1
|
Chen R, Dai J. Lipid metabolism in idiopathic pulmonary fibrosis: From pathogenesis to therapy. J Mol Med (Berl) 2023; 101:905-915. [PMID: 37289208 DOI: 10.1007/s00109-023-02336-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic irreversible interstitial lung disease characterized by a progressive decline in lung function. The etiology of IPF is unknown, which poses a significant challenge to the treatment of IPF. Recent studies have identified a strong association between lipid metabolism and the development of IPF. Qualitative and quantitative analysis of small molecule metabolites using lipidomics reveals that lipid metabolic reprogramming plays a role in the pathogenesis of IPF. Lipids such as fatty acids, cholesterol, arachidonic acid metabolites, and phospholipids are involved in the onset and progression of IPF by inducing endoplasmic reticulum stress, promoting cell apoptosis, and enhancing the expression of pro-fibrotic biomarkers. Therefore, targeting lipid metabolism can provide a promising therapeutic strategy for pulmonary fibrosis. This review focuses on lipid metabolism in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ranxun Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
2
|
Pu S, Zhang J, Ren C, Zhou H, Wang Y, Wu Y, Yang S, Cao F, Zhou H. Montelukast prevents mice against carbon tetrachloride- and methionine-choline deficient diet-induced liver fibrosis: Reducing hepatic stellate cell activation and inflammation. Life Sci 2023; 325:121772. [PMID: 37178864 DOI: 10.1016/j.lfs.2023.121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
AIMS Montelukast is an antagonist of cysteinyl leukotriene receptor 1 (CysLTR1) that protects against inflammation and oxidative stress. However, the function of montelukast in liver fibrosis remains unknown. In this study, we examined whether the pharmacological inhibition of CysLTR1 could protect mice against hepatic fibrosis. MATERIALS AND METHODS Carbon tetrachloride (CCl4) and methionine-choline deficient (MCD) diet models were used in this study. The expression of CysLTR1 in liver were detected by RT-qPCR and Western blot analysis. Liver hydroxyproline levels, fibrotic genes expression, serum biochemical indexes and inflammatory factors were used to evaluate the effect of montelukast on liver fibrosis, injury, and inflammation. In vitro, we used the RT-qPCR and Western blot analysis to assess CysLTR1 in mouse primary hepatic stellate cell (HSC) and human LX-2 cell line. The role of montelukast on HSC activation and the underlying mechaisms were determined using RT-qPCR analysis, Western blot and immunostaining assays. KEY FINDINGS Chronic stimulation from CCl4 and MCD diet upregulated the mRNA and protein levels of CysLTR1 in the liver. Pharmacological inhibition of CysLTR1 by montelukast ameliorated liver inflammation and fibrosis in both models. Mechanistically, montelukast suppressed HSC activation by targeting the TGFβ/Smad pathway in vitro. The hepatoprotective effect of montelukast was also associated with reduced liver injury and inflammation. SIGNIFICANCE Montelukast suppressed CCl4- and MCD-induced chronic hepatic inflammation and liver fibrosis. CysLTR1 might be a therapeutic target for treating liver fibrosis.
Collapse
Affiliation(s)
- Shiyun Pu
- Department of Pharmacy, Chengdu Fifth People's Hospital, The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jingyi Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjing Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wang
- Department of Traditional Chinese Medicine, Chengdu Fifth People's Hospital, The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanli Wu
- Department of Pharmacy, Chengdu Fifth People's Hospital, The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangyu Yang
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangyin Cao
- Department of Pharmacy, Chengdu Fifth People's Hospital, The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Ham J, Kim J, Ko YG, Kim HY. The Dynamic Contribution of Neutrophils in the Chronic Respiratory Diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:361-378. [PMID: 35837821 PMCID: PMC9293600 DOI: 10.4168/aair.2022.14.4.361] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 01/13/2023]
Abstract
Asthma, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis are representative chronic respiratory diseases (CRDs). Although they differ in terms of disease presentation, they are all thought to arise from unresolved inflammation. Neutrophils are not only the first responders to acute inflammation, but they also help resolve the inflammation. Notably, emerging clinical studies show that CRDs are associated with systemic and local elevation of neutrophils. Moreover, murine studies suggest that airway-infiltrating neutrophils not only help initiate airway inflammation but also prolong the inflammation. Given this background, this review describes neutrophil-mediated immune responses in CRDs and summarizes the completed, ongoing, and potential clinical trials that test the therapeutic value of targeting neutrophils in CRDs. The review also clarifies the importance of understanding how neutrophils interact with other immune cells and how these interactions contribute to chronic inflammation in specific CRDs. This information may help identify future therapeutic strategies for CRDs.
Collapse
Affiliation(s)
- Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Jihyun Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Young Gyun Ko
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
4
|
Williams KM, Pavletic SZ, Lee SJ, Martin PJ, Farthing DE, Hakim FT, Rose J, Manning-Geist BL, Gea-Banacloche JC, Comis LE, Cowen EW, Justus DG, Baird K, Cheng GS, Avila D, Steinberg SM, Mitchell SA, Gress RE. Prospective phase II trial of montelukast to treat bronchiolitis obliterans syndrome after hematopoietic cell transplant and investigation into BOS pathogenesis. Transplant Cell Ther 2022; 28:264.e1-264.e9. [PMID: 35114411 PMCID: PMC9081205 DOI: 10.1016/j.jtct.2022.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bronchiolitis obliterans syndrome (BOS) is a severe manifestation of chronic graft-versus-host disease (cGVHD) following hematopoietic cell transplantation (HCT). Montelukast interrupts cysteinyl leukotriene activity and may diminish the activation and homing of cells to bronchioles and subsequent fibrosis. OBJECTIVE We performed a prospective phase II trial to test whether montelukast altered lung decline for patients with BOS after HCT. STUDY DESIGN We performed a single arm, open-label, multi-institutional study with primary endpoints of: i) FEV1 stability or improvement (<15% decline) and ii) slope of FEV1<1 point decline after six months treatment. Secondary endpoints included symptom and functional response, and immune correlates investigating the role of leukotrienes in BOS progression. RESULTS 25 patients enrolled with moderate to severe lung disease after three months of stable cGVHD therapy. Montelukast was well-tolerated and no patient required escalation of BOS-directed therapy. At the primary endpoint, all evaluable patients (n=23) met criteria for treatment success using FEV1% predicted, and all but one had stable or improved FEV1 slope. In those with >5% FEV1 improvement, clinically meaningful improvements were seen in the Lee scores of breathing, energy, and mood. Improvements in the Human Activity Profile and 6-minute-walk test were observed in those with <5% FEV1 decline. Overall survival was 87% at two-years. Immune correlates showed elevated leukotriene receptor levels on blood eosinophils and monocytes vs. healthy controls, elevated urine leukotrienes in 45% of cohort, and cysteinyl leukotriene receptors on bronchoalveolar lavage subsets and a predominance of Th2 T cells, all pre-treatment. CONCLUSIONS These data suggest that montelukast may safely halt progression of BOS after HCT and that leukotrienes may play a role in the biology of BOS.
Collapse
Affiliation(s)
- Kirsten M Williams
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, 3rd floor W362, Atlanta GA, US, 30322.
| | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda MD, US, 20892
| | - Stephanie J Lee
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA, US 98109
| | - Paul J Martin
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA, US 98109
| | - Don E Farthing
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, US, 20892
| | - Frances T Hakim
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, US, 20892
| | - Jeremy Rose
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, US, 20892
| | - Beryl L Manning-Geist
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, US, 10065
| | - Juan C Gea-Banacloche
- Division of Clinical Research, National Institute of Allergy and Immunology, National Institutes of Health, 10 Center Drive, Bethesda, MD, US, 20892
| | - Leora E Comis
- Rehabilitation Medicine Department, Clinical Center, NIH, Bethesda, MD
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, 10 Center Dr, Room 12N240A, Bethesda, MD, US, 20892
| | - David G Justus
- Department of Laboratory Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, US
| | - Kristin Baird
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Guang-Shing Cheng
- Department of Medicine, University of Washington, Seattle, WA, US, 98109; Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA, US 98109
| | - Daniele Avila
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda MD, US, 20892
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, US, 20892
| | - Sandra A Mitchell
- Outcomes Research Branch, Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, 9609 Medical Center Drive, Bethesda MD, US, 20892
| | - Ronald E Gress
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, US, 20892
| |
Collapse
|
5
|
Pils V, Terlecki-Zaniewicz L, Schosserer M, Grillari J, Lämmermann I. The role of lipid-based signalling in wound healing and senescence. Mech Ageing Dev 2021; 198:111527. [PMID: 34174292 DOI: 10.1016/j.mad.2021.111527] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Lipid-based signalling modulates several cellular processes and intercellular communication during wound healing and tissue regeneration. Bioactive lipids include but are not limited to the diverse group of eicosanoids, phospholipids, and extracellular vesicles and mediate the attraction of immune cells, initiation of inflammatory responses, and their resolution. In aged individuals, wound healing and tissue regeneration are greatly impaired, resulting in a delayed healing process and non-healing wounds. Senescent cells accumulate with age in vivo, preferably at sites implicated in age-associated pathologies and their elimination was shown to alleviate many age-associated diseases and disorders. In contrast to these findings, the transient presence of senescent cells in the process of wound healing exerts beneficial effects and limits fibrosis. Hence, clearance of senescent cells during wound healing was repeatedly shown to delay wound closure in vivo. Recent findings established a dysregulated synthesis of eicosanoids, phospholipids and extracellular vesicles as part of the senescent phenotype. This intriguing connection between cellular senescence, lipid-based signalling, and the process of wound healing and tissue regeneration prompts us to compile the current knowledge in this review and propose future directions for investigation.
Collapse
Affiliation(s)
- Vera Pils
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lucia Terlecki-Zaniewicz
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz and Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Ingo Lämmermann
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
6
|
Kai Y, Yoneyama H, Yoshikawa M, Kimura H, Muro S. Chondroitin sulfate in tissue remodeling: Therapeutic implications for pulmonary fibrosis. Respir Investig 2021; 59:576-588. [PMID: 34176780 DOI: 10.1016/j.resinv.2021.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Fibrosis is characterized by the deposition of extracellular matrix (ECM) proteins, while idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease characterized by dysregulated tissue repair and remodeling. Anti-inflammatory drugs, such as corticosteroids and immunosuppressants, and antifibrotic drugs, like pirfenidone and nintedanib, are used in IPF therapy. However, their limited effects suggest that single mediators are inadequate to control IPF. Therefore, therapies targeting the multifactorial cascades that regulate tissue remodeling in fibrosis could provide alternate solutions. ECM molecules have been shown to modulate various biological functions beyond tissue structure support and thus, could be developed into novel therapeutic targets for modulating tissue remodeling. Among ECM molecules, glycosaminoglycans (GAG) are linear polysaccharides consisting of repeated disaccharides, which regulate cell-matrix interactions. Chondroitin sulfate (CS), one of the major GAGs, binds to multifactorial mediators in the ECM and reportedly participates in tissue remodeling in various diseases; however, to date, its biological functions have drawn considerably less attention than other GAGs, like heparan sulfate. In the present review, we discuss the involvement and regulation of CS in tissue remodeling and pulmonary fibrotic diseases, its role in pulmonary fibrosis, and the therapeutic approaches targeting CS.
Collapse
Affiliation(s)
- Yoshiro Kai
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara, 634-8522, Japan; Department of Respiratory Medicine, Minami-Nara General Medical Center, 8-1 Fukugami, Oyodo-cho, Yoshino-gun, Nara, 638-8551, Japan.
| | - Hiroyuki Yoneyama
- TME Therapeutics Inc., 2-16-1 Higashi-shinbashi, Minato-ku, Tokyo, 105-0021, Japan.
| | - Masanori Yoshikawa
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara, 634-8522, Japan.
| | - Hiroshi Kimura
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose-city, Tokyo, 204-8522, Japan.
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara, 634-8522, Japan.
| |
Collapse
|
7
|
Zhou J, Li R, Liu Q, Zhang J, Huang H, Huang C, Zhang G, Zhao Y, Wu T, Tang Q, Huang Y, Zhang Z, Li Y, He J. Blocking 5-LO pathway alleviates renal fibrosis by inhibiting the epithelial-mesenchymal transition. Biomed Pharmacother 2021; 138:111470. [PMID: 33721755 DOI: 10.1016/j.biopha.2021.111470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/08/2023] Open
Abstract
The enzyme 5-lipoxygenase (5-LO) converts arachidonic acid to leukotrienes, which mediate inflammation. The enzyme is known to contribute to organ fibrosis, but how it contributes to renal fibrosis is unclear. Here, we reported that fibrotic kidneys expressed high levels of 5-LO, and deleting the 5-LO gene mitigated renal fibrosis in mice subjected to unilateral ureteral obstruction (UUO), based on assays of collagen deposition, injury and inflammation. Mechanistically, the exogenous leukotrienes B4 and C4, the downstream products of 5-LO, could induce the epithelial-mesenchymal transition (EMT) in kidney epithelial cell cultures, based on assays of E-cadherin, vimentin and snail expression. Studies in UUO mice confirmed that 5-LO deletion inhibited the EMT in the obstructed kidney. More importantly, 5-LO inhibitor zileuton loaded in CREKA-Lip, which could target to fibrotic kidney, markedly attenuated UUO-induced renal fibrosis and injury by inhibiting the EMT in the obstructed kidney. Our results suggested that 5-LO activity may contribute to renal fibrosis by promoting renal EMT, implying that the enzyme may be a useful therapeutic target.
Collapse
Affiliation(s)
- Jian Zhou
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Rui Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Cuiyuan Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Guorong Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Yingnan Zhao
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Tong Wu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Ya Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Zijing Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China.
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China; Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Exercise Improves Lung Inflammation, but Not Lung Remodeling and Mechanics in a Model of Bleomycin-Induced Lung Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4302608. [PMID: 33123311 PMCID: PMC7586181 DOI: 10.1155/2020/4302608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/16/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Introduction Moderate aerobic exercise training accelerates the resolution of lung fibrosis in a model of bleomycin-induced pulmonary fibrosis. However, whether it can inhibit the development of lung fibrosis is unknown. Materials and Methods C57Bl/6 mice were distributed into four groups: Control (Co), Exercise (Exe), Bleomycin (Bleo), and Bleomycin+Exercise (Bleo+Exe). A single bleomycin dose (1.5 UI/kg) was administered orotracheally and treadmill exercise started in the same day, enduring for 4 weeks, 5x/week, 60 minutes/session, at moderate intensity. Lung mechanics, systemic and pulmonary inflammation, and lung remodeling were evaluated. Lung homogenates were used to evaluate the antioxidant status. Results Total cells, macrophages, lymphocytes, and neutrophils numbers, in agreement with IL-6 levels, were higher in the BAL and serum of Bleo group, compared to other groups. In addition, lung levels of LTB4 in Bleo were higher than other groups, whereas SOD activity and nitric oxide levels in exercised groups (Exe and Exe+Bleo) compared to the Bleo group. Lung GPX activity was lower in Bleo and Exe+Bleo groups compared to others. Exe and Exe+Bleo groups also showed higher IL-10 expression by lung macrophages than other groups, whereas TGF-β expression was higher in Exe, Bleo, and Exe+Bleo groups compared to control. CCR7 expression was induced only in the Exe group. However, exercise did not improve lung remodeling and mechanics, or serum and pulmonary levels of VEGF, IGF-1, and TGF-β. Conclusion Aerobic exercise training initiated concomitantly with induction of pulmonary fibrosis reduces lung and systemic inflammation but fails to inhibit lung fibrosis and mechanics impairment.
Collapse
|
9
|
Li X, Xie M, Lu C, Mao J, Cao Y, Yang Y, Wei Y, Liu X, Cao S, Song Y, Peng J, Zhou Y, Jiang Q, Lin G, Qin S, Qi M, Hou M, Liu X, Zhou H, Yang G, Yang C. Design and synthesis of Leukotriene A4 hydrolase inhibitors to alleviate idiopathic pulmonary fibrosis and acute lung injury. Eur J Med Chem 2020; 203:112614. [PMID: 32679453 DOI: 10.1016/j.ejmech.2020.112614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 12/19/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) and acute lung injury (ALI) are considered two severe public health issues, attributed to malfunctions of neutrophils. They can cause chronic inflammation and have association with subsequent tissue damages. There have been rare drugs applying to the efficient treatment in clinical practice. Existing research revealed that Leukotriene B4 (LTB4) is the critical endogenous molecule to induce neutrophil inflammatory response. LTB4 blocking biosynthesis is the potential strategy treating IPF and ALI. In the present study, 45 hydroxamic acid derivatives were produced, and compound 26 was screened out as a highly selective Lead compound of Leukotriene A4 Hydrolase (LTA4H), i.e., an enzyme critical to the biosynthesis of LTB4. This compound is capable of relieving neutrophilic inflammation in an IPF mouse model at early stage, as well as mitigating LPS-induced acute lung injury via a mechanism of LTB4 blocking biosynthesis in vivo. Whether this compound acts as the potential lead compound for the treatment of IPF and ALI requires further verification.
Collapse
Affiliation(s)
- Xiaohe Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Maodun Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Cheng Lu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China; Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jiahe Mao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yuting Cao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yuyu Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yujiao Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Xinhua Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Sheng Cao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yang Song
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Junya Peng
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yunyun Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Qiuyan Jiang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Gang Lin
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Shuanglin Qin
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Min Qi
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Min Hou
- School of Public Health, College of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Xiang Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China.
| | - Honggang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China.
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China.
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China.
| |
Collapse
|
10
|
He Z, Tao D, Xiong J, Lou F, Zhang J, Chen J, Dai W, Sun J, Wang Y. Phosphorylation of 5-LOX: The Potential Set-point of Inflammation. Neurochem Res 2020; 45:2245-2257. [PMID: 32671628 DOI: 10.1007/s11064-020-03090-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Inflammation secondary to tissue injuries serves as a double-edged sword that determines the prognosis of tissue repair. As one of the most important enzymes controlling the inflammation process by producing leukotrienes, 5-lipoxygenase (5-LOX, also called 5-LO) has been one of the therapeutic targets in regulating inflammation for a long time. Although a large number of 5-LOX inhibitors have been explored, only a few of them can be applied clinically. Surprisingly, phosphorylation of 5-LOX reveals great significance in regulating the subcellular localization of 5-LOX, which has proven to be an important mechanism underlying the enzymatic activities of 5-LOX. There are at least three phosphorylation sites in 5-LOX jointly to determine the final inflammatory outcomes, and adjustment of phosphorylation of 5-LOX at different phosphorylation sites brings hope to provide an unrecognized means to regulate inflammation. The present review intends to shed more lights into the set-point-like mechanisms of phosphorylation of 5-LOX and its possible clinical application by summarizing the biological properties of 5-LOX, the relationship of 5-LOX with neurodegenerative diseases and brain injuries, the phosphorylation of 5-LOX at different sites, the regulatory effects and mechanisms of phosphorylated 5-LOX upon inflammation, as well as the potential anti-inflammatory application through balancing the phosphorylation-depended set-point.
Collapse
Affiliation(s)
- Zonglin He
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.,Faculty of Medicine, International school, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Di Tao
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.,Faculty of Medicine, International school, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jiaming Xiong
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Fangfang Lou
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jiayuan Zhang
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jinxia Chen
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Weixi Dai
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.,Faculty of Medicine, International school, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jing Sun
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China
| | - Yuechun Wang
- Department of Physiology, Basic Medical School, Jinan University, Huangpu Avenue 601, Tianhe District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
11
|
Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Int J Mol Sci 2020; 21:ijms21124257. [PMID: 32549377 PMCID: PMC7352853 DOI: 10.3390/ijms21124257] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF.
Collapse
|
12
|
He R, Chen Y, Cai Q. The role of the LTB4-BLT1 axis in health and disease. Pharmacol Res 2020; 158:104857. [PMID: 32439596 DOI: 10.1016/j.phrs.2020.104857] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Leukotriene B4 (LTB4) is a major type of lipid mediator that is rapidly generated from arachidonic acid through sequential action of 5-lipoxygenase (5-LO), 5-lipoxygenase-activating protein (FLAP) and LTA4 hydrolase (LTA4H) in response to various stimuli. LTB4 is well known to be a chemoattractant for leukocytes, particularly neutrophils, via interaction with its high-affinity receptor BLT1. Extensive attention has been paid to the role of the LTB4-BLT1 axis in acute and chronic inflammatory diseases, such as infectious diseases, allergy, autoimmune diseases, and metabolic disease via mediating recruitment and/or activation of different types of inflammatory cells depending on different stages or the nature of inflammatory response. Recent studies also demonstrated that LTB4 acts on non-immune cells via BLT1 to initiate and/or amplify pathological inflammation in various tissues. In addition, emerging evidence reveals a complex role of the LTB4-BLT1 axis in cancer, either tumor-inhibitory or tumor-promoting, depending on the different target cells. In this review, we summarize both established understanding and the most recent progress in our knowledge about the LTB4-BLT1 axis in host defense, inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China.
| | - Yu Chen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Qian Cai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Rajasekar N, Sivanantham A, Kar A, Mahapatra SK, Ahirwar R, Thimmulappa RK, Paramasivam SG, Subbiah R. Tannic acid alleviates experimental pulmonary fibrosis in mice by inhibiting inflammatory response and fibrotic process. Inflammopharmacology 2020; 28:1301-1314. [PMID: 32372165 DOI: 10.1007/s10787-020-00707-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
Abstract
Pulmonary fibrosis (PF) is a chronic and irreversible scarring disease in the lung with limited treatment options. Therefore, it is critical to identify new therapeutic options. This study was undertaken to identify the effects of tannic acid (TA), a naturally occurring dietary polyphenol, in a mouse model of PF. Bleomycin (BLM) was intratracheally administered to induce PF. Administration of TA significantly reduced BLM-induced histological alterations, inflammatory cell infiltration and the levels of various inflammatory mediators (nitric oxide, leukotriene B4 and cytokines). Additionally, treatment with TA also impaired BLM-mediated increases in pro-fibrotic (transforming growth factor-β1) and fibrotic markers (alpha-smooth muscle actin, vimentin, collagen 1 alpha and fibronectin) expression. Further investigation indicated that BLM-induced phosphorylation of Erk1/2 (extracellular signal-regulated kinases 1 and 2) in lungs was suppressed by TA treatment. Findings of this study suggest that TA has the potential to mitigate PF through inhibiting the inflammatory response and fibrotic process in lungs and that TA might be useful for the treatment of PF in clinical practice.
Collapse
Affiliation(s)
- Nandhine Rajasekar
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Ayyanar Sivanantham
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Amrita Kar
- Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Santanu Kar Mahapatra
- Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Rajesh Ahirwar
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Rajesh K Thimmulappa
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, 570015, India
| | | | - Rajasekaran Subbiah
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India. .,Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India.
| |
Collapse
|
14
|
Wiley CD, Brumwell AN, Davis SS, Jackson JR, Valdovinos A, Calhoun C, Alimirah F, Castellanos CA, Ruan R, Wei Y, Chapman HA, Ramanathan A, Campisi J, Jourdan Le Saux C. Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight 2019; 4:130056. [PMID: 31687975 DOI: 10.1172/jci.insight.130056] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
Accumulation of senescent cells is associated with the progression of pulmonary fibrosis, but mechanisms accounting for this linkage are not well understood. To explore this issue, we investigated whether a class of biologically active profibrotic lipids, the leukotrienes (LT), is part of the senescence-associated secretory phenotype. The analysis of conditioned medium (CM), lipid extracts, and gene expression of LT biosynthesis enzymes revealed that senescent cells secreted LT, regardless of the origin of the cells or the modality of senescence induction. The synthesis of LT was biphasic and followed by antifibrotic prostaglandin (PG) secretion. The LT-rich CM of senescent lung fibroblasts (IMR-90) induced profibrotic signaling in naive fibroblasts, which were abrogated by inhibitors of ALOX5, the principal enzyme in LT biosynthesis. The bleomycin-induced expression of genes encoding LT and PG synthases, level of cysteinyl LT in the bronchoalveolar lavage, and overall fibrosis were reduced upon senescent cell removal either in a genetic mouse model or after senolytic treatment. Quantification of ALOX5+ cells in lung explants obtained from idiopathic pulmonary fibrosis (IPF) patients indicated that half of these cells were also senescent (p16Ink4a+). Unlike human fibroblasts from unused donor lungs made senescent by irradiation, senescent IPF fibroblasts secreted LTs but failed to synthesize PGs. This study demonstrates for the first time to our knowledge that senescent cells secrete functional LTs, significantly contributing to the LT pool known to cause or exacerbate IPF.
Collapse
Affiliation(s)
| | | | - Sonnet S Davis
- Buck Institute for Research on Aging, Novato, California, USA
| | | | | | - Cheresa Calhoun
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | | - Ying Wei
- UCSF, San Francisco, California, USA
| | | | - Arvind Ramanathan
- Buck Institute for Research on Aging, Novato, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine (inStem), Rajiv Gandhi Nagar, Kodigehalli, Bengaluru, Karnataka, India
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California, USA.,Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Claude Jourdan Le Saux
- UCSF, San Francisco, California, USA.,University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
15
|
Abstract
Fibrosis is the abnormal deposition of extracellular matrix, which can lead to organ dysfunction, morbidity, and death. The disease burden caused by fibrosis is substantial, and there are currently no therapies that can prevent or reverse fibrosis. Metabolic alterations are increasingly recognized as an important pathogenic process that underlies fibrosis across many organ types. As a result, metabolically targeted therapies could become important strategies for fibrosis reduction. Indeed, some of the pathways targeted by antifibrotic drugs in development - such as the activation of transforming growth factor-β and the deposition of extracellular matrix - have metabolic implications. This Review summarizes the evidence to date and describes novel opportunities for the discovery and development of drugs for metabolic reprogramming, their associated challenges, and their utility in reducing fibrosis. Fibrotic therapies are potentially relevant to numerous common diseases such as cirrhosis, non-alcoholic steatohepatitis, chronic renal disease, heart failure, diabetes, idiopathic pulmonary fibrosis, and scleroderma.
Collapse
|
16
|
Mamazhakypov A, Schermuly RT, Schaefer L, Wygrecka M. Lipids - two sides of the same coin in lung fibrosis. Cell Signal 2019; 60:65-80. [PMID: 30998969 DOI: 10.1016/j.cellsig.2019.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive extracellular matrix deposition in the lung parenchyma leading to the destruction of lung structure, respiratory failure and premature death. Recent studies revealed that the pathogenesis of IPF is associated with alterations in the synthesis and the activity of lipids, lipid regulating proteins and cell membrane lipid transporters and receptors in different lung cells. Furthermore, deregulated lipid metabolism was found to contribute to the profibrotic phenotypes of lung fibroblasts and alveolar epithelial cells. Consequently, several pharmacological agents, targeting lipids, lipid mediators, and lipoprotein receptors, was successfully tested in the animal models of lung fibrosis and entered early phase clinical trials. In this review, we highlight new therapeutic options to counteract disturbed lipid hemostasis in the maladaptive lung remodeling.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| | - Ralph T Schermuly
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| | - Liliana Schaefer
- Goethe University School of Medicine, Frankfurt am Main, Germany.
| | - Malgorzata Wygrecka
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| |
Collapse
|
17
|
Shimizu H, Ito A, Sakurada K, Nakamura J, Tanaka K, Komatsu M, Takeda M, Saito K, Endo Y, Kozaki T, Shoda M, Kuriyama H. AK106-001616, a Potent and Selective Inhibitor of Cytosolic Phospholipase A 2: In Vivo Efficacy for Inflammation, Neuropathic Pain, and Pulmonary Fibrosis. J Pharmacol Exp Ther 2019; 369:511-522. [PMID: 30971478 DOI: 10.1124/jpet.118.255034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/08/2019] [Indexed: 01/14/2023] Open
Abstract
3-[3-Amino-4-(indan-2-yloxy)-5-(1-methyl-1H-indazol-5-yl)-phenyl]-propionic acid (AK106-001616) is a novel, potent, and selective inhibitor of the cytosolic phospholipase A2 (cPLA2) enzyme. Unlike traditional nonsteroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors, AK106-001616 reduced prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) production by stimulated cells. The suppression of PGE2 and LTB4 production was also confirmed using an air pouch model in rats administered a single oral dose of AK106-001616. AK106-001616 alleviated paw swelling in a rat adjuvant-induced arthritis (AIA) model. The maximum effect of the inhibitory effect of AK106-001616 was comparable with that of naproxen on paw swelling in a rat AIA model. Meanwhile, the inhibitory effect of AK106-001616 was more effective than that of naproxen in the mouse collagen antibody-induced arthritis model with leukotrienes contributing to the pathogenesis. AK106-001616 dose dependently reversed the decrease in paw withdrawal threshold not only in rat carrageenan-induced hyperalgesia, but also in a rat neuropathic pain model induced by sciatic nerve chronic constriction injury (CCI). However, naproxen and celecoxib did not reverse the decrease in the paw withdrawal threshold in the CCI model. Furthermore, AK106-001616 reduced the disease score of bleomycin-induced lung fibrosis in rats. In addition, AK106-001616 did not enhance aspirin-induced gastric damage in fasted rats, increase blood pressure, or increase the thromboxane A2/ prostaglandin I2 ratio that is thought to be an underlying mechanism of thrombotic cardiovascular events increased by selective cyclooxygenase-2 inhibitors. Taken together, these data demonstrate that oral AK106-001616 may provide valuable effects for wide indications without attendant gastrointestinal and cardiovascular risks.
Collapse
Affiliation(s)
- Hirotomo Shimizu
- Laboratories for Pharmacology (H.S., A.I., Ka.S., J.N., K.T., M.K., M.T., Ke.S., Y.E., H.K.), Safety Assessment and ADME (T.K.), and Medicinal Chemistry (M.S.), Pharmaceuticals Research Center, Asahi Kasei Pharma Co. Ltd., Izunokuni, Shizuoka, Japan
| | - Akitoshi Ito
- Laboratories for Pharmacology (H.S., A.I., Ka.S., J.N., K.T., M.K., M.T., Ke.S., Y.E., H.K.), Safety Assessment and ADME (T.K.), and Medicinal Chemistry (M.S.), Pharmaceuticals Research Center, Asahi Kasei Pharma Co. Ltd., Izunokuni, Shizuoka, Japan
| | - Katsuhiko Sakurada
- Laboratories for Pharmacology (H.S., A.I., Ka.S., J.N., K.T., M.K., M.T., Ke.S., Y.E., H.K.), Safety Assessment and ADME (T.K.), and Medicinal Chemistry (M.S.), Pharmaceuticals Research Center, Asahi Kasei Pharma Co. Ltd., Izunokuni, Shizuoka, Japan
| | - Junji Nakamura
- Laboratories for Pharmacology (H.S., A.I., Ka.S., J.N., K.T., M.K., M.T., Ke.S., Y.E., H.K.), Safety Assessment and ADME (T.K.), and Medicinal Chemistry (M.S.), Pharmaceuticals Research Center, Asahi Kasei Pharma Co. Ltd., Izunokuni, Shizuoka, Japan
| | - Kosuke Tanaka
- Laboratories for Pharmacology (H.S., A.I., Ka.S., J.N., K.T., M.K., M.T., Ke.S., Y.E., H.K.), Safety Assessment and ADME (T.K.), and Medicinal Chemistry (M.S.), Pharmaceuticals Research Center, Asahi Kasei Pharma Co. Ltd., Izunokuni, Shizuoka, Japan
| | - Masakazu Komatsu
- Laboratories for Pharmacology (H.S., A.I., Ka.S., J.N., K.T., M.K., M.T., Ke.S., Y.E., H.K.), Safety Assessment and ADME (T.K.), and Medicinal Chemistry (M.S.), Pharmaceuticals Research Center, Asahi Kasei Pharma Co. Ltd., Izunokuni, Shizuoka, Japan
| | - Mineko Takeda
- Laboratories for Pharmacology (H.S., A.I., Ka.S., J.N., K.T., M.K., M.T., Ke.S., Y.E., H.K.), Safety Assessment and ADME (T.K.), and Medicinal Chemistry (M.S.), Pharmaceuticals Research Center, Asahi Kasei Pharma Co. Ltd., Izunokuni, Shizuoka, Japan
| | - Kenichi Saito
- Laboratories for Pharmacology (H.S., A.I., Ka.S., J.N., K.T., M.K., M.T., Ke.S., Y.E., H.K.), Safety Assessment and ADME (T.K.), and Medicinal Chemistry (M.S.), Pharmaceuticals Research Center, Asahi Kasei Pharma Co. Ltd., Izunokuni, Shizuoka, Japan
| | - Yukiko Endo
- Laboratories for Pharmacology (H.S., A.I., Ka.S., J.N., K.T., M.K., M.T., Ke.S., Y.E., H.K.), Safety Assessment and ADME (T.K.), and Medicinal Chemistry (M.S.), Pharmaceuticals Research Center, Asahi Kasei Pharma Co. Ltd., Izunokuni, Shizuoka, Japan
| | - Tomohito Kozaki
- Laboratories for Pharmacology (H.S., A.I., Ka.S., J.N., K.T., M.K., M.T., Ke.S., Y.E., H.K.), Safety Assessment and ADME (T.K.), and Medicinal Chemistry (M.S.), Pharmaceuticals Research Center, Asahi Kasei Pharma Co. Ltd., Izunokuni, Shizuoka, Japan
| | - Motoshi Shoda
- Laboratories for Pharmacology (H.S., A.I., Ka.S., J.N., K.T., M.K., M.T., Ke.S., Y.E., H.K.), Safety Assessment and ADME (T.K.), and Medicinal Chemistry (M.S.), Pharmaceuticals Research Center, Asahi Kasei Pharma Co. Ltd., Izunokuni, Shizuoka, Japan
| | - Hiroshi Kuriyama
- Laboratories for Pharmacology (H.S., A.I., Ka.S., J.N., K.T., M.K., M.T., Ke.S., Y.E., H.K.), Safety Assessment and ADME (T.K.), and Medicinal Chemistry (M.S.), Pharmaceuticals Research Center, Asahi Kasei Pharma Co. Ltd., Izunokuni, Shizuoka, Japan
| |
Collapse
|
18
|
Calvello M, Flore MC, Richeldi L. Novel drug targets in idiopathic pulmonary fibrosis. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1590196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mariarosaria Calvello
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Chiara Flore
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Richeldi
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UniversitàCattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
19
|
Role of the high-affinity leukotriene B4 receptor signaling in fibrosis after unilateral ureteral obstruction in mice. PLoS One 2019; 14:e0202842. [PMID: 30818366 PMCID: PMC6394974 DOI: 10.1371/journal.pone.0202842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 02/10/2019] [Indexed: 12/28/2022] Open
Abstract
Leukotriene B4 (LTB4) is a lipid mediator that acts as a potent chemoattractant for inflammatory leukocytes. Kidney fibrosis is caused by migrating inflammatory cells and kidney-resident cells. Here, we examined the role of the high-affinity LTB4 receptor BLT1 during development of kidney fibrosis induced by unilateral ureteral obstruction (UUO) in wild-type (WT) mice and BLT1 knockout (BLT1-/-) mice. We found elevated expression of 5-lipoxygenase (5-LOX), which generates LTB4, in the renal tubules of UUO kidneys from WT mice and BLT1-/- mice. Accumulation of immunoreactive type I collagen in WT UUO kidneys increased over time; however, the increase was less prominent in BLT1-/- UUO kidneys. Accumulation of S100A4-positive fibroblasts increased temporally in WT UUO kidneys, but was again less pronounced in-BLT1-/- UUO kidneys. The same was true of mRNA encoding transforming growth factor-β (TGF)-β and fibroblast growth factor (FGF)-2. Finally, accumulation of F4/80-positive macrophages, which secrete TGF-β, increased temporally in WT UUO and BLT1-/- UUO kidneys, but to a lesser extent in the latter. Following LTB4 stimulation in vitro, macrophages showed increased expression of mRNA encoding TGF-β/FGF-2 and Col1a1, whereas L929 fibroblasts showed increased expression of mRNA encoding α smooth muscle actin (SMA). Bone marrow (BM) transplantation studies revealed that the area positive for type I collagen was significantly smaller in BLT1-/—BM→WT than in WT-BM→WT. Thus, LTB4-BLT1 signaling plays a critical role in fibrosis in UUO kidneys by increasing accumulation of macrophages and fibroblasts. Therefore, blocking BLT1 may prevent renal fibrosis.
Collapse
|
20
|
|
21
|
Sato S, Yanagihara T, Kolb MRJ. Therapeutic targets and early stage clinical trials for pulmonary fibrosis. Expert Opin Investig Drugs 2018; 28:19-28. [DOI: 10.1080/13543784.2019.1554054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Seidai Sato
- Firestone Institute for Respiratory Health, Departments of Medicine, McMaster University, Hamilton,
Ontario, Canada
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University,
Tokushima, Japan
| | - Toyoshi Yanagihara
- Firestone Institute for Respiratory Health, Departments of Medicine, McMaster University, Hamilton,
Ontario, Canada
| | - Martin R. J. Kolb
- Firestone Institute for Respiratory Health, Departments of Medicine, McMaster University, Hamilton,
Ontario, Canada
| |
Collapse
|
22
|
Lu X, Huang L, Zhang W, Ning X. Tepoxalin a dual 5-LOX-COX inhibitor and erlotinib an EGFR inhibitor halts progression of gastric cancer in tumor xenograft mice. Am J Transl Res 2018; 10:3847-3856. [PMID: 30662635 PMCID: PMC6291731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
GC is associated with over expression of epidermal growth factor receptor (EGRF), Cyclooxygenase-2 (COX-2) and 5-Lipoxygenase (5-LOX). We postulated that targeting these pathways will result in better treatment efficacy than using a single agent with higher dose which may cause toxicity and resistance. We evaluated Tepoxalin (TPX) a dual 5-LOX-COX inhibitor and Erlotinib (ERB) an EGFR inhibitor alone and combination in MGC-803 injected tumor xenografts mice. Female nude mice were selected and injected subcutaneously with MGC-803 GC cells and were grouped after the tumor model was formed. The treatment of TPX, ERB and their combination was given for 21 days. After treatment protocol proliferating index was measured, expression of apoptosis related proteins, 5-LOX, COX-2, EGFR, vascular endothelial growth factor-C (VEGF-C) and density of lymphatic vessel density was evaluated in tumor tissues. TUNEL assay was done for apoptosis. The outcomes of study revealed that TPX and ERB alone inhibited the growth of tumor but their combination showed a synergistic antitumor activity. TPX and ERB alone resulted in apoptosis and antiproliferative effect, whereas their combination showed highly significant results (P<0.01). TPX alone and its combination with ERB suppressed 5-LOX, COX-2, EGFR and VEGF-C and caused inhibition of lymphangiogenesis, however ERB alone was unable to affect expression of VEGF-C and lymphangiogenesis. The results confirmed combination of TPX and ERB produced a synergistic anticancer and antitumor activity, possibly by promoting apoptosis and antiproliferative effect on tumor cells via suppressing expression of COX-2, 5-LOX, EGFR and VEGF-C.
Collapse
Affiliation(s)
- Xinyang Lu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University Jining 272029, Shandong, China
| | - Lunhua Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University Jining 272029, Shandong, China
| | - Wei Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University Jining 272029, Shandong, China
| | - Xiaofei Ning
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University Jining 272029, Shandong, China
| |
Collapse
|
23
|
Pasciuto G, Inchingolo R, Condoluci C, Magnini D, Iovene B, Richeldi L. Approved and Experimental Therapies for Idiopathic Pulmonary Fibrosis. CURRENT PULMONOLOGY REPORTS 2018. [DOI: 10.1007/s13665-018-0209-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Protective effect of cysteinyl leukotriene receptor antagonist montelukast in bleomycin-induced pulmonary fibrosis. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2018; 26:588-597. [PMID: 32082801 DOI: 10.5606/tgkdc.dergisi.2019.15149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
Background This study aims to investigate the early- and late-term effects of pharmacological inhibition of cysteinyl leukotriene activity by using montelukast in bleomycin-induced inflammatory and oxidative lung injury in an animal model. Methods The study included 48 male Wistar albino rats (weighing 250 g to 300 g). Rats were administered intratracheal bleomycin or saline and assigned into groups to receive montelukast or saline. Bronchoalveolar lavage fluid and lung tissue samples were collected four and 15 days after bleomycin administration. Results Bleomycin resulted in significant increases in tumor necrosis factor-alpha levels (4.0±1.4 pg/mL in controls vs. 44.1±14.5 pg/mL in early-term vs. 30.3±5.7 pg/mL in late-term, p<0.001 and p<0.001, respectively), transforming growth factor beta 1 levels (28.6±6.6 pg/mL vs. 82.3±14.1 pg/mL in early-term vs. 60.1±2.9 pg/mL in late-term, p<0.001 and p<0.001, respectively), and fibrosis score (1.85±0.89 in early-term vs. 5.60±1.14 in late-term, p<0.001 and p<0.01, respectively). In bleomycin exposed rats, collagen content increased only in the late-term (15.3±3.0 ?g/mg in controls vs. 29.6±9.1 ?g/mg in late-term, p<0.001). Montelukast treatment reversed all these biochemical indices as well as histopathological alterations induced by bleomycin. Conclusion Montelukast attenuates bleomycin-induced inflammatory and oxidative lung injury and prevents lung collagen deposition and fibrotic response. Thus, cysteinyl leukotriene receptor antagonists might be regarded as new therapeutic agents for idiopathic pulmonary fibrosis.
Collapse
|
25
|
Aryal S, Nathan SD. An update on emerging drugs for the treatment of idiopathic pulmonary fibrosis. Expert Opin Emerg Drugs 2018; 23:159-172. [DOI: 10.1080/14728214.2018.1471465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Shambhu Aryal
- Inova Advanced Lung Disease and Lung Transplant program, Falls Church, VA, USA
| | - Steven D. Nathan
- Inova Advanced Lung Disease and Lung Transplant program, Falls Church, VA, USA
| |
Collapse
|
26
|
Karatzas E, Bourdakou MM, Kolios G, Spyrou GM. Drug repurposing in idiopathic pulmonary fibrosis filtered by a bioinformatics-derived composite score. Sci Rep 2017; 7:12569. [PMID: 28974751 PMCID: PMC5626774 DOI: 10.1038/s41598-017-12849-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a rare disease of the respiratory system in which the lungs stiffen and get scarred, resulting in breathing weakness and eventually leading to death. Drug repurposing is a process that provides evidence for existing drugs that may also be effective in different diseases. In this study, we present a computational pipeline having as input a number of gene expression datasets from early and advanced stages of IPF and as output lists of repurposed drugs ranked with a novel composite score. We have devised and used a scoring formula in order to rank the repurposed drugs, consolidating the standard repurposing score with structural, functional and side effects' scores for each drug per stage of IPF. The whole pipeline involves the selection of proper gene expression datasets, data preprocessing and statistical analysis, selection of the most important genes related to the disease, analysis of biological pathways, investigation of related molecular mechanisms, identification of fibrosis-related microRNAs, drug repurposing, structural and literature-based analysis of the repurposed drugs.
Collapse
Affiliation(s)
- E Karatzas
- Department of Informatics and Telecommunications, University of Athens, 15784, Ilissia Athens, Greece
| | - M M Bourdakou
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou 4, 115 27, Athens, Greece
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, Nicosia, 2370, Cyprus
| | - G Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - G M Spyrou
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, Nicosia, 2370, Cyprus.
| |
Collapse
|
27
|
Kolb M, Bonella F, Wollin L. Therapeutic targets in idiopathic pulmonary fibrosis. Respir Med 2017; 131:49-57. [DOI: 10.1016/j.rmed.2017.07.062] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/10/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
|
28
|
Inchingolo R, Condoluci C, Smargiassi A, Mastrobattista A, Boccabella C, Comes A, Golfi N, Richeldi L. Are newly launched pharmacotherapies efficacious in treating idiopathic pulmonary fibrosis? Or is there still more work to be done? Expert Opin Pharmacother 2017; 18:1583-1594. [DOI: 10.1080/14656566.2017.1383382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Riccardo Inchingolo
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carola Condoluci
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Smargiassi
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Cristina Boccabella
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessia Comes
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicoletta Golfi
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Richeldi
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
29
|
Varone F, Montemurro G, Macagno F, Calvello M, Conte E, Intini E, Iovene B, Leone PM, Mari PV, Richeldi L. Investigational drugs for idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2017; 26:1019-1031. [PMID: 28777013 DOI: 10.1080/13543784.2017.1364361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION IPF is a specific form of chronic fibrosing interstitial pneumonia of unknown cause, characterized by progressive worsening in lung function and an unfavorable prognosis. Current concepts on IPF pathogenesis are based on a dysregulated wound healing response, leading to an over production of extracellular matrix. Based on recent research however, several other mechanisms are now proposed as potential targets for novel therapeutic strategies. Areas covered: This review analyzes the current investigational strategies targeting extracellular matrix deposition, tyrosine-kinase antagonism, immune and autoimmune response, and cell-based therapy. A description of the pathogenic rationale implied in each novel therapeutic approach is summarized. Expert opinion: New IPF drugs are being evaluated in the context of phase 1 and 2 clinical trials. Nevertheless, many drugs that have shown efficacy in preclinical studies, failed to exhibit the same positive effect when translated to humans. A possible explanation for these failures might be related to the known limitations of animal models of the disease. The recent development of 3D systems composed of cells from individual patients that recreate an ex-vivo model of IPF, could lead to significant improvements in disease pathogenesis and treatment. New drugs could be tested on more genuine models and clinicians could tailor therapy based on patient's response.
Collapse
Affiliation(s)
- Francesco Varone
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Giuliano Montemurro
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Francesco Macagno
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Mariarosaria Calvello
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Emanuele Conte
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Enrica Intini
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Bruno Iovene
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Paolo Maria Leone
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Pier-Valerio Mari
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Luca Richeldi
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| |
Collapse
|
30
|
Macagno F, Varone F, Leone PM, Mari PV, Panico L, Berardini L, Richeldi L. New treatment directions for IPF: current status of ongoing and upcoming clinical trials. Expert Rev Respir Med 2017; 11:533-548. [DOI: 10.1080/17476348.2017.1335601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Francesco Macagno
- Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Francesco Varone
- Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Paolo Maria Leone
- Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Pier-Valerio Mari
- Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Loredana Panico
- Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Ludovica Berardini
- Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Luca Richeldi
- Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Fondazione Policlinico A. Gemelli, Rome, Italy
- Academic Unit of Clinical and Experimental Sciences, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| |
Collapse
|
31
|
Lu W, Yao X, Ouyang P, Dong N, Wu D, Jiang X, Wu Z, Zhang C, Xu Z, Tang Y, Zou S, Liu M, Li J, Zeng M, Lin P, Cheng F, Huang J. Drug Repurposing of Histone Deacetylase Inhibitors That Alleviate Neutrophilic Inflammation in Acute Lung Injury and Idiopathic Pulmonary Fibrosis via Inhibiting Leukotriene A4 Hydrolase and Blocking LTB4 Biosynthesis. J Med Chem 2017; 60:1817-1828. [PMID: 28218840 DOI: 10.1021/acs.jmedchem.6b01507] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acute lung injury (ALI) and idiopathic pulmonary fibrosis (IPF) are both serious public health problems with high incidence and mortality rate in adults, and with few drugs available for the efficient treatment in clinic. In this study, we identified that two known histone deacetylase (HDAC) inhibitors, suberanilohydroxamic acid (SAHA, 1) and its analogue 4-(dimethylamino)-N-[7-(hydroxyamino)-7-oxoheptyl]benzamide (2), are effective inhibitors of Leukotriene A4 hydrolase (LTA4H), a key enzyme in the biosynthesis of leukotriene B4 (LTB4), across a panel of 18 HDAC inhibitors, using enzymatic assay, thermofluor assay, and X-ray crystallographic investigation. Importantly, both 1 and 2 markedly diminish early neutrophilic inflammation in mouse models of ALI and IPF under a clinical safety dose. Detailed mechanisms of down-regulation of proinflammatory cytokines by 1 or 2 were determined in vivo. Collectively, 1 and 2 would provide promising agents with well-known clinical safety for potential treatment in patients with ALI and IPF via pharmacologically inhibiting LAT4H and blocking LTB4 biosynthesis.
Collapse
Affiliation(s)
- Weiqiang Lu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China.,Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai 200241, China
| | - Xue Yao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Ping Ouyang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Ningning Dong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Dang Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Xingwu Jiang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai 200241, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Chen Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Zhongyu Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Shien Zou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University , Shanghai 200011, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai 200241, China
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Minghua Zeng
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), School of Chemistry & Chemical Engineering, Guangxi Normal University , Guilin 541004, China
| | - Ping Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu 610041, Sichuan, China
| | - Feixiong Cheng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu 610041, Sichuan, China.,Center for Complex Networks Research, Northeastern University , Boston, Massachusetts 02115, United States.,Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School , Boston, Massachusetts 02215, United States
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| |
Collapse
|
32
|
Lv J, Xiong Y, Li W, Yang W, Zhao L, He R. BLT1 Mediates Bleomycin-Induced Lung Fibrosis Independently of Neutrophils and CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:1673-1684. [PMID: 28077599 DOI: 10.4049/jimmunol.1600465] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 12/12/2016] [Indexed: 02/04/2023]
Abstract
Leukotriene B4 (LTB4) and its functional receptor BLT1 are closely involved in tissue inflammation by primarily mediating leukocyte recruitment and activation. Elevated LTB4 was reported in patients with lung fibrosis; however, the role of the LTB4/BLT1 axis in lung fibrosis remains unknown. In this study, we demonstrated that BLT1-/- mice exhibited significantly attenuated bleomycin (BLM)-induced lung fibrosis. Interestingly, BLT1 blockade with its specific antagonist U75302 in the acute injury phase (days 0-10 after BLM treatment) significantly attenuated lung fibrosis, which was accompanied by significant decreases in early infiltrating neutrophils and later infiltrating CD4+ T cells and the production of TGF-β, IL-13, and IL-17A. In contrast, BLT1 blockade in the fibrotic phase (days 10-21 after BLM treatment) had no effect on lung fibrosis and TGF-β production, although it significantly decreased CD4+ T cell infiltration. Furthermore, depletion of neutrophils or CD4+ T cells had no effect on BLM-induced lung fibrosis, suggesting the independence of profibrotic activity of the LTB4/BLT1 axis on BLT1-dependent lung recruitment of these two leukocytes. Finally, although BLT1 blockade had no effect on the recruitment and phenotype of macrophages in BLM-induced lung fibrosis, the LTB4/BLT1 axis could promote TGF-β production by macrophages stimulated with BLM or supernatants from BLM-exposed airway epithelial cells in an autocrine manner, which further induced collagen secretion by lung fibroblasts. Collectively, our study demonstrates that the LTB4/BLT1 axis plays a critical role in acute injury phase to promote BLM-induced lung fibrosis, and it suggests that early interruption of the LTB4/BLT1 axis in some inflammatory diseases could prevent the later development of tissue fibrosis.
Collapse
Affiliation(s)
- Jiaoyan Lv
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China; and.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Yingluo Xiong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China; and.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Wenjing Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China; and.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Wei Yang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China; and.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Lina Zhao
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China; and.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China; and .,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
33
|
How I treat bronchiolitis obliterans syndrome after hematopoietic stem cell transplantation. Blood 2016; 129:448-455. [PMID: 27856461 DOI: 10.1182/blood-2016-08-693507] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/05/2016] [Indexed: 12/30/2022] Open
Abstract
In past years, a diagnosis of bronchiolitis obliterans syndrome (BOS) after allogeneic hematopoietic cell transplant (HCT) conferred nearly universal mortality secondary to lack of consensus for diagnostic criteria, poorly understood disease pathogenesis, and very few studies of therapeutic or supportive care interventions. Recently, however, progress has been made in these areas: revised consensus diagnostic guidelines are now available, supportive care has improved, there is greater understanding of potential mechanisms of disease, and prospective trials are being conducted. This article describes these advances and provides suggestions to optimize therapy for patients with BOS after HCT.
Collapse
|
34
|
Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Komarc M, Navratil T, Schwarz J, Zikova N, Makes O, Syslova K, Belacek J, Zakharov S. Leukotrienes in exhaled breath condensate and fractional exhaled nitric oxide in workers exposed to TiO
2
nanoparticles. J Breath Res 2016; 10:036004. [DOI: 10.1088/1752-7155/10/3/036004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Williams KM, Cheng GS, Pusic I, Jagasia M, Burns L, Ho VT, Pidala J, Palmer J, Johnston L, Mayer S, Chien JW, Jacobsohn DA, Pavletic SZ, Martin PJ, Storer BE, Inamoto Y, Chai X, Flowers MED, Lee SJ. Fluticasone, Azithromycin, and Montelukast Treatment for New-Onset Bronchiolitis Obliterans Syndrome after Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2016; 22:710-716. [PMID: 26475726 PMCID: PMC4801753 DOI: 10.1016/j.bbmt.2015.10.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/07/2015] [Indexed: 12/13/2022]
Abstract
Bronchiolitis obliterans syndrome (BOS) after allogeneic hematopoietic cell transplantation (HCT) is associated with high mortality. We hypothesized that inhaled fluticasone, azithromycin, and montelukast (FAM) with a brief steroid pulse could avert progression of new-onset BOS. We tested this in a phase II, single-arm, open-label, multicenter study (NCT01307462). Thirty-six patients were enrolled within 6 months of BOS diagnosis. The primary endpoint was treatment failure, defined as 10% or greater forced expiratory volume in 1 second decline at 3 months. At 3 months, 6% (2 of 36, 95% confidence interval, 1% to 19%) had treatment failure (versus 40% in historical controls, P < .001). FAM was well tolerated. Steroid dose was reduced by 50% or more at 3 months in 48% of patients who could be evaluated (n = 27). Patient-reported outcomes at 3 months were statistically significantly improved for Short-Form 36 social functioning score and mental component score, Functional Assessment of Cancer Therapies emotional well-being, and Lee symptom scores in lung, skin, mouth, and the overall summary score compared to enrollment (n = 24). At 6 months, 36% had treatment failure (95% confidence interval, 21% to 54%, n = 13 of 36, with 6 documented failures, 7 missing pulmonary function tests). Overall survival was 97% (95% confidence interval, 84% to 100%) at 6 months. These data suggest that FAM was well tolerated and that treatment with FAM and steroid pulse may halt pulmonary decline in new-onset BOS in the majority of patients and permit reductions in systemic steroid exposure, which collectively may improve quality of life. However, additional treatments are needed for progressive BOS despite FAM.
Collapse
Affiliation(s)
- Kirsten M Williams
- Division of Blood and Marrow Transplantation, Children's Research Institute, Children's National Health System, Washington, DC; Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Guang-Shing Cheng
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Iskra Pusic
- Division of Medicine and Oncology, Washington University, Saint Louis, Missouri
| | - Madan Jagasia
- Division of Hematology/Oncology, Vandebilt University, Nashville, Tennessee
| | - Linda Burns
- Division of Hematology/Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Vincent T Ho
- Division of Hematological Malignancies, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Joseph Pidala
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Jeanne Palmer
- Division of Hematology/Oncology, Mayo Clinic- Scottsdale, Scottsdale, Arizona
| | - Laura Johnston
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Sebastian Mayer
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | - David A Jacobsohn
- Division of Blood and Marrow Transplantation, Children's Research Institute, Children's National Health System, Washington, DC
| | - Steven Z Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Barry E Storer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yoshihiro Inamoto
- Division of Hematopoietic stem cell transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Xiaoyu Chai
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mary E D Flowers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
36
|
Moore BB. Following the path of CCL2 from prostaglandins to periostin in lung fibrosis. Am J Respir Cell Mol Biol 2014; 50:848-52. [PMID: 24605795 DOI: 10.1165/rcmb.2014-0075ps] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Without question, the greatest and most humbling honor of my scientific career was to learn that I was nominated for the American Thoracic Society Recognition Award for Scientific Accomplishments. On the occasion of this award, as I look back on the progress made in the last 15 years, I am pleased by the scientific insights; however, I am also saddened that we still have no internationally recognized efficacious therapy. This perspective will highlight the areas my laboratory has addressed regarding the pathogenesis of idiopathic pulmonary fibrosis in hopes of identifying new therapeutic targets.
Collapse
Affiliation(s)
- Bethany B Moore
- Departments of Internal Medicine and Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
37
|
Chakraborty S, Chopra P, Ambi SV, Dastidar SG, Ray A. Emerging therapeutic interventions for idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2014; 23:893-910. [PMID: 24766571 DOI: 10.1517/13543784.2014.913569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a devastating and relentlessly progressive lung disorder. Previously, it was thought to be a chronic inflammatory disease; however, it is now considered to be an epithelial-fibroblastic disease. In accordance with this paradigm change, efforts toward the development of novel therapeutic targets for IPF have acquired a new direction. Currently available therapies are largely ineffective in reversing the lung damage, and lung transplantation is the only effective treatment for end-stage disease. Limitations in advancement of IPF therapeutics are due to a poor understanding of its pathogenesis, unavailability of reliable animal models and slow disease progression. Recent research on IPF has resulted in the identification of a plethora of novel targets that are in various stages of development and offers hope that in the near future that there will be better therapeutic options available for the treatment of IPF. AREAS COVERED This review discusses existing therapies and highlights some of the recent, novel therapeutics being explored in the current clinical landscape for the treatment of this chronic, disabling disorder. The review also discusses the pathogenic rationale behind current therapies. EXPERT OPINION Targeting one fibrotic signaling pathway at a time may not have any significant effect on the control of IPF. It is therefore recommended that future IPF management focuses on targeting multiple pro-fibrotic pathways associated with its complex pathogenesis.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Daiichi Sankyo India Pharma Pvt Ltd, Department of Biology , Village Sarhaul, Sector-18, UdyogVihar Industrial Area, Gurgaon-122 015, Haryana , India
| | | | | | | | | |
Collapse
|
38
|
Kleaveland KR, Moore BB, Kim KK. Paracrine functions of fibrocytes to promote lung fibrosis. Expert Rev Respir Med 2014; 8:163-72. [PMID: 24451025 DOI: 10.1586/17476348.2014.862154] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fibrocytes are derived from the bone marrow and are found in the circulation. They can be recruited to sites of injury and contribute to repair/remodeling. In vitro evidence suggests that fibrocytes may differentiate into fibroblasts to promote lung fibrosis. However, in vivo evidence for this is sparse. This review summarizes recent literature which may suggest that fibrocytes function to promote fibrosis via paracrine actions. In this way, secretion of growth factors, proteases and matricellular proteins may strongly influence the actions of resident epithelial and mesenchymal cells to promote repair and resolution or to tip the scale toward pathologic remodeling.
Collapse
Affiliation(s)
- Kathryn R Kleaveland
- Department of Internal Medicine, University of Michigan Medical School, Division of Pulmonary and Critical Care Medicine, Ann Arbor, MI 48109-0642, USA
| | | | | |
Collapse
|
39
|
Chien JW. Preventing and managing bronchiolitis obliterans syndrome after allogeneic hematopoietic cell transplantation. Expert Rev Respir Med 2014; 5:127-35. [DOI: 10.1586/ers.10.79] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Hirata H, Arima M, Fukushima Y, Sugiyama K, Tokuhisa T, Fukuda T. Leukotriene C4 aggravates bleomycin-induced pulmonary fibrosis in mice. Respirology 2013; 18:674-81. [PMID: 23432979 DOI: 10.1111/resp.12072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 09/11/2012] [Accepted: 11/11/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Synthesis of cysteinyl leukotrienes (cys-LT) is thought to cause inflammatory disorders such as bronchial asthma and allergic rhinitis. Recent reports have suggested that leukotriene C4 (LTC4 ) is an important regulator of pulmonary fibrosis. This study examined the effect of LTC4 in LTC4 synthase-overexpressed transgenic mice with bleomycin-induced pulmonary fibrosis. The function of lung-derived fibroblasts from transgenic mice was also investigated. METHODS Bleomycin was administrated to transgenic mice and wild-type (WT) mice by intratracheal instillation. Concentrations of interleukin (IL)-4 and -13, interferon-γ, and transforming growth factor (TGF)-β1 in bronchoalveolar lavage fluid were measured 1, 3, 7 and 14 days after the administration of bleomycin. Lung tissue was examined histopathologically on day 14. In addition, lung-derived fibroblasts from transgenic and WT mice were cultured for 7 days. Expression of TGF-β1 mRNA was measured by real-time polymerase chain reaction. RESULTS Both the pathological scores for pulmonary fibrosis (3.8 ± 0.4 vs 2.0 ± 0.1, P < 0.05) and the levels of IL-4 (12.1 ± 2.3 vs <7.8 pg/mL, P < 0.05), IL-13 (26.5 ± 5.2 vs <7.8 pg/mL, P < 0.01) and TGF-β1 (211.1 ± 30.2 vs 21.3 ± 1.2 pg/mL, P < 0.01) on day 14 were significantly greater in transgenic than in WT mice. Furthermore, the reduction of LTC4 by pranlukast hydrate, a cys-LT1 receptor antagonist, in fibroblasts from transgenic significantly (P < 0.05) decreased the expression of TGF-β1 mRNA (by ∼50%) compared with those from WT mice. CONCLUSIONS Overexpression of LTC4 , amplifies bleomycin-induced pulmonary fibrosis in mice. Our findings suggest a role for LTC4 in lung fibrosis.
Collapse
Affiliation(s)
- Hirokuni Hirata
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Scott JP, Peters-Golden M. Antileukotriene agents for the treatment of lung disease. Am J Respir Crit Care Med 2013; 188:538-44. [PMID: 23822826 DOI: 10.1164/rccm.201301-0023pp] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Leukotrienes (LTs) C4, D4, and E4, collectively termed cysteinyl LTs (cysLTs), are lipid mediators formed by the 5-lipoxygenase (5-LO) pathway of arachidonic acid metabolism. Originally recognized for their potent bronchoconstrictor actions, they were subsequently determined also to promote inflammation, microvascular permeability, and mucus secretion. These actions that are so central to asthma pathophysiology are mediated to a significant extent by ligation of the cysLT receptor 1 (CysLT1). Antagonism of CysLT1 and inhibition of 5-LO have both been shown to have clinical use in the management of asthma, but substantial interindividual heterogeneity is observed in the response to these agents. In this article, we review the biologic actions of LTs, their biosynthetic pathways and cognate receptors, the pharmacology of available anti-LT agents, and the clinical evidence for the use of anti-LT agents as monotherapy and combination therapy in asthma. We also consider heterogeneity of response, the possible roles of cysLT receptors other than CysLT1, the role of another class of LT, LTB4, and the potential role of LTs in lung diseases other than asthma.
Collapse
Affiliation(s)
- Jacob P Scott
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, USA
| | | |
Collapse
|
42
|
Wisastra R, Kok PAM, Eleftheriadis N, Baumgartner MP, Camacho CJ, Haisma HJ, Dekker FJ. Discovery of a novel activator of 5-lipoxygenase from an anacardic acid derived compound collection. Bioorg Med Chem 2013; 21:7763-78. [PMID: 24231650 DOI: 10.1016/j.bmc.2013.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/08/2013] [Accepted: 10/12/2013] [Indexed: 12/19/2022]
Abstract
Lipoxygenases (LOXs) and cyclooxygenases (COXs) metabolize poly-unsaturated fatty acids into inflammatory signaling molecules. Modulation of the activity of these enzymes may provide new approaches for therapy of inflammatory diseases. In this study, we screened novel anacardic acid derivatives as modulators of human 5-LOX and COX-2 activity. Interestingly, a novel salicylate derivative 23a was identified as a surprisingly potent activator of human 5-LOX. This compound showed both non-competitive activation towards the human 5-LOX activator adenosine triphosphate (ATP) and non-essential mixed type activation against the substrate linoleic acid, while having no effect on the conversion of the substrate arachidonic acid. The kinetic analysis demonstrated a non-essential activation of the linoleic acid conversion with a KA of 8.65 μM, αKA of 0.38μM and a β value of 1.76. It is also of interest that a comparable derivative 23d showed a mixed type inhibition for linoleic acid conversion. These observations indicate the presence of an allosteric binding site in human 5-LOX distinct from the ATP binding site. The activatory and inhibitory behavior of 23a and 23d on the conversion of linoleic compared to arachidonic acid are rationalized by docking studies, which suggest that the activator 23a stabilizes linoleic acid binding, whereas the larger inhibitor 23d blocks the enzyme active site.
Collapse
Affiliation(s)
- Rosalina Wisastra
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
43
|
Ochs MJ, Suess B, Steinhilber D. 5-lipoxygenase mRNA and protein isoforms. Basic Clin Pharmacol Toxicol 2013; 114:78-82. [PMID: 24020397 DOI: 10.1111/bcpt.12115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/18/2013] [Indexed: 01/01/2023]
Abstract
5-Lipoxygenase (5-LO) catalyses the two initial steps in the biosynthesis of leukotrienes, a group of inflammatory lipid mediators derived from arachidonic acid. An increased level of leukotrienes is associated with chronic inflammatory diseases such as asthma or atherosclerosis. In this MiniReview, we focus on recent findings regarding alternative splice variants of 5-LO with a special emphasis on two potential protein isoforms expressed in human B-lymphocytes which might be of interest as new drug targets.
Collapse
Affiliation(s)
- Meike J Ochs
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe University Frankfurt, Frankfurt/M, Germany; Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | | | | |
Collapse
|
44
|
Abstract
Pathogenic processes that underlie the development and progression of systemic sclerosis (SSc) are being defined in preclinical, clinical and genetic studies. Important evidence of interplay between the vasculature, connective tissue and specialized epithelial structures is emerging, and abnormalities of both the innate and adaptive immune systems have been identified. In this context, information regarding pivotal mediators, pathways or cell types that could be targets for therapeutic intervention, and that might offer potential for true disease modification, is accruing. Precedent for the regression of some aspects of the pathology has been set in clinical studies showing that potential exists to improve tissue structure and function as well as to prevent disease progression. This article reviews the concept of targeted therapies and considers potential pathways and processes that might be attenuated by therapeutic intervention in SSc. As well as improving outcomes, such approaches will undoubtedly provide information about pathogenesis. The concept of translational medicine is especially relevant in SSc, and we anticipate that the elusive goal of an effective antifibrotic treatment will emerge from one of the several clinical trials currently underway or planned in this disease. Therapeutic advances in SSc would have implications and potential beyond autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Christopher P Denton
- Centre for Rheumatology and Connective Tissue Disease, UCL Medical School, Royal Free Hospital, London NW3 2QG, UK.
| | | |
Collapse
|
45
|
Hamdy MA, El-Maraghy SA, Kortam MAEA. Modulatory Effects of Curcumin and Green Tea Extract against Experimentally Induced Pulmonary Fibrosis: A Comparison withN-Acetyl Cysteine. J Biochem Mol Toxicol 2012; 26:461-8. [DOI: 10.1002/jbt.21447] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/20/2012] [Accepted: 09/19/2012] [Indexed: 12/17/2022]
|
46
|
Pelclová D, Fenclová Z, Vlcková S, Lebedová J, Syslová K, Pecha O, Belácek J, Navrátil T, Kuzma M, Kacer P. Leukotrienes B4, C4, D4 and E4 in the exhaled breath condensate (EBC), blood and urine in patients with pneumoconiosis. INDUSTRIAL HEALTH 2012; 50:299-306. [PMID: 22785421 DOI: 10.2486/indhealth.ms1274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Leukotrienes (LTs) are involved in the pathogenesis of lung fibrosis and were increased in exhaled breath condensate (EBC) of the patients with pneumoconiosis. However the possible influence of extra-pulmonary disorders on the EBC markers is not known. Therefore in parallel with EBC, LTs' levels in the plasma and urine were measured in patients with pneumoconiosis (45 × asbestos exposure, 37 × silica exposure) and in 27 controls. Individual LTs B4, C4, D4 and E4 were measured by liquid chromatography - electrospray ionization - tandem mass spectrometry (LC-ESI-MS/MS). In EBC, LT D4 and LT E4 were increased in both groups of patients (p<0.001 and p<0.05), comparing with the controls. Both LT B4 and cysteinyl LTs were elevated in asbestos-exposed subjects (p<0.05). Asbestosis with more severe radiological signs (s1/s2-t3/u2) and lung functions impairment has shown higher cysteinyl LTs and LT C4 in the EBC (p<0.05) than mild asbestosis (s1/s0-s1/s1). In addition, in the subjects with asbestosis, cysteinyl LTs in EBC correlated with TLC (-0.313, p<0.05) and TLCO/Hb (-0.307, p<0.05), and LT C4 with TLC (-0.358, p<0.05). In pneumoconioses, EBC appears the most useful from the 3 fluids studied.
Collapse
Affiliation(s)
- Daniela Pelclová
- Department of Occupational Medicine of the 1st Faculty of Medicine, Charles University in Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shimbori C, Shiota N, Okunishi H. Pranlukast, a cysteinyl leukotriene type 1 receptor antagonist, attenuates the progression but not the onset of silica-induced pulmonary fibrosis in mice. Int Arch Allergy Immunol 2012; 158:241-51. [PMID: 22378144 DOI: 10.1159/000331439] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/01/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although cysteinyl leukotrienes (CysLTs) have been implicated in the etiology of acute inflammatory diseases, recent studies have suggested that they also directly stimulate fibroblasts. However, their precise role in the pathogenesis of pulmonary fibrosis is unclear. METHODS In this study, we evaluated the effect of both short- and long-term treatment with pranlukast, a CysLT type 1 (CysLT(1)) receptor antagonist, on silica-induced pulmonary fibrosis in mice, which is characterized by persistent progression of fibrosis in the chronic phase. Pranlukast (30 mg/kg/day) was administered orally to mice for 2 or 10 weeks after intratracheal silica instillation. RESULTS Pranlukast treatment for 10 weeks significantly attenuated the progression of pulmonary fibrosis, and decreased the content of CysLTs and LTB(4), which were markedly increased in the bronchoalveolar lavage fluid (BALF) and lung tissues of silica-instilled mice in the chronic phase. However, pranlukast treatment for 2 weeks neither affected the acute inflammatory response induced by silica instillation nor inhibited the onset of fibrosis. The expression of TGF-β1 and TNF-α was not affected by pranlukast treatment for either 2 or 10 weeks. CONCLUSIONS Pranlukast attenuates the progression of pulmonary fibrosis in the chronic phase but has no effect on the acute inflammatory response or on the onset of pulmonary fibrosis. The antifibrotic effect of pranlukast may be exhibited by antagonizing the direct profibrotic effect of CysLTs, without affecting the expression of other profibrotic cytokines such as TGF-β1 and TNF-α, and also by decreasing the production of CysLTs and LTB(4).
Collapse
Affiliation(s)
- Chiko Shimbori
- Department of Pharmacology, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, Japan
| | | | | |
Collapse
|
48
|
Hildebrandt GC, Fazekas T, Lawitschka A, Bertz H, Greinix H, Halter J, Pavletic SZ, Holler E, Wolff D. Diagnosis and treatment of pulmonary chronic GVHD: report from the consensus conference on clinical practice in chronic GVHD. Bone Marrow Transplant 2011; 46:1283-95. [PMID: 21441964 PMCID: PMC7094778 DOI: 10.1038/bmt.2011.35] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 01/03/2023]
Abstract
This consensus statement established under the auspices of the German working group on BM and blood stem cell transplantation (DAG-KBT), the German Society of Hematology and Oncology (DGHO), the Austrian Stem Cell Transplant Working Group, the Swiss Blood Stem Cell Transplantation Group (SBST) and the German-Austrian Pediatric Working Group on SCT (Päd-Ag-KBT) summarizes current evidence for diagnosis, immunosuppressive and supportive therapy to provide practical guidelines for the care and treatment of patients with pulmonary manifestations of chronic GVHD (cGVHD). Pulmonary cGVHD can present with obstructive and/or restrictive changes. Disease severity ranges from subclinical pulmonary function test (PFT) impairment to respiratory insufficiency with bronchiolitis obliterans being the only pulmonary complication currently considered diagnostic of cGVHD. Early diagnosis may improve clinical outcome, and regular post-transplant follow-up PFTs are recommended. Diagnostic work-up includes high-resolution computed tomography, bronchoalveolar lavage and histology. Topical treatment is based on inhalative steroids plus beta-agonists. Early addition of azithromycin is suggested. Systemic first-line treatment consists of corticosteroids plus, if any, continuation of other immunosuppressive therapy. Second-line therapy and beyond includes extracorporeal photopheresis, mammalian target of rapamycin inhibitors, mycophenolate, etanercept, imatinib and TLI, but efficacy is limited. Clinical trials are urgently needed to improve understanding and treatment of this deleterious complication.
Collapse
Affiliation(s)
- G C Hildebrandt
- Department of Hematology and Oncology, University of Regensburg Medical Center, Regensburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Pulmonary fibrosis is a highly heterogeneous and lethal pathological process with limited therapeutic options. Although research on the pathogenesis of pulmonary fibrosis has frequently focused on the mechanisms that regulate the proliferation, activation, and differentiation of collagen-secreting myofibroblasts, recent studies have identified new pathogenic mechanisms that are critically involved in the initiation and progression of fibrosis in a variety of settings. A more detailed and integrated understanding of the cellular and molecular mechanisms of pulmonary fibrosis could help pave the way for effective therapeutics for this devastating and complex disease.
Collapse
Affiliation(s)
- Thomas A Wynn
- Program in Barrier Immunity and Repair and the Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 2011; 44:725-38. [PMID: 21531958 PMCID: PMC7328339 DOI: 10.1165/rcmb.2009-0210st] [Citation(s) in RCA: 1326] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is well defined in humans, but there is no agreement as to the main features of acute lung injury in animal models. A Committee was organized to determine the main features that characterize ALI in animal models and to identify the most relevant methods to assess these features. We used a Delphi approach in which a series of questionnaires were distributed to a panel of experts in experimental lung injury. The Committee concluded that the main features of experimental ALI include histological evidence of tissue injury, alteration of the alveolar capillary barrier, presence of an inflammatory response, and evidence of physiological dysfunction; they recommended that, to determine if ALI has occurred, at least three of these four main features of ALI should be present. The Committee also identified key "very relevant" and "somewhat relevant" measurements for each of the main features of ALI and recommended the use of least one "very relevant" measurement and preferably one or two additional separate measurements to determine if a main feature of ALI is present. Finally, the Committee emphasized that not all of the measurements listed can or should be performed in every study, and that measurements not included in the list are by no means "irrelevant." Our list of features and measurements of ALI is intended as a guide for investigators, and ultimately investigators should choose the particular measurements that best suit the experimental questions being addressed as well as take into consideration any unique aspects of the experimental design.
Collapse
|