1
|
Idevall-Hagren O, Tengholm A. Metabolic regulation of calcium signaling in beta cells. Semin Cell Dev Biol 2020; 103:20-30. [PMID: 32085965 DOI: 10.1016/j.semcdb.2020.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022]
Abstract
The cytoplasmic Ca2+ concentration ([Ca2+]cyt) regulates a vast number of cellular functions, including insulin secretion from beta cells. The major physiological insulin secretagogue, glucose, triggers [Ca2+]cyt oscillations in beta cells. Synchronization of the oscillations among the beta cells within an islet underlies the generation of pulsatile insulin secretion. This review describes the mechanisms generating [Ca2+]cyt oscillations, the interactions between [Ca2+]cyt and cell metabolism, as well as the contribution of various organelles to the shaping of [Ca2+]cyt signals and insulin secretion. It also discusses how Ca2+ signals are coordinated and spread throughout the islets and data indicating that altered Ca2+ signaling is associated with beta cell dysfunction and development of type 2 diabetes.
Collapse
Affiliation(s)
- Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
2
|
Gylfe E. Glucose control of glucagon secretion-'There's a brand-new gimmick every year'. Ups J Med Sci 2016; 121:120-32. [PMID: 27044660 PMCID: PMC4900067 DOI: 10.3109/03009734.2016.1154905] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 11/13/2022] Open
Abstract
Glucagon from the pancreatic α-cells is a major blood glucose-regulating hormone whose most important role is to prevent hypoglycaemia that can be life-threatening due to the brain's strong dependence on glucose as energy source. Lack of blood glucose-lowering insulin after malfunction or autoimmune destruction of the pancreatic β-cells is the recognized cause of diabetes, but recent evidence indicates that diabetic hyperglycaemia would not develop unless lack of insulin was accompanied by hypersecretion of glucagon. Glucagon release has therefore become an increasingly important target in diabetes management. Despite decades of research, an understanding of how glucagon secretion is regulated remains elusive, and fundamentally different mechanisms continue to be proposed. The autonomous nervous system is an important determinant of glucagon release, but it is clear that secretion is also directly regulated within the pancreatic islets. The present review focuses on pancreatic islet mechanisms involved in glucose regulation of glucagon release. It will be argued that α-cell-intrinsic processes are most important for regulation of glucagon release during recovery from hypoglycaemia and that paracrine inhibition by somatostatin from the δ-cells shapes pulsatile glucagon release in hyperglycaemia. The electrically coupled β-cells ultimately determine islet hormone pulsatility by releasing synchronizing factors that affect the α- and δ-cells.
Collapse
Affiliation(s)
- Erik Gylfe
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Modeling of glucose-induced cAMP oscillations in pancreatic β cells: cAMP rocks when metabolism rolls. Biophys J 2016. [PMID: 26200880 DOI: 10.1016/j.bpj.2015.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent advances in imaging technology have revealed oscillations of cyclic adenosine monophosphate (cAMP) in insulin-secreting cells. These oscillations may be in phase with cytosolic calcium oscillations or out of phase. cAMP oscillations have previously been modeled as driven by oscillations in calcium, based on the known dependence of the enzymes that generate cAMP (adenylyl cyclase) and degrade it (phosphodiesterase). However, cAMP oscillations have also been reported to occur in the absence of calcium oscillations. Motivated by similarities between the properties of cAMP and metabolic oscillations in pancreatic β cells, we propose here that in addition to direct control by calcium, cAMP is controlled by metabolism. Specifically, we hypothesize that AMP inhibits adenylyl cyclase. We incorporate this hypothesis into the dual oscillator model for β cells, in which metabolic (glycolytic) oscillations cooperate with modulation of ion channels and metabolism by calcium. We show that the combination of oscillations in AMP and calcium in the dual oscillator model can account for the diverse oscillatory patterns that have been observed, as well as for experimental perturbations of those patterns. Predictions to further test the model are provided.
Collapse
|
4
|
Susiarjo M, Xin F, Bansal A, Stefaniak M, Li C, Simmons RA, Bartolomei MS. Bisphenol a exposure disrupts metabolic health across multiple generations in the mouse. Endocrinology 2015; 156:2049-58. [PMID: 25807043 PMCID: PMC4430620 DOI: 10.1210/en.2014-2027] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accumulating evidence has suggested that a suboptimal early life environment produces multigenerational developmental defects. A proposed mechanism is stable inheritance of DNA methylation. Here we show that maternal bisphenol A (BPA) exposure in C57BL/6 mice produces multigenerational metabolic phenotypes in their offspring. Using various methods including dual-energy X-ray absorptiometry analyses, glucose tolerance tests, and perifusion islet studies, we showed that exposure to 10 μg/kg/d and 10 mg/kg/d BPA in pregnant F0 mice was associated with higher body fat and perturbed glucose homeostasis in F1 and F2 male offspring but not female offspring. To provide insight into the mechanism of the multigenerational metabolic abnormalities, we investigated the maternal metabolic milieu and inheritance of DNA methylation across generations. We showed that maternal glucose homeostasis during pregnancy was altered in the F0 but not F1 female mice. The results suggested that a compromised maternal metabolic milieu may play a role in the health of the F1 offspring but cannot account for all of the observed multigenerational phenotypes. We further demonstrated that the metabolic phenotypes in the F1 and F2 BPA male offspring were linked to fetal overexpression of the imprinted Igf2 gene and increased DNA methylation at the Igf2 differentially methylated region 1. Studies in H19(Δ3.8/+) mouse mutants supported the role of fetal Igf2 overexpression in altered adult glucose homeostasis. We conclude that early life BPA exposure at representative human exposure levels can perturb metabolic health across multiple generations in the mouse through stable inheritance of DNA methylation changes at the Igf2 locus.
Collapse
Affiliation(s)
- Martha Susiarjo
- Department of Cell and Developmental Biology (M.S., F.X., M.S., M.S.B.), Center of Excellence in Environmental Toxicology (M.S., F.X., R.A.S., M.S.B.), Center for Research on Reproduction and Women's Health (M.S., F.X., A.B., R.A.S., M.S.B.), and Division of Neonatology (A.B., R.A.S.), Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; and Division of Endocrinology and Metabolism (C.L.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | | | | | | | | | | | | |
Collapse
|
5
|
Kenty JHR, Melton DA. Testing pancreatic islet function at the single cell level by calcium influx with associated marker expression. PLoS One 2015; 10:e0122044. [PMID: 25853429 PMCID: PMC4390334 DOI: 10.1371/journal.pone.0122044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/09/2015] [Indexed: 01/06/2023] Open
Abstract
Studying the response of islet cells to glucose stimulation is important for understanding cell function in healthy and disease states. Most functional assays are performed on whole islets or cell populations, resulting in averaged observations and loss of information at the single cell level. We demonstrate methods to examine calcium fluxing in individual cells of intact islets in response to multiple glucose challenges. Wild-type mouse islets predominantly contained cells that responded to three (out of three) sequential high glucose challenges, whereas cells of diabetic islets (db/db or NOD) responded less frequently or not at all. Imaged islets were also immunostained for endocrine markers to associate the calcium flux profile of individual cells with gene expression. Wild-type mouse islet cells that robustly fluxed calcium expressed β cell markers (INS/NKX6.1), whereas islet cells that inversely fluxed at low glucose expressed α cell markers (GCG). Diabetic mouse islets showed a higher proportion of dysfunctional β cells that responded poorly to glucose challenges. Most of the failed calcium influx responses in β cells were observed in the second and third high glucose challenges, emphasizing the importance of multiple sequential glucose challenges for assessing the full function of islet cells. Human islet cells were also assessed and showed functional α and β cells. This approach to analyze islet responses to multiple glucose challenges in correlation with gene expression assays expands the understanding of β cell function and the diseased state.
Collapse
Affiliation(s)
- Jennifer H. R. Kenty
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
| | - Douglas A. Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
Glucagon secreted by pancreatic α-cells is the major hyperglycemic hormone correcting acute hypoglycaemia (glucose counterregulation). In diabetes the glucagon response to hypoglycaemia becomes compromised and chronic hyperglucagonemia appears. There is increasing awareness that glucagon excess may underlie important manifestations of diabetes. However opinions differ widely how glucose controls glucagon secretion. The autonomous nervous system plays an important role in the glucagon response to hypoglycaemia. But it is clear that glucose controls glucagon secretion also by mechanisms involving direct effects on α-cells or indirect effects via paracrine factors released from non-α-cells within the pancreatic islets. The present review discusses these mechanisms and argues that different regulatory processes are involved in a glucose concentration-dependent manner. Direct glucose effects on the α-cell and autocrine mechanisms are probably most significant for the glucagon response to hypoglycaemia. During hyperglycaemia, when secretion from β- and δ-cells is stimulated, paracrine inhibitory factors generate pulsatile glucagon release in opposite phase to pulsatile release of insulin and somatostatin. High concentrations of glucose have also stimulatory effects on glucagon secretion that tend to balance and even exceed the inhibitory influence. The latter actions might underlie the paradoxical hyperglucagonemia that aggravates hyperglycaemia in persons with diabetes.
Collapse
Affiliation(s)
- Erik Gylfe
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, SE-751 23, Uppsala, Sweden.
| | - Patrick Gilon
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
7
|
Tengholm A, Gylfe E. Oscillatory control of insulin secretion. Mol Cell Endocrinol 2009; 297:58-72. [PMID: 18706473 DOI: 10.1016/j.mce.2008.07.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/30/2008] [Accepted: 07/10/2008] [Indexed: 11/17/2022]
Abstract
Pancreatic beta-cells possess an inherent ability to generate oscillatory signals that trigger insulin release. Coordination of the secretory activity among beta-cells results in pulsatile insulin secretion from the pancreas, which is considered important for the action of the hormone in the target tissues. This review focuses on the mechanisms underlying oscillatory control of insulin secretion at the level of the individual beta-cell. Recent studies have demonstrated that oscillations of the cytoplasmic Ca(2+) concentration are synchronized with oscillations in beta-cell metabolism, intracellular cAMP concentration, phospholipase C activity and plasma membrane phosphoinositide lipid concentrations. There are complex interdependencies between the different messengers and signalling pathways that contribute to amplitude regulation and shaping of the insulin secretory response to nutrient stimuli and neurohormonal modulators. Several of these pathways may be important pharmacological targets for improving pulsatile insulin secretion in type 2 diabetes.
Collapse
Affiliation(s)
- Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-75123 Uppsala, Sweden.
| | | |
Collapse
|
8
|
Long lasting synchronization of calcium oscillations by cholinergic stimulation in isolated pancreatic islets. Biophys J 2008; 95:4676-88. [PMID: 18708464 DOI: 10.1529/biophysj.107.125088] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Individual mouse pancreatic islets exhibit oscillations in [Ca(2+)](i) and insulin secretion in response to glucose in vitro, but how the oscillations of a million islets are coordinated within the human pancreas in vivo is unclear. Islet to islet synchronization is necessary, however, for the pancreas to produce regular pulses of insulin. To determine whether neurohormone release within the pancreas might play a role in coordinating islet activity, [Ca(2+)](i) changes in 4-6 isolated mouse islets were simultaneously monitored before and after a transient pulse of a putative synchronizing agent. The degree of synchronicity was quantified using a novel analytical approach that yields a parameter that we call the "Synchronization Index". Individual islets exhibited [Ca(2+)](i) oscillations with periods of 3-6 min, but were not synchronized under control conditions. However, raising islet [Ca(2+)](i) with a brief application of the cholinergic agonist carbachol (25 microM) or elevated KCl in glucose-containing saline rapidly synchronized islet [Ca(2+)](i) oscillations for >/=30 min, long after the synchronizing agent was removed. In contrast, the adrenergic agonists clonidine or norepinephrine, and the K(ATP) channel inhibitor tolbutamide, failed to synchronize islets. Partial synchronization was observed, however, with the K(ATP) channel opener diazoxide. The synchronizing action of carbachol depended on the glucose concentration used, suggesting that glucose metabolism was necessary for synchronization to occur. To understand how transiently perturbing islet [Ca(2+)](i) produced sustained synchronization, we used a mathematical model of islet oscillations in which complex oscillatory behavior results from the interaction between a fast electrical subsystem and a slower metabolic oscillator. Transient synchronization simulated by the model was mediated by resetting of the islet oscillators to a similar initial phase followed by transient "ringing" behavior, during which the model islets oscillated with a similar frequency. These results suggest that neurohormone release from intrapancreatic neurons could help synchronize islets in situ. Defects in this coordinating mechanism could contribute to the disrupted insulin secretion observed in Type 2 diabetes.
Collapse
|
9
|
Dyachok O, Idevall-Hagren O, Sågetorp J, Tian G, Wuttke A, Arrieumerlou C, Akusjärvi G, Gylfe E, Tengholm A. Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 2008; 8:26-37. [PMID: 18590690 DOI: 10.1016/j.cmet.2008.06.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 01/11/2008] [Accepted: 06/13/2008] [Indexed: 01/28/2023]
Abstract
Cyclic AMP (cAMP) and Ca(2+) are key regulators of exocytosis in many cells, including insulin-secreting beta cells. Glucose-stimulated insulin secretion from beta cells is pulsatile and involves oscillations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), but little is known about the detailed kinetics of cAMP signaling. Using evanescent-wave fluorescence imaging we found that glucose induces pronounced oscillations of cAMP in the submembrane space of single MIN6 cells and primary mouse beta cells. These oscillations were preceded and enhanced by elevations of [Ca(2+)](i). However, conditions raising cytoplasmic ATP could trigger cAMP elevations without accompanying [Ca(2+)](i) rise, indicating that adenylyl cyclase activity may be controlled also by the substrate concentration. The cAMP oscillations correlated with pulsatile insulin release. Whereas elevation of cAMP enhanced secretion, inhibition of adenylyl cyclases suppressed both cAMP oscillations and pulsatile insulin release. We conclude that cell metabolism directly controls cAMP and that glucose-induced cAMP oscillations regulate the magnitude and kinetics of insulin exocytosis.
Collapse
Affiliation(s)
- Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Richard AMT, Webb DL, Goodman JM, Schultz V, Flanagan JN, Getty-Kaushik L, Deeney JT, Yaney GC, Dunaway GA, Berggren PO, Tornheim K. Tissue-dependent loss of phosphofructokinase-M in mice with interrupted activity of the distal promoter: impairment in insulin secretion. Am J Physiol Endocrinol Metab 2007; 293:E794-801. [PMID: 17595219 DOI: 10.1152/ajpendo.00168.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphofructokinase is a key enzyme of glycolysis that exists as homo- and heterotetramers of three subunit isoforms: muscle, liver, and C type. Mice with a disrupting tag inserted near the distal promoter of the phosphofructokinase-M gene showed tissue-dependent differences in loss of that isoform: 99% in brain and 95-98% in islets, but only 50-75% in skeletal muscle and little if any loss in heart. This correlated with the continued presence of proximal transcripts specifically in muscle tissues. These data strongly support the proposed two-promoter system of the gene, with ubiquitous use of the distal promoter and additional use of the proximal promoter selectively in muscle. Interestingly, the mice were glucose intolerant and had somewhat elevated fasting and fed blood glucose levels; however, they did not have an abnormal insulin tolerance test, consistent with the less pronounced loss of phosphofructokinase-M in muscle. Isolated perifused islets showed about 50% decreased glucose-stimulated insulin secretion and reduced amplitude and regularity of secretory oscillations. Oscillations in cytoplasmic free Ca(2+) and the rise in the ATP/ADP ratio appeared normal. Secretory oscillations still occurred in the presence of diazoxide and high KCl, indicating an oscillation mechanism not requiring dynamic Ca(2+) changes. The results suggest the importance of phosphofructokinase-M for insulin secretion, although glucokinase is the overall rate-limiting glucose sensor. Whether the Ca(2+) oscillations and residual insulin oscillations in this mouse model are due to the residual 2-5% phosphofructokinase-M or to other phosphofructokinase isoforms present in islets or involve another metabolic oscillator remains to be determined.
Collapse
Affiliation(s)
- Ann-Marie T Richard
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The GH secretagogues (GHS) were developed by reverse pharmacology. The objective was to develop small molecules with pharmacokinetics suitable for once-daily oral administration that would rejuvenate the GH/IGF-I axis. Neither the receptor nor the ligand that controlled pulse amplitude of hormone release was known; therefore, identification of lead structures was based on function. I reasoned that GH pulse amplitude could be increased by four possible mechanisms: 1) increasing GHRH release; 2) amplifying GHRH signaling in somatotrophs of the anterior pituitary gland; 3) reducing somatostatin release; and 4) antagonizing somatostatin receptor signaling. Remarkably, the GHS act through all four mechanisms to reproduce a young adult physiological GH profile in elderly subjects that was accompanied by increased bone mineral density and lean mass, modest improvements in strength, and improved recovery from hip fracture. Furthermore, restoration of thymic function was induced in old mice. The GHS receptor (GHS-R) was subsequently identified by expression cloning and found to be a previously unknown G protein-coupled receptor expressed predominantly in brain, pituitary gland, and pancreas. Reverse pharmacology was completed when the cloned GHS-R was exploited to identify an endogenous agonist (ghrelin) and a partial agonist (adenosine); ghsr-knockout mice studies confirmed that GHS are ghrelin mimetics.
Collapse
Affiliation(s)
- Roy G Smith
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Room M320, Houston, Texas 77030-3498, USA
| |
Collapse
|
12
|
Liu G, Hilliard N, Hockerman GH. Cav1.3 Is Preferentially Coupled to Glucose-Induced [Ca2+]iOscillations in the Pancreatic β Cell Line INS-1. Mol Pharmacol 2004; 65:1269-77. [PMID: 15102955 DOI: 10.1124/mol.65.5.1269] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The link between Ca(2+) influx through the L-type calcium channels Ca(v)1.2 or Ca(v)1.3 and glucose- or KCl-induced [Ca(2+)](i) mobilization in INS-1 cells was assessed using the calcium indicator indo-1. Cells responded to 18 mM glucose or 50 mM KCl stimulation with different patterns in [Ca(2+)](i) increases, although both were inhibited by 10 microM nifedipine. Although KCl elicited a prolonged elevation in [Ca(2+)](i), glucose triggered oscillations in [Ca(2+)](i.) Ca(v)1.2/dihydropyridine-insensitive (DHPi) cells and Ca(v)1.3/DHPi cells, and stable INS-1 cell lines expressing either DHP-insensitive Ca(v)1.2 or Ca(v)1.3 channels showed normal responses to glucose. However, in 10 microM nifedipine, only Ca(v)1.3/DHPi cells maintained glucose-induced [Ca(2+)](i) oscillation. In contrast, both cell lines exhibited DHP-resistant [Ca(2+)](i) increases in response to KCl. The percentage of cells responding to glucose was not significantly decreased by nifedipine in Ca(v)1.3/DHPi cells but was greatly reduced in Ca(v)1.2/DHPi cells. In 10 microM nifedipine, KCl-elicited [Ca(2+)](i) elevation was retained in both Ca(v)1.2/DHPi and Ca(v)1.3/DHPi cells. In INS-1 cells expressing the intracellular II-III loop of Ca(v)1.3, glucose failed to elicit [Ca(2+)](i) changes, whereas INS-1 cells expressing the Ca(v)1.2 II-III loop responded to glucose with normal [Ca(2+)](i) oscillation. INS-1 cells expressing Ca(v)1.2/DHPi containing the II-III loop of Ca(v)1.3 demonstrated a nifedipine-resistant slow increase in [Ca(2+)](i) and nifedipine-resistant insulin secretion in response to glucose that was partially inhibited by diltiazem. Thus, whereas the II-III loop of Ca(v)1.3 may be involved in coupling Ca(2+) influx to insulin secretion, distinct structural domains are required to mediate the preferential coupling of Ca(v)1.3 to glucose-induced [Ca(2+)](i) oscillation.
Collapse
Affiliation(s)
- Guohong Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | |
Collapse
|
13
|
Roper MG, Shackman JG, Dahlgren GM, Kennedy RT. Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay. Anal Chem 2004; 75:4711-7. [PMID: 14674445 DOI: 10.1021/ac0346813] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A microfluidic device has been developed for the determination of insulin secreted from islets of Langerhans by a capillary electrophoresis competitive immunoassay. Online assays were performed by electrophoretically sampling anti-insulin antibody (Ab), fluorescein isothiocyanate-labeled insulin (FITC-insulin), and insulin from separate reservoirs and allowing them to mix as they traveled through a 4-cm reaction channel heated to 38 degrees C. From the reaction channel, samples were injected onto a 1.5-cm-long electrophoresis channel where the FITC-insulin and FITC-insulin-Ab complex were separated in 5 s using an electric field of 500 V/cm. Detection limits for insulin were 3 nM in this mode of operation. Assays could be collected at 15-s intervals with continuous sampling and online mixing for up to 30 min with no intervention. Relative standard deviation was 2-6% depending on the insulin concentration. Response time to a step change in insulin concentration was 30 s. For live cell monitoring, single islets were placed into a reservoir on the chip and fluid in the immediate vicinity was continuously sampled to detect insulin secretion from the islet. Monitoring of insulin secretion with electropherograms taken at 15-s intervals resolved secretory profiles characteristic of first- and second-phase insulin secretion. The method should be amenable to other cell or tissue types for measurements of release with high temporal resolution.
Collapse
Affiliation(s)
- Michael G Roper
- Department of Chemistry and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|
14
|
Ravier MA, Henquin JC. Time and amplitude regulation of pulsatile insulin secretion by triggering and amplifying pathways in mouse islets. FEBS Lett 2002; 530:215-9. [PMID: 12387895 DOI: 10.1016/s0014-5793(02)03491-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glucose-induced insulin secretion is pulsatile. We investigated how the triggering pathway (rise in beta-cell [Ca(2+)](i)) and amplifying pathway (greater Ca(2+) efficacy on exocytosis) influence this pulsatility. Repetitive [Ca(2+)](i) pulses were imposed by high K(+)+ diazoxide in single mouse islets. Insulin secretion (measured simultaneously) tightly followed [Ca(2+)](i) changes. Lengthening [Ca(2+)](i) pulses increased the duration but not the amplitude of insulin pulses. Increasing glucose (5-20 mmol/l) augmented the amplitude of insulin pulses without changing that of [Ca(2+)](i) pulses. Larger [Ca(2+)](i) pulses augmented the amplitude of insulin pulses at high, but not low glucose. In conclusion, the amplification pathway ensures amplitude modulation of insulin pulses whose time modulation is achieved by the triggering pathway.
Collapse
Affiliation(s)
- Magalie A Ravier
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, UCL 55.30, Avenue Hippocrate 55, B-1200 Brussels, Belgium
| | | |
Collapse
|
15
|
Kamagate A, Herchuelz A, Van Eylen F. Plasma membrane Ca(2+)-ATPase overexpression reduces Ca(2+) oscillations and increases insulin release induced by glucose in insulin-secreting BRIN-BD11 cells. Diabetes 2002; 51:2773-88. [PMID: 12196471 DOI: 10.2337/diabetes.51.9.2773] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the mouse beta-cell, glucose generates large amplitude oscillations of the cytosolic-free Ca(2+) concentration ([Ca(2+)](i)) that are synchronous to insulin release oscillations. To examine the role played by [ Ca(2+)](i) oscillations in the process of insulin release, we examined the effect of plasma membrane Ca(2+)-ATPase (PMCA) overexpression on glucose-induced Ca(2+) oscillations and insulin release in BRIN-BD11 cells. BRIN-BD11 cells were stably transfected with PMCA2wb. Overexpression could be assessed at the mRNA and protein level, with appropriate targeting to the plasma membrane assessed by immunofluorescence and the increase in PMCA activity. In response to K(+), overexpressing cells showed a markedly reduced rise in [Ca(2+)](i). In response to glucose, control cells showed large amplitude [Ca(2+)](i) oscillations, whereas overexpressing cells showed markedly reduced increases in [Ca(2+)](i) without such large oscillations. Suppression of [Ca(2+)](i) oscillations was accompanied by an increase in glucose metabolism and insulin release that remained oscillatory despite having a lower periodicity. Hence, [Ca(2+)] (i) oscillations appear unnecessary for glucose-induced insulin release and may even be less favorable than a stable increase in [ Ca(2+)](i) for optimal hormone secretion. [Ca(2+)](i) oscillations do not directly drive insulin release oscillations but may nevertheless intervene in the fine regulation of such oscillations.
Collapse
Affiliation(s)
- Adama Kamagate
- Laboratory of Pharmacology, Brussels University School of Medicine, Brussels, Belgium
| | | | | |
Collapse
|
16
|
Lin JM, Fabregat ME, Gomis R, Bergsten P. Pulsatile insulin release from islets isolated from three subjects with type 2 diabetes. Diabetes 2002; 51:988-93. [PMID: 11916916 DOI: 10.2337/diabetes.51.4.988] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plasma insulin in healthy subjects shows regular oscillations, which are important for the hypoglycemic action of the hormone. In individuals with type 2 diabetes, these regular variations are altered, which has been implicated in the development of insulin resistance and hyperglycemia. The origin of the change is unknown, but derangement of the islet secretory pattern has been suggested as a contributing cause. In the present study, we show the dynamics of insulin release from individually perifused islets isolated from three subjects with type 2 diabetes. Insulin release at 3 mmol/l glucose was 10.5 +/- 4.5 pmol.g(-1).s(-1) and pulsatile (0.26 +/- 0.05 min(-1)). In islets from one subject, 11 mmol/l glucose transiently increased insulin release by augmentation of the insulin pulses without affecting the frequency. Addition of 1 mmol/l tolbutamide did not increase insulin release. In islets from the remaining subjects, insulin release was not affected by 11 mmol/l glucose. Tolbutamide transiently increased insulin release in islets from one subject. Insulin release from four normal subjects at 3 mmol/l glucose was 4.3 +/- 0.8 pmol.g(-1).s(-1) and pulsatile (0.23 +/- 0.03 min(-1)). At 11 mmol/l glucose, insulin release increased in islets from all subjects. Tolbutamide further increased insulin release in islets from two subjects. It is concluded that islets from the three individuals with type 2 diabetes release insulin in pulses. The impaired secretory response to glucose may be related to impaired metabolism before mitochondrial degradation of the sugar.
Collapse
Affiliation(s)
- Jian-Man Lin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
17
|
Herbst M, Sasse P, Greger R, Yu H, Hescheler J, Ullrich S. Membrane potential dependent modulations of calcium oscillations in insulin-secreting INS-1 cells. Cell Calcium 2002; 31:115-26. [PMID: 12027385 DOI: 10.1054/ceca.2001.0266] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study was undertaken to examine the role of K(+) channels on cytosolic Ca(2+) ([Ca(2+)](i)) in insulin secreting cells. [Ca(2+)](i) was measured in single glucose-responsive INS-1 cells using the fluorescent Ca(2+) indicator Fura-2. Glucose, tolbutamide and forskolin elevated [Ca(2+)](i) and induced [Ca(2+)] oscillations. Whereas the glucose effect was delayed and observed in 60% and 93% of the cells, in a poorly and a highly glucose-responsive INS-1 cell clone, respectively, tolbutamide and forskolin increased [Ca(2+)](i) in all cells tested. In the latter clone, glucose induced [Ca(2+)](i) oscillations in 77% of the cells. In 16% of the cells a sustained rise of [Ca(2+)](i) was observed. The increase in [Ca(2+)](i) was reversed by verapamil, an L-type Ca(2+) channel inhibitor. Adrenaline decreased [Ca(2+)](i) in oscillating cells in the presence of low glucose and in cells stimulated by glucose alone or in combination with tolbutamide and forskolin. Adrenaline did not lower [Ca(2+)](i) in the presence of 30mM extracellular K(+), indicating that adrenaline does not exert a direct effect on Ca(2+) channels but increases K(+) channel activity. As for primary b-cells, [Ca(2+)](i) oscillations persisted in the presence of closed K(ATP) channels; these also persisted in the presence of thapsigargin, which blocks Ca(2+) uptake into Ca(2+) stores. In contrast, in voltage-clamped cells and in the presence of diazoxide (50mM), which hyperpolarizes the cells by opening K(ATP) channels, [Ca(2+)](i) oscillations were abolished. These results support the hypothesis that [Ca(2+)](i) oscillations depend on functional voltage-dependent Ca(2+) and K(+) channels and are interrupted by a hyperpolarization in insulin-secreting cells.
Collapse
Affiliation(s)
- M Herbst
- Physiologisches Institut II, Universität Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The role of metabolism in the generation of plasma insulin oscillations was investigated by simultaneous in vivo recordings of oxygen tension (pO(2)) in the endocrine and exocrine pancreas and portal blood insulin concentrations in the anesthetized rat. At the start of the experiment, the blood glucose concentration of seven rats was 6.2 +/- 0.1 mmol/l and the arterial blood pressure was 116 +/- 5 mmHg. These values did not differ from those obtained at the end of the experiment. Islet pO(2) was measured by impaling superficially located islets with a miniaturized Clark electrode. The pO(2) measurements revealed slow (0.21 +/- 0.03 min(-1)) with superimposed rapid (3.1 +/- 0.3 min(-1)) oscillations. The average pO(2) was 39 +/- 5 mmHg. Simultaneous recordings of pO(2) in the exocrine pancreas were significantly lower (16 +/- 6 mmHg), but showed a slow and a rapid oscillatory activity with similar frequencies as seen in the endocrine pancreas. Corresponding measurements of portal insulin concentrations revealed insulin oscillations at a frequency of 0.22 +/- 0.02 min(-1). The results are the first in vivo recordings of an oscillatory islet parameter with a frequency corresponding to that of plasma insulin oscillations; they support a primary role of metabolic oscillations in the induction of plasma insulin oscillations.
Collapse
Affiliation(s)
- Peter Bergsten
- Department of Medical Cell, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
19
|
Gilon P, Ravier MA, Jonas JC, Henquin JC. Control mechanisms of the oscillations of insulin secretion in vitro and in vivo. Diabetes 2002; 51 Suppl 1:S144-51. [PMID: 11815474 DOI: 10.2337/diabetes.51.2007.s144] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mechanisms driving the pulsatility of insulin secretion in vivo and in vitro are still unclear. Because glucose metabolism and changes in cytosolic free Ca(2+) ([Ca(2+)](c)) in beta-cells play a key role in the control of insulin secretion, and because oscillations of these two factors have been observed in single isolated islets and beta-cells, pulsatile insulin secretion could theoretically result from [Ca(2+)](c) or metabolism oscillations. We could not detect metabolic oscillations independent from [Ca(2+)](c) changes in beta-cells, and imposed metabolic oscillations were poorly effective in inducing oscillations of secretion when [Ca(2+)](c) was kept stable, which suggests that metabolic oscillations are not the direct regulator of the oscillations of secretion. By contrast, tight temporal and quantitative correlations between the changes in [Ca(2+)](c) and insulin release strongly suggest that [Ca(2+)](c) oscillations are the direct drivers of insulin secretion oscillations. Metabolism may play a dual role, inducing [Ca(2+)](c) oscillations (via changes in ATP-sensitive K(+) channel activity and membrane potential) and amplifying the secretory response by increasing the efficiency of Ca(2+) on exocytosis. The mechanisms underlying the oscillations of insulin secretion by the isolated pancreas and those observed in vivo remain elusive. It is not known how the functioning of distinct islets is synchronized, and the possible role of intrapancreatic ganglia in this synchronization requires confirmation. That pulsatile insulin secretion is beneficial in vivo, by preventing insulin resistance, is suggested by the greater hypoglycemic effect of exogenous insulin when it is infused in a pulsatile rather than continuous manner. The observation that type 2 diabetic patients have impaired pulsatile insulin secretion has prompted the suggestion that such dysregulation contributes to the disease and justifies the efforts toward understanding of the mechanism underlying the pulsatility of insulin secretion both in vitro and in vivo.
Collapse
Affiliation(s)
- Patrick Gilon
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, Brussels, Belgium.
| | | | | | | |
Collapse
|
20
|
Abstract
Whereas the mechanisms underlying oscillatory insulin secretion remain unknown, several models have been advanced to explain if they involve generation of metabolic oscillations in beta-cells. Evidence, including measurements of oxygen consumption, glucose consumption, NADH, and ATP/ADP ratio, has accumulated to support the hypothesis that energy metabolism in beta-cells can oscillate. Where simultaneous measurements have been made, these oscillations are well correlated with oscillations in intracellular [Ca(2+)] and insulin secretion. Considerable evidence has been accumulated to suggest that entry of Ca(2+) into cells can modulate metabolism both positively and negatively. The main positive effect of Ca(2+) is an increase in oxygen consumption, believed to involve activation of mitochondrial dehydrogenases. Negative feedback by Ca(2+) includes decreases in glucose consumption and decreases in the mitochondrial membrane potential. Ca(2+) also provides negative feedback by increasing consumption of ATP. The negative feedback provided by Ca(2+) provides a mechanism for generating oscillations based on a model in which glucose stimulates a rise in ATP/ADP ratio that closes ATP-sensitive K(+) (K(ATP)) channels, thus depolarizing the cell membrane and allowing Ca(2+) entry through voltage-sensitive channels. Ca(2+) entry reduces the ATP/ADP ratio and allows reopening of the K(ATP) channel.
Collapse
Affiliation(s)
- Robert T Kennedy
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| | | | | | | |
Collapse
|
21
|
Kjems LL, Ravier MA, Jonas JC, Henquin JC. Do oscillations of insulin secretion occur in the absence of cytoplasmic Ca2+ oscillations in beta-cells? Diabetes 2002; 51 Suppl 1:S177-82. [PMID: 11815478 DOI: 10.2337/diabetes.51.2007.s177] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
That oscillations of the cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) in beta-cells induce oscillations of insulin secretion is not disputed, but whether metabolism-driven oscillations of secretion can occur in the absence of [Ca(2+)](i) oscillations is still debated. Because this possibility is based partly on the results of experiments using islets from aged, hyperglycemic, hyperinsulinemic ob/ob mice, we compared [Ca(2+)](i) and insulin secretion patterns of single islets from 4- and 10-month-old, normal NMRI mice to those of islets from 7- and 10-month-old ob/ob mice (Swedish colony) and their lean littermates. The responses were subjected to cluster analysis to identify significant peaks. Control experiments without islets and with a constant insulin concentration were run to detect false peaks. Both ob/ob and NMRI islets displayed large synchronous oscillations of [Ca(2+)](i) and insulin secretion in response to repetitive depolarizations with 30 mmol/l K(+) in the presence of 0.1 mmol/l diazoxide and 12 mmol/l glucose. Continuous depolarization with high K(+) steadily elevated [Ca(2+)](i) in all types of islets, with no significant oscillation, and caused a biphasic insulin response. In islets from young (4-month-old) NMRI mice and 7-month-old lean mice, the insulin profile did not show significant peaks when [Ca(2+)](i) was stable. In contrast, two or more peaks were detected over 20 min in the response of most ob/ob islets. Similar insulin peaks appeared in the insulin response of 10-month-old lean and NMRI mice. However, the size of the insulin peaks detected in the presence of stable [Ca(2+)](i) was small, so that no more than 10-13% of total insulin secretion occurred in a pulsatile manner. In conclusion, insulin secretion does not oscillate when [Ca(2+)](i) is stably elevated in beta-cells from young normal mice. Some oscillations are observed in aged mice and are seen more often in ob/ob islets. These fluctuations of the insulin secretion rate at stably elevated [Ca(2+)](i), however, are small compared with the large oscillations induced by [Ca(2+)](i) oscillations in beta-cells.
Collapse
Affiliation(s)
- Lise L Kjems
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, Brussels, Belgium
| | | | | | | |
Collapse
|
22
|
Deeney JT, Köhler M, Kubik K, Brown G, Schultz V, Tornheim K, Corkey BE, Berggren PO. Glucose-induced metabolic oscillations parallel those of Ca(2+) and insulin release in clonal insulin-secreting cells. A multiwell approach to oscillatory cell behavior. J Biol Chem 2001; 276:36946-50. [PMID: 11481328 DOI: 10.1074/jbc.m105056200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin secretion from glucose-stimulated pancreatic beta-cells is oscillatory, and this is thought to result from oscillations in glucose metabolism. One of the primary metabolic stimulus-secretion coupling factors is the ATP/ADP ratio, which can oscillate as a result of oscillations in glycolysis. Using a novel multiwell culture plate system, we examined oscillations in insulin release and the ATP/ADP ratio in the clonal insulin-secreting cell lines HIT T-15 and INS-1. Insulin secretion from HIT cells grown in multiwell plates oscillated with a period of 4 min, similar to that seen previously in perifusion experiments. Oscillations in the ATP/ADP ratio in cells grown under the same conditions also occurred with a period of 4 min, as did oscillations in [Ca(2+)](i) monitored by fluorescence microscopy. In INS-1 cells oscillations in insulin secretion, the ATP/ADP ratio, and [Ca(2+)](i) were also seen, but with a shorter period of about 1.5 min. These observations of oscillations in the ATP/ADP ratio are consistent with their proposed role in driving the oscillations in [Ca(2+)](i) and insulin secretion. Furthermore, these data show that, at least in the clonal beta-cell lines, cell contact or even circulatory connection is not necessary for synchronous oscillations induced by a rise in glucose.
Collapse
Affiliation(s)
- J T Deeney
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institute, S-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The effects of metabolic inhibition on insulin release and the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) were studied in individually perifused pancreatic islets from ob/ob mice. The modest basal secretion in the presence of 3 mmol/l glucose was pulsatile with a frequency of approximately 0.2/min, although [Ca(2+)](i) was stable at approximately 100 nmol/l. Introduction of 11 mmol/l glucose resulted in large amplitude oscillations of [Ca(2+)](i) and almost 20-fold stimulation of average secretion manifested as increased amplitude of the insulin pulses without change in frequency. Inhibition of glycolysis with iodoacetamide or mitochondrial metabolism with dinitrophenol or antimycin A reduced glucose-stimulated secretion back to basal levels with maintained pulsatility. The [Ca(2+)](i) responses to the metabolic inhibitors were more complex, but in general there was an initial peak and eventually sustained elevation without oscillations. When introduced in the presence of 3 mmol/l glucose, the metabolic inhibitors tended to increase the amplitude of the insulin pulses, although the simultaneous elevation in [Ca(2+)](i) occurred without oscillations. The data indicate that pulsatile secretion is regulated by factors other than [Ca(2+)](i) under basal conditions and after metabolic inhibition. Although pulsatile secretion can be driven by oscillations in metabolism when [Ca(2+)](i) is stable, it was not possible from the present data to determine whether insulin pulses have a glycolytic or mitochondrial origin.
Collapse
Affiliation(s)
- J Westerlund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
24
|
Sha L, Westerlund J, Szurszewski JH, Bergsten P. Amplitude modulation of pulsatile insulin secretion by intrapancreatic ganglion neurons. Diabetes 2001; 50:51-5. [PMID: 11147794 DOI: 10.2337/diabetes.50.1.51] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuron activity and insulin release were measured simultaneously from 33 preparations of intrapancreatic canine ganglia and pancreatic parenchyma adjacent to the ganglia. The electrical activity of single neurons of the ganglia was recorded with intracellular microelectrodes, and insulin release from the attached islets was determined with an enzyme-linked immunosorbent assay. Insulin release was 62 +/- 18 fmol preparation/min in the presence of 10 mmol/l glucose and pulsatile (3.7 +/- 0.4 min/pulse). Corresponding measurements of neuronal electrical activity showed a stable membrane potential of -53.5 +/- 0.6 mV. Short, high-frequency (20 Hz) preganglionic nerve stimulation evoked action potentials and, in 46% of the preparations, a threefold rise in the insulin secretory rate associated with increased amplitude of the insulin pulses. The effects were blocked by 10 micromol/l tetrodotoxin (TTX). In other preparations, continuous low-frequency (0.05-0.5 Hz) preganglionic nerve stimulation evoked action potentials and, in 50% of the preparations, a gradual increase of insulin release associated with augmentation of insulin pulse amplitude without alteration of the duration. The effects were blocked by 50 micromol/l hexamethonium (HEX). In the remaining preparations, no change in insulin release was observed during nerve stimulation. In the absence of stimulation, neither TTX nor HEX affected the membrane potential or insulin secretion. These first simultaneous measurements of intrapancreatic ganglion activity and insulin secretion are consistent with amplitude modulation of pulsatile insulin secretion induced by changes in electrical activity in a population of intrapancreatic ganglion neurons.
Collapse
Affiliation(s)
- L Sha
- Department of Physiology and Biophysics, Mayo Clinic and Mayo Foundation, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Plasma insulin displays 5-10 min oscillations. In Type 2 diabetes the regularity of the oscillations disappears, which may lead to insulin receptor down-regulation and glucose intolerance and explain why pulsatile delivery of the hormone has a greater hypoglycemic effect than continuous delivery. The rhythm is intrinsic to the islet. Variations in metabolism, cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), other hormones, neuronal signaling and possibly beta-cell insulin receptor expression have been implicated in the regulation of plasma insulin oscillations. Most of these factors are important for amplitude-regulation of the insulin pulses. Although evidence exists supporting a role of both metabolism and [Ca(2+)](i) as pacemakers of the pulses, metabolic oscillations probably have a primary role and [Ca(2+)](i) oscillations a permissive role. Results from islets from animal models of diabetes suggest that altered plasma insulin pattern could be due to lowering of pulse amplitude of insulin oscillations rather than alterations in their frequency. Supporting a role of metabolism, altered plasma insulin oscillations were found in MODY2, MIDD and glycogenosis Type VII, which are linked to alterations in glucokinase, mitochondrial tRNALeu(UUR) and phosphofructokinase. Plasma insulin oscillations require coordination of islet secretory activities in the pancreas. The intrapancreatic ganglia have been suggested as coordinators. The diabetes-associated neuropathy may contribute to the deranged pattern as indicated by glucose intolerance in chagasic patients. Continued investigation of the role and regulation of pulsatile insulin release will lead to better understanding of the pathophysiology of impaired pulsatile insulin release, which could lead to new approaches to restore normal plasma insulin oscillations in diabetes and related diseases.
Collapse
Affiliation(s)
- P Bergsten
- Department of Medical Cell Biology, University of Uppsala, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
26
|
Gylfe E, Ahmed M, Bergsten P, Dansk H, Dyachok O, Eberhardson M, Grapengiesser E, Hellman B, Lin JM, Sundsten T, Tengholm A, Vieira E, Westerlund J. Signaling underlying pulsatile insulin secretion. Ups J Med Sci 2000; 105:35-51. [PMID: 11095104 DOI: 10.1517/03009734000000054] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- E Gylfe
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lin JM, Sternesjö J, Sandler S, Bergsten P. Preserved pulsatile insulin release from prediabetic mouse islets. Endocrinology 1999; 140:3999-4004. [PMID: 10465269 DOI: 10.1210/endo.140.9.6970] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the development of type I diabetes, the plasma insulin pattern changes. Because the islet secretory pattern has been implicated in this phenomenon, insulin release was measured from female nonobese diabetic (NOD) mouse islets isolated at different ages. Islets from 5-week-old mice were used as controls because they had no infiltrating mononuclear cells and insulin release rose almost 9-fold with maintained oscillatory frequency when the glucose concentration was raised from 3 to 11 mM. Islets isolated from 13- and 25-week-old mice were infiltrated with mononuclear cells. In these islets, increase in the glucose concentration from 3 to 11 mM only doubled insulin release. However, despite the cellular infiltration, insulin release was pulsatile. Islets from 13-week-old mice had reduced glucose oxidation rate. Culture of such islets for 7 days at 11.1 mM glucose causes a decrease in the number of mononuclear cells infiltrating the islets, which in the present study was accompanied by a normalization of both glucose oxidation and glucose-induced insulin release. In the presence of the mitochondrial substrate alpha-keto-isocaproate (5 mM) both control and infiltrated islets responded with pronounced insulin pulses with similar amplitudes. The results suggest that the deranged plasma insulin pattern observed during the development of type I diabetes may be related to decrease in the insulin pulse amplitude rather than loss of the pulsatile release from the islets.
Collapse
Affiliation(s)
- J M Lin
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | | | | | |
Collapse
|
28
|
Ohgawara H, Shikano T, Fukunaga K, Yamagishi M, Miyazaki S. Establishment of monolayer culture of pig pancreatic endocrine cells by use of nicotinamide. Diabetes Res Clin Pract 1998; 42:1-8. [PMID: 9884027 DOI: 10.1016/s0168-8227(98)00096-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A method for the isolation and primary monolayer culture of adult pig pancreatic endocrine (PE) cells was established. Cells were dissociated from the pancreas by autodigestion without addition of proteolytic enzymes and separated into distinct bands in a single centrifugation step using Histopaque-1077 (a mixture of polysucrose and sodium diatrizoate). The cells collected from an interfacial fraction were suspended in RPMI 1640 containing 11 mmol/l D-glucose with or without nicotinamide (0, 10, 20, 40 mmol/l), and then placed in culture dishes. Pancreatic cells formed a monolayer while fibroblasts became detached from the bottom of the dish when cultured in the presence of nicotinamide. More than 80% of monolayer-forming cells were stained for insulin, using an enzymatic method, and were identified as B-cells. Morphologically, the PE cells extended multiple processes terminating in growth-cone-like structures, as visualized by both light microscopy and scanning electron microscopy. Insulin secretion in response to glucose stimulation occurred for 35 days of incubation in the RPMI 1640 medium, with or without nicotinamide. Exposure of the cells to nicotinamide for 35 days resulted in a 2-3-fold increase in insulin secretion in response to high glucose stimulus (16.7 mmol/l) compared with low glucose (5.5 mmol/l). Glucose-induced Ca2+ responses were examined in individual cells cultured for 35 days in the presence of 10 mmol/l nicotinamide, using Ca2+ imaging with fura-2. These results indicate that it is possible to prepare pig PE cells in monolayer culture with low fibroblast contamination and to maintain functioning B-cells in vitro for relatively long periods. The present method provides useful preparations for further morphological and physiological studies on the differentiation, growth and regenerative capacity of islet cells.
Collapse
Affiliation(s)
- H Ohgawara
- Medical Research Institute, Tokyo Women's Medical University, School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
29
|
Bergsten P. Glucose-induced pulsatile insulin release from single islets at stable and oscillatory cytoplasmic Ca2+. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:E796-800. [PMID: 9612236 DOI: 10.1152/ajpendo.1998.274.5.e796] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cytoplasmic Ca2+ concentration ([Ca2+]i) and insulin release were measured simultaneously in mouse pancreatic islets cultured overnight. [Ca2+]i was 105 nM and insulin release 3 pmol.g-1.s-1 at 3 mM glucose. An increase to 7 mM glucose reduced [Ca2+]i transiently, whereas insulin release doubled and was pulsatile with a frequency of 0.47 min-1. [Ca2+]i oscillations with similar frequency appeared at 11 mM glucose associated with increased amplitude of the insulin oscillations, raising the secretory rate 10-fold. In the presence of 16 and 20 mM glucose [Ca2+]i was > 300 nM and showed no oscillations apart from two islets, which demonstrated [Ca2+]i oscillations with small amplitude at 16 mM glucose. Insulin release with maintained frequency increased by 46 and 31%, respectively. When the glucose concentration was increased from 3 to 11 mM, [Ca2+]i decreased with a nadir that appeared significantly earlier than when the glucose concentration was raised from 3 to 7 mM. Glucose-induced insulin release from the isolated islet is pulsatile both at stable and oscillatory [Ca2+]i, with changes in secretory rate caused by the sugar also when [Ca2+]i is unchanged.
Collapse
Affiliation(s)
- P Bergsten
- Department of Medical Cell Biology, Biomedicum, Uppsala University, Sweden
| |
Collapse
|