1
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Yin J, Fu J, Xu J, Chen C, Zhu H, Wang B, Yu C, Yang X, Cai R, Li M, Ji K, Wu W, Zhao Y, Zheng Z, Pu Y, Zheng L. Integrated analysis of m6A regulator-mediated RNA methylation modification patterns and immune characteristics in Sjögren's syndrome. Heliyon 2024; 10:e28645. [PMID: 38596085 PMCID: PMC11002070 DOI: 10.1016/j.heliyon.2024.e28645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
The epigenetic modifier N6-methyladenosine (m6A), recognized as the most prevalent internal modification in messenger RNA (mRNA), has recently emerged as a pivotal player in immune regulation. Its dysregulation has been implicated in the pathogenesis of various autoimmune conditions. However, the implications of m6A modification within the immune microenvironment of Sjögren's syndrome (SS), a chronic autoimmune disorder characterized by exocrine gland dysfunction, remain unexplored. Herein, we leverage an integrative analysis combining public database resources and novel sequencing data to investigate the expression profiles of m6A regulatory genes in SS. Our cohort comprised 220 patients diagnosed with SS and 62 healthy individuals, enabling a comprehensive evaluation of peripheral blood at the transcriptomic level. We report a significant association between SS and altered expression of key m6A regulators, with these changes closely tied to the activation of CD4+ T cells. Employing a random forest (RF) algorithm, we identified crucial genes contributing to the disease phenotype, which facilitated the development of a robust diagnostic model via multivariate logistic regression analysis. Further, unsupervised clustering revealed two distinct m6A modification patterns, which were significantly associated with variations in immunocyte infiltration, immune response activity, and biological function enrichment in SS. Subsequently, we proceeded with a screening process aimed at identifying genes that were differentially expressed (DEGs) between the two groups distinguished by m6A modification. Leveraging these DEGs, we employed weight gene co-expression network analysis (WGCNA) to uncover sets of genes that exhibited strong co-variance and hub genes that were closely linked to m6A modification. Through rigorous analysis, we identified three critical m6A regulators - METTL3, ALKBH5, and YTHDF1 - alongside two m6A-related hub genes, COMMD8 and SRP9. These elements collectively underscore a complex but discernible pattern of m6A modification that appears to be integrally linked with SS's pathogenesis. Our findings not only illuminate the significant correlation between m6A modification and the immune microenvironment in SS but also lay the groundwork for a deeper understanding of m6A regulatory mechanisms. More importantly, the identification of these key regulators and hub genes opens new avenues for the diagnosis and treatment of SS, presenting potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Junhao Yin
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Jiayao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Jiabao Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Changyu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Hanyi Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Chuangqi Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Xiujuan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Ruiyu Cai
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Mengyang Li
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Kaihan Ji
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanning Wu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yijie Zhao
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, 1258 Fuxin Zhong Road, Shanghai 200031, China
| | - Zhanglong Zheng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yiping Pu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| |
Collapse
|
3
|
Gu YY, Liu XS, Lan HY. Therapeutic potential for renal fibrosis by targeting Smad3-dependent noncoding RNAs. Mol Ther 2024; 32:313-324. [PMID: 38093516 PMCID: PMC10861968 DOI: 10.1016/j.ymthe.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
Renal fibrosis is a characteristic hallmark of chronic kidney disease (CKD) that ultimately results in renal failure, leaving patients with few therapeutic options. TGF-β is a master regulator of renal fibrosis and mediates progressive renal fibrosis via both canonical and noncanonical signaling pathways. In the canonical Smad signaling, Smad3 is a key mediator in tissue fibrosis and mediates renal fibrosis via a number of noncoding RNAs (ncRNAs). In this regard, targeting Smad3-dependent ncRNAs may offer a specific therapy for renal fibrosis. This review highlights the significance and innovation of TGF-β/Smad3-associated ncRNAs as biomarkers and therapeutic targets in renal fibrogenesis. In addition, the underlying mechanisms of these ncRNAs and their future perspectives in the treatment of renal fibrosis are discussed.
Collapse
Affiliation(s)
- Yue-Yu Gu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Departments of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xu-Sheng Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hui-Yao Lan
- Departments of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Lu S, Chen X, Chen Y, Zhang Y, Luo J, Jiang H, Fang L, Zhou H. Downregulation of PDZK1 by TGF-β1 promotes renal fibrosis via inducing epithelial-mesenchymal transition of renal tubular cells. Biochem Pharmacol 2024; 220:116015. [PMID: 38158021 DOI: 10.1016/j.bcp.2023.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Transforming growth factor-beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) of renal tubular cells promotes renal fibrosis and the progression of chronic kidney disease (CKD). PDZ domain-containing 1 (PDZK1) is highly expressed in renal tubular epithelial cells; however, its role in TGF-β1-induced EMT remains poorly understood. The present study showed that PDZK1 expression was extremely downregulated in fibrotic mouse kidneys and its negative correlation with TGF-β1 expression and the degree of renal fibrosis. In addition, TGF-β1 downregulated the mRNA expression of PDZK1 in a time- and concentration-dependent manner in vitro. The downregulation of PDZK1 exacerbated TGF-β1-induced EMT upon oxidative stress, while the overexpression of PDZK1 had the converse effect. Subsequent investigations demonstrated that TGF-β1 downregulated PDZK1 expression via p38 MAPK or PI3K/AKT signaling in vitro, but independently of ERK/JNK MAPK signaling. Meanwhile, inhibition of the p38/JNK MAPK or PI3K/AKT signaling using chemical inhibitors restored the PDZK1 expression, mitigated renal fibrosis, and elevated renal levels of endogenous antioxidants carnitine and ergothioneine in adenine-induced CKD mice. These findings provide the first evidence suggesting a negative correlation between PDZK1 and renal fibrosis, and identifying PDZK1 as a novel suppressor of renal fibrosis in CKD through ameliorating oxidant stress.
Collapse
Affiliation(s)
- Shuanghui Lu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujia Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqiong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huidi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321036, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321036, China.
| |
Collapse
|
5
|
Yoon C, Ham YS, Gil WJ, Yang CS. Exploring the potential of Toxoplasma gondii in drug development and as a delivery system. Exp Mol Med 2024; 56:289-300. [PMID: 38297164 PMCID: PMC10907749 DOI: 10.1038/s12276-024-01165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 02/02/2024] Open
Abstract
Immune-mediated inflammatory diseases are various groups of conditions that result in immune system disorders and increased cancer risk. Despite the identification of causative cytokines and pathways, current clinical treatment for immune-mediated inflammatory diseases is limited. In addition, immune-mediated inflammatory disease treatment can increase the risk of cancer. Several previous studies have demonstrated that Toxoplasma gondii manipulates the immune response by inhibiting or stimulating cytokines, suggesting the potential for controlling and maintaining a balanced immune system. Additionally, T. gondii also has the unique characteristic of being a so-called "Trojan horse" bacterium that can be used as a drug delivery system to treat regions that have been resistant to previous drug delivery therapies. In this study, we reviewed the potential of T. gondii in drug development and as a delivery system through current research on inflammation-regulating mechanisms in immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Chanjin Yoon
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, South Korea
- Institute of Natural Science & Technology, Hanyang University, Ansan, 15588, South Korea
| | - Yu Seong Ham
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, South Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, South Korea
| | - Woo Jin Gil
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, South Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, South Korea.
- Center for Bionano Intelligence Education and Research, Ansan, 15588, South Korea.
- Department of Medicinal and Life Science, Hanyang University, Ansan, 15588, South Korea.
| |
Collapse
|
6
|
Richardson L, Wilcockson SG, Guglielmi L, Hill CS. Context-dependent TGFβ family signalling in cell fate regulation. Nat Rev Mol Cell Biol 2023; 24:876-894. [PMID: 37596501 DOI: 10.1038/s41580-023-00638-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/20/2023]
Abstract
The transforming growth factor-β (TGFβ) family are a large group of evolutionarily conserved cytokines whose signalling modulates cell fate decision-making across varying cellular contexts at different stages of life. Here we discuss new findings in early embryos that reveal how, in contrast to our original understanding of morphogen interpretation, robust cell fate specification can originate from a noisy combination of signalling inputs and a broad range of signalling levels. We compare this evidence with novel findings on the roles of TGFβ family signalling in tissue maintenance and homeostasis during juvenile and adult life, spanning the skeletal, haemopoietic and immune systems. From these comparisons, it emerges that in contrast to robust developing systems, relatively small perturbations in TGFβ family signalling have detrimental effects at later stages in life, leading to aberrant cell fate specification and disease, for example in cancer or congenital disorders. Finally, we highlight novel strategies to target and amend dysfunction in signalling and discuss how gleaning knowledge from different fields of biology can help in the development of therapeutics for aberrant TGFβ family signalling in disease.
Collapse
Affiliation(s)
- Louise Richardson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
7
|
Massagué J, Sheppard D. TGF-β signaling in health and disease. Cell 2023; 186:4007-4037. [PMID: 37714133 PMCID: PMC10772989 DOI: 10.1016/j.cell.2023.07.036] [Citation(s) in RCA: 166] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023]
Abstract
The TGF-β regulatory system plays crucial roles in the preservation of organismal integrity. TGF-β signaling controls metazoan embryo development, tissue homeostasis, and injury repair through coordinated effects on cell proliferation, phenotypic plasticity, migration, metabolic adaptation, and immune surveillance of multiple cell types in shared ecosystems. Defects of TGF-β signaling, particularly in epithelial cells, tissue fibroblasts, and immune cells, disrupt immune tolerance, promote inflammation, underlie the pathogenesis of fibrosis and cancer, and contribute to the resistance of these diseases to treatment. Here, we review how TGF-β coordinates multicellular response programs in health and disease and how this knowledge can be leveraged to develop treatments for diseases of the TGF-β system.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Dean Sheppard
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
8
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
9
|
Chen B, Mu C, Zhang Z, He X, Liu X. The Love-Hate Relationship Between TGF-β Signaling and the Immune System During Development and Tumorigenesis. Front Immunol 2022; 13:891268. [PMID: 35720407 PMCID: PMC9204485 DOI: 10.3389/fimmu.2022.891268] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Since TGF-β was recognized as an essential secreted cytokine in embryogenesis and adult tissue homeostasis a decade ago, our knowledge of the role of TGF-β in mammalian development and disease, particularly cancer, has constantly been updated. Mounting evidence has confirmed that TGF-β is the principal regulator of the immune system, as deprivation of TGF-β signaling completely abrogates adaptive immunity. However, enhancing TGF-β signaling constrains the immune response through multiple mechanisms, including boosting Treg cell differentiation and inducing CD8+ T-cell apoptosis in the disease context. The love-hate relationship between TGF-β signaling and the immune system makes it challenging to develop effective monotherapies targeting TGF-β, especially for cancer treatment. Nonetheless, recent work on combination therapies of TGF-β inhibition and immunotherapy have provide insights into the development of TGF-β-targeted therapies, with favorable outcomes in patients with advanced cancer. Hence, we summarize the entanglement between TGF-β and the immune system in the developmental and tumor contexts and recent progress on hijacking crucial TGF-β signaling pathways as an emerging area of cancer therapy.
Collapse
Affiliation(s)
- Baode Chen
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenglin Mu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhiwei Zhang
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| |
Collapse
|
10
|
Moreau JM, Velegraki M, Bolyard C, Rosenblum MD, Li Z. Transforming growth factor-β1 in regulatory T cell biology. Sci Immunol 2022; 7:eabi4613. [PMID: 35302863 PMCID: PMC10552796 DOI: 10.1126/sciimmunol.abi4613] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is inextricably linked to regulatory T cell (Treg) biology. However, precisely untangling the role for TGF-β1 in Treg differentiation and function is complicated by the pleiotropic and context-dependent activity of this cytokine and the multifaceted biology of Tregs. Among CD4+ T cells, Tregs are the major producers of latent TGF-β1 and are uniquely able to activate this cytokine via expression of cell surface docking receptor glycoprotein A repetitions predominant (GARP) and αv integrins. Although a preponderance of evidence indicates no essential roles for Treg-derived TGF-β1 in Treg immunosuppression, TGF-β1 signaling is crucial for Treg development in the thymus and periphery. Furthermore, active TGF-β1 instructs the differentiation of other T cell subsets, including TH17 cells. Here, we will review TGF-β1 signaling in Treg development and function and discuss knowledge gaps, future research, and the TGF-β1/Treg axis in the context of cancer immunotherapy and fibrosis.
Collapse
Affiliation(s)
- Joshua M. Moreau
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| | - Michael D. Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| |
Collapse
|
11
|
Aarts J, van Caam A, Chen X, Marijnissen RJ, Helsen MM, Walgreen B, Vitters EL, van de Loo FA, van Lent PL, van der Kraan PM, Koenders MI. Local inhibition of TGF-β1 signaling improves Th17/Treg balance but not joint pathology during experimental arthritis. Sci Rep 2022; 12:3182. [PMID: 35210510 PMCID: PMC8873460 DOI: 10.1038/s41598-022-07075-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
TGF-β1 is an important growth factor to promote the differentiation of T helper 17 (Th17) and regulatory T cells (Treg). The potential of TGF-β1 as therapeutic target in T cell-mediated diseases like rheumatoid arthritis (RA) is unclear. We investigated the effect of TGF-β1 inhibition on murine Th17 differentiation in vitro, on human RA synovial explants ex vivo, and on the development of experimental arthritis in vivo. Murine splenocytes were differentiated into Th17 cells, and the effect of the TGF-βRI inhibitor SB-505124 was studied. Synovial biopsies were cultured in the presence or absence of SB-505124. Experimental arthritis was induced in C57Bl6 mice and treated daily with SB-505124. Flow cytometry analysis was performed to measure different T cell subsets. Histological sections were analysed to determine joint inflammation and destruction. SB-505124 potently reduced murine Th17 differentiation by decreasing Il17a and Rorc gene expression and IL-17 protein production. SB-505124 significantly suppressed IL-6 production by synovial explants. In vivo, SB-505124 reduced Th17 numbers, while increased numbers of Tregs were observed. Despite this skewed Th17/Treg balance, SB-505124 treatment did not result in suppression of joint inflammation and destruction. Blocking TGF-β1 signalling suppresses Th17 differentiation and improves the Th17/Treg balance. However, local SB-505124 treatment does not suppress experimental arthritis.
Collapse
Affiliation(s)
- Joyce Aarts
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Arjan van Caam
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Xinlai Chen
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Renoud J Marijnissen
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Monique M Helsen
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Birgitte Walgreen
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Elly L Vitters
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Fons A van de Loo
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Peter L van Lent
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marije I Koenders
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Donkor MK, Sarkar A, Li MO. Tgf-β1 produced by activated CD4(+) T Cells Antagonizes T Cell Surveillance of Tumor Development. Oncoimmunology 2021; 1:162-171. [PMID: 22720237 PMCID: PMC3376999 DOI: 10.4161/onci.1.2.18481] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
TGFβ1 is a regulatory cytokine with a crucial function in the control of T cell tolerance to tumors. Our recent study revealed that T cell-produced TGFβ1 is essential for inhibiting cytotoxic T cell responses to tumors. However, the exact TGFβ1-producing T cell subset required for tumor immune evasion remains unknown. Here we showed that deletion of TGFβ1 from CD8+ T cells or Foxp3+ regulatory T (Treg) cells did not protect mice against transplanted tumors. However, absence of TGFβ1 produced by activated CD4+ T cells and Treg cells inhibited tumor growth, and protected mice from spontaneous prostate cancer. These findings suggest that TGFβ1 produced by activated CD4+ T cells is a necessary requirement for tumor evasion from immunosurveillance.
Collapse
Affiliation(s)
- Moses K Donkor
- Immunology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
| | | | | |
Collapse
|
13
|
Bielecki PA, Lorkowski ME, Becicka WM, Atukorale PU, Moon TJ, Zhang Y, Wiese M, Covarrubias G, Ravichandran S, Karathanasis E. Immunostimulatory silica nanoparticle boosts innate immunity in brain tumors. NANOSCALE HORIZONS 2021; 6:156-167. [PMID: 33400743 PMCID: PMC7878432 DOI: 10.1039/d0nh00446d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The high mortality associated with glioblastoma multiforme (GBM) is attributed to its invasive nature, hypoxic core, resistant cell subpopulations and a highly immunosuppressive tumor microenvironment (TME). To support adaptive immune function and establish a more robust antitumor immune response, we boosted the local innate immune compartment of GBM using an immunostimulatory mesoporous silica nanoparticle, termed immuno-MSN. The immuno-MSN was specifically designed for systemic and proficient delivery of a potent innate immune agonist to dysfunctional antigen-presenting cells (APCs) in the brain TME. The cargo of the immuno-MSN was cyclic diguanylate monophosphate (cdGMP), a Stimulator of Interferon Gene (STING) agonist. Studies showed the immuno-MSN promoted the uptake of STING agonist by APCs in vitro and the subsequent release of the pro-inflammatory cytokine interferon β, 6-fold greater than free agonist. In an orthotopic GBM mouse model, systemically administered immuno-MSN particles were taken up by APCs in the near-perivascular regions of the brain tumor with striking efficiency. The immuno-MSNs facilitated the recruitment of dendritic cells and macrophages to the TME while sparing healthy brain tissue and peripheral organs, resulting in elevated circulating CD8+ T cell activity (2.5-fold) and delayed GBM tumor growth. We show that an engineered immunostimulatory nanoparticle can support pro-inflammatory innate immune function in GBM and subsequently augment current immunotherapeutic interventions and improve their therapeutic outcome.
Collapse
Affiliation(s)
- Peter A Bielecki
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kerr J. Early Growth Response Gene Upregulation in Epstein-Barr Virus (EBV)-Associated Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Biomolecules 2020; 10:biom10111484. [PMID: 33114612 PMCID: PMC7692278 DOI: 10.3390/biom10111484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic multisystem disease exhibiting a variety of symptoms and affecting multiple systems. Psychological stress and virus infection are important. Virus infection may trigger the onset, and psychological stress may reactivate latent viruses, for example, Epstein-Barr virus (EBV). It has recently been reported that EBV induced gene 2 (EBI2) was upregulated in blood in a subset of ME/CFS patients. The purpose of this study was to determine whether the pattern of expression of early growth response (EGR) genes, important in EBV infection and which have also been found to be upregulated in blood of ME/CFS patients, paralleled that of EBI2. EGR gene upregulation was found to be closely associated with that of EBI2 in ME/CFS, providing further evidence in support of ongoing EBV reactivation in a subset of ME/CFS patients. EGR1, EGR2, and EGR3 are part of the cellular immediate early gene response and are important in EBV transcription, reactivation, and B lymphocyte transformation. EGR1 is a regulator of immune function, and is important in vascular homeostasis, psychological stress, connective tissue disease, mitochondrial function, all of which are relevant to ME/CFS. EGR2 and EGR3 are negative regulators of T lymphocytes and are important in systemic autoimmunity.
Collapse
Affiliation(s)
- Jonathan Kerr
- Department of Microbiology, Norfolk & Norwich University Hospital (NNUH), Colney Lane, Norwich, Norfolk NR4 7UY, UK
| |
Collapse
|
15
|
NK Cell Adoptive Immunotherapy of Cancer: Evaluating Recognition Strategies and Overcoming Limitations. Transplant Cell Ther 2020; 27:21-35. [PMID: 33007496 DOI: 10.1016/j.bbmt.2020.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells, the primary effector cells of the innate immune system, utilize multiple strategies to recognize tumor cells by (1) detecting the presence of activating receptor ligands, which are often upregulated in cancer; (2) targeting cells that have a loss of major histocompatibility complex (MHC); and (3) binding to antibodies that bind to tumor-specific antigens on the tumor cell surface. All these strategies have been successfully harnessed in adoptive NK cell immunotherapies targeting cancer. In this review, we review the applications of NK cell therapies across different tumor types. Similar to other forms of immunotherapy, tumor-induced immune escape and immune suppression can limit NK cell therapies' efficacy. Therefore, we also discuss how these limitations can be overcome by conferring NK cells with the ability to redirect their tumor-targeting capabilities and survive the immune-suppressive tumor microenvironment. Finally, we also discuss how future iterations can benefit from combination therapies with other immunotherapeutic agents.
Collapse
|
16
|
Gao L, Liesveld J, Anolik J, Mcdavid A, Looney RJ. IFN β signaling inhibits osteogenesis in human SLE bone marrow. Lupus 2020; 29:1040-1049. [PMID: 32515653 DOI: 10.1177/0961203320930088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells are multipotent adult stem cells that can differentiate into osteoblasts, adipocytes, and chondrocytes. Our recently published data demonstrate that systemic lupus erythematous bone marrow mesenchymal stem cells produce increased quantities of interferon β based on a positive feedback loop involving the innate signaling molecule mitochondrial antiviral signaling protein. Moreover, this pathway contributes to human systemic lupus erythematous bone marrow mesenchymal stem cell senescence-like features. Here we investigate the differentiation defects of systemic lupus erythematous bone marrow mesenchymal stem cells and the potential for therapeutic interventions. METHODS The six systemic lupus erythematous patients recruited in this study satisfy the American College of Rheumatology 1997 classification criteria for systemic lupus erythematous. Systemic Lupus Erythematous Disease Activity Index-2K was used to determine disease activity. Systemic lupus erythematous bone marrow mesenchymal stem cells were isolated with Ficoll centrifugation and phenotyped using flow cytometry. In vitro studies included real-time polymerase chain reaction and western blotting. RESULTS We compared six age-paired bone marrow aspirates from healthy controls and systemic lupus erythematous patients. Systemic lupus erythematous bone marrow mesenchymal stem cells display significantly reduced alkaline phosphatase staining, as well as reduced expression of osteogenic markers alkaline phosphatase, Runt-related transcription factor 2, and bone sialoprotein. When healthy bone marrow mesenchymal stem cells were treated with interferon β for 6 hours, expression of these same osteogenic markers was markedly reduced. Conversely the application of interferon β neutralizing antibody enhanced the expression of osteoblastogenesis markers. When the underlying mechanisms for interferon β inhibition of osteoblastogenesis were investigated, we found that IFNβ pre-treatment activates the inhibitory Smad6 and Smad7 expression through JAK1/STAT1, leading to reduced Smad1 phosphorylation and nuclear translocation. CONCLUSIONS Our present work suggests that interferon β affects osteogenesis. By revealing the essential role of interferon β on systemic lupus erythematous bone marrow mesenchymal stem cell differentiation, our study sheds light on systemic lupus erythematous pathogenesis and provides a new potential therapeutic target for the bone complications found in systemic lupus erythematous.
Collapse
Affiliation(s)
- Lin Gao
- University of Rochester Medical Center, USA
| | | | | | | | | |
Collapse
|
17
|
Smalley I, Law V, Wyatt C, Evernden B, Fang B, Koomen JM, Welsh EA, Macaulay RJB, Forsyth PA, Smalley KSM. Proteomic Analysis of CSF from Patients with Leptomeningeal Melanoma Metastases Identifies Signatures Associated with Disease Progression and Therapeutic Resistance. Clin Cancer Res 2020; 26:2163-2175. [PMID: 31924735 PMCID: PMC7196498 DOI: 10.1158/1078-0432.ccr-19-2840] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/24/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE The development of leptomeningeal melanoma metastases (LMM) is a rare and devastating complication of the late-stage disease, for which no effective treatments exist. Here, we performed a multi-omics analysis of the cerebrospinal fluid (CSF) from patients with LMM to determine how the leptomeningeal microenvironment shapes the biology and therapeutic responses of melanoma cells. EXPERIMENTAL DESIGN A total of 45 serial CSF samples were collected from 16 patients, 8 of these with confirmed LMM. Of those with LMM, 7 had poor survival (<4 months) and one was an extraordinary responder (still alive with survival >35 months). CSF samples were analyzed by mass spectrometry and incubated with melanoma cells that were subjected to RNA sequencing (RNA-seq) analysis. Functional assays were performed to validate the pathways identified. RESULTS Mass spectrometry analyses showed the CSF of most patients with LMM to be enriched for pathways involved in innate immunity, protease-mediated damage, and IGF-related signaling. All of these were anticorrelated in the extraordinary responder. RNA-seq analysis showed CSF to induce PI3K/AKT, integrin, B-cell activation, S-phase entry, TNFR2, TGFβ, and oxidative stress responses in the melanoma cells. ELISA assays confirmed that TGFβ expression increased in the CSF of patients progressing with LMM. CSF from poorly responding patients conferred tolerance to BRAF inhibitor therapy in apoptosis assays. CONCLUSIONS These analyses identified proteomic/transcriptional signatures in the CSF of patients who succumbed to LMM. We further showed that the CSF from patients with LMM has the potential to modulate BRAF inhibitor responses and may contribute to drug resistance.See related commentary by Glitza Oliva and Tawbi, p. 2083.
Collapse
Affiliation(s)
- Inna Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Vincent Law
- The Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Clayton Wyatt
- The Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Brittany Evernden
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Bin Fang
- Proteomics and Metabolomics Core, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - John M Koomen
- Department of Molecular Oncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric A Welsh
- Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert J B Macaulay
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Peter A Forsyth
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
18
|
Lazarova M, Steinle A. Impairment of NKG2D-Mediated Tumor Immunity by TGF-β. Front Immunol 2019; 10:2689. [PMID: 31803194 PMCID: PMC6873348 DOI: 10.3389/fimmu.2019.02689] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) suppresses innate and adaptive immune responses via multiple mechanisms. TGF-β also importantly contributes to the formation of an immunosuppressive tumor microenvironment thereby promoting tumor growth. Amongst others, TGF-β impairs tumor recognition by cytotoxic lymphocytes via NKG2D. NKG2D is a homodimeric C-type lectin-like receptor expressed on virtually all human NK cells and cytotoxic T cells, and stimulates their effector functions upon engagement by NKG2D ligands (NKG2DL). While NKG2DL are mostly absent from healthy cells, their expression is induced by cellular stress and malignant transformation, and, accordingly, frequently detected on various tumor cells. Hence, the NKG2D axis is thought to play a decisive role in cancer immunosurveillance and, obviously, often is compromised in clinically apparent tumors. There is mounting evidence that TGF-β, produced by tumor cells and immune cells in the tumor microenvironment, plays a key role in blunting the NKG2D-mediated tumor surveillance. Here, we review the current knowledge on the impairment of NKG2D-mediated cancer immunity through TGF-β and discuss therapeutic approaches aiming at counteracting this major immune escape pathway. By reducing tumor-associated expression of NKG2DL and blinding cytotoxic lymphocytes through down-regulation of NKG2D, TGF-β is acting upon both sides of the NKG2D axis severely compromising NKG2D-mediated tumor rejection. Consequently, novel therapies targeting the TGF-β pathway are expected to reinvigorate NKG2D-mediated tumor elimination and thereby to improve the survival of cancer patients.
Collapse
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Strzępa A, Marcińska K, Majewska-Szczepanik M, Szczepanik M. Oral treatment with enrofloxacin creates anti-inflammatory environment that supports induction of tolerogenic dendritic cells. Int Immunopharmacol 2019; 77:105966. [PMID: 31679846 DOI: 10.1016/j.intimp.2019.105966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oral enrofloxacin treatment altered the gut microbiome promoting anti-inflammatory bacteria. The dysbiosis promotes regulatory cell induction in the intestines and in the periphery, which suppresses contact sensitivity. Bacterial-derived signals promote regulatory cell induction both directly and indirectly by influencing the phenotype of dendritic cells (DC). METHODS Oral treatment with broad-spectrum antibiotic enrofloxacin was used to evaluate how gut flora perturbation shapes the immune response in the gut and the periphery. RESULTS Enrofloxacin-induced dysbiosis creates an anti-inflammatory environment characterized by increased IL-10 concentration in the gut lumen and tissues. The production of IFN-γ and IL-17A did not change. Oral enrofloxacin treatment skewed the profile of the immune response towards an anti-inflammatory phenotype locally in small intestinal Peyer's Patches (PP) and systematically in the spleen (SPL). Enrofloxacin administration changed immune response in PP by increasing TGF-β secretion from an increased percentage of TGF-β-producing. In the SPL, enrofloxacin treatment increased the secretion of TGF-β and IL-10 and decreased the secretion of IL-17A and IFN-γ. The shift in cytokine profile correlated with a higher percentage of latency-associated peptide and IL-10-producing cells and a decreased percentage of IFN-γ-producing T cells. This anti-inflammatory immune response in the PP and SPL promoted a higher frequency of tolerogenic DC. CONCLUSION Our data indicate that two-week enrofloxacin treatment induces dysbiosis, skews immune response towards an anti-inflammatory phenotype, and elevates secretion of TGF-β and IL-10 in the intestines and periphery. Additionally, we observed higher frequencies of tolerogenic DC, characterized by CD11b and IL-10 expression, which are known inducers of Treg cells.
Collapse
Affiliation(s)
- Anna Strzępa
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7, 31-034 Krakow, Poland
| | - Katarzyna Marcińska
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7, 31-034 Krakow, Poland
| | - Monika Majewska-Szczepanik
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7, 31-034 Krakow, Poland
| | - Marian Szczepanik
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7, 31-034 Krakow, Poland.
| |
Collapse
|
20
|
Kariyawasam HH, Gane SB. Allergen-induced asthma, chronic rhinosinusitis and transforming growth factor-β superfamily signaling: mechanisms and functional consequences. Expert Rev Clin Immunol 2019; 15:1155-1170. [PMID: 31549888 DOI: 10.1080/1744666x.2020.1672538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Often co-associated, asthma and chronic rhinosinusitis (CRS) are complex heterogeneous disease syndromes. Severity in both is related to tissue inflammation and abnormal repair (termed remodeling). Understanding signaling factors that can modulate, integrate the activation, and regulation of such key processes together is increasingly important. The transforming growth factor (TGF)-β superfamily of ligands comprise a versatile system of immunomodulatory molecules that are gaining recognition as having an essential function in the immunopathogenesis of asthma. Early data suggest an important role in CRS as well. Abnormal or dysregulated signaling may contribute to disease pathogenesis and severity.Areas covered: The essential biology of this complex family of growth factors in relation to the excess inflammation and remodeling that occurs in allergic asthma and CRS is reviewed. The need to understand the integration of signaling pathways together is highlighted. Studies in human airway tissue are evaluated and only selected key animal models relevant to human disease discussed given the highly context-dependent signaling and function of these ligands.Expert opinion: Abnormal or dysregulated TGF-β superfamily signaling may be central to the excess inflammation and tissue remodeling in asthma, and possibly CRS. Therefore, the TGF-β superfamily signaling pathways represent an emerging and attractive therapeutic target.
Collapse
Affiliation(s)
- Harsha H Kariyawasam
- Department of Adult Specialist Allergy and Clinical Immunology, Royal National ENT Hospital, University College London Hospitals NHS Foundation Trust, London, UK.,Department of Rhinology, Royal National ENT Hospital, University College London Hospitals NHS Foundation Trust, London, UK.,University College London, London, UK
| | - Simon B Gane
- Department of Rhinology, Royal National ENT Hospital, University College London Hospitals NHS Foundation Trust, London, UK.,University College London, London, UK
| |
Collapse
|
21
|
Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity 2019; 50:924-940. [PMID: 30995507 DOI: 10.1016/j.immuni.2019.03.024] [Citation(s) in RCA: 1457] [Impact Index Per Article: 242.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
Collapse
|
22
|
Abstract
Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
Collapse
Affiliation(s)
- Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
23
|
Hopkin SJ, Lewis JW, Krautter F, Chimen M, McGettrick HM. Triggering the Resolution of Immune Mediated Inflammatory Diseases: Can Targeting Leukocyte Migration Be the Answer? Front Pharmacol 2019; 10:184. [PMID: 30881306 PMCID: PMC6407428 DOI: 10.3389/fphar.2019.00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Leukocyte recruitment is a pivotal process in the regulation and resolution of an inflammatory episode. It is vital for the protective responses to microbial infection and tissue damage, but is the unwanted reaction contributing to pathology in many immune mediated inflammatory diseases (IMIDs). Indeed, it is now recognized that patients with IMIDs have defects in at least one, if not multiple, check-points regulating the entry and exit of leukocytes from the inflamed site. In this review, we will explore our understanding of the imbalance in recruitment that permits the accumulation and persistence of leukocytes in IMIDs. We will highlight old and novel pharmacological tools targeting these processes in an attempt to trigger resolution of the inflammatory response. In this context, we will focus on cytokines, chemokines, known pro-resolving lipid mediators and potential novel lipids (e.g., sphingosine-1-phosphate), along with the actions of glucocorticoids mediated by 11-beta hydroxysteroid dehydrogenase 1 and 2.
Collapse
Affiliation(s)
- Sophie J. Hopkin
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jonathan W. Lewis
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Franziska Krautter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Myriam Chimen
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen M. McGettrick
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
24
|
Adrenergic Modulation of Hematopoiesis. J Neuroimmune Pharmacol 2019; 15:82-92. [PMID: 30762159 DOI: 10.1007/s11481-019-09840-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 01/11/2023]
Abstract
Hematopoiesis produce every day billions of blood cells and takes place in the bone marrow (BM) by the proliferation and differentiation of hematopoietic stem cells (HSC). HSC are found mainly adjacent to the BM vascular sinusoids where endothelial cells and mesenchimal stromal cells promote HSC maintenance by producing a variety of factors. Other cell types that regulate HSC niches include sympathetic nerves, non-myelinating Schwann cells and a variety of mature hematopoietic cells such as macrophages, neutrophils, and megakaryocytes. This review will focus on the role of adrenergic signals, i.e. of catecholamines, in the regulation of the HSC niche. The available evidence is rather controversial possibly due to the fact that adrenergic receptors are expressed by many cellular components of the niche and also by the often neglected observation that catecholamines may be produced and released also by the BM cells themselves. In addition one has to consider that, physiologically, the sympathetic nervous system (SNS) activity follows a circadian rhythmicity as driven by the suprachiasmatic nucleus (SCN) of the hypothalamus but may be also activated by cognitive and non-cognitive environmental stimuli. The adrenergic modulation of hematopoiesis holds a considerable potential for pharmacological therapeutic approaches in a variety of hematopoietic disorders and for HSC transplantation however the complexity of the system demands further studies. Graphical Abstract Sympathetic nerve termini may release NE while mature BM cells may release norepinephrine (NE) and / or epinephrine (E). Both may bind to β-adrenergic receptor (AR) expressed in nestin+MSC in the hematopoietic stem cell (HSC) niche and regulate the physiological trafficking of HSC by modulating the expression of CXCL12 and SCF. Both NE and E may also activate Lin - c-Kit+ Sca-1+ (LKS) cell via another AR. In addition, NE may also signal to α1-AR expressed in pre-B cells which by TGF-β secretion might regulate proliferation of their lymphoid progenitors in an autocrine manner and/or inhibit myeloid progenitors.
Collapse
|
25
|
Gurska LM, Ames K, Gritsman K. Signaling Pathways in Leukemic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:1-39. [PMID: 31338813 PMCID: PMC7249489 DOI: 10.1007/978-981-13-7342-8_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) utilize many of the same signaling pathways for their maintenance and survival. In this review, we will focus on several signaling pathways whose roles have been extensively studied in both HSCs and LSCs. Our main focus will be on the PI3K/AKT/mTOR pathway and several of its regulators and downstream effectors. We will also discuss several other signaling pathways of particular importance in LSCs, including the WNT/β-catenin pathway, the NOTCH pathway, and the TGFβ pathway. For each of these pathways, we will emphasize differences in how these pathways operate in LSCs, compared to their function in HSCs, to highlight opportunities for the specific therapeutic targeting of LSCs. We will also highlight areas of crosstalk between multiple signaling pathways that may affect LSC function.
Collapse
Affiliation(s)
- Lindsay M Gurska
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kristina Ames
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kira Gritsman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
- Department of Medical Oncology, Montefiore Hospital, Bronx, New York, USA.
| |
Collapse
|
26
|
Affiliation(s)
- Norio Chihara
- Division of Neurology; Kobe University Graduate School of Medicine; Kobe Japan
| |
Collapse
|
27
|
Rossmann MP, Orkin SH, Chute JP. Hematopoietic Stem Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Zhao X, Li D, Qiu Q, Jiao B, Zhang R, Liu P, Ren R. Zfyve16 regulates the proliferation of B-lymphoid cells. Front Med 2017; 12:559-565. [PMID: 29247407 DOI: 10.1007/s11684-017-0562-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/08/2017] [Indexed: 10/18/2022]
Abstract
Zfyve16 (a.k.a. endofin or endosome-associated FYVE-domain protein), a member of the FYVE-domain protein family, is involved in endosomal trafficking and in TGF-β, BMP, and EGFR signaling. The FYVE protein SARA regulates the TGF-β signaling pathway by recruiting Smad2/3 and accelerating their phosphorylation, thereby altering their susceptibility to TGF-β-mediated T cell suppression. Zfyve16 binds to Smad4 and their binding affects the formation of Smad2/3-Smad4 complex in TGF-β signaling. However, the in vivo function of Zfyve16 remains unknown. In this study, we generated a Zfyve16 knockout mouse strain (Zfyve16KO) and examined its hematopoietic phenotypes and hematopoietic reconstruction ability. The proportion of Tcells in the peripheral blood of Zfyve16KO mice increases compared with that in wild-type mice. This finding is consistent with the role of Zfyve16 in facilitating TGF-β signaling. Unpredictably, B cell proliferation is inhibited in Zfyve16KO mice. The proliferation potential of Zfyve16KO B-lymphoid cells also significantly decreases in vitro. These results suggest that Zfyve16 inhibits the proliferation of T cells, possibly through the TGF-β signaling, but upregulates the proliferation of B-lymphoid cells.
Collapse
Affiliation(s)
- Xuemei Zhao
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Donghe Li
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qingsong Qiu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bo Jiao
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruihong Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ping Liu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ruibao Ren
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of Biology, Brandeis University, Waltham, MA, 02454, USA.
| |
Collapse
|
29
|
Cagnan I, Gunel-Ozcan A, Aerts-Kaya F, Ameziane N, Kuskonmaz B, Dorsman J, Gumruk F, Uckan D. Bone Marrow Mesenchymal Stem Cells Carrying FANCD2 Mutation Differ from the Other Fanconi Anemia Complementation Groups in Terms of TGF-β1 Production. Stem Cell Rev Rep 2017; 14:425-437. [DOI: 10.1007/s12015-017-9794-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Naka K, Hirao A. Regulation of Hematopoiesis and Hematological Disease by TGF-β Family Signaling Molecules. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027987. [PMID: 28193723 DOI: 10.1101/cshperspect.a027987] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Throughout the lifetime of an individual, hematopoietic stem cells (HSCs) maintain the homeostasis of normal hematopoiesis through the precise generation of mature blood cells. Numerous genetic studies in mice have shown that stem-cell quiescence is critical for sustaining primitive long-term HSCs in vivo. In this review, we first examine the crucial roles of transforming growth factor β (TGF-β) and related signaling molecules in not only regulating the well-known cytostatic effects of these molecules but also governing the self-renewal capacity of HSCs in their in vivo microenvironmental niche. Second, we discuss the current evidence indicating that TGF-β signaling has a dual function in disorders of the hematopoietic system. In particular, we examine the paradox that, although intrinsic TGF-β signaling is essential for regulating the survival and resistance to therapy of chronic myelogenous leukemia (CML) stem cells, genetic changes that abrogate TGF-β signaling can lead to the development of several hematological malignancies.
Collapse
Affiliation(s)
- Kazuhito Naka
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima 734-8553, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
31
|
Komai T, Okamura T, Yamamoto K, Fujio K. The effects of TGF-βs on immune responses. ACTA ACUST UNITED AC 2017; 39:51-8. [PMID: 27181235 DOI: 10.2177/jsci.39.51] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Transforming growth factor (TGF)-β family is a cytokine family with various biological processes and forms a highly homologous group of three mammalian isoforms, TGF-β1, TGF-β2, and TGF-β3. Most of the attention on TGF-β family in immunology has been mainly focused on TGF-β1 in that TGF-β1 induces anti-inflammatory regulatory T cells (Treg), and inflammatory T helper 17 (Th17) cells in combination with interleukin-6. Although little attention has been focused on the immunological roles of TGF-β2 and TGF-β3, the function of TGF-β3 for maintaining immunological homeostasis has recently been identified such as the induction of Th17 cells and direct regulatory effects on humoral immunity. TGF-β1 and TGF-β3 shares similar anti-inflammatory or pro-inflammatory functions, but exhibits significantly different effects on fibrosis and chondrogenesis. For the clinical application of TGF-βs, the mechanisms by which each TGF-β isoform regulates immunity has to be elucidated. In this review, we provide an overview of the effects, cellular targets, and therapeutic potential of TGF-βs on immune responses and autoimmune diseases.
Collapse
Affiliation(s)
- Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo
| | | | | | | |
Collapse
|
32
|
Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of Innate and Adaptive Immunity by TGFβ. Adv Immunol 2017; 134:137-233. [PMID: 28413021 DOI: 10.1016/bs.ai.2017.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immune regulation by cytokines is crucial in maintaining immune homeostasis, promoting responses to infection, resolving inflammation, and promoting immunological memory. Additionally, cytokine responses drive pathology in immune-mediated disease. A crucial cytokine in the regulation of all aspects of an immune response is transforming growth factor beta (TGFβ). Although best known as a crucial regulator of T cell responses, TGFβ plays a vital role in regulating responses mediated by virtually every innate and adaptive immune cell, including dendritic cells, B cells, NK cells, innate lymphoid cells, and granulocytes. Here, we review our current knowledge of how TGFβ regulates the immune system, highlighting the multifunctional nature of TGFβ and how its function can change depending on location and context of action.
Collapse
Affiliation(s)
- Aoife Kelly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stephanie A Houston
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Eleanor Sherwood
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark A Travis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
33
|
Lee PW, Severin ME, Lovett-Racke AE. TGF-β regulation of encephalitogenic and regulatory T cells in multiple sclerosis. Eur J Immunol 2017; 47:446-453. [PMID: 28102541 DOI: 10.1002/eji.201646716] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/01/2016] [Accepted: 01/16/2017] [Indexed: 11/09/2022]
Abstract
Transforming growth factor beta (TGF-β) is a pleiotropic cytokine that has been shown to influence the differentiation and function of T cells. The role that TGF-β plays in immune-mediated disease, such as multiple sclerosis (MS), has become a major area of investigation since CD4+ T cells appear to be a major mediator of autoimmunity. This review provides an analysis of the literature on the role that TGF-β plays in the generation and regulation of encephalitogenic and regulatory T cells (Treg) in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, as well as in T cells of MS patients. Since TGF-β plays a major role in the development and function of both CD4+ effector and Treg, which are defective in MS patients, recent studies have found potential mechanisms to explain the basis for these T-cell defects to establish a foundation for potentially modulating TGF-β signaling to restore normal T-cell function in MS patients.
Collapse
Affiliation(s)
- Priscilla W Lee
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Mary E Severin
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| |
Collapse
|
34
|
|
35
|
|
36
|
Morita K, Okamura T, Sumitomo S, Iwasaki Y, Fujio K, Yamamoto K. Emerging roles of Egr2 and Egr3 in the control of systemic autoimmunity. Rheumatology (Oxford) 2016; 55:ii76-ii81. [DOI: 10.1093/rheumatology/kew342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 08/23/2016] [Indexed: 01/04/2023] Open
|
37
|
Hinge A, Filippi MD. Deconstructing the Complexity of TGFβ Signaling in Hematopoietic Stem Cells: Quiescence and Beyond. CURRENT STEM CELL REPORTS 2016; 2:388-397. [PMID: 28529843 DOI: 10.1007/s40778-016-0069-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The hematopoietic system is highly dynamic and must constantly produce new blood cells every day. Mature blood cells all derive from a pool of rare long-lived hematopoietic stem cells (HSCs) that are mostly quiescent but occasionally divide and self-renew in order to maintain the stem cell pool and continuous replenishment of mature blood cells throughout life. A tight control of HSC self-renewal, commitment to differentiation and maintenance of quiescence states is necessary for lifelong blood supply. Transforming growth factor-β (TGF-β) is a critical regulator hematopoietic cell functions. It is a potent inhibitor of hematopoietic cell growth. However, TGFβ functions are more complex and largely context-dependent. Emerging evidence suggests a role in aging, cell identity and cell fate decisions. Here, we will review the role of TGF-β and downstream signaling in normal HSC functions, in HSC quiescence and beyond.
Collapse
Affiliation(s)
- Ashwini Hinge
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
38
|
Revisiting the regulatory roles of the TGF-β family of cytokines. Autoimmun Rev 2016; 15:917-22. [PMID: 27392504 DOI: 10.1016/j.autrev.2016.07.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/13/2016] [Indexed: 02/04/2023]
Abstract
TGF-β family members are multipotent cytokines that are involved in many cellular processes, including cell differentiation, organ development, wound healing and immune regulation. TGF-β has pleiotropic effects on adaptive immunity, especially in the regulation of CD4(+) T cell and B cell responses. Furthermore, identification of CD4(+) T cell subsets that produce TGF-β3 revealed unexpected roles of TGF-β3 in the control of adaptive immunity. In contrast to TGF-β1, which induces extensive fibrosis, TGF-β3 induces non-scarring wound healing and counteracts tissue fibrosis. Recent progress in the understanding of the activation mechanism of TGF-β may enable us to develop novel biologic therapies based on advanced protein engineering.
Collapse
|
39
|
Beltra JC, Decaluwe H. Cytokines and persistent viral infections. Cytokine 2016; 82:4-15. [DOI: 10.1016/j.cyto.2016.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
|
40
|
Pedros C, Duguet F, Saoudi A, Chabod M. Disrupted regulatory T cell homeostasis in inflammatory bowel diseases. World J Gastroenterol 2016; 22:974-995. [PMID: 26811641 PMCID: PMC4716049 DOI: 10.3748/wjg.v22.i3.974] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/02/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
In the gut, where billions of non-self-antigens from the food and the microbiota are present, the immune response must be tightly regulated to ensure both host protection against pathogenic microorganisms and the absence of immune-related pathologies. It has been well documented that regulatory T cells (Tregs) play a pivotal role in this context. Indeed, Tregs are able to prevent excessive inflammation, which can lead to the rupture of intestinal homeostasis observed in inflammatory bowel diseases (IBDs). Both the worldwide incidence and prevalence of such diseases have increased throughout the latter part of the 20th century. Therefore, it is crucial to understand how Tregs suppress the colitogenic immune cells to establish new treatments for patients suffering from IBDs. In this review, we will first summarize the results obtained in animal model studies that highlight the importance of Tregs in maintaining intestinal homeostasis and describe the specific suppressive mechanisms involved. Next, our current knowledge about Tregs contribution to human IBDs will be reviewed, as well as the current therapeutic perspective on using Tregs for clinical IBD treatment and the challenges that remain to be resolved to ensure both the safety and effectiveness of these therapies in targeting this critical immune-regulatory cell population.
Collapse
|
41
|
Fujio K, Okamura T, Sumitomo S, Yamamoto K. Therapeutic potential of regulatory cytokines that target B cells. Int Immunol 2015; 28:189-95. [PMID: 26647406 DOI: 10.1093/intimm/dxv069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/15/2015] [Indexed: 12/18/2022] Open
Abstract
Autoreactive B cells play a crucial role in the pathogenesis of autoimmune diseases by producing auto-antibodies and presenting antigens. Regulatory cytokines that simultaneously suppress multiple pathways have the potential to control autoreactive B cells. The generally inhibitory cytokine IL-10 may have a stimulatory effect on human B-cell survival and antibody production. TGF-β family cytokines can decrease or increase antibody production and can suppress B-cell proliferation and differentiation. In contrast to TGF-β1, which induces extensive fibrosis, TGF-β3 and bone morphogenetic protein 6 (BMP-6)/BMP-7 induce non-scarring wound healing and counteract tissue fibrosis. Therefore, TGF-β3 and BMP-6/BMP-7 may be clinically applicable as therapeutic cytokines that target B cells. Recent progress in protein engineering may enable us to generate novel biologic therapies based on TGF-β family cytokines.
Collapse
Affiliation(s)
- Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
42
|
TGF-β signaling in the control of hematopoietic stem cells. Blood 2015; 125:3542-50. [PMID: 25833962 DOI: 10.1182/blood-2014-12-618090] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/30/2015] [Indexed: 02/08/2023] Open
Abstract
Blood is a tissue with high cellular turnover, and its production is a tightly orchestrated process that requires constant replenishment. All mature blood cells are generated from hematopoietic stem cells (HSCs), which are the self-renewing units that sustain lifelong hematopoiesis. HSC behavior, such as self-renewal and quiescence, is regulated by a wide array of factors, including external signaling cues present in the bone marrow. The transforming growth factor-β (TGF-β) family of cytokines constitutes a multifunctional signaling circuitry, which regulates pivotal functions related to cell fate and behavior in virtually all tissues of the body. In the hematopoietic system, TGF-β signaling controls a wide spectrum of biological processes, from homeostasis of the immune system to quiescence and self-renewal of HSCs. Here, we review key features and emerging concepts pertaining to TGF-β and downstream signaling pathways in normal HSC biology, featuring aspects of aging, hematologic disease, and how this circuitry may be exploited for clinical purposes in the future.
Collapse
|
43
|
Schneider H, Rudd CE. Diverse mechanisms regulate the surface expression of immunotherapeutic target ctla-4. Front Immunol 2014; 5:619. [PMID: 25538704 PMCID: PMC4255484 DOI: 10.3389/fimmu.2014.00619] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
T-cell co-receptor cytotoxic T-cell antigen-4 (CTLA-4) is a critical inhibitory regulator of T-cell immunity and antibody blockade of the co-receptor has been shown to be effective in tumor immunotherapy. Paradoxically, the majority of CTLA-4 is located in intracellular compartments from where it is transported to the cell surface and rapidly internalized. The intracellular trafficking pathways that control transport of the co-receptor to the cell surface ensures the appropriate balance of negative and positive signaling for a productive immune response with minimal autoimmune disorders. It will also influence the degree of inhibition and the potency of antibody checkpoint blockade in cancer immunotherapy. Current evidence indicates that the mechanisms of CTLA-4 transport to the cell surface and its residency are multifactorial involving a combination of immune cell-specific adapters such as TRIM and LAX, the small GTPase Rab8 as well as generic components such as ARF-1, phospholipase D, and the heterotetrameric AP1/2 complex. This review covers the recent developments in our understanding of the processes that control the expression of this important co-inhibitory receptor for the modulation of T-cell immunity. Interference with the processes that regulate CTLA-4 surface expression could provide an alternate therapeutic approach in the treatment of cancer and autoimmunity.
Collapse
Affiliation(s)
- Helga Schneider
- Cell Signalling Section, Division of Immunology, Department of Pathology, University of Cambridge , Cambridge , UK
| | - Christopher E Rudd
- Cell Signalling Section, Division of Immunology, Department of Pathology, University of Cambridge , Cambridge , UK
| |
Collapse
|
44
|
Lech M, Lorenz G, Kulkarni OP, Grosser MOO, Stigrot N, Darisipudi MN, Günthner R, Wintergerst MWM, Anz D, Susanti HE, Anders HJ. NLRP3 and ASC suppress lupus-like autoimmunity by driving the immunosuppressive effects of TGF-β receptor signalling. Ann Rheum Dis 2014; 74:2224-35. [PMID: 25135254 DOI: 10.1136/annrheumdis-2014-205496] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/30/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The NLRP3/ASC inflammasome drives host defence and autoinflammatory disorders by activating caspase-1 to trigger the secretion of mature interleukin (IL)-1β/IL-18, but its potential role in autoimmunity is speculative. METHODS We generated and phenotyped Nlrp3-deficient, Asc-deficient, Il-1r-deficient and Il-18-deficient C57BL/6-lpr/lpr mice, the latter being a mild model of spontaneous lupus-like autoimmunity. RESULTS While lack of IL-1R or IL-18 did not affect the C57BL/6-lpr/lpr phenotype, lack of NLRP3 or ASC triggered massive lymphoproliferation, lung T cell infiltrates and severe proliferative lupus nephritis within 6 months, which were all absent in age-matched C57BL/6-lpr/lpr controls. Lack of NLRP3 or ASC increased dendritic cell and macrophage activation, the expression of numerous proinflammatory mediators, lymphocyte necrosis and the expansion of most T cell and B cell subsets. In contrast, plasma cells and autoantibody production were hardly affected. This unexpected immunosuppressive effect of NLRP3 and ASC may relate to their known role in SMAD2/3 phosphorylation during tumour growth factor (TGF)-β receptor signalling, for example, Nlrp3-deficiency and Asc-deficiency significantly suppressed the expression of numerous TGF-β target genes in C57BL/6-lpr/lpr mice and partially recapitulated the known autoimmune phenotype of Tgf-β1-deficient mice. CONCLUSIONS These data identify a novel non-canonical immunoregulatory function of NLRP3 and ASC in autoimmunity.
Collapse
Affiliation(s)
- Maciej Lech
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Georg Lorenz
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Onkar P Kulkarni
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Marian O O Grosser
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Nora Stigrot
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Murthy N Darisipudi
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Roman Günthner
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Maximilian W M Wintergerst
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - David Anz
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Heni Eka Susanti
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| |
Collapse
|
45
|
Li MO, Flavell RA. TGF-β, T-cell tolerance and immunotherapy of autoimmune diseases and cancer. Expert Rev Clin Immunol 2014; 2:257-65. [DOI: 10.1586/1744666x.2.2.257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Abstract
The cytokine TGF-β plays an integral role in regulating immune responses. TGF-β has pleiotropic effects on adaptive immunity, especially in the regulation of effector and regulatory CD4(+) T cell responses. Many immune and nonimmune cells can produce TGF-β, but it is always produced as an inactive complex that must be activated to exert functional effects. Thus, activation of latent TGF-β provides a crucial layer of regulation that controls TGF-β function. In this review, we highlight some of the important functional roles for TGF-β in immunity, focusing on its context-specific roles in either dampening or promoting T cell responses. We also describe how activation of TGF-β controls its function in the immune system, with a focus on the key roles for members of the integrin family in this process.
Collapse
Affiliation(s)
- Mark A Travis
- Manchester Collaborative Center for Inflammation Research
| | | |
Collapse
|
47
|
Śledzińska A, Hemmers S, Mair F, Gorka O, Ruland J, Fairbairn L, Nissler A, Müller W, Waisman A, Becher B, Buch T. TGF-β signalling is required for CD4⁺ T cell homeostasis but dispensable for regulatory T cell function. PLoS Biol 2013; 11:e1001674. [PMID: 24115907 PMCID: PMC3792861 DOI: 10.1371/journal.pbio.1001674] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 08/23/2013] [Indexed: 12/16/2022] Open
Abstract
Signalling by the cytokine TGF-β regulates mature CD4+ T cell populations but is not involved in the survival and function of regulatory T cells. TGF-β is widely held to be critical for the maintenance and function of regulatory T (Treg) cells and thus peripheral tolerance. This is highlighted by constitutive ablation of TGF-β receptor (TR) during thymic development in mice, which leads to a lethal autoimmune syndrome. Here we describe that TGF-β–driven peripheral tolerance is not regulated by TGF-β signalling on mature CD4+ T cells. Inducible TR2 ablation specifically on CD4+ T cells did not result in a lethal autoinflammation. Transfer of these TR2-deficient CD4+ T cells to lymphopenic recipients resulted in colitis, but not overt autoimmunity. In contrast, thymic ablation of TR2 in combination with lymphopenia led to lethal multi-organ inflammation. Interestingly, deletion of TR2 on mature CD4+ T cells does not result in the collapse of the Treg cell population as observed in constitutive models. Instead, a pronounced enlargement of both regulatory and effector memory T cell pools was observed. This expansion is cell-intrinsic and seems to be caused by increased T cell receptor sensitivity independently of common gamma chain-dependent cytokine signals. The expression of Foxp3 and other regulatory T cells markers was not dependent on TGF-β signalling and the TR2–deficient Treg cells retained their suppressive function both in vitro and in vivo. In summary, absence of TGF-β signalling on mature CD4+ T cells is not responsible for breakdown of peripheral tolerance, but rather controls homeostasis of mature T cells in adult mice. TGF-β is a cytokine thought to be critical for the maintenance and function of tolerance in the immune system. In many studies the disruption of TGF-β signalling in CD4+ T cells (a type of white blood cell that coordinates immune responses) has resulted in autoimmune syndromes. We show here that the induced removal of this cytokine's receptor from these specialised blood cells results in an astonishingly mild outcome. Contrary to expectations, the number of regulatory T cells is actually increased, and we find that these cells are not dependent on TGF-β signalling. We also show that removal of the receptor from mature CD4+ T cells does not lead to lethal autoinflammation; only when we removed the receptor during development of the cells did we see the characteristic lethal multi-organ inflammation reported previously in constitutive models of TGF-β receptor ablation. In summary, our findings indicate that although TGF-β regulates maintenance of mature CD4+ T cells, its signals are dispensable for immune tolerance within this cell population.
Collapse
Affiliation(s)
- Anna Śledzińska
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Saskia Hemmers
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Florian Mair
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Oliver Gorka
- Clinical Chemistry, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Jürgen Ruland
- Clinical Chemistry, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Lynsey Fairbairn
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Germany
| | - Anja Nissler
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Werner Müller
- Department of Experimental Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Ari Waisman
- Institute for Genetics, University of Cologne, Cologne, Germany
- Institute for Molecular Medicine, University Medical Center of the Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- * E-mail: (TB); (BB)
| | - Thorsten Buch
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Institute for Genetics, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Germany
- * E-mail: (TB); (BB)
| |
Collapse
|
48
|
Abstract
The mucosal immune system mediates contact between the host and the trillions of microbes that symbiotically colonize the gastrointestinal tract. Failure to tolerate the antigens within this "extended self" can result in inflammatory bowel disease (IBD). Within the adaptive immune system, the most significant cells modulating this interaction are Foxp3 regulatory T (Treg) cells. Treg cells can be divided into 2 primary subsets: "natural" Treg cells and "adaptive" or "induced" Treg. Recent research suggests that these subsets serve to play both independent and synergistic roles in mucosal tolerance. Studies from both mouse models and human patients suggest that defects in Treg cells can play distinct causative roles in IBD. Numerous genetic, microbial, nutritional, and environmental factors that associate with IBD may also affect Treg cells. In this review, we summarize the development and function of Treg cells and how their regulatory mechanisms may fail, leading to a loss of mucosal tolerance. We discuss both animal models and studies of patients with IBD suggesting Treg cell involvement in IBD and consider how Treg cells may be used in future therapies.
Collapse
Affiliation(s)
- Christopher G. Mayne
- Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI 53226
| | - Calvin B. Williams
- Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI 53226
| |
Collapse
|
49
|
Harrison OJ, Powrie FM. Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb Perspect Biol 2013; 5:5/7/a018341. [PMID: 23818502 DOI: 10.1101/cshperspect.a018341] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A fundamental role of the mammalian immune system is to eradicate pathogens while minimizing immunopathology. Instigating and maintaining immunological tolerance within the intestine represents a unique challenge to the mucosal immune system. Regulatory T cells are critical for continued immune tolerance in the intestine through active control of innate and adaptive immune responses. Dynamic adaptation of regulatory T-cell populations to the intestinal tissue microenvironment is key in this process. Here, we discuss specialization of regulatory T-cell responses in the intestine, and how a breakdown in these processes can lead to chronic intestinal inflammation.
Collapse
Affiliation(s)
- Oliver J Harrison
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
50
|
In vivo knockdown of TAK1 accelerates bone marrow proliferation/differentiation and induces systemic inflammation. PLoS One 2013; 8:e57348. [PMID: 23505428 PMCID: PMC3591390 DOI: 10.1371/journal.pone.0057348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/21/2013] [Indexed: 11/29/2022] Open
Abstract
TAK1 (TGF-β Activated Kinase 1) is a MAPK kinase kinase, which activates the p38- and JNK-MAPK and NF-κB pathways downstream of receptors such as Toll-Like-, cytokine- and T-cell and B-cell receptors. Representing such an important node in the pro-inflammatory signal-transduction network, the function of TAK1 has been studied extensively. TAK1 knock-out mice are embryonic lethal, while conditional knock-out mice demonstrated either a pro- or anti-inflammatory function. To study the function of TAK1 protein in the adult immune system, we generated and characterized a transgenic mouse expressing TAK1 shRNA under the control of a doxycycline-inducible promoter. Following treatment of TAK-1 shRNA transgenic mice with doxycycline an effective knockdown of TAK1 protein levels was observed in lymphoid organs and cells in the peritoneal cavity (>50% down regulation). TAK1 knockdown resulted in significant changes in leukocyte populations in blood, bone marrow, spleen and peritoneal cavity. Upon TAK1 knockdown mice demonstrated splenomegaly, signs of systemic inflammation (increased levels of circulating cytokines and increase in cellularity of the B-cell areas and in germinal center development in the follicles) and degenerative changes in heart, kidneys and liver. Not surprisingly, TAK1-Tg mice treated with LPS or anti-CD3 antibodies showed enhanced cytokine/chemokine secretion. Finally, analysis of progenitor cells in the bone marrow upon doxycycline treatment showed increased proliferation and differentiation of myeloid progenitor cells. Given the similarity of the phenotype with TGF-β genetic models, our data suggest that in our model the function of TAK1 in TGF-β signal-transduction is overruling its function in pro-inflammatory signaling.
Collapse
|