal inherited known V577G mutation, and a novel paternal inherited C1531W mutation. Importantly, the newborn offspring carried similar compound heterozygous mutations. Computational predictions suggest that both mutations highly destabilize the protein. SI expression and localization studies determined that the mutated SI protein was not expressed on the brush border membrane in the patient's duodenal biopsies, verifying the diagnosis of congenital sucrase-isomaltase deficiency (CSID). CONCLUSIONS The novel compound heterozygote V577G/C1531W SI mutations lead to lack of SI expression in the duodenal brush border, confirming the diagnosis of CSID. These cases of CSID extend the molecular spectrum of this condition, further directing a more adequate dietary intervention for the patient and newborn sibling.
Collapse
|
20
|
Molecular pathogenicity of novel sucrase-isomaltase mutations found in congenital sucrase-isomaltase deficiency patients. Biochim Biophys Acta Mol Basis Dis 2017; 1863:817-826. [PMID: 28062276 DOI: 10.1016/j.bbadis.2016.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/15/2016] [Accepted: 12/30/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS Congenital sucrase-isomaltase deficiency (CSID) is a genetic disorder associated with mutations in the sucrase-isomaltase (SI) gene. The diagnosis of congenital diarrheal disorders like CSID is difficult due to unspecific symptoms and usually requires invasive biopsy sampling of the intestine. Sequencing of the SI gene and molecular analysis of the resulting potentially pathogenic SI protein variants may facilitate a diagnosis in the future. This study aimed to categorize SI mutations based on their functional consequences. METHODS cDNAs encoding 13 SI mutants were expressed in COS-1 cells. The molecular pathogenicity of the resulting SI mutants was defined by analyzing their biosynthesis, cellular localization, structure and enzymatic functions. RESULTS Three biosynthetic phenotypes for the novel SI mutations were identified. The first biosynthetic phenotype was defined by mutants that are intracellularly transported in a fashion similar to wild type SI and with normal, but varying, levels of enzymatic activity. The second biosynthetic phenotype was defined by mutants with delayed maturation and trafficking kinetics and reduced activity. The third group of mutants is entirely transport incompetent and functionally inactive. CONCLUSIONS The current study unraveled CSID as a multifaceted malabsorption disorder that comprises three major classes of functional and trafficking mutants of SI and established a gradient of mild to severe functional deficits in the enzymatic functions of the enzyme. GENERAL SIGNIFICANCE This novel concept and the existence of mild consequences in a number of SI mutants strongly propose that CSID is an underdiagnosed and a more common intestinal disease than currently known.
Collapse
|
21
|
Diagnosing and Treating Intolerance to Carbohydrates in Children. Nutrients 2016; 8:157. [PMID: 26978392 PMCID: PMC4808885 DOI: 10.3390/nu8030157] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022] Open
Abstract
Intolerance to carbohydrates is relatively common in childhood, but still poorly recognized and managed. Over recent years it has come to the forefront because of progresses in our knowledge on the mechanisms and treatment of these conditions. Children with intolerance to carbohydrates often present with unexplained signs and symptoms. Here, we examine the most up-to-date research on these intolerances, discuss controversies relating to the diagnostic approach, including the role of molecular analysis, and provide new insights into modern management in the pediatric age, including the most recent evidence for correct dietary treatment.
Collapse
|
22
|
Wilschanski M, Abbasi M, Blanco E, Lindberg I, Yourshaw M, Zangen D, Berger I, Shteyer E, Pappo O, Bar-Oz B, Martín MG, Elpeleg O. A novel familial mutation in the PCSK1 gene that alters the oxyanion hole residue of proprotein convertase 1/3 and impairs its enzymatic activity. PLoS One 2014; 9:e108878. [PMID: 25272002 PMCID: PMC4182778 DOI: 10.1371/journal.pone.0108878] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/26/2014] [Indexed: 02/06/2023] Open
Abstract
Four siblings presented with congenital diarrhea and various endocrinopathies. Exome sequencing and homozygosity mapping identified five regions, comprising 337 protein-coding genes that were shared by three affected siblings. Exome sequencing identified a novel homozygous N309K mutation in the proprotein convertase subtilisin/kexin type 1 (PCSK1) gene, encoding the neuroendocrine convertase 1 precursor (PC1/3) which was recently reported as a cause of Congenital Diarrhea Disorder (CDD). The PCSK1 mutation affected the oxyanion hole transition state-stabilizing amino acid within the active site, which is critical for appropriate proprotein maturation and enzyme activity. Unexpectedly, the N309K mutant protein exhibited normal, though slowed, prodomain removal and was secreted from both HEK293 and Neuro2A cells. However, the secreted enzyme showed no catalytic activity, and was not processed into the 66 kDa form. We conclude that the N309K enzyme is able to cleave its own propeptide but is catalytically inert against in trans substrates, and that this variant accounts for the enteric and systemic endocrinopathies seen in this large consanguineous kindred.
Collapse
Affiliation(s)
- Michael Wilschanski
- Gastroenterology Unit, Division of Pediatrics, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Montaser Abbasi
- Gastroenterology Unit, Division of Pediatrics, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Elias Blanco
- Department of Anatomy and Neurobiology, University of Maryland-Baltimore, Baltimore, Maryland, United States of America
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland-Baltimore, Baltimore, Maryland, United States of America
| | - Michael Yourshaw
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - David Zangen
- Endocrinology Unit, Division of Pediatrics, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Itai Berger
- Neurology Unit, Division of Pediatrics, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Eyal Shteyer
- Gastroenterology Unit, Division of Pediatrics, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Orit Pappo
- Department of Pathology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Benjamin Bar-Oz
- Department of Neonatology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Martin G. Martín
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
23
|
|
24
|
Congenital sucrase-isomaltase deficiency: heterogeneity of inheritance, trafficking, and function of an intestinal enzyme complex. J Pediatr Gastroenterol Nutr 2012; 55 Suppl 2:S13-20. [PMID: 23103643 DOI: 10.1097/01.mpg.0000421402.57633.4b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
25
|
Wedenoja S, Pekansaari E, Höglund P, Mäkelä S, Holmberg C, Kere J. Update on SLC26A3 mutations in congenital chloride diarrhea. Hum Mutat 2011; 32:715-22. [DOI: 10.1002/humu.21498] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 03/01/2011] [Indexed: 12/22/2022]
|
26
|
|
27
|
Sim L, Willemsma C, Mohan S, Naim HY, Pinto BM, Rose DR. Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. J Biol Chem 2010; 285:17763-70. [PMID: 20356844 DOI: 10.1074/jbc.m109.078980] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) are small intestinal enzymes that work concurrently to hydrolyze the mixture of linear alpha-1,4- and branched alpha-1,6-oligosaccharide substrates that typically make up terminal starch digestion products. MGAM and SI are each composed of duplicated catalytic domains, N- and C-terminal, which display overlapping substrate specificities. The N-terminal catalytic domain of human MGAM (ntMGAM) has a preference for short linear alpha-1,4-oligosaccharides, whereas N-terminal SI (ntSI) has a broader specificity for both alpha-1,4- and alpha-1,6-oligosaccharides. Here we present the crystal structure of the human ntSI, in apo form to 3.2 A and in complex with the inhibitor kotalanol to 2.15 A resolution. Structural comparison with the previously solved structure of ntMGAM reveals key active site differences in ntSI, including a narrow hydrophobic +1 subsite, which may account for its additional substrate specificity for alpha-1,6 substrates.
Collapse
Affiliation(s)
- Lyann Sim
- Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Toronto, Ontario M56 2M9, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Mochizuki K, Igawa-Tada M, Takase S, Goda T. Feeding rats a high fat/carbohydrate ratio diet reduces jejunal S/I activity ratio and unsialylated galactose on glycosylated chain of S–I complex. Life Sci 2010; 86:524-31. [DOI: 10.1016/j.lfs.2010.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 12/28/2009] [Accepted: 02/06/2010] [Indexed: 11/17/2022]
|
29
|
Wedenoja S, Höglund P, Holmberg C. Review article: the clinical management of congenital chloride diarrhoea. Aliment Pharmacol Ther 2010; 31:477-85. [PMID: 19912155 DOI: 10.1111/j.1365-2036.2009.04197.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Congenital chloride diarrhoea in a newborn is a medical emergency, requiring early diagnostics and treatment to prevent severe dehydration and infant mortality. While most of the 250 cases reported arise from Finland, Poland and Arab countries, single cases with this autosomal recessive disorder appear worldwide. Such congenital chloride diarrhoea rarity makes diagnosis difficult. Life-long salt substitution with NaCl and KCl stabilizes fluid, electrolyte and acid-base balance diagnosis. When properly treated, the long-term outcome is favourable. AIM To summarize data on congenital chloride diarrhoea diagnosis, pathophysiology and treatment, and to provide guidelines for both acute and long-term management of congenital chloride diarrhoea. METHODS Data are based on MEDLINE search for 'chloride diarrhoea', in addition to clinical experience in the treatment of the largest known series of patients. RESULTS Treatment of congenital chloride diarrhoea involves (i) life-long salt substitution; (ii) management of acute dehydration and hypokalaemia during gastroenteritis or other infections; and (iii) recognition and treatment of other manifestations of the disease, such as intestinal inflammation, renal impairment and male subfertility. CONCLUSIONS This review summarizes data on congenital chloride diarrhoea and provides guidelines for treatment. After being a mostly paediatric problem, adult patients constitute a rare challenge for gastroenterologists worldwide.
Collapse
Affiliation(s)
- S Wedenoja
- Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
30
|
Sánchez-Laorden BL, Herraiz C, Valencia JC, Hearing VJ, Jiménez-Cervantes C, García-Borrón JC. Aberrant trafficking of human melanocortin 1 receptor variants associated with red hair and skin cancer: Steady-state retention of mutant forms in the proximal golgi. J Cell Physiol 2009; 220:640-54. [PMID: 19452503 DOI: 10.1002/jcp.21804] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The melanocortin 1 receptor (MC1R), a Gs protein-coupled receptor (GPCR) expressed in melanocytes, is a major determinant of skin pigmentation and phototype. MC1R activation stimulates melanogenesis and increases the ratio of black, strongly photoprotective eumelanins to reddish, poorly photoprotective pheomelanins. Several MC1R alleles are associated with red hair, fair skin, increased sensitivity to ultraviolet radiation (the RHC phenotype) and increased skin cancer risk. Three highly penetrant RHC variants, R151C, R160W, and D294H are loss-of-function MC1R mutants with altered cell surface expression. In this study, we show that forward trafficking was normal for D294H. Conversely, export traffic was impaired for R151C, which accumulated in the endoplasmic reticulum (ER), and for R160W, which was enriched in the cis-Golgi. This is the first report of steady-state retention in a post-ER secretory compartment of a GPCR mutant found in the human population. Residues R151 and R160 are located in the MC1R second intracellular loop (il2). Two other mutations in il2, T157A preventing T157 phosphorylation and R162P disrupting a (160)RARR(163) motif, also caused intracellular retention. Moreover, T157 was phosphorylated in wild-type MC1R and a T157D mutation mimicking constitutive phosphorylation allowed normal traffic, and rescued the retention phenotype of R160W and R162P. Therefore, MC1R export is likely regulated by T157 phosphorylation and the (160)RARR(163) arginine-based motif functions as an ER retrieval signal. These elements are conserved in mammalian MC1Rs and in all five types of human melanocortin receptors. Thus, members of this GPCR subfamily might share common mechanisms for regulation of plasma membrane expression.
Collapse
Affiliation(s)
- Berta L Sánchez-Laorden
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Robayo-Torres CC, Opekun AR, Quezada-Calvillo R, Xavier V, Smith EO, Navarrete M, Baker SS, Nichols BL. 13C-breath tests for sucrose digestion in congenital sucrase isomaltase-deficient and sacrosidase-supplemented patients. J Pediatr Gastroenterol Nutr 2009; 48:412-8. [PMID: 19330928 PMCID: PMC3955999 DOI: 10.1097/mpg.0b013e318180cd09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Congenital sucrase-isomaltase deficiency (CSID) is characterized by absence or deficiency of the mucosal sucrase-isomaltase enzyme. Specific diagnosis requires upper gastrointestinal biopsy with evidence of low to absent sucrase enzyme activity and normal histology. The hydrogen breath test (BT) is useful, but is not specific for confirmation of CSID. We investigated a more specific 13C-sucrose labeled BT. OBJECTIVES Determine whether CSID can be detected with the 13C-sucrose BT without duodenal biopsy sucrase assay, and if the 13C-sucrose BT can document restoration of sucrose digestion by CSID patients after oral supplementation with sacrosidase (Sucraid). METHODS Ten CSID patients were diagnosed by low biopsy sucrase activity. Ten controls were children who underwent endoscopy and biopsy because of dyspepsia or chronic diarrhea with normal mucosal enzymes activity and histology. Uniformly labeled 13C-glucose and 13C-sucrose loads were orally administered. 13CO2 breath enrichments were assayed using an infrared spectrophotometer. In CSID patients, the 13C-sucrose load was repeated adding Sucraid. Sucrose digestion and oxidation were calculated as a mean percent coefficient of glucose oxidation averaged between 30 and 90 minutes. RESULTS Classification of patients by 13C-sucrose BT percent coefficient of glucose oxidation agreed with biopsy sucrase activity. The breath test also documented the return to normal of sucrose digestion and oxidation after supplementation of CSID patients with Sucraid. CONCLUSIONS 13C-sucrose BT is an accurate and specific noninvasive confirmatory test for CSID and for enzyme replacement management.
Collapse
Affiliation(s)
- Claudia C. Robayo-Torres
- USDA/ARS Children’s Nutrition Research Center, Departments of Pediatrics-Nutrition, Baylor College of Medicine, Houston, TX
| | - Antone R. Opekun
- Departments of Pediatrics and Medicine, Baylor College of Medicine, Houston, TX
| | - Roberto Quezada-Calvillo
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi (UASLP), San Luis Potosi, Mexico
| | - Villa Xavier
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, University of Texas Medical Branch. Galveston, TX.
| | - E. O’Brian Smith
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics-Nutrition, Baylor College of Medicine, Houston, TX
| | - Marilyn Navarrete
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - S. Susan Baker
- Department of Pediatric Gastroenterology, State University NY at Buffalo, Buffalo, NY.
| | - Buford L Nichols
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics-Nutrition, Baylor College of Medicine, Houston, TX
| |
Collapse
|
32
|
Alfalah M, Keiser M, Leeb T, Zimmer KP, Naim HY. Compound heterozygous mutations affect protein folding and function in patients with congenital sucrase-isomaltase deficiency. Gastroenterology 2009; 136:883-92. [PMID: 19121318 DOI: 10.1053/j.gastro.2008.11.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 10/31/2008] [Accepted: 11/13/2008] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Congenital sucrase-isomaltase (SI) deficiency is an autosomal-recessive intestinal disorder characterized by a drastic reduction or absence of sucrase and isomaltase activities. Previous studies have indicated that single mutations underlie individual phenotypes of the disease. We investigated whether compound heterozygous mutations, observed in some patients, have a role in disease pathogenesis. METHODS We introduced mutations into the SI complementary DNA that resulted in the amino acid substitutions V577G and G1073D (heterozygous mutations found in one group of patients) or C1229Y and F1745C (heterozygous mutations found in another group). The mutant genes were expressed transiently, alone or in combination, in COS cells and the effects were assessed at the protein, structural, and subcellular levels. RESULTS The mutants SI-V577G, SI-G1073D, and SI-F1745C were misfolded and could not exit the endoplasmic reticulum, whereas SI-C1229Y was transported only to the Golgi apparatus. Co-expression of mutants found on each SI allele in patients did not alter the protein's biosynthetic features or improve its enzymatic activity. Importantly, the mutations C1229Y and F1745C, which lie in the sucrase domains of SI, prevented its targeting to the cell's apical membrane but did not affect protein folding or isomaltase activity. CONCLUSIONS Compound heterozygosity is a novel pathogenic mechanism of congenital SI deficiency. The effects of mutations in the sucrase domain of SIC1229Y and SIF1745C indicate the importance of a direct interaction between isomaltase and sucrose and the role of sucrose as an intermolecular chaperone in the intracellular transport of SI.
Collapse
Affiliation(s)
- Marwan Alfalah
- Department of Physiological Chemistry, University of Veterinary Medicine, Hannover, Germany
| | | | | | | | | |
Collapse
|
33
|
PLUK H, STOKES D, LICH B, WIERINGA B, FRANSEN J. Advantages of indium-tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells. J Microsc 2009; 233:353-63. [DOI: 10.1111/j.1365-2818.2009.03140.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Yam GHF, Roth J, Zuber C. 4-Phenylbutyrate rescues trafficking incompetent mutant alpha-galactosidase A without restoring its functionality. Biochem Biophys Res Commun 2007; 360:375-80. [PMID: 17592721 DOI: 10.1016/j.bbrc.2007.06.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
Fabry disease is a lysosomal storage disorder caused by deficiency of alpha-galactosidase A. Most mutant enzyme is catalytically active but due to misfolding retained in the endoplasmic reticulum. We have tested 4-phenylbutyrate for its potential to rescue various trafficking incompetent mutant alpha-galactosidase A. Although we found that the trafficking blockade for endoplasmic reticulum-retained mutant alpha-Gal A was released, neither a mature enzyme was detectable in transgenic mice fibroblasts nor a reversal of lysosomal Gb3 storage in fibroblasts from Fabry patients could be observed. Because of lack of functionality of rescued mutant alpha-galactosidase A, 4-phenylbutyrate seems to be of limited use as a chemical chaperone for Fabry disease.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Division of Cell and Molecular Pathology, Department of Pathology, University of Zurich, CH-8091 Zürich, Switzerland
| | | | | |
Collapse
|
35
|
Dilaver G, van de Vorstenbosch R, Tárrega C, Ríos P, Pulido R, van Aerde K, Fransen J, Hendriks W. Proteolytic processing of the receptor-type protein tyrosine phosphatase PTPBR7. FEBS J 2006; 274:96-108. [PMID: 17147696 DOI: 10.1111/j.1742-4658.2006.05568.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The single-copy mouse gene Ptprr gives rise to different protein tyrosine phosphatase (PTP) isoforms in neuronal cells through the use of distinct promoters, alternative splicing, and multiple translation initiation sites. Here, we examined the array of post-translational modifications imposed on the PTPRR protein isoforms PTPBR7, PTP-SL, PTPPBSgamma42 and PTPPBSgamma37, which have distinct N-terminal segments and localize to different parts of the cell. All isoforms were found to be short-lived, constitutively phosphorylated proteins. In addition, the transmembrane isoform, PTPBR7, was subject to N-terminal proteolytic processing, in between amino acid position 136 and 137, resulting in an additional, 65-kDa transmembrane PTPRR isoform. Unlike for some other receptor-type PTPs, the proteolytically produced N-terminal ectodomain does not remain associated with this PTPRR-65. Shedding of PTPBR7-derived polypeptides at the cell surface further adds to the molecular complexity of PTPRR biology.
Collapse
Affiliation(s)
- Gönül Dilaver
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Keiser M, Alfalah M, Pröpsting MJ, Castelletti D, Naim HY. Altered Folding, Turnover, and Polarized Sorting Act in Concert to Define a Novel Pathomechanism of Congenital Sucrase-Isomaltase Deficiency. J Biol Chem 2006; 281:14393-9. [PMID: 16543230 DOI: 10.1074/jbc.m513631200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naturally occurring mutants of membrane and secretory proteins are often associated with the pathogenesis of human diseases. Here, we describe the molecular basis of a novel phenotype of congenital sucrase-isomaltase deficiency (CSID), a disaccharide malabsorption disorder of the human intestine in which several structural features and functional capacities of the brush-border enzyme complex sucrase-isomaltase (SI) are affected. The cDNA encoding SI from a patient with CSID reveals a mutation in the isomaltase subunit of SI that results in the substitution of a cysteine by an arginine at amino acid residue 635 (C635R). When this mutation is introduced into the wild type cDNA of SI a mutant enzyme, SI(C635R), is generated that shows a predominant localization in the endoplasmic reticulum. Nevertheless, a definite localization of SI(C635R) in the Golgi apparatus and at the cell surface could be also observed. Epitope mapping with conformation-specific mAbs protease sensitivity assays, and enzymatic activity measurements demonstrate an altered folding pattern of SI(C635R) that is responsible for a substantially increased turnover rate and an aberrant sorting profile. Thus, SI(C635R) becomes distributed also at the basolateral membrane in contrast to wild type SI. Concomitant with the altered sorting pattern, the partial detergent extractability of wild type SI shifts to a complete detergent solubility with Triton X-100. The mutation has therefore affected an epitope responsible for the apical targeting fidelity of SI. Altogether, the combined effects of the C635R mutation on the turnover rate, function, polarized sorting, and detergent solubility of SI constitute a unique and novel pathomechanism of CSID.
Collapse
Affiliation(s)
- Markus Keiser
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| | | | | | | | | |
Collapse
|
37
|
Hihnala S, Höglund P, Lammi L, Kokkonen J, Ormälä T, Holmberg C. Long-term clinical outcome in patients with congenital chloride diarrhea. J Pediatr Gastroenterol Nutr 2006; 42:369-75. [PMID: 16641574 DOI: 10.1097/01.mpg.0000214161.37574.9a] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Congenital chloride diarrhea (CLD) is a rare, autosomal recessive disorder of intestinal Cl/HCO3 exchange caused by mutations in the SLC26A3 gene and characterized by persistent Cl rich diarrhea from birth. Treatment is symptomatic and replacement therapy with NaCl and KCl has been shown to be effective in children, but the long-term prognosis remains unclear. We studied the largest known cohort of patients to evaluate the long-term outcome of CLD and to search for extraintestinal manifestations. METHODS This is a cross-sectional clinical evaluation and retrospective analysis of medical history of 36 Finnish patients with CLD, born in the 1960s (n = 8), 1970s (n = 7) and 1980s (n = 21). RESULTS Early diagnosis and aggressive salt replacement therapy were associated with normal growth and development, in addition to significantly reduced mortality rates among the groups of patients born in the different decades, respectively (P = 0.001). No deaths due to CLD were observed after 1972. Enuresis, slight soiling and hospitalizations for gastroenteritis were common, especially in childhood, but 92% of the patients found their health excellent or good. Complications documented were end-stage renal disease (n = 1) and hyperuricemia (n = 4), novel findings possibly associated with CLD being male subfertility (n = 3), spermatoceles (n = 3), intestinal inflammation (n = 2), inguinal hernias (n = 4) and increased concentrations of sweat Cl in 12% of the patients. CONCLUSIONS When early diagnosed and adequately treated, the long-term prognosis of CLD is favorable. A putative role of a primary anion exchange defect of SLC26A3 in male subfertility and the decline of renal function due to chronic dehydration deserve further characterization.
Collapse
Affiliation(s)
- Satu Hihnala
- Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
38
|
Robayo-Torres CC, Quezada-Calvillo R, Nichols BL. Disaccharide digestion: clinical and molecular aspects. Clin Gastroenterol Hepatol 2006; 4:276-87. [PMID: 16527688 DOI: 10.1016/j.cgh.2005.12.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sugars normally are absorbed in the small intestine. When carbohydrates are malabsorbed, the osmotic load produced by the high amount of low molecular weight sugars and partially digested starches in the small intestine can cause symptoms of intestinal distention, rapid peristalsis, and diarrhea. Colonic bacteria normally metabolize proximally malabsorbed dietary carbohydrate through fermentation to small fatty acids and gases (ie, hydrogen, methane, and carbon dioxide). When present in large amounts, the malabsorbed sugars and starches can be excreted in the stool. Sugar intolerance is the presence of abdominal symptoms related to the proximal or distal malabsorption of dietary carbohydrates. The symptoms consist of meal-related abdominal cramps and distention, increased flatulence, borborygmus, and diarrhea. Infants and young children with carbohydrate malabsorption show more intense symptoms than adults; the passage of undigested carbohydrates through the colon is more rapid and is associated with detectable carbohydrates in copious watery acid stools. Dehydration often follows feeding of the offending sugar. In this review we present the clinical and current molecular aspects of disaccharidase digestion.
Collapse
Affiliation(s)
- Claudia C Robayo-Torres
- Department of Pediatrics, USDA/ARS, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
39
|
Castelletti D, Fracasso G, Alfalah M, Cingarlini S, Colombatti M, Naim HY. Apical Transport and Folding of Prostate-specific Membrane Antigen Occurs Independent of Glycan Processing. J Biol Chem 2006; 281:3505-12. [PMID: 16221666 DOI: 10.1074/jbc.m509460200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) is an integral cell-surface membrane glycoprotein that is overexpressed in prostate carcinomas rendering it an appropriate target for antibody-based therapeutic strategies. The biosynthesis of PSMA in transfected COS-1 cells reveals a slow conversion of mannose-rich to complex glycosylated PSMA compatible with slow transport kinetics from the endoplasmic reticulum to the Golgi. Importantly, mannose-rich PSMA persists as a trypsin-sensitive protein throughout its entire life cycle, and only Golgi-located PSMA glycoforms acquire trypsin resistance. This resistance, used here as a tool to examine correct folding, does not depend on the type of glycosylation, because different PSMA glycoforms generated in the presence of inhibitors of carbohydrate processing in the Golgi are also trypsin resistant. The conformational transition of PSMA to a correctly folded molecule is likely to occur in the Golgi and does not implicate ER molecular chaperones, such as BiP. We show here that PSMA is not only heavily N-but also O-glycosylated. The question arising is whether glycans, which do not play a role in folding of PSMA, are implicated in its transport to the cell surface. Neither the cell-surface expression of PSMA nor its efficient apical sorting in polarized Madin-Darby canine kidney cells are influenced by modulators of N- and O-glycosylation. The acquisition of folding determinants in the Golgi, therefore, is an essential prerequisite for protein trafficking and sorting of PSMA and suggests that altered or aberrant glycosylation often occurring during tumorigenesis has no regulatory effect on the cell-surface expression of PSMA.
Collapse
Affiliation(s)
- Deborah Castelletti
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Hermosilla R, Oueslati M, Donalies U, Schönenberger E, Krause E, Oksche A, Rosenthal W, Schülein R. Disease-causing V(2) vasopressin receptors are retained in different compartments of the early secretory pathway. Traffic 2005; 5:993-1005. [PMID: 15522100 DOI: 10.1111/j.1600-0854.2004.00239.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The G protein-coupled V(2) vasopressin receptor is crucially involved in water reabsorption in the renal collecting duct. Mutations in the human V(2) vasopressin receptor gene cause nephrogenic diabetes insipidus. Many of the disease-causing mutants are retained intracellularly by the quality control system of the early secretory pathway. It was previously thought that quality control system is restricted to the endoplasmic reticulum (ER). Here, we have examined the retention mechanisms of eight V(2) vasopressin receptor mutants. We show that mutants L62P, DeltaL62-R64 and S167L are trapped exclusively in the ER. In contrast, mutants R143P, Y205C, InsQ292, V226E and R337X reach the ER/Golgi intermediate compartment (ERGIC) and are rerouted to the ER. The ability of the mutant receptors to reach the ERGIC is independent of their expression levels. Instead, it is determined by their folding state. Mutant receptors in the ERGIC may be sorted into retrograde transport vesicles by an interaction of an RXR motif in the third intracellular loop with the coatomer complex I. Our data show that disease-causing mutants of a particular membrane protein may be retained in different compartments of the early secretory pathway and that the folding states of the proteins determine their retention mechanism.
Collapse
|
41
|
ten Dam GB, Poels LG, Pullens R, Jap PHK, van de Molengraft FJJM. Expression of a colorectal antigen defined by a new monoclonal antibody, CO-TL1. J Transl Med 2004; 84:1160-73. [PMID: 15195115 DOI: 10.1038/labinvest.3700130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A murine monoclonal antibody (MoAb CO-TL1, IgG1) has been raised by differential screening of hybridoma supernatants on sections of human large and small intestines, followed by screening on colon adenomas as well as on colorectal carcinomas. In both paraffin sections and cryostat sections, the antibody stained strongly all cell types in adult, neonatal and fetal human colorectal epithelium, that is, the goblet cells, the columnar cells and the endocrine cells. No staining was observed in the remaining parts of the normal gastrointestinal tract and other tissues. As revealed by immuno electron microscopy the epitope was present in the apical and basolateral cell membranes, the Golgi complex, secretory vesicles of goblet and columnar cells, and also in granules of the endocrine cells. The epitope in colorectal tissue sections was resistant to the deglycosylation enzymes neuramidase, diastase and hyaluronidase indicating its proteinaceous nature. This colorectal antigen remained expressed in 100% of colorectal adenomas (n = 39) and 86% (n = 29) of colorectal carcinomas. The expression was reduced in undifferentiated carcinomas. The CO-TL1 antibody detected also most other gastrointestinal adenocarcinomas and a few carcinomas of the ovary, uterus, breast, gallbladder and pancreas. However, it never detected carcinomas derived from the thyroid, lung, liver, bladder, kidney, prostate, testis, serous membranes of body cavities and skin. A wild-type variant protein of > 300 kDa of the colorectal antigen was identified in normal colorectal epithelium. In colorectal tumours, however, two tumour variant forms were found of 160-200 and 115-140 kDa, respectively. Our data indicate that this new MoAb CO-TL1 can be considered as a useful marker, which identifies normal colorectal epithelium and gastrointestinal tumours and especially colorectal tumours with high accuracy and excludes tumours originated from thyroid, lung, liver, bladder, kidney, prostate, testis, mesothelium and skin.
Collapse
Affiliation(s)
- Gerdy B ten Dam
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, University Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
Schülein R. The early stages of the intracellular transport of membrane proteins: clinical and pharmacological implications. Rev Physiol Biochem Pharmacol 2004; 151:45-91. [PMID: 15103508 DOI: 10.1007/s10254-004-0022-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intracellular transport mechanisms ensure that integral membrane proteins are delivered to their correct subcellular compartments. Efficient intracellular transport is a prerequisite for the establishment of both cell architecture and function. In the past decade, transport processes of proteins have also drawn the attention of clinicians and pharmacologists since many diseases have been shown to be caused by transport-deficient proteins. Membrane proteins residing within the plasma membrane are transported via the secretory (exocytotic) pathway. The general transport routes of the secretory pathway are well established. The transport of membrane proteins starts with their integration into the ER membrane. The ribosomes synthesizing membrane proteins are targeted to the ER membrane, and the nascent chains are co-translationally integrated into the bilayer, i.e., they are inserted while their synthesis is in progress. During ER insertion, the orientation (topology) of the proteins in the membrane is determined. Proteins are folded, and their folding state is checked by a quality control system that allows only correctly folded forms to leave the ER. Misfolded or incompletely folded forms are retained, transported back to the cytosol and finally subjected to proteolysis. Correctly folded proteins are transported in the membranes of vesicles through the ER/Golgi intermediate compartment (ERGIC) and the individual compartments of the Golgi apparatus ( cis, medial, trans) to the plasma membrane. In this review, the current knowledge of the first stages of the intracellular trafficking of membrane proteins will be summarized. This "early secretory pathway" includes the processes of ER insertion, topology determination, folding, quality control and the transport to the Golgi apparatus. Mutations in the genes of membrane proteins frequently lead to misfolded forms that are recognized and retained by the quality control system. Such mutations may cause inherited diseases like cystic fibrosis or retinitis pigmentosa. In the second part of this review, the clinical implications of the early secretory pathway will be discussed. Finally, new pharmacological strategies to rescue misfolded and transport-defective membrane proteins will be outlined.
Collapse
Affiliation(s)
- R Schülein
- Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
43
|
Ritz V, Alfalah M, Zimmer KP, Schmitz J, Jacob R, Naim HY. Congenital sucrase-isomaltase deficiency because of an accumulation of the mutant enzyme in the endoplasmic reticulum. Gastroenterology 2003; 125:1678-85. [PMID: 14724820 DOI: 10.1053/j.gastro.2003.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Congenital sucrase-isomaltase deficiency (CSID) is an autosomal recessive human disorder characterized by reduced activities of the brush border enzyme sucrase-isomaltase (SI). Here, we elucidate the pathogenesis of a new variant of CSID at the cellular and molecular level. METHODS Assessment of the CSID phenotype was achieved by enzymatic activity measurements, biosynthetic labeling of intestinal biopsy specimens, immunoprecipitation of SI, and immunoelectronmicroscopy. The putative mutation was identified by sequencing of the SI cDNA isolated by RT-PCR from intestinal biopsy samples. The function of the mutation was verified by immunoprecipitation and confocal microscopy of transiently transfected cells. RESULTS Biosynthetic labeling and immunoelectron microscopy reveal a predominant localization of SI in the endoplasmic reticulum (ER) similar to phenotype I of CSID. Unlike phenotype I, however, a partial conversion of SI to a complex glycosylated mature form takes place. The SI cDNA in this phenotype revealed 3 mutations, 2 of which, Val to Phe at residue 15 and Ala to Thr at residue 231, had no effect on the structure or function of SI. By contrast, the third mutation resulted in an exchange of leucine by proline at position 620 (L620P) and revealed in transfected COS cells structural features and subcellular localization similar to the phenotype identified in the patient's enterocytes. CONCLUSIONS This is the first identification at the molecular and subcellular levels of a novel variant of CSID in which SI accumulates predominantly in the ER, and a minor proportion is further processed and transported to the apical membrane of enterocytes.
Collapse
Affiliation(s)
- Valentina Ritz
- Institute of Physiological Chemistry, School of Veterinary Medicine Hannover, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Pröpsting MJ, Jacob R, Naim HY. A glutamine to proline exchange at amino acid residue 1098 in sucrase causes a temperature-sensitive arrest of sucrase-isomaltase in the endoplasmic reticulum and cis-Golgi. J Biol Chem 2003; 278:16310-4. [PMID: 12624106 DOI: 10.1074/jbc.c300093200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A striking feature of phenotype II in congenital sucrase-isomaltase deficiency is the retention of the brush border protein sucrase-isomaltase (SI) in the cis-Golgi. This transport block is the consequence of a glutamine to proline substitution at amino acid residue 1098 of the sucrase subunit. Here we provide unequivocal biochemical and confocal data to show that the SI(Q/P) mutant reveals characteristics of a temperature-sensitive mutant. Thus, correct folding, competent intracellular transport, and full enzymatic activity can be partially restored by expression of the mutant SI(Q/P) at the permissive temperature of 20 degrees C instead of 37 degrees C. The acquisition of normal trafficking and function appears to utilize several cycles of anterograde and retrograde steps between the endoplasmic reticulum and the Golgi implicating the molecular chaperones calnexin and heavy chain-binding protein. The data presented in this communication are to our knowledge the first to implicate a temperature-sensitive mutation in an intestinal enzyme deficiency or an intestinal disorder.
Collapse
Affiliation(s)
- Marcus J Pröpsting
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | | | | |
Collapse
|
45
|
Nauze M, Gonin L, Chaminade B, Perès C, Hullin-Matsuda F, Perret B, Chap H, Gassama-Diagne A. Guinea pig phospholipase B, identification of the catalytic serine and the proregion involved in its processing and enzymatic activity. J Biol Chem 2002; 277:44093-9. [PMID: 12194976 DOI: 10.1074/jbc.m205761200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Guinea pig phospholipase B (GPPLB) is a glycosylated ectoenzyme of intestinal brush border membrane. It displays a broad substrate specificity and is activated by trypsin cleavage. The primary sequence contains four tandem repeat domains (I to IV) and several serines in lipase consensus sequences. We used site-directed mutagenesis to demonstrate that only the serine 399 present in repeat II is responsible for the various enzymatic activities of GPPLB. Furthermore, we characterized for the first time the retinyl esterase activity of the enzyme. We also constructed and expressed in COS-7 cells, an NH(2)-terminal repeat I deletion mutant which was detected at a very low level by immunoblot. However, confocal microscopy study showed a strong intracellular accumulation with a weak membrane expression of the mutated protein, indicating a role of the NH(2)-terminal repeat I in the processing of GPPLB. Nevertheless, the Western blot-detected protein presented a glycosylation and trypsin sensitivity patterns similar to wild type PLB. The mutant is also fully active without trypsin treatment, in contrast to native enzyme. Thus, we propose a structural model for GPPLB, in which the repeat I constitutes a lid covering the active site and impairing enzymatic activity, its removal by trypsin leading to an active protein.
Collapse
Affiliation(s)
- Michel Nauze
- Institut Fédératif de Recherche en Immunologie Cellulaire et Moléculaire, INSERM Unité 563, Centre de Physiopathologie de Toulouse Purpan, Département Lipoprotéines et Médiateurs Lipidiques, Hôpital Purpan, 31059 Toulouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Karnsakul W, Luginbuehl U, Hahn D, Sterchi E, Avery S, Sen P, Swallow D, Nichols B. Disaccharidase activities in dyspeptic children: biochemical and molecular investigations of maltase-glucoamylase activity. J Pediatr Gastroenterol Nutr 2002; 35:551-6. [PMID: 12394383 DOI: 10.1097/00005176-200210000-00017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Maltase-glucoamylase enzyme plays an important role in starch digestion. Glucoamylase deficiency is reported to cause chronic diarrhea in infants, but its role in dyspeptic children is unknown. METHODS Glucoamylase and other disaccharidase specific activities were assayed from duodenal biopsy specimens in 44 children aged 0.5-18 years (mean, 10 +/- 5 years) undergoing endoscopy to evaluate dyspeptic symptoms. All subjects had normal duodenal histology. Intestinal organ culture was used to evaluate synthesis and processing of maltase-glucoamylase. Sequencing of the maltase-glucoamylase coding region was performed in subjects with low activity or variation of isoform in organ culture. RESULTS Twenty-two of the dyspeptic children had one or more disaccharidases with low specific activity. Twelve subjects (28%) had low activity of glucoamylase. Eight subjects had low activities of glucoamylase, sucrase, and lactase. Low glucoamylase activity was not correlated with the isoform phenotype of maltase-glucoamylase as described by metabolic labeling and sodium dodecyl sulfate electrophoresis. Novel nucleotide changes were not detected in one subject with low glucoamylase activity or in two subjects with variant isoforms of maltase-glucoamylase peptides. CONCLUSION Twelve of 44 dyspeptic children had low specific activity of duodenal maltase-glucoamylase. Eight of these children had low specific activity of all measured disaccharidases.
Collapse
Affiliation(s)
- Wikrom Karnsakul
- USDA Children's Nutrition Research Center, Baylor College of Medicine, and Texas Children's Hospital, Houston 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jacob R, Pürschel B, Naim HY. Sucrase is an intramolecular chaperone located at the C-terminal end of the sucrase-isomaltase enzyme complex. J Biol Chem 2002; 277:32141-8. [PMID: 12055199 DOI: 10.1074/jbc.m204116200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sucrase-isomaltase enzyme complex (pro-SI) is a type II integral membrane glycoprotein of the intestinal brush border membrane. Its synthesis commences with the isomaltase (IM) subunit and ends with sucrase (SUC). Both domains reveal striking structural similarities, suggesting a pseudo-dimeric assembly of a correctly folded and an enzymatically active pro-SI. The impact of each domain on the folding and function of pro-SI has been analyzed by individual expression and coexpression of the individual subunits. SUC acquires correct folding, enzymatic activity and transport competence and is secreted into the external milieu independent of the presence of IM. By contrast, IM persists as a mannose-rich polypeptide that interacts with the endoplasmic reticulum resident molecular chaperone calnexin. This interaction is disrupted when SUC is coexpressed with IM, indicating that SUC competes with calnexin for binding of IM. The interaction between SUC and the membrane-anchored IM leads to maturation of IM and blocks the secretion of SUC into the external milieu. We conclude that SUC plays a role as an intramolecular chaperone in the context of the pro-SI protein. To our knowledge all intramolecular chaperones so far identified are located at the N-terminal end. SUC is therefore the first C-terminally located intramolecular chaperone in mammalian cells.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | | | | |
Collapse
|
48
|
Belmont JW, Reid B, Taylor W, Baker SS, Moore WH, Morriss MC, Podrebarac SM, Glass N, Schwartz ID. Congenital sucrase-isomaltase deficiency presenting with failure to thrive, hypercalcemia, and nephrocalcinosis. BMC Pediatr 2002; 2:4. [PMID: 12014995 PMCID: PMC111192 DOI: 10.1186/1471-2431-2-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2002] [Accepted: 04/25/2002] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Disaccharide Intolerance Type I (Mendelian Interance in Man database: *222900) is a rare inborn error of metabolism resulting from mutation in sucrase-isomaltase (Enzyme Catalyzed 3.2.1.48). Usually, infants with SI deficiency come to attention because of chronic diarrhea and nutritional evidence of malabsorption. CASE PRESENTATION We describe an atypical presentation of this disorder in a 10-month-old infant. In addition to chronic diarrhea, the child displayed severe and chronic hypercalcemia, the evaluation of which was negative. An apparently coincidental right orbital hemangioma was detected. Following identification of the SI deficiency, an appropriately sucrose-restricted, but normal calcium diet regimen was instituted which led to cessation of diarrhea, substantial weight gain, and resolution of hypercalcemia. CONCLUSIONS This case illustrates that, similar to congenital lactase deficiency (Mendelian Interance in Man database: *223000, Alactasia, Hereditary Disaccharide Intolerance Type II), hypercalcemia may complicate neonatal Sucrase-Isomaltase deficiency. Hypercalcemia in the presence of chronic diarrhea should suggest disaccharide intolerance in young infants.
Collapse
Affiliation(s)
- John W Belmont
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA 77030
| | - Barbara Reid
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA 77030
| | - William Taylor
- Department of Pediatrics, University of South Carolina School of Medicine, Columbia, SC, USA 29203
| | - Susan S Baker
- Kaleida Health Children's Hospital Laboratory, Buffalo, NY, USA
| | - Warren H Moore
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA 77030
| | - Michael C Morriss
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA 77030
| | - Susan M Podrebarac
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA 77030
| | - Nancy Glass
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA 77030
- Department of Anesthesia, Baylor College of Medicine, Houston, TX, USA 77030
| | - I David Schwartz
- Department of Pediatrics, University of South Carolina School of Medicine, Columbia, SC, USA 29203
| |
Collapse
|
49
|
Jacob R, Peters K, Naim HY. The prosequence of human lactase-phlorizin hydrolase modulates the folding of the mature enzyme. J Biol Chem 2002; 277:8217-25. [PMID: 11751874 DOI: 10.1074/jbc.m111500200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The efficient transport of proteins along the secretory pathway requires that the polypeptide adopts a stably folded conformation to egress the endoplasmic reticulum (ER). The transport-competent precursor of the brush border enzyme LPH, pro-LPH, undergoes an intracellular cleavage process in the trans-Golgi network between Arg(734) and Leu(735) to yield LPH beta(initial). The role of the prodomain comprising the N-terminally located 734 amino acids of pro-LPH, LPH alpha, in the folding events of LPH beta(initial) has been analyzed by the individual expression of both forms in COS-1 cells. Following synthesis at 37 degrees C LPH beta(initial) acquires a misfolded and enzymatically inactive conformation that is degraded by trypsin. A temperature shift to 20 degrees C generates a stable, trypsin-resistant, and enzymatically active LPH beta(initial) indicating that the individual expression of LPH beta(initial) results in a temperature-sensitive conformation. This form interacts at non-permissive temperatures sequentially with the ER chaperones immunoglobulin-binding protein and calnexin resulting in an ER retention. The LPH alpha prodomain resides in the ER when individually expressed. It reveals compact structural features that are stabilized by disulfide bridges. LPH alpha and LPH beta(initial) readily interact with each other upon coexpression, and this interaction appears to trigger the formation of a trypsin-resistant, correctly folded, enzymatically active, and transport-competent LPH beta(initial) polypeptide. These data clearly demonstrate that the proregion of pro-LPH is an intramolecular chaperone that is critically essential in facilitating the folding of the intermediate form LPH beta(initial) in the context of the pro-LPH polypeptide.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, Bünteweg 17, Hannover D-30559, Germany
| | | | | |
Collapse
|
50
|
Spodsberg N, Jacob R, Alfalah M, Zimmer KP, Naim HY. Molecular basis of aberrant apical protein transport in an intestinal enzyme disorder. J Biol Chem 2001; 276:23506-10. [PMID: 11340066 DOI: 10.1074/jbc.c100219200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The impaired sorting profile to the apical membrane of human intestinal sucrase-isomaltase is the underlying cause in the pathogenesis of a novel phenotype of intestinal congenital sucrase-isomaltase deficiency. Molecular characterization of this novel phenotype reveals a point mutation in the coding region of the sucrase-isomaltase (SI) gene that results in an amino acid substitution of a glutamine by arginine at residue 117 of the isomaltase subunit. This substitution is located in a domain revealing features of a trefoil motif or a P-domain in immediate vicinity of the heavily O-glycosylated stalk domain. Expression of the mutant SI phenotype in epithelial Madin-Darby canine kidney cells reveals a randomly targeted SI protein to the apical and basolateral membranes confirming an exclusive role of the Q117R mutation in generating this phenotype. Unlike wild type SI, the mutant protein is completely extractable with Triton X-100 despite the presence of O-glycans that serve in the wild type protein as an apical sorting signal and are required for the association of SI with detergent-insoluble lipid microdomains. Obviously the O-glycans are not adequately recognized in the context of the mutant SI, most likely due to altered folding of the P-domain that ultimately affects the access of the O-glycans to a putative sorting element.
Collapse
Affiliation(s)
- N Spodsberg
- Department of Physiological Chemistry, School of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany
| | | | | | | | | |
Collapse
|