1
|
Capoferri AA, Wiegand A, Hong F, Jacobs JL, Spindler J, Musick A, Bale MJ, Shao W, Sobolewski MD, Cillo AR, Luke BT, Fennessey CM, Gorelick RJ, Hoh R, Halvas EK, Deeks SG, Coffin JM, Mellors JW, Kearney MF. HIV-1 control in vivo is related to the number but not the fraction of infected cells with viral unspliced RNA. Proc Natl Acad Sci U S A 2024; 121:e2405210121. [PMID: 39190360 PMCID: PMC11388345 DOI: 10.1073/pnas.2405210121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
In the absence of antiretroviral therapy (ART), a subset of individuals, termed HIV controllers, have levels of plasma viremia that are orders of magnitude lower than non-controllers (NC) who are at higher risk for HIV disease progression. In addition to having fewer infected cells resulting in fewer cells with HIV RNA, it is possible that lower levels of plasma viremia in controllers are due to a lower fraction of the infected cells having HIV-1 unspliced RNA (HIV usRNA) compared with NC. To directly test this possibility, we used sensitive and quantitative single-cell sequencing methods to compare the fraction of infected cells that contain one or more copies of HIV usRNA in peripheral blood mononuclear cells (PBMC) obtained from controllers and NC. The fraction of infected cells containing HIV usRNA did not differ between the two groups. Rather, the levels of viremia were strongly associated with the total number of infected cells that had HIV usRNA, as reported by others, with controllers having 34-fold fewer infected cells per million PBMC. These results reveal that viremic control is not associated with a lower fraction of proviruses expressing HIV usRNA, unlike what is reported for elite controllers, but is only related to having fewer infected cells overall, maybe reflecting greater immune clearance of infected cells. Our findings show that proviral silencing is not a key mechanism for viremic control and will help to refine strategies toward achieving HIV remission without ART.
Collapse
Affiliation(s)
- Adam A Capoferri
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
- Department of Microbiology and Immunology, Georgetown University, Washington, DC 20007
| | - Ann Wiegand
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - Feiyu Hong
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jana L Jacobs
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jonathan Spindler
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - Andrew Musick
- Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, MD 21702
| | - Michael J Bale
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Wei Shao
- Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, MD 21702
| | - Michele D Sobolewski
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Brian T Luke
- Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, MD 21702
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, CA 94143
| | - Elias K Halvas
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, CA 94143
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| | - John W Mellors
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Mary F Kearney
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| |
Collapse
|
2
|
García-Silva S, Peinado H. Mechanisms of lymph node metastasis: An extracellular vesicle perspective. Eur J Cell Biol 2024; 103:151447. [PMID: 39116620 DOI: 10.1016/j.ejcb.2024.151447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
In several solid tumors such as breast cancer, prostate cancer, colorectal cancer or melanoma, tumor draining lymph nodes are the earliest tissues where colonization by tumor cells is detected. Lymph nodes act as sentinels of metastatic dissemination, the deadliest phase of tumor progression. Besides hematogenous dissemination, lymphatic spread of tumor cells has been demonstrated, adding more complexity to the mechanisms involved in metastasis. A network of blood and lymphatic vessels surrounds tumors providing routes for tumor soluble factors to mediate regional and long-distance effects. Additionally, extracellular vesicles (EVs), particularly small EVs/exosomes, have been shown to circulate through the blood and lymph, favoring the formation of pre-metastatic niches in the tumor-draining lymph nodes (TDLNs) and distant organs. In this review, we present an overview of the relevance of lymph node metastasis, the structural and immune changes occurring in TDLNs during tumor progression, and how extracellular vesicles contribute to modulating some of these alterations while promoting the formation of lymph node pre-metastatic niches.
Collapse
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
3
|
Chou TC, Maggirwar NS, Marsden MD. HIV Persistence, Latency, and Cure Approaches: Where Are We Now? Viruses 2024; 16:1163. [PMID: 39066325 PMCID: PMC11281696 DOI: 10.3390/v16071163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The latent reservoir remains a major roadblock to curing human immunodeficiency virus (HIV) infection. Currently available antiretroviral therapy (ART) can suppress active HIV replication, reduce viral loads to undetectable levels, and halt disease progression. However, antiretroviral drugs are unable to target cells that are latently infected with HIV, which can seed viral rebound if ART is stopped. Consequently, a major focus of the field is to study the latent viral reservoir and develop safe and effective methods to eliminate it. Here, we provide an overview of the major mechanisms governing the establishment and maintenance of HIV latency, the key challenges posed by latent reservoirs, small animal models utilized to study HIV latency, and contemporary cure approaches. We also discuss ongoing efforts to apply these approaches in combination, with the goal of achieving a safe, effective, and scalable cure for HIV that can be extended to the tens of millions of people with HIV worldwide.
Collapse
Affiliation(s)
- Tessa C. Chou
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Nishad S. Maggirwar
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Matthew D. Marsden
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
- Department of Medicine, Division of Infectious Disease, School of Medicine, University of California, Irvine, CA 92617, USA
| |
Collapse
|
4
|
Moos PJ, Carey AF, Joseph J, Kialo S, Norrie J, Moyarelce JM, Amof A, Nogua H, Lim AL, Barrows LR. Single Cell Analysis of Peripheral TB-Associated Granulomatous Lymphadenitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596301. [PMID: 38853908 PMCID: PMC11160601 DOI: 10.1101/2024.05.28.596301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
We successfully employed a single cell RNA sequencing (scRNA-seq) approach to describe the cells and the communication networks characterizing granulomatous lymph nodes of TB patients. When mapping cells from individual patient samples, clustered based on their transcriptome similarities, we uniformly identify several cell types that known to characterize human and non-human primate granulomas. Whether high or low Mtb burden, we find the T cell cluster to be one of the most abundant. Many cells expressing T cell markers are clearly quantifiable within this CD3 expressing cluster. Other cell clusters that are uniformly detected, but that vary dramatically in abundance amongst the individual patient samples, are the B cell, plasma cell and macrophage/dendrocyte and NK cell clusters. When we combine all our scRNA-seq data from our current 23 patients (in order to add power to cell cluster identification in patient samples with fewer cells), we distinguish T, macrophage, dendrocyte and plasma cell subclusters, each with distinct signaling activities. The sizes of these subclusters also varies dramatically amongst the individual patients. In comparing FNA composition we noted trends in which T cell populations and macrophage/dendrocyte populations were negatively correlated with NK cell populations. In addition, we also discovered that the scRNA-seq pipeline, designed for quantification of human cell mRNA, also detects Mtb RNA transcripts and associates them with their host cell's transcriptome, thus identifying individual infected cells. We hypothesize that the number of detected bacterial transcript reads provides a measure of Mtb burden, as does the number of Mtb-infected cells. The number of infected cells also varies dramatically in abundance amongst the patient samples. CellChat analysis identified predominating signaling pathways amongst the cells comprising the various granulomas, including many interactions between stromal or endothelial cells and the other component cells, such as Collagen, FN1 and Laminin,. In addition, other more selective communications pathways, including MIF, MHC-1, MHC-2, APP, CD 22, CD45, and others, are identified as originating or being received by individual immune cell components.
Collapse
Affiliation(s)
- Philip J. Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112 USA
| | - Allison F. Carey
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112 USA
| | - Jacklyn Joseph
- Coordinator of Pathology Services, Port Moresby General Hospital, Boroko Post, 111, Papua New Guinea
| | - Stephanie Kialo
- Division of Pathology, School of Medicine and Health Sciences, University of Papua New Guinea and Central Public Health Laboratory, Papua New Guinea National Department of Health, PMGH, P.O. Box 5623 Boroko, Papua New Guinea
| | - Joe Norrie
- Division of Pathology, School of Medicine and Health Sciences, University of Papua New Guinea and Central Public Health Laboratory, Papua New Guinea National Department of Health, PMGH, P.O. Box 5623 Boroko, Papua New Guinea
| | - Julie M. Moyarelce
- Division of Pathology, School of Medicine and Health Sciences, University of Papua New Guinea and Central Public Health Laboratory, Papua New Guinea National Department of Health, PMGH, P.O. Box 5623 Boroko, Papua New Guinea
| | - Anthony Amof
- Division of Pathology, School of Medicine and Health Sciences, University of Papua New Guinea and Central Public Health Laboratory, Papua New Guinea National Department of Health, PMGH, P.O. Box 5623 Boroko, Papua New Guinea
| | - Hans Nogua
- Division of Pathology, School of Medicine and Health Sciences, University of Papua New Guinea and Central Public Health Laboratory, Papua New Guinea National Department of Health, PMGH, P.O. Box 5623 Boroko, Papua New Guinea
| | - Albebson L. Lim
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 USA
| | - Louis R. Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112 USA
| |
Collapse
|
5
|
Immonen TT, Fennessey CM, Lipkey L, Newman L, Macairan A, Bosche M, Waltz N, Del Prete GQ, Lifson JD, Keele BF. No evidence for ongoing replication on ART in SIV-infected macaques. Nat Commun 2024; 15:5093. [PMID: 38877003 PMCID: PMC11178840 DOI: 10.1038/s41467-024-49369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
The capacity of HIV-1 to replicate during optimal antiretroviral therapy (ART) is challenging to assess directly. To gain greater sensitivity to detect evolution on ART, we used a nonhuman primate (NHP) model providing precise control over the level of pre-ART evolution and more comprehensive analyses than are possible with clinical samples. We infected 21 rhesus macaques (RMs) with the barcoded virus SIVmac239M and initiated ART early to minimize baseline genetic diversity. RMs were treated for 285-1200 days. We used several tests of molecular evolution to compare 1352 near-full-length (nFL) SIV DNA single genome sequences from PBMCs, lymph nodes, and spleen obtained near the time of ART initiation and those present after long-term ART, none of which showed significant changes to the SIV DNA population during ART in any animal. To investigate the possibility of ongoing replication in unsampled putative tissue sanctuaries during ART, we discontinued treatment in four animals and confirmed that none of the 336 nFL SIV RNA sequences obtained from rebound plasma viremia showed evidence of evolution. The rigorous nature of our analyses reinforced the emerging consensus of a lack of appreciable ongoing replication on effective ART and validates the relevance of this NHP model for cure studies.
Collapse
Affiliation(s)
- Taina T Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Leslie Lipkey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Laura Newman
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Agatha Macairan
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Marjorie Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nora Waltz
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
6
|
Fombellida-Lopez C, Berkhout B, Darcis G, Pasternak AO. Persistent HIV-1 transcription during ART: time to reassess its significance? Curr Opin HIV AIDS 2024; 19:124-132. [PMID: 38502547 PMCID: PMC10990031 DOI: 10.1097/coh.0000000000000849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist and reignite viral replication if therapy is interrupted. Persistence of the viral reservoir in people with HIV-1 (PWH) is the main obstacle to an HIV-1 cure. The reservoirs are not transcriptionally silent, and viral transcripts can be detected in most ART-treated individuals. Here, we review the recent progress in the characterization of persistent HIV-1 transcription during ART. RECENT FINDINGS Evidence from several studies indicates that, although cell-associated unspliced (US) HIV-1 RNA is abundantly expressed in ART-treated PWH, intact full-length US transcripts are rare and most US RNA is derived from defective proviruses. The transcription- and translation-competent defective proviruses, previously considered irrelevant, are increasingly being linked to residual HIV-1 pathogenesis under suppressive ART. Recent data suggest a continuous crosstalk between the residual HIV-1 activity under ART and the immune system. Persistent HIV-1 transcription on ART, despite being mostly derived from defective proviruses, predicts viral rebound upon therapy interruption, suggesting its role as an indicator of the strength of the host antiviral immune response that is shaping the viral rebound. SUMMARY In light of the recent findings, the significance of persistent HIV-1 transcription during ART for the long-term health of PWH and the cure research should be reassessed.
Collapse
Affiliation(s)
- Céline Fombellida-Lopez
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Immunology and Infectious Diseases, GIGA-Institute, University of Liège
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gilles Darcis
- Laboratory of Immunology and Infectious Diseases, GIGA-Institute, University of Liège
- Department of General Internal Medicine and Infectious Diseases, University Hospital of Liège, Liège, Belgium
| | - Alexander O. Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Banga R, Perreau M. The multifaceted nature of HIV tissue reservoirs. Curr Opin HIV AIDS 2024; 19:116-123. [PMID: 38547340 PMCID: PMC10990014 DOI: 10.1097/coh.0000000000000851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW To underline the complexity and the heterogeneity of the HIV reservoir. RECENT FINDINGS While lymphoid tissues (spleen, lymph nodes, gut-associated lymphoid tissue) harbor specific subsets of specialized CD4 + T cells enriched in HIV-infected cells, non-CD4 + T cell reservoirs such as tissue-resident macrophages and dendritic cells have also been implicated to contribute to viral persistence. Moreover, studies have applied highly sensitive tools to detect transcriptional activity within HIV-infected cells during prolonged ART and revealed a broader spectrum of transcriptional activity for proviruses than previously thought. Finally, while a combination of factors might be involved in the regulation of HIV persistence within different tissues and remains to be fully elucidated, recent results from autopsy samples of HIV-infected ART suppressed individuals indicate extensive clonality of HIV reservoirs in multiple tissues and suggest that the recirculation of HIV-infected cells and their local expansions in tissues may also contribute to the complexity of the HIV reservoirs in humans. SUMMARY HIV persistence in blood and multiple tissues despite long-standing and potent therapy is one of the major barriers to a cure. Given that the HIV reservoir is established early and is highly complex based on its composition, viral diversity, tissue distribution, transcriptional activity, replication competence, migration dynamics and proliferative potential across the human body and possible compartmentalization in specific tissues, combinatorial therapeutic approaches are needed that may synergize to target multiple viral reservoirs to achieve a cure for HIV infection.
Collapse
Affiliation(s)
- Riddhima Banga
- Divisions of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
8
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Reeves DB, Rigau DN, Romero A, Zhang H, Simonetti FR, Varriale J, Hoh R, Zhang L, Smith KN, Montaner LJ, Rubin LH, Gange SJ, Roan NR, Tien PC, Margolick JB, Peluso MJ, Deeks SG, Schiffer JT, Siliciano JD, Siliciano RF, Antar AAR. Mild HIV-specific selective forces overlaying natural CD4+ T cell dynamics explain the clonality and decay dynamics of HIV reservoir cells. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.13.24302704. [PMID: 38405967 PMCID: PMC10888981 DOI: 10.1101/2024.02.13.24302704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The latent reservoir of HIV persists for decades in people living with HIV (PWH) on antiretroviral therapy (ART). To determine if persistence arises from the natural dynamics of memory CD4+ T cells harboring HIV, we compared the clonal dynamics of HIV proviruses to that of memory CD4+ T cell receptors (TCRβ) from the same PWH and from HIV-seronegative people. We show that clonal dominance of HIV proviruses and antigen-specific CD4+ T cells are similar but that the field's understanding of the persistence of the less clonally dominant reservoir is significantly limited by undersampling. We demonstrate that increasing reservoir clonality over time and differential decay of intact and defective proviruses cannot be explained by mCD4+ T cell kinetics alone. Finally, we develop a stochastic model of TCRβ and proviruses that recapitulates experimental observations and suggests that HIV-specific negative selection mediates approximately 6% of intact and 2% of defective proviral clearance. Thus, HIV persistence is mostly, but not entirely, driven by natural mCD4+ T cell kinetics.
Collapse
|
10
|
Peterson JJ, Lewis CA, Burgos SD, Manickam A, Xu Y, Rowley AA, Clutton G, Richardson B, Zou F, Simon JM, Margolis DM, Goonetilleke N, Browne EP. A histone deacetylase network regulates epigenetic reprogramming and viral silencing in HIV-infected cells. Cell Chem Biol 2023; 30:1617-1633.e9. [PMID: 38134881 PMCID: PMC10754471 DOI: 10.1016/j.chembiol.2023.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/23/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
A long-lived latent reservoir of HIV-1-infected CD4 T cells persists with antiretroviral therapy and prevents cure. We report that the emergence of latently infected primary CD4 T cells requires the activity of histone deacetylase enzymes HDAC1/2 and HDAC3. Data from targeted HDAC molecules, an HDAC3-directed PROTAC, and CRISPR-Cas9 knockout experiments converge on a model where either HDAC1/2 or HDAC3 targeting can prevent latency, whereas all three enzymes must be targeted to achieve latency reversal. Furthermore, HDACi treatment targets features of memory T cells that are linked to proviral latency and persistence. Latency prevention is associated with increased H3K9ac at the proviral LTR promoter region and decreased H3K9me3, suggesting that this epigenetic switch is a key proviral silencing mechanism that depends on HDAC activity. These findings support further mechanistic work on latency initiation and eventual clinical studies of HDAC inhibitors to interfere with latency initiation.
Collapse
Affiliation(s)
- Jackson J Peterson
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Catherine A Lewis
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Samuel D Burgos
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Ashokkumar Manickam
- University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Yinyan Xu
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Allison A Rowley
- University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Brian Richardson
- Department of Biostatistics, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Fei Zou
- Department of Biostatistics, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Jeremy M Simon
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC 27514, USA; UNC Neuroscience Center, UNC School of Medicine, Chapel Hill, NC 27514, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA; Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27514, USA; Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Edward P Browne
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA.
| |
Collapse
|
11
|
Wong A, Chu Y, Chen H, Feng W, Ji L, Qin C, Stocks MJ, Marlow M, Gershkovich P. Distribution of lamivudine into lymph node HIV reservoir. Int J Pharm 2023; 648:123574. [PMID: 37935311 DOI: 10.1016/j.ijpharm.2023.123574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Efficient delivery of antiretroviral agents to lymph nodes is important to decrease the size of the HIV reservoir within the lymphatic system. Lamivudine (3TC) is used in first-line regimens for the treatment of HIV. As a highly hydrophilic small molecule, 3TC is not predicted to associate with chylomicrons and therefore should have negligible uptake into intestinal lymphatics following oral administration. Similarly, negligible amounts of 3TC are predicted to be transported into peripheral lymphatics following subcutaneous (SC) injection due to the faster flow rate of blood in comparison to lymph. In this work, we performed pharmacokinetic and biodistribution studies of 3TC in rats following oral lipid-based, oral lipid-free, SC, and intravenous (IV) administrations. In the oral administration studies, mesenteric lymph nodes (MLNs) had significantly higher 3TC concentrations compared to other lymph nodes, with mean tissue:serum ratios ranging from 1.4 to 2.9. However, cells and chylomicrons found in mesenteric lymph showed low-to-undetectable concentrations. In SC studies, administration-side (right) draining inguinal and popliteal lymph nodes had significantly higher concentrations (tissue:serum ratios as high as 3.2) than corresponding left-side nodes. In IV studies, lymph nodes had lower mean tissue:serum ratios ranging from 0.9 to 1.4. We hypothesize that following oral or SC administration, slower permeation of this hydrophilic molecule into blood capillaries may result in considerable passive 3TC penetration into lymphatic vessels. Further studies will be needed to clarify the mechanism of delivery of 3TC and similar antiretroviral drugs into the lymph nodes.
Collapse
Affiliation(s)
- Abigail Wong
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Yenju Chu
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Haojie Chen
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Wanshan Feng
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Liuhang Ji
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Chaolong Qin
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Maria Marlow
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
12
|
Paryad-Zanjani S, Jagarapu A, Piovoso MJ, Zurakowski R. Ongoing HIV replication in lymph node sanctuary sites in treated individuals contributes to the total latent HIV at a very slow rate. J Theor Biol 2023; 575:111651. [PMID: 37898364 PMCID: PMC10680438 DOI: 10.1016/j.jtbi.2023.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Lymph nodes (LNs) serve as a sanctuary site for HIV viruses due to the heterogeneous distribution of the antiretrovirals (ARVs) inside the LNs. There is an ongoing debate whether this represents ongoing cycles of viral replication in the LNs or merely residual virus production by latently infected cells. Previous work has claimed that the measured levels of genetic variation in proviruses sampled from the blood were inconsistent with ongoing replication. However, it is not clear what rate of variation is consistent with ongoing replication in small sanctuary sites. In this study, we used a spherically symmetric compartmental ODE model to track the HIV viral dynamics in the LN and predict the contribution of ongoing replication within the LN to the whole-body proviral pool in an ARV-suppressed person living with HIV. This model tracks the reaction-diffusion dynamics of uninfected, actively infected, and latently infected T-cells as well as free virus within the LN parenchyma and the blood, and distinguishes between latently infected cells created before ARV therapy and during ARV therapy. We simulated suppressive therapy beginning in year 5 post-infection. Each LN sanctuary site had a volume of 1 ml, and we considered cases of 1 ml, 30 ml, and 250 ml total volume, which represent a single active sanctuary site, moderate systemic involvement, and involvement of the total lymphoid tissue. Viral load in the blood rapidly dropped and remained below the limit of detection in all cases but remained high in the LN sanctuary sites. Novel latent cells increased systemically over time but very slowly, taking between 25 and 50 years to reach 5 % of the total latent pool, depending on the volume of lymphoid tissue involvement. Putative sanctuary sites in LNs are limited in volume and produce novel latent cells slowly. Assays to detect genetic drift due to such sites would require very deep sequencing if sampling only from the blood. Previous studies showing a lack of genetic drift are consistent with the expected contribution of ongoing replication in lymph node sanctuary sites.
Collapse
Affiliation(s)
| | - Aditya Jagarapu
- Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Michael J Piovoso
- Electrical and Computer Engineering, University of Delaware, Newark, DE, USA
| | - Ryan Zurakowski
- Biomedical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
13
|
Ikeogu N, Ajibola O, Zayats R, Murooka TT. Identifying physiological tissue niches that support the HIV reservoir in T cells. mBio 2023; 14:e0205323. [PMID: 37747190 PMCID: PMC10653859 DOI: 10.1128/mbio.02053-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Successful antiretroviral therapy (ART) can efficiently suppress Human Immunodeficiency Virus-1 (HIV-1) replication to undetectable levels, but rare populations of infected memory CD4+ T cells continue to persist, complicating viral eradication efforts. Memory T cells utilize distinct homing and adhesion molecules to enter, exit, or establish residence at diverse tissue sites, integrating cellular and environmental cues that maintain homeostasis and life-long protection against pathogens. Critical roles for T cell receptor and cytokine signals driving clonal expansion and memory generation during immunity generation are well established, but whether HIV-infected T cells can utilize similar mechanisms for their own long-term survival is unclear. How infected, but transcriptionally silent T cells maintain their recirculation potential through blood and peripheral tissues, or whether they acquire new capabilities to establish unique peripheral tissue niches, is also not well understood. In this review, we will discuss the cellular and molecular cues that are important for memory T cell homeostasis and highlight opportunities for HIV to hijack normal immunological processes to establish long-term viral persistence.
Collapse
Affiliation(s)
- Nnamdi Ikeogu
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Oluwaseun Ajibola
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Romaniya Zayats
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Banga R, Procopio FA, Lana E, Gladkov GT, Roseto I, Parsons EM, Lian X, Armani-Tourret M, Bellefroid M, Gao C, Kauzlaric A, Foglierini M, Alfageme-Abello O, Sluka SHM, Munoz O, Mastrangelo A, Fenwick C, Muller Y, Mkindi CG, Daubenberger C, Cavassini M, Trunfio R, Déglise S, Corpataux JM, Delorenzi M, Lichterfeld M, Pantaleo G, Perreau M. Lymph node dendritic cells harbor inducible replication-competent HIV despite years of suppressive ART. Cell Host Microbe 2023; 31:1714-1731.e9. [PMID: 37751747 PMCID: PMC11068440 DOI: 10.1016/j.chom.2023.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/02/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Although gut and lymph node (LN) memory CD4 T cells represent major HIV and simian immunodeficiency virus (SIV) tissue reservoirs, the study of the role of dendritic cells (DCs) in HIV persistence has long been limited to the blood due to difficulties to access lymphoid tissue samples. In this study, we show that LN migratory and resident DC subpopulations harbor distinct phenotypic and transcriptomic profiles. Interestingly, both LN DC subpopulations contain HIV intact provirus and inducible replication-competent HIV despite the expression of the antiviral restriction factor SAMHD1. Notably, LN DC subpopulations isolated from HIV-infected individuals treated for up to 14 years are transcriptionally silent but harbor replication-competent virus that can be induced upon TLR7/8 stimulation. Taken together, these results uncover a potential important contribution of LN DCs to HIV infection in the presence of ART.
Collapse
Affiliation(s)
- Riddhima Banga
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Francesco Andrea Procopio
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Erica Lana
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | | | | | - Elizabeth M Parsons
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Annamaria Kauzlaric
- Translational Bioinformatics and Statistics Department of Oncology, University of Lausanne Swiss Cancer Center, Lausanne, Switzerland
| | - Mathilde Foglierini
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Oscar Alfageme-Abello
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Susanna H M Sluka
- Newborn Screening Switzerland, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Olivia Munoz
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Andrea Mastrangelo
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Craig Fenwick
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Yannick Muller
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Catherine Gerald Mkindi
- Ifakara Health Institute, Bagamoyo, United Republic of Tanzania; Department of Medical Parasitology and Infection Biology, Clinical Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Clinical Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Matthias Cavassini
- Services of Infectious Diseases, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Rafael Trunfio
- Services of Vascular Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Sébastien Déglise
- Services of Vascular Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Jean-Marc Corpataux
- Services of Vascular Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Mauro Delorenzi
- Translational Bioinformatics and Statistics Department of Oncology, University of Lausanne Swiss Cancer Center, Lausanne, Switzerland
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Giuseppe Pantaleo
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Matthieu Perreau
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
15
|
Malyshkina A, Bayer W, Podschwadt P, Otto L, Karakoese Z, Sutter K, Bruderek K, Wang B, Lavender KJ, Santiago ML, Leipe PM, Elsner C, Esser S, Brandau S, Gunzer M, Dittmer U. Immunotherapy-induced cytotoxic T follicular helper cells reduce numbers of retrovirus-infected reservoir cells in B cell follicles. PLoS Pathog 2023; 19:e1011725. [PMID: 37883584 PMCID: PMC10602292 DOI: 10.1371/journal.ppat.1011725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Antiretroviral therapy (ART) transformed HIV from a life-threatening disease to a chronic condition. However, eliminating the virus remains an elusive therapy goal. For several decades, Friend virus (FV) infection serves as a murine model to study retrovirus immunity. Similar to HIV, FV persists at low levels in lymph nodes B cell follicles avoiding elimination by immune cells. Such immune-privileged reservoirs exclude cytotoxic T cells from entry. However, CXCR5+ T cells are permitted to traffic through germinal centers. This marker is predominantly expressed by CD4+ follicular helper T cells (Tfh). Therefore, we explored immunotherapy to induce cytotoxic Tfh, which are rarely found under physiological conditions. The TNF receptor family member CD137 was first identified as a promising target for cancer immunotherapy. We demonstrated that FV-infected mice treatment with αCD137 antibody resulted in an induction of the cytotoxic program in Tfh. The therapy significantly increased numbers of cytotoxic Tfh within B cell follicles and contributed to viral load reduction. Moreover, αCD137 antibody combined with ART delayed virus rebound upon treatment termination without disturbing the lymph node architecture or antibody responses. Thus, αCD137 antibody therapy might be a novel strategy to target the retroviral reservoir and an interesting approach for HIV cure research.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philip Podschwadt
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lucas Otto
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zehra Karakoese
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Kirsten Bruderek
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Baoxiao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kerry J. Lavender
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Pia Madeleine Leipe
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Esser
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
16
|
Dufour C, Ruiz MJ, Pagliuzza A, Richard C, Shahid A, Fromentin R, Ponte R, Cattin A, Wiche Salinas TR, Salahuddin S, Sandstrom T, Schinkel SB, Costiniuk CT, Jenabian MA, Ancuta P, Routy JP, Cohen ÉA, Brumme ZL, Power C, Angel JB, Chomont N. Near full-length HIV sequencing in multiple tissues collected postmortem reveals shared clonal expansions across distinct reservoirs during ART. Cell Rep 2023; 42:113053. [PMID: 37676762 DOI: 10.1016/j.celrep.2023.113053] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
HIV persists in tissues during antiretroviral therapy (ART), but the relative contribution of different anatomical compartments to the viral reservoir in humans remains unknown. We performed an extensive characterization of HIV reservoirs in two men who donated their bodies to HIV cure research and who had been on suppressive ART for years. HIV DNA is detected in all tissues, with large variations across anatomical compartments and between participants. Intact HIV genomes represent 2% and 25% of all proviruses in the two participants and are mainly detected in secondary lymphoid organs, with the spleen and mediastinal lymph nodes harboring intact viral genomes in both individuals. Multiple copies of identical HIV genomes are found in all tissues, indicating that clonal expansions are common in anatomical sites. The majority (>85%) of these expanded clones are shared across multiple tissues. These findings suggest that infected cells expand, migrate, and possibly circulate between anatomical sites.
Collapse
Affiliation(s)
- Caroline Dufour
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Centre de Recherche du CHUM, Montreal, QC Canada
| | - Maria Julia Ruiz
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Centre de Recherche du CHUM, Montreal, QC Canada
| | | | | | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Rémi Fromentin
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Centre de Recherche du CHUM, Montreal, QC Canada
| | - Rosalie Ponte
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada; Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Amélie Cattin
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Centre de Recherche du CHUM, Montreal, QC Canada
| | - Tomas Raul Wiche Salinas
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Centre de Recherche du CHUM, Montreal, QC Canada
| | - Syim Salahuddin
- Département de Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
| | - Teslin Sandstrom
- Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Cecilia T Costiniuk
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada; Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Département de Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
| | - Petronela Ancuta
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Centre de Recherche du CHUM, Montreal, QC Canada
| | - Jean-Pierre Routy
- Research Institute of McGill University Health Centre, Montreal, QC, Canada; Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Éric A Cohen
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, 6-11 Heritage Medical Research Center, Edmonton, AB, Canada; Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Jonathan B Angel
- Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada; Division of Infectious Diseases, Ottawa Hospital-General Campus, Ottawa, ON, Canada
| | - Nicolas Chomont
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Centre de Recherche du CHUM, Montreal, QC Canada.
| |
Collapse
|
17
|
Copertino DC, Holmberg CS, Weiler J, Ward AR, Howard JN, Levinger C, Pang AP, Corley MJ, Dündar F, Zumbo P, Betel D, Gandhi RT, McMahon DK, Bosch RJ, Linden N, Macatangay BJ, Cyktor JC, Eron JJ, Mellors JW, Kovacs C, Benko E, Bosque A, Jones RB. The latency-reversing agent HODHBt synergizes with IL-15 to enhance cytotoxic function of HIV-specific T cells. JCI Insight 2023; 8:e169028. [PMID: 37581929 PMCID: PMC10561764 DOI: 10.1172/jci.insight.169028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
IL-15 is under clinical investigation toward the goal of curing HIV infection because of its abilities to reverse HIV latency and enhance immune effector function. However, increased potency through combination with other agents may be needed. 3-Hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) enhances IL-15-mediated latency reversal and NK cell function by increasing STAT5 activation. We hypothesized that HODHBt would also synergize with IL-15, via STAT5, to directly enhance HIV-specific cytotoxic T cell responses. We showed that ex vivo IL-15 + HODHBt treatment markedly enhanced HIV-specific granzyme B-releasing T cell responses in PBMCs from antiretroviral therapy-suppressed (ART-suppressed) donors. We also observed upregulation of antigen processing and presentation in CD4+ T cells and increased surface MHC-I. In ex vivo PBMCs, IL-15 + HODHBt was sufficient to reduce intact proviruses in 1 of 3 ART-suppressed donors. Our findings reveal the potential for second-generation IL-15 studies incorporating HODHBt-like therapeutics. Iterative studies layering on additional latency reversal or other agents are needed to achieve consistent ex vivo reservoir reductions.
Collapse
Affiliation(s)
- Dennis C. Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Carissa S. Holmberg
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Jared Weiler
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Adam R. Ward
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - J. Natalie Howard
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Callie Levinger
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Alina P.S. Pang
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Michael J. Corley
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Friederike Dündar
- Applied Bioinformatics Core and
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Catenion GmbH, Berlin, Germany
| | | | - Doron Betel
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Applied Bioinformatics Core and
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Rajesh T. Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Deborah K. McMahon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ronald J. Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Noemi Linden
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Bernard J. Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joshua C. Cyktor
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - R. Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
18
|
Gunst JD, Goonetilleke N, Rasmussen TA, Søgaard OS. Immunomodulation with IL-7 and IL-15 in HIV-1 infection. J Virus Erad 2023; 9:100347. [PMID: 37767312 PMCID: PMC10520363 DOI: 10.1016/j.jve.2023.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Immunomodulating agents are substances that modify the host immune responses in diseases such as infections, autoimmune conditions and cancers. Immunomodulators can be divided into two main groups: 1) immunostimulators that activate the immune system such as cytokines, toll-like receptor agonists and immune checkpoint blockers; and 2) immunosuppressors that dampen an overactive immune system such as corticosteroids and cytokine-blocking antibodies. In this review, we have focussed on the two primarily T and natural killer (NK) cell homeostatic cytokines: interleukin-7 (IL-7) and -15 (IL-15). These cytokines are immunostimulators which act on immune cells independently of the presence or absence of antigen. In vivo studies have shown that IL-7 administration enhances proliferation of circulating T cells whereas IL-15 agonists enhance the proliferation and function of NK and CD8+ T cells. Both IL-7 and IL-15 therapies have been tested as single interventions in HIV-1 cure-related clinical trials. In this review, we explore whether IL-7 and IL-15 could be part of the therapeutic approaches towards HIV-1 remission.
Collapse
Affiliation(s)
- Jesper D. Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Nilu Goonetilleke
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Thomas A. Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole S. Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
19
|
Sanders-Beer BE, Archin NM, Brumme ZL, Busch MP, Deleage C, O'Doherty U, Hughes SH, Jerome KR, Jones RB, Karn J, Kearney MF, Keele BF, Kulpa DA, Laird GM, Li JZ, Lichterfeld MD, Nussenzweig MC, Persaud D, Yukl SA, Siliciano RF, Mellors JW. Current HIV/SIV Reservoir Assays for Preclinical and Clinical Applications: Recommendations from the Experts 2022 NIAID Workshop Summary. AIDS Res Hum Retroviruses 2023; 40:7-21. [PMID: 37126090 DOI: 10.1089/aid.2022.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Since the first HIV-cured person was reported in 2009, a strong interest in developing highly sensitive HIV and SIV reservoir assays has emerged. In particular, the question arose about the comparative value of state-of-the-art assays to measure and characterize the HIV reservoir, and how these assays can be applied to accurately detect changes in the reservoir during efforts to develop a cure for HIV infection. Second, it is important to consider the impact on the outcome of clinical trials if these relatively new HIV reservoir assays are incorporated into clinical trial endpoints and/or used for clinical decision-making. To understand the advantages and limitations and the regulatory implications of HIV reservoir assays, the National Institute of Allergy and Infectious Diseases (NIAID) sponsored and convened a meeting on September 16, 2022, to discuss the state of knowledge concerning these questions and best practices for selecting HIV reservoir assays for a particular research question or clinical trial protocol.
Collapse
Affiliation(s)
- Brigitte E Sanders-Beer
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nancie M Archin
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael P Busch
- Vitalant Research Institute, University of California, San Francisco, California, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, Maryland, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, Maryland, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, and Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mary F Kearney
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, Maryland, USA
| | - Deanna A Kulpa
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mathias D Lichterfeld
- Brigham and Women's Hospital and Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Deborah Persaud
- Department of Pediatric Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven A Yukl
- Department of Medicine, University of California San Francisco (UCSF) and San Francisco VA Medical Center, San Francisco, California, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Abstract
Acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV), has become a heavy burden of disease and an important public health problem in the world. Although current antiretroviral therapy (ART) is effective at suppressing the virus in the blood, HIV still remains in two different types of reservoirs-the latently infected cells (represented by CD4+ T cells) and the tissues containing those cells, which may block access to ART, HIV-neutralizing antibodies and latency-reversing agents. The latter is the focus of our review, as blood viral load drops below detectable levels after ART, a deeper and more systematic understanding of the HIV tissue reservoirs is imperative. In this review, we take the lymphoid system (including lymph nodes, gut-associated lymphoid tissue, spleen and bone marrow), nervous system, respiratory system, reproductive system (divided into male and female), urinary system as the order, focusing on the particularity and importance of each tissue in HIV infection, the infection target cell types of each tissue, the specific infection situation of each tissue quantified by HIV DNA or HIV RNA and the evidence of compartmentalization and pharmacokinetics. In summary, we found that the present state of HIV in different tissues has both similarities and differences. In the future, the therapeutic principle we need to follow is to respect the discrepancy on the basis of grasping the commonality. The measures taken to completely eliminate the virus in the whole body cannot be generalized. It is necessary to formulate personalized treatment strategies according to the different characteristics of the HIV in the various tissues, so as to realize the prospect of curing AIDS as soon as possible.
Collapse
Affiliation(s)
- Kangpeng Li
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bo Liu
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Ma
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Jeewanraj N, Mandizvo T, Mulaudzi T, Gumede N, Ndhlovu Z, Ndung'u T, Gounder K, Mann J. Partial compartmentalisation of HIV-1 subtype C between lymph nodes, peripheral blood mononuclear cells and plasma. Virology 2023; 582:62-70. [PMID: 37030154 PMCID: PMC10132742 DOI: 10.1016/j.virol.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
HIV-1 compartmentalisation is likely to have important implications for a preventative vaccine as well as eradication strategies. We genetically characterised HIV-1 subtype C variants in lymph nodes, peripheral blood mononuclear cells and plasma of six antiretroviral (ART) naïve individuals and four individuals on ART. Full-length env (n = 171) and gag (n = 250) sequences were generated from participants using single genome amplification. Phylogenetic relatedness of sequences was assessed, and compartmentalisation was determined using both distance and tree-based methods implemented in HyPhy. Additionally, potential associations between compartmentalisation and immune escape mutations were assessed. Partial viral compartmentalisation was present in nine of the ten participants. Broadly neutralising antibody (bnAb) escape was found to be associated with partial env compartmentalisation in some individuals, while cytotoxic T lymphocyte escape mutations in Gag were limited and did not differ between compartments. Viral compartmentalisation may be an important consideration for bnAb use in viral eradication.
Collapse
Affiliation(s)
- Neschika Jeewanraj
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Tawanda Mandizvo
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa
| | - Takalani Mulaudzi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Nombali Gumede
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Zaza Ndhlovu
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; Division of Infection and Immunity, University College London, London, United Kingdom
| | - Kamini Gounder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa
| | - Jaclyn Mann
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
22
|
Paryad-Zanjani S, Jagarapu A, Piovoso MJ, Zurakowski R. Ongoing HIV replication in lymph node sanctuary sites in treated patients contributes to the total latent HIV at a very slow rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529086. [PMID: 36909554 PMCID: PMC10002652 DOI: 10.1101/2023.02.18.529086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Lymph nodes (LNs) serve as a sanctuary site for HIV viruses due to the heterogeneous distribution of the antiretrovirals (ARVs) inside the LNs. There is an ongoing debate whether this represents ongoing cycles of viral replication in the LNs or merely residual virus production by latently infected cells. Previous work has claimed that the measured levels of genetic variation in proviruses sampled from the blood were inconsistent with ongoing replication. However, it is not clear what rate of variation is consistent with ongoing replication in small sanctuary sites. In this study, we used a spherically symmetric compartmental ODE model to track the HIV viral dynamics in the LN and predict the contribution of ongoing replication within the LN to the wholebody proviral pool in an ARV-suppressed patient. This model tracks the reaction-diffusion dynamics of uninfected, actively infected, and latently infected T-cells as well as free virus within the LN parenchyma and the blood, and distinguishes between latently infected cells created before ARV therapy and during ARV therapy. We simulated suppressive therapy beginning in year 5 post-infection. Each LN sanctuary site had a volume of 1 ml, and we considered cases of 1ml, 30ml, and 250ml total volume, which represent a single active sanctuary site, moderate systemic involvement, and involvement of the total lymphoid tissue. Viral load in the blood rapidly dropped and remained below the limit of detection in all cases but remained high in the LN sanctuary sites. Novel latent cells increased systemically over time but very slowly, taking between 25 and 50 years to reach 5% of the total latent pool, depending on the volume of lymphoid tissue involvement. Putative sanctuary sites in LNs are limited in volume and produce novel latent cells slowly. Assays to detect genetic drift due to such sites would require very deep sequencing if sampling only from the blood. Previous studies showing a lack of genetic drift are consistent with the expected contribution of ongoing replication in lymph node sanctuary sites.
Collapse
|
23
|
de Gea-Grela A, Moreno S. Controversies in the Design of Strategies for the Cure of HIV Infection. Pathogens 2023; 12:322. [PMID: 36839593 PMCID: PMC9961067 DOI: 10.3390/pathogens12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The cure for chronic human immunodeficiency virus (HIV) infections has been a goal pursued since the antiretroviral therapy that improved the clinical conditions of patients became available. However, the exclusive use of these drugs is not enough to achieve a cure, since the viral load rebounds when the treatment is discontinued, leading to disease progression. There are several theories and hypotheses about the biological foundations that prevent a cure. The main obstacle appears to be the existence of a latent viral reservoir that cannot be eliminated pharmacologically. This concept is the basis of the new strategies that seek a cure, known as kick and kill. However, there are other lines of study that recognize mechanisms of persistent viral replication in patients under effective treatment, and that would modify the current lines of research on the cure of HIV. Given the importance of these concepts, in this work, we propose to review the most recent evidence on these hypotheses, covering both the evidence that is positioned in favor and against, trying to expose what are some of the challenges that remain to be resolved in this field of research.
Collapse
Affiliation(s)
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Alcalá University, 28034 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28034 Madrid, Spain
| |
Collapse
|
24
|
Abstract
OBJECTIVES Despite suppressive antiretroviral therapy (ART), HIV can persist in a diverse range of CD4+ T-cell subsets. Through longitudinal env sampling from people with HIV (PWH) on ART, we characterized the persistence and phenotypic properties of HIV envs over two time-points (T1 and T2). METHODS Longitudinal blood and lymphoid tissue samples were obtained from eight PWH on suppressive ART. Single genome amplification (SGA) was performed on env to understand the genetic diversity and degree of clonal expansions over time. A subset of envs were used to generate pseudovirus particles to assess sensitivity to autologous plasma IgG and broadly neutralizing antibodies (bNAbs). RESULTS Identical env sequences indicating clonal expansion persisted between T1 and T2 and within multiple T-cell subsets. At both time-points, CXCR4-tropic (X4) Envs were more prevalent in naive and central memory cells; the proportion of X4 Envs did not significantly change in each subset between T1 and T2. Autologous purified plasma IgG showed variable neutralization of Envs, with no significant difference in neutralization between R5 and X4 Envs. X4 Envs were more sensitive to neutralization with clinical bNAbs, with CD4-binding site bNAbs demonstrating high breadth and potency against Envs. CONCLUSION Our data suggest the viral reservoir in PWH on ART was predominantly maintained over time through proliferation and potentially differentiation of infected cells. We found the humoral immune response to Envs within the latent reservoir was variable between PWH. Finally, we identified coreceptor usage can influence bNAb sensitivity and may need to be considered for future bNAb immunotherapy approaches.
Collapse
|
25
|
Wu VH, Nordin JML, Nguyen S, Joy J, Mampe F, Del Rio Estrada PM, Torres-Ruiz F, González-Navarro M, Luna-Villalobos YA, Ávila-Ríos S, Reyes-Terán G, Tebas P, Montaner LJ, Bar KJ, Vella LA, Betts MR. Profound phenotypic and epigenetic heterogeneity of the HIV-1-infected CD4 + T cell reservoir. Nat Immunol 2023; 24:359-370. [PMID: 36536105 PMCID: PMC9892009 DOI: 10.1038/s41590-022-01371-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
Understanding the complexity of the long-lived HIV reservoir during antiretroviral therapy (ART) remains a considerable impediment in research towards a cure for HIV. To address this, we developed a single-cell strategy to precisely define the unperturbed peripheral blood HIV-infected memory CD4+ T cell reservoir from ART-treated people living with HIV (ART-PLWH) via the presence of integrated accessible proviral DNA in concert with epigenetic and cell surface protein profiling. We identified profound reservoir heterogeneity within and between ART-PLWH, characterized by new and known surface markers within total and individual memory CD4+ T cell subsets. We further uncovered new epigenetic profiles and transcription factor motifs enriched in HIV-infected cells that suggest infected cells with accessible provirus, irrespective of reservoir distribution, are poised for reactivation during ART treatment. Together, our findings reveal the extensive inter- and intrapersonal cellular heterogeneity of the HIV reservoir, and establish an initial multiomic atlas to develop targeted reservoir elimination strategies.
Collapse
Grants
- K08 AI136660 NIAID NIH HHS
- T32 AI007632 NIAID NIH HHS
- R21 AI172629 NIAID NIH HHS
- UM1 AI164570 NIAID NIH HHS
- P30 AI045008 NIAID NIH HHS
- R01 AI031338 NIAID NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- Support for this study was provided by the following NIH grants: U19-A1-149680-02 (MRB), P01-AI31338 (MRB, KJB), K08-AI136660 (LAV), T32-AI007632 (VW), P30-AI045008 (Penn Center for AIDS Research) (MRB, LAV, KJB, PT, LJM), UM-1AI164570 (BEAT-HIV Collaboratory) which is co-supported by the National Institute of Allergies and Infectious Diseases (NIAID), the National Institute of Mental Health (NIMH), the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute on Drug Abuse (NIDA), and the Robert I. Jacobs Fund of The Philadelphia Foundation (MRB, KJB, PT, LJM). LJM is also supported by the Herbert Kean, M.D., Family Professorship. CIENI-INER is supported by the Mexican Government (Programa Presupuestal P016; Anexo 13 del Decreto del Presupuesto de Egresos de la Federación).
- CIENI-INER is supported by the Mexican Government (Programa Presupuestal P016; Anexo 13 del Decreto del Presupuesto de Egresos de la Federación).
- LJM is also supported by the Herbert Kean, M.D., Family Professorship.
Collapse
Affiliation(s)
- Vincent H Wu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayme M L Nordin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaimy Joy
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felicity Mampe
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Perla M Del Rio Estrada
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Mauricio González-Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Yara Andrea Luna-Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud de México, Mexico City, Mexico
| | - Pablo Tebas
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luis J Montaner
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
- The Wistar Institute, Philadelphia, PA, USA
| | - Katharine J Bar
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura A Vella
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Chu C, Armenia D, Walworth C, Santoro MM, Shafer RW. Genotypic Resistance Testing of HIV-1 DNA in Peripheral Blood Mononuclear Cells. Clin Microbiol Rev 2022; 35:e0005222. [PMID: 36102816 PMCID: PMC9769561 DOI: 10.1128/cmr.00052-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HIV-1 DNA exists in nonintegrated linear and circular episomal forms and as integrated proviruses. In patients with plasma viremia, most peripheral blood mononuclear cell (PBMC) HIV-1 DNA consists of recently produced nonintegrated virus DNA while in patients with prolonged virological suppression (VS) on antiretroviral therapy (ART), most PBMC HIV-1 DNA consists of proviral DNA produced months to years earlier. Drug-resistance mutations (DRMs) in PBMCs are more likely to coexist with ancestral wild-type virus populations than they are in plasma, explaining why next-generation sequencing is particularly useful for the detection of PBMC-associated DRMs. In patients with ongoing high levels of active virus replication, the DRMs detected in PBMCs and in plasma are usually highly concordant. However, in patients with lower levels of virus replication, it may take several months for plasma virus DRMs to reach detectable levels in PBMCs. This time lag explains why, in patients with VS, PBMC genotypic resistance testing (GRT) is less sensitive than historical plasma virus GRT, if previous episodes of virological failure and emergent DRMs were either not prolonged or not associated with high levels of plasma viremia. Despite the increasing use of PBMC GRT in patients with VS, few studies have examined the predictive value of DRMs on the response to a simplified ART regimen. In this review, we summarize what is known about PBMC HIV-1 DNA dynamics, particularly in patients with suppressed plasma viremia, the methods used for PBMC HIV-1 GRT, and the scenarios in which PBMC GRT has been used clinically.
Collapse
Affiliation(s)
- Carolyn Chu
- Department of Family and Community Medicine, University of California San Francisco, San Francisco, California, USA
| | - Daniele Armenia
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Charles Walworth
- LabCorp-Monogram Biosciences, South San Francisco, California, USA
| | - Maria M. Santoro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
27
|
Tettamanti Boshier FA, Reeves DB, Duke ER, Swan DA, Prlic M, Cardozo-Ojeda EF, Schiffer JT. Substantial uneven proliferation of CD4 + T cells during recovery from acute HIV infection is sufficient to explain the observed expanded clones in the HIV reservoir. J Virus Erad 2022; 8:100091. [PMID: 36582473 PMCID: PMC9792356 DOI: 10.1016/j.jve.2022.100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 12/03/2022] Open
Abstract
The HIV reservoir is a population of 1-10 million anatomically dispersed, latently infected memory CD4+ T cells in which HIV DNA is quiescently integrated into human chromosomal DNA. When antiretroviral therapy (ART) is stopped and HIV replication initiates in one of these cells, systemic viral spread resumes, rekindling progression to AIDS. Therefore, HIV latency prevents cure. The detection of many populations of identical HIV sequences at unique integration sites implicates CD4+ T cell proliferation as the critical driver of reservoir sustainment after a prolonged period of effective ART. Initial reservoir formation occurs during the first week of primary infection usually before ART is started. While empirical data indicates that both de novo infection and cellular proliferation generate latently infected cells during early untreated infection, it is not known which of these mechanisms is predominant. We developed a mathematical model that recapitulates the profound depletion and brisk recovery of CD4+ T cells, reservoir creation, and viral load trajectory during primary HIV infection. We extended the model to stochastically simulate individual HIV reservoir clones. This model predicts the first detection of HIV infected clones approximately 5 weeks after infection as has recently been shown in vivo and suggests that substantial, uneven proliferation among clones during the recovery from CD4+ lymphopenia is the most plausible explanation for the observed clonal reservoir distribution during the first year of infection.
Collapse
Affiliation(s)
- Florencia A. Tettamanti Boshier
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA, 98122, USA
| | - Daniel B. Reeves
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA, 98122, USA
| | - Elizabeth R. Duke
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA, 98122, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - David A. Swan
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA, 98122, USA
| | - Martin Prlic
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA, 98122, USA
- Department of Global Health, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - E. Fabian Cardozo-Ojeda
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA, 98122, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA, 98122, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
- Clinical Research Division, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| |
Collapse
|
28
|
HIV proviral genetic diversity, compartmentalization and inferred dynamics in lung and blood during long-term suppressive antiretroviral therapy. PLoS Pathog 2022; 18:e1010613. [PMID: 36331974 PMCID: PMC9668181 DOI: 10.1371/journal.ppat.1010613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/16/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The lung is an understudied site of HIV persistence. We isolated 898 subgenomic proviral sequences (nef) by single-genome approaches from blood and lung from nine individuals on long-term suppressive antiretroviral therapy (ART), and characterized genetic diversity and compartmentalization using formal tests. Consistent with clonal expansion as a driver of HIV persistence, identical sequences comprised between 8% to 86% of within-host datasets, though their location (blood vs. lung) followed no consistent pattern. The majority (77%) of participants harboured at least one sequence shared across blood and lung, supporting the migration of clonally-expanded cells between sites. The extent of blood proviral diversity on ART was also a strong indicator of diversity in lung (Spearman's ρ = 0.98, p<0.0001). For three participants, insufficient lung sequences were recovered to reliably investigate genetic compartmentalization. Of the remainder, only two participants showed statistically significant support for compartmentalization when analysis was restricted to distinct proviruses per site, and the extent of compartmentalization was modest in both cases. When all within-host sequences (including duplicates) were considered, the number of compartmentalized datasets increased to four. Thus, while a subset of individuals harbour somewhat distinctive proviral populations in blood and lung, this can simply be due to unequal distributions of clonally-expanded sequences. For two participants, on-ART proviruses were also phylogenetically analyzed in context of plasma HIV RNA populations sampled up to 18 years prior, including pre-ART and during previous treatment interruptions. In both participants, on-ART proviruses represented the most ancestral sequences sampled within-host, confirming that HIV sequences can persist in the body for decades. This analysis also revealed evidence of re-seeding of the reservoir during treatment interruptions. Results highlight the genetic complexity of proviruses persisting in lung and blood during ART, and the uniqueness of each individual's proviral composition. Personalized HIV remission and cure strategies may be needed to overcome these challenges.
Collapse
|
29
|
Liu Z, Julius P, Kang G, West JT, Wood C. Subtype C HIV-1 reservoirs throughout the body in ART-suppressed individuals. JCI Insight 2022; 7:162604. [PMID: 36278485 PMCID: PMC9714794 DOI: 10.1172/jci.insight.162604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/31/2022] [Indexed: 01/13/2023] Open
Abstract
Subtype B HIV-1 reservoirs have been intensively investigated, but reservoirs in other subtypes and how they respond to antiretroviral therapy (ART) is substantially less established. To characterize subtype C HIV-1 reservoirs, we implemented postmortem frozen, as well as formalin fixed paraffin embedded (FFPE) tissue sampling of central nervous system (CNS) and peripheral tissues. HIV-1 LTR, gag, envelope (env) DNA and RNA was quantified using genomic DNA and RNA extracted from frozen tissues. RNAscope was used to localize subtype C HIV-1 DNA and RNA in FFPE tissue. Despite uniform viral load suppression in our cohort, PCR results showed that subtype C HIV-1 proviral copies vary both in magnitude and tissue distribution, with detection primarily in secondary lymphoid tissues. Interestingly, the appendix harbored proviruses in all subjects. Unlike subtype B, subtype C provirus was rarely detectable in the CNS, and there was no detectable HIV-1 RNA. HIV-1 RNA was detected in peripheral lymphoid tissues of 6 out of 8 ART-suppressed cases. In addition to active HIV-1 expression in lymphoid tissues, RNAscope revealed HIV RNA detection in CD4-expressing cells in the appendix, suggesting that this tissue was a previously unreported potential treatment-resistant reservoir for subtype C HIV-1.
Collapse
Affiliation(s)
- Zhou Liu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, USA
| | - Peter Julius
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Guobin Kang
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, USA
| | - John T. West
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, USA
| | - Charles Wood
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, USA
| |
Collapse
|
30
|
Lau CY, Adan MA, Earhart J, Seamon C, Nguyen T, Savramis A, Adams L, Zipparo ME, Madeen E, Huik K, Grossman Z, Chimukangara B, Wulan WN, Millo C, Nath A, Smith BR, Ortega-Villa AM, Proschan M, Wood BJ, Hammoud DA, Maldarelli F. Imaging and biopsy of HIV-infected individuals undergoing analytic treatment interruption. Front Med (Lausanne) 2022; 9:979756. [PMID: 36072945 PMCID: PMC9441850 DOI: 10.3389/fmed.2022.979756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background HIV persistence during antiretroviral therapy (ART) is the principal obstacle to cure. Lymphoid tissue is a compartment for HIV, but mechanisms of persistence during ART and viral rebound when ART is interrupted are inadequately understood. Metabolic activity in lymphoid tissue of patients on long-term ART is relatively low, and increases when ART is stopped. Increases in metabolic activity can be detected by 18F-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and may represent sites of HIV replication or immune activation in response to HIV replication. Methods FDG-PET imaging will be used to identify areas of high and low metabolic uptake in lymphoid tissue of individuals undergoing long-term ART. Baseline tissue samples will be collected. Participants will then be randomized 1:1 to continue or interrupt ART via analytic treatment interruption (ATI). Image-guided biopsy will be repeated 10 days after ATI initiation. After ART restart criteria are met, image-guided biopsy will be repeated once viral suppression is re-achieved. Participants who continued ART will have a second FDG-PET and biopsies 12–16 weeks after the first. Genetic characteristics of HIV populations in areas of high and low FDG uptake will be assesed. Optional assessments of non-lymphoid anatomic compartments may be performed to evaluate HIV populations in distinct anatomic compartments. Anticipated results We anticipate that PET standardized uptake values (SUV) will correlate with HIV viral RNA in biopsies of those regions and that lymph nodes with high SUV will have more viral RNA than those with low SUV within a patient. Individuals who undergo ATI are expected to have diverse viral populations upon viral rebound in lymphoid tissue. HIV populations in tissues may initially be phylogenetically diverse after ATI, with emergence of dominant viral species (clone) over time in plasma. Dominant viral species may represent the same HIV population seen before ATI. Discussion This study will allow us to explore utility of PET for identification of HIV infected cells and determine whether high FDG uptake respresents areas of HIV replication, immune activation or both. We will also characterize HIV infected cell populations in different anatomic locations. The protocol will represent a platform to investigate persistence and agents that may target HIV populations. Study protocol registration Identifier: NCT05419024.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Chuen-Yen Lau
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jessica Earhart
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Cassie Seamon
- Critical Care Medicine Department, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Thuy Nguyen
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Ariana Savramis
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lindsey Adams
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Mary-Elizabeth Zipparo
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Erin Madeen
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Kristi Huik
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Zehava Grossman
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Benjamin Chimukangara
- Critical Care Medicine Department, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Wahyu Nawang Wulan
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Corina Millo
- PET Department, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Avindra Nath
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Bryan R. Smith
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ana M. Ortega-Villa
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Michael Proschan
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Bradford J. Wood
- Interventional Radiology, Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dima A. Hammoud
- Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| |
Collapse
|
31
|
Guo S, Luke BT, Henry AR, Darko S, Brandt LD, Su L, Sun D, Wells D, Joseph KW, Demirov D, Halvas EK, Douek DC, Wu X, Mellors JW, Hughes SH. HIV infected CD4+ T cell clones are more stable than uninfected clones during long-term antiretroviral therapy. PLoS Pathog 2022; 18:e1010726. [PMID: 36044447 PMCID: PMC9432747 DOI: 10.1371/journal.ppat.1010726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/05/2022] [Indexed: 01/17/2023] Open
Abstract
Although combination antiretroviral therapy (ART) blocks HIV replication, it is not curative because infected CD4+ T cells that carry intact, infectious proviruses persist. Understanding the behavior of clones of infected T cells is important for understanding the stability of the reservoir; however, the stabilities of clones of infected T cells in persons on long-term ART are not well defined. We determined the relative stabilities of clones of infected and uninfected CD4+ T cells over time intervals of one to four years in three individuals who had been on ART for 9–19 years. The largest clones of uninfected T cells were larger than the largest clones of infected T cells. Clones of infected CD4+ T cells were more stable than clones of uninfected CD4+ T cells of a similar size. Individual clones of CD4+ T cells carrying intact, infectious proviruses can expand, contract, or remain stable over time. In HIV infected individuals, infected T cells can clonally expand and persist for many years, which is one of the primary reasons current anti-retroviral therapy (ART), which blocks viral replication, does not cure HIV infections. We compared the relative stabilities of clones of infected and uninfected T cells in three donors who had been on successful long-term ART for more than 9 years. The clones of infected T cells were much more stable than similar-sized clones of uninfected T cells. We were initially surprised by this result but, because ART blocks viral replication, we realized that all of the infected clones must be “old” and must have originated before ART was initiated. In contrast, the clones of uninfected cells would have included both old and new clones. In addition, we looked at the behavior of three clones (one in each donor) each of which carries an intact, replication-competent, provirus. The data show that even after more than 9 years, clones that carry replication-competent proviruses can either increase or decrease in size.
Collapse
Affiliation(s)
- Shuang Guo
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Brian T. Luke
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Amy R. Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda Maryland, United States of America
| | - Samuel Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda Maryland, United States of America
| | - Leah D. Brandt
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ling Su
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David Sun
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Daria Wells
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kevin W. Joseph
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dimiter Demirov
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Elias K. Halvas
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda Maryland, United States of America
| | - Xiaolin Wu
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - John W. Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
Baiyegunhi OO, Mann J, Khaba T, Nkosi T, Mbatha A, Ogunshola F, Chasara C, Ismail N, Ngubane T, Jajbhay I, Pansegrouw J, Dong KL, Walker BD, Ndung'u T, Ndhlovu ZM. CD8 lymphocytes mitigate HIV-1 persistence in lymph node follicular helper T cells during hyperacute-treated infection. Nat Commun 2022; 13:4041. [PMID: 35831418 PMCID: PMC9279299 DOI: 10.1038/s41467-022-31692-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
HIV persistence in tissue sites despite ART is a major barrier to HIV cure. Detailed studies of HIV-infected cells and immune responses in native lymph node tissue environment is critical for gaining insight into immune mechanisms impacting HIV persistence and clearance in tissue sanctuary sites. We compared HIV persistence and HIV-specific T cell responses in lymph node biopsies obtained from 14 individuals who initiated therapy in Fiebig stages I/II, 5 persons treated in Fiebig stages III-V and 17 late treated individuals who initiated ART in Fiebig VI and beyond. Using multicolor immunofluorescence staining and in situ hybridization, we detect HIV RNA and/or protein in 12 of 14 Fiebig I/II treated persons on suppressive therapy for 1 to 55 months, and in late treated persons with persistent antigens. CXCR3+ T follicular helper cells harbor the greatest amounts of gag mRNA transcripts. Notably, HIV-specific CD8+ T cells responses are associated with lower HIV antigen burden, suggesting that these responses may contribute to HIV suppression in lymph nodes during therapy. These results reveal HIV persistence despite the initiation of ART in hyperacute infection and highlight the contribution of virus-specific responses to HIV suppression in tissue sanctuaries during suppressive ART.
Collapse
Affiliation(s)
- Omolara O Baiyegunhi
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Trevor Khaba
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thandeka Nkosi
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Anele Mbatha
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Funsho Ogunshola
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | | | - Nasreen Ismail
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thandekile Ngubane
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | | | - Krista L Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Bruce D Walker
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
- Institute for Medical Sciences and Engineering and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Thumbi Ndung'u
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | - Zaza M Ndhlovu
- Africa Health Research Institute (AHRI), Durban, South Africa.
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
33
|
Kreider EF, Bar KJ. HIV-1 Reservoir Persistence and Decay: Implications for Cure Strategies. Curr HIV/AIDS Rep 2022; 19:194-206. [PMID: 35404007 PMCID: PMC10443186 DOI: 10.1007/s11904-022-00604-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), a viral reservoir persists in individuals living with HIV that can reignite systemic replication should treatment be interrupted. Understanding how HIV-1 persists through effective ART is essential to develop cure strategies to induce ART-free virus remission. RECENT FINDINGS The HIV-1 reservoir resides in a pool of CD4-expressing cells as a range of viral species, a subset of which is genetically intact. Recent studies suggest that the reservoir on ART is highly dynamic, with expansion and contraction of virus-infected cells over time. Overall, the intact proviral reservoir declines faster than defective viruses, suggesting enhanced immune clearance or cellular turnover. Upon treatment interruption, rebound viruses demonstrate escape from adaptive and innate immune responses, implicating these selective pressures in restriction of virus reactivation. Cure strategies employing immunotherapy are poised to test whether host immune pressure can be augmented to enhance reservoir suppression or clearance. Alternatively, genomic engineering approaches are being applied to directly eliminate intact viruses and shrink the replication-competent virus pool. New evidence suggests host immunity exerts selective pressure on reservoir viruses and clears HIV-1 infected cells over years on ART. Efforts to build on the detectable, but insufficient, reservoir clearance via empiric testing in clinical trials will inform our understanding of mechanisms of viral persistence and the direction of future cure strategies.
Collapse
Affiliation(s)
- Edward F Kreider
- Perelman School of Medicine, University of Pennsylvania, Stemmler Hall Room 130-150, 3450 Hamilton Walk, Philadelphia, PA, 19104-6073, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, 502D Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104‑0673, USA.
| |
Collapse
|
34
|
Extensive characterization of HIV-1 reservoirs reveals links to plasma viremia before and during analytical treatment interruption. Cell Rep 2022; 39:110739. [PMID: 35476994 PMCID: PMC9745684 DOI: 10.1016/j.celrep.2022.110739] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/01/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 reservoir is composed of cells harboring latent proviruses that have the potential to contribute to viremia upon antiretroviral treatment (ART) interruption. While this reservoir is known to be maintained by clonal expansion of infected cells, the contribution of these cell clones to residual viremia and viral rebound remains underexplored. Here, we conducted an extensive analysis on four ART-treated individuals who underwent an analytical treatment interruption (ATI), characterizing the proviral genomes and associated integration sites of large infected clones and phylogenetically linking these to plasma viremia. We show discrepancies between different assays in their ability to assess clonal expansion. Furthermore, we demonstrate that proviruses could phylogenetically be linked to plasma virus obtained before or during an ATI. This study highlights a role for HIV-infected cell clones in the maintenance of the replication-competent reservoir and suggests that infected cell clones can directly contribute to rebound viremia upon ATI.
Collapse
|
35
|
Rosen EP, Deleage C, White N, Sykes C, Brands C, Adamson L, Luciw P, Estes JD, Kashuba ADM. Antiretroviral drug exposure in lymph nodes is heterogeneous and drug dependent. J Int AIDS Soc 2022; 25:e25895. [PMID: 35441468 PMCID: PMC9018350 DOI: 10.1002/jia2.25895] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction HIV reservoirs and infected cells may persist in tissues with low concentrations of antiretrovirals (ARVs). Traditional pharmacology methods cannot assess variability in ARV concentrations within morphologically complex tissues, such as lymph nodes (LNs). We evaluated the distribution of six ARVs into LNs and the proximity of these ARVs to CD4+ T cells and cell‐associated RT‐SHIV viral RNA. Methods Between December 2014 and April 2017, RT‐SHIV infected (SHIV+; N = 6) and healthy (SHIV–; N = 6) male rhesus macaques received two selected four‐drug combinations of six ARVs over 10 days to attain steady‐state conditions. Serial cryosections of axillary LN were analysed by a multimodal imaging approach that combined mass spectrometry imaging (MSI) for ARV disposition, RNAscope in situ hybridization for viral RNA (vRNA) and immunohistochemistry for CD4+ T cell and collagen expression. Spatial relationships across these four imaging domains were investigated by nearest neighbour search on co‐registered images using MATLAB. Results Through MSI, ARV‐dependent, heterogeneous concentrations were observed in different morphological LN regions, such as the follicles and medullary sinuses. After 5–6 weeks of infection, more limited ARV penetration into LN tissue relative to the blood marker heme was found in SHIV+ animals (SHIV+: 0.7 [0.2–1.4] mm; SHIV–: 1.3 [0.5–1.7] mm), suggesting alterations in the microcirculation. However, we found no detectable increase in collagen deposition. Regimen‐wide maps of composite ARV distribution indicated that up to 27% of SHIV+ LN tissue area was not exposed to detectable ARVs. Regions associated with B cell follicles had median 1.15 [0.94–2.69] ‐fold reduction in areas with measurable drug, though differences were only statistically significant for tenofovir (p = 0.03). Median co‐localization of drug with CD4+ target cells and vRNA varied widely by ARV (5.1–100%), but nearest neighbour analysis indicated that up to 10% of target cells and cell‐associated vRNA were not directly contiguous to at least one drug at concentrations greater than the IC50 value. Conclusions Our investigation of the spatial distributions of drug, virus and target cells underscores the influence of location and microenvironment within LN, where a small population of T cells may remain vulnerable to infection and low‐level viral replication during suppressive ART.
Collapse
Affiliation(s)
- Elias P Rosen
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Nicole White
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Craig Sykes
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Catherine Brands
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Lourdes Adamson
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Paul Luciw
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Angela D M Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
36
|
Peluso MJ, Donatelli J, Henrich TJ. Long-term immunologic effects of SARS-CoV-2 infection: leveraging translational research methodology to address emerging questions. Transl Res 2022; 241:1-12. [PMID: 34780969 PMCID: PMC8588584 DOI: 10.1016/j.trsl.2021.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/01/2022]
Abstract
The current era of COVID-19 is characterized by emerging variants of concern, waning vaccine- and natural infection-induced immunity, debate over the timing and necessity of vaccine boosting, and the emergence of post-acute sequelae of SARS-CoV-2 infection. As a result, there is an ongoing need for research to promote understanding of the immunology of both natural infection and prevention, especially as SARS-CoV-2 immunology is a rapidly changing field, with new questions arising as the pandemic continues to grow in complexity. The next phase of COVID-19 immunology research will need focus on clearer characterization of the immune processes defining acute illness, development of a better understanding of the immunologic processes driving protracted symptoms and prolonged recovery (ie, post-acute sequelae of SARS-CoV-2 infection), and a growing focus on the impact of therapeutic and prophylactic interventions on the long-term consequences of SARS-CoV-2 infection. In this review, we address what is known about the long-term immune consequences of SARS-CoV-2 infection and propose how experience studying the translational immunology of other infections might inform the approach to some of the key questions that remain.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, California
| | - Joanna Donatelli
- Division Experimental Medicine, University of California, San Francisco, California
| | - Timothy J Henrich
- Division Experimental Medicine, University of California, San Francisco, California.
| |
Collapse
|
37
|
White JA, Simonetti FR, Beg S, McMyn NF, Dai W, Bachmann N, Lai J, Ford WC, Bunch C, Jones JL, Ribeiro RM, Perelson AS, Siliciano JD, Siliciano RF. Complex decay dynamics of HIV virions, intact and defective proviruses, and 2LTR circles following initiation of antiretroviral therapy. Proc Natl Acad Sci U S A 2022; 119:e2120326119. [PMID: 35110411 PMCID: PMC8833145 DOI: 10.1073/pnas.2120326119] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
In persons living with HIV-1 (PLWH) who start antiretroviral therapy (ART), plasma virus decays in a biphasic fashion to below the detection limit. The first phase reflects the short half-life (<1 d) of cells that produce most of the plasma virus. The second phase represents the slower turnover (t1/2 = 14 d) of another infected cell population, whose identity is unclear. Using the intact proviral DNA assay (IPDA) to distinguish intact and defective proviruses, we analyzed viral decay in 17 PLWH initiating ART. Circulating CD4+ T cells with intact proviruses include few of the rapidly decaying first-phase cells. Instead, this population initially decays more slowly (t1/2 = 12.9 d) in a process that largely represents death or exit from the circulation rather than transition to latency. This more protracted decay potentially allows for immune selection. After ∼3 mo, the decay slope changes, and CD4+ T cells with intact proviruses decay with a half-life of 19 mo, which is still shorter than that of the latently infected cells that persist on long-term ART. Two-long-terminal repeat (2LTR) circles decay with fast and slow phases paralleling intact proviruses, a finding that precludes their use as a simple marker of ongoing viral replication. Proviruses with defects at the 5' or 3' end of the genome show equivalent monophasic decay at rates that vary among individuals. Understanding these complex early decay processes is important for correct use of reservoir assays and may provide insights into properties of surviving cells that can constitute the stable latent reservoir.
Collapse
Affiliation(s)
- Jennifer A White
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Subul Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Natalie F McMyn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Weiwei Dai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Niklas Bachmann
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - William C Ford
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Christina Bunch
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Joyce L Jones
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ruy M Ribeiro
- Department of Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Alan S Perelson
- Department of Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- HHMI, Baltimore, MD 21205
| |
Collapse
|
38
|
Longitudinal clonal dynamics of HIV-1 latent reservoirs measured by combination quadruplex polymerase chain reaction and sequencing. Proc Natl Acad Sci U S A 2022; 119:2117630119. [PMID: 35042816 PMCID: PMC8794825 DOI: 10.1073/pnas.2117630119] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 01/26/2023] Open
Abstract
HIV-1 infection produces a long-lived reservoir of latently infected CD4+ T cells that represents the major barrier to HIV-1 cure. The reservoir contains both intact and defective proviruses, but only the proviruses that are intact can reinitiate infection upon cessation of antiretroviral therapy (ART). Here we combine four-color quantitative PCR and next-generation sequencing (Q4PCR) to distinguish intact and defective proviruses and measure reservoir content longitudinally in 12 infected individuals. Q4PCR differs from other PCR-based methods in that the amplified proviruses are sequence verified as intact or defective. Samples were collected systematically over the course of up to 10 y beginning shortly after the initiation of ART. The size of the defective reservoir was relatively stable with minimal decay during the 10-y observation period. In contrast, the intact proviral reservoir decayed with an estimated half-life of 4.9 y. Nevertheless, both intact and defective proviral reservoirs are dynamic. As a result, the fraction of intact proviruses found in expanded clones of CD4+ T cells increases over time with a concomitant decrease in overall reservoir complexity. Thus, reservoir decay measurements by Q4PCR are quantitatively similar to viral outgrowth assay (VOA) and intact proviral DNA PCR assay (IPDA) with the addition of sequence information that distinguishes intact and defective proviruses and informs reservoir dynamics. The data are consistent with the notion that intact and defective proviruses are under distinct selective pressure, and that the intact proviral reservoir is progressively enriched in expanded clones of CD4+ T cells resulting in diminishing complexity over time.
Collapse
|
39
|
New Approaches to Multi-Parametric HIV-1 Genetics Using Multiple Displacement Amplification: Determining the What, How, and Where of the HIV-1 Reservoir. Viruses 2021; 13:v13122475. [PMID: 34960744 PMCID: PMC8709494 DOI: 10.3390/v13122475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022] Open
Abstract
Development of potential HIV-1 curative interventions requires accurate characterization of the proviral reservoir, defined as host-integrated viral DNA genomes that drive rebound of viremia upon halting ART (antiretroviral therapy). Evaluation of such interventions necessitates methods capable of pinpointing the rare, genetically intact, replication-competent proviruses within a background of defective proviruses. This evaluation can be achieved by identifying the distinct integration sites of intact proviruses within host genomes and monitoring the dynamics of these proviruses and host cell lineages over longitudinal sampling. Until recently, molecular genetic approaches at the single proviral level have been generally limited to one of a few metrics, such as proviral genome sequence/intactness, host-proviral integration site, or replication competency. New approaches, taking advantage of MDA (multiple displacement amplification) for WGA (whole genome amplification), have enabled multiparametric proviral characterization at the single-genome level, including proviral genome sequence, host-proviral integration site, and phenotypic characterization of the host cell lineage, such as CD4 memory subset and antigen specificity. In this review, we will examine the workflow of MDA-augmented molecular genetic approaches to study the HIV-1 reservoir, highlighting technical advantages and flexibility. We focus on a collection of recent studies in which investigators have used these approaches to comprehensively characterize intact and defective proviruses from donors on ART, investigate mechanisms of elite control, and define cell lineage identity and antigen specificity of infected CD4+ T cell clones. The highlighted studies exemplify how these approaches and their future iterations will be key in defining the targets and evaluating the impacts of HIV curative interventions.
Collapse
|
40
|
Crespo-Bermejo C, de Arellano ER, Lara-Aguilar V, Valle-Millares D, Gómez-Lus ML, Madrid R, Martín-Carbonero L, Briz V. Persistent low-Level viremia in persons living with HIV undertreatment: An unresolved status. Virulence 2021; 12:2919-2931. [PMID: 34874239 PMCID: PMC8654475 DOI: 10.1080/21505594.2021.2004743] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antiretroviral therapy (ART) allows suppressed viremia to reach less than 50 copies/mL in most treated persons living with HIV (PLWH). However, the existence of PLWH that show events of persistent low-level viremia (pLLV) between 50 and 1000 copies/mL and with different virological consequences have been observed. PLLV has been associated with higher virological failure (VF), viral genotype resistance, adherence difficulties and AIDS events. Moreover, some reports show that pLLV status can lead to residual immune activation and inflammation, with an increased risk of immunovirological failure and a pro-inflammatory cytokine level which can lead to a higher occurrence of non-AIDS defining events (NADEs) and other adverse clinical outcomes. Until now, however, published data have shown controversial results that hinder understanding of the true cause(s) and origin(s) of this phenomenon. Molecular mechanisms related to viral reservoir size and clonal expansion have been suggested as the possible origin of pLLV. This review aims to assess recent findings to provide a global view of the role of pLLV in PLWH and the impact this status may cause on the clinical progression of these patients.
Collapse
Affiliation(s)
- Celia Crespo-Bermejo
- Laboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, Madrid, Spain
| | - Eva Ramírez de Arellano
- Laboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, Madrid, Spain
| | - Violeta Lara-Aguilar
- Laboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, Madrid, Spain
| | - Daniel Valle-Millares
- Laboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, Madrid, Spain
| | - Mª Luisa Gómez-Lus
- Departamento de Medicina- Área de Microbiología. Facultad de Medicina. Universidad Complutense, Madrid, Spain
| | - Ricardo Madrid
- Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain.,Department of Genetics, Physiology and Microbiology. Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Luz Martín-Carbonero
- Unidad de Vih. Servicio de Medicina Interna. Hospital Universitario La Paz. Instituto de Investigación Sanitaria Hospital de La Paz (Idipaz), Madrid, Spain
| | - Verónica Briz
- Laboratory of Reference and Research on Viral Hepatitis, National Center of Microbiology, Institute of Health Carlos Iii, Majadahonda, Madrid, Spain
| |
Collapse
|
41
|
Deeks SG, Archin N, Cannon P, Collins S, Jones RB, de Jong MAWP, Lambotte O, Lamplough R, Ndung'u T, Sugarman J, Tiemessen CT, Vandekerckhove L, Lewin SR. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nat Med 2021; 27:2085-2098. [PMID: 34848888 DOI: 10.1038/s41591-021-01590-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
Despite the success of antiretroviral therapy (ART) for people living with HIV, lifelong treatment is required and there is no cure. HIV can integrate in the host genome and persist for the life span of the infected cell. These latently infected cells are not recognized as foreign because they are largely transcriptionally silent, but contain replication-competent virus that drives resurgence of the infection once ART is stopped. With a combination of immune activators, neutralizing antibodies, and therapeutic vaccines, some nonhuman primate models have been cured, providing optimism for these approaches now being evaluated in human clinical trials. In vivo delivery of gene-editing tools to either target the virus, boost immunity or protect cells from infection, also holds promise for future HIV cure strategies. In this Review, we discuss advances related to HIV cure in the last 5 years, highlight remaining knowledge gaps and identify priority areas for research for the next 5 years.
Collapse
Affiliation(s)
- Steven G Deeks
- University of California San Francisco, San Fransisco, CA, USA.
| | - Nancie Archin
- UNC HIV Cure Center, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Paula Cannon
- University of Southern California, Los Angeles, CA, USA
| | | | - R Brad Jones
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Olivier Lambotte
- University Paris Saclay, AP-HP, Bicêtre Hospital, UMR1184 INSERM CEA, Le Kremlin Bicêtre, Paris, France
| | | | - Thumbi Ndung'u
- Africa Health Research Institute and University of KwaZulu-Natal, Durban, South Africa
- University College London, London, UK
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
| | - Jeremy Sugarman
- Berman Institute of Bioethics and Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Caroline T Tiemessen
- National Institute for Communicable Diseases and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Sharon R Lewin
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia.
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
42
|
Amin O, Powers J, Bricker KM, Chahroudi A. Understanding Viral and Immune Interplay During Vertical Transmission of HIV: Implications for Cure. Front Immunol 2021; 12:757400. [PMID: 34745130 PMCID: PMC8566974 DOI: 10.3389/fimmu.2021.757400] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the significant progress that has been made to eliminate vertical HIV infection, more than 150,000 children were infected with HIV in 2019, emphasizing the continued need for sustainable HIV treatment strategies and ideally a cure for children. Mother-to-child-transmission (MTCT) remains the most important route of pediatric HIV acquisition and, in absence of prevention measures, transmission rates range from 15% to 45% via three distinct routes: in utero, intrapartum, and in the postnatal period through breastfeeding. The exact mechanisms and biological basis of these different routes of transmission are not yet fully understood. Some infants escape infection despite significant virus exposure, while others do not, suggesting possible maternal or fetal immune protective factors including the presence of HIV-specific antibodies. Here we summarize the unique aspects of HIV MTCT including the immunopathogenesis of the different routes of transmission, and how transmission in the antenatal or postnatal periods may affect early life immune responses and HIV persistence. A more refined understanding of the complex interaction between viral, maternal, and fetal/infant factors may enhance the pursuit of strategies to achieve an HIV cure for pediatric populations.
Collapse
Affiliation(s)
- Omayma Amin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Jenna Powers
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine M. Bricker
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| |
Collapse
|
43
|
Coffin JM, Hughes SH. Clonal Expansion of Infected CD4+ T Cells in People Living with HIV. Viruses 2021; 13:v13102078. [PMID: 34696507 PMCID: PMC8537114 DOI: 10.3390/v13102078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/16/2023] Open
Abstract
HIV infection is not curable with current antiretroviral therapy (ART) because a small fraction of CD4+ T cells infected prior to ART initiation persists. Understanding the nature of this latent reservoir and how it is created is essential to development of potentially curative strategies. The discovery that a large fraction of the persistently infected cells in individuals on suppressive ART are members of large clones greatly changed our view of the reservoir and how it arises. Rather than being the products of infection of resting cells, as was once thought, HIV persistence is largely or entirely a consequence of infection of cells that are either expanding or are destined to expand, primarily due to antigen-driven activation. Although most of the clones carry defective proviruses, some carry intact infectious proviruses; these clones comprise the majority of the reservoir. A large majority of both the defective and the intact infectious proviruses in clones of infected cells are transcriptionally silent; however, a small fraction expresses a few copies of unspliced HIV RNA. A much smaller fraction is responsible for production of low levels of infectious virus, which can rekindle infection when ART is stopped. Further understanding of the reservoir will be needed to clarify the mechanism(s) by which provirus expression is controlled in the clones of cells that constitute the reservoir.
Collapse
Affiliation(s)
- John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA;
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, National Cancer Institute in Frederick, Frederick, MD 21702, USA
- Correspondence:
| |
Collapse
|
44
|
Yeh YHJ, Yang K, Razmi A, Ho YC. The Clonal Expansion Dynamics of the HIV-1 Reservoir: Mechanisms of Integration Site-Dependent Proliferation and HIV-1 Persistence. Viruses 2021; 13:1858. [PMID: 34578439 PMCID: PMC8473165 DOI: 10.3390/v13091858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
More than 50% of the HIV-1 latent reservoir is maintained by clonal expansion. The clonally expanded HIV-1-infected cells can contribute to persistent nonsuppressible low-level viremia and viral rebound. HIV-1 integration site and proviral genome landscape profiling reveals the clonal expansion dynamics of HIV-1-infected cells. In individuals under long-term suppressive antiretroviral therapy (ART), HIV-1 integration sites are enriched in specific locations in certain cancer-related genes in the same orientation as the host transcription unit. Single-cell transcriptome analysis revealed that HIV-1 drives aberrant cancer-related gene expression through HIV-1-to-host RNA splicing. Furthermore, the HIV-1 promoter dominates over the host gene promoter and drives high levels of cancer-related gene expression. When HIV-1 integrates into cancer-related genes and causes gain of function of oncogenes or loss of function of tumor suppressor genes, HIV-1 insertional mutagenesis drives the proliferation of HIV-1-infected cells and may cause cancer in rare cases. HIV-1-driven aberrant cancer-related gene expression at the integration site can be suppressed by CRISPR-mediated inhibition of the HIV-1 promoter or by HIV-1 suppressing agents. Given that ART does not suppress HIV-1 promoter activity, therapeutic agents that suppress HIV-1 transcription and halt the clonal expansion of HIV-1-infected cells should be explored to block the clonal expansion of the HIV-1 latent reservoir.
Collapse
Affiliation(s)
| | | | | | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA; (Y.-H.J.Y.); (K.Y.); (A.R.)
| |
Collapse
|
45
|
Simonetti FR, Zhang H, Soroosh GP, Duan J, Rhodehouse K, Hill AL, Beg SA, McCormick K, Raymond HE, Nobles CL, Everett JK, Kwon KJ, White JA, Lai J, Margolick JB, Hoh R, Deeks SG, Bushman FD, Siliciano JD, Siliciano RF. Antigen-driven clonal selection shapes the persistence of HIV-1-infected CD4+ T cells in vivo. J Clin Invest 2021; 131:145254. [PMID: 33301425 DOI: 10.1172/jci145254] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Clonal expansion of infected CD4+ T cells is a major mechanism of HIV-1 persistence and a barrier to achieving a cure. Potential causes are homeostatic proliferation, effects of HIV-1 integration, and interaction with antigens. Here, we show that it is possible to link antigen responsiveness, the full proviral sequence, the integration site, and the T cell receptor β-chain (TCRβ) sequence to examine the role of recurrent antigenic exposure in maintaining the HIV-1 reservoir. We isolated CMV- and Gag-responding CD4+ T cells from 10 treated individuals. Proviral populations in CMV-responding cells were dominated by large clones, including clones harboring replication-competent proviruses. TCRβ repertoires showed high clonality driven by converging adaptive responses. Although some proviruses were in genes linked to HIV-1 persistence (BACH2, STAT5B, MKL1), the proliferation of infected cells under antigenic stimulation occurred regardless of the site of integration. Paired TCRβ and integration site analysis showed that infection could occur early or late in the course of a clone's response to antigen and could generate infected cell populations too large to be explained solely by homeostatic proliferation. Together, these findings implicate antigen-driven clonal selection as a major factor in HIV-1 persistence, a finding that will be a difficult challenge to eradication efforts.
Collapse
Affiliation(s)
- Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Garshasb P Soroosh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiayi Duan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyle Rhodehouse
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alison L Hill
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Subul A Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin McCormick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hayley E Raymond
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christopher L Nobles
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer A White
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, California, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, California, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Siliciano JD, Siliciano RF. Low Inducibility of Latent Human Immunodeficiency Virus Type 1 Proviruses as a Major Barrier to Cure. J Infect Dis 2021; 223:13-21. [PMID: 33586775 DOI: 10.1093/infdis/jiaa649] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The latent reservoir for human immunodeficiency virus type 1 (HIV-1) in resting CD4+ T cells is a major barrier to cure. The dimensions of the reservoir problem can be defined with 2 assays. A definitive minimal estimate of the frequency of latently infected cells is provided by the quantitative viral outgrowth assay (QVOA), which detects cells that can be induced by T-cell activation to release infectious virus. In contrast, the intact proviral DNA assay (IPDA) detects all genetically intact proviruses and provides a more accurate upper limit on reservoir size than standard single-amplicon polymerase chain reaction assays which mainly detect defective proviruses. The frequency of cells capable of initiating viral rebound on interruption of antiretroviral therapy lies between the values produced by the QVOA and the IPDA. We argue here that the 1-2-log difference between QVOA and IPDA values in part reflects that the fact that many replication-competent proviruses are not readily induced by T-cell activation. Findings of earlier studies suggest that latently infected cells can be activated to proliferate in vivo without expressing viral genes. The proliferating cells nevertheless retain the ability to produce virus on subsequent stimulation. The low inducibility of latent proviruses is a major problem for the shock-and-kill strategy for curing HIV-1 infection, which uses latency-reversing agents to induce viral gene expression and render infected cells susceptible to immune clearance. The latency-reversing agents developed to date are much less effective at reversing latency than T-cell activation. Taken together, these results indicate that HIV-1 eradication will require the discovery of much more effective ways to induce viral gene expression.
Collapse
Affiliation(s)
- Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Harwood O, O’Connor S. Therapeutic Potential of IL-15 and N-803 in HIV/SIV Infection. Viruses 2021; 13:1750. [PMID: 34578331 PMCID: PMC8473246 DOI: 10.3390/v13091750] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
IL-15, a proinflammatory cytokine critical for the generation, maintenance, and homeostasis of T cell responses, is produced naturally in response to HIV/SIV infection, but has also demonstrated therapeutic potential. IL-15 can boost CD4+ and CD8+ T cell and NK cell proliferation, activation, and function. However, IL-15 treatment may cause aberrant immune activation and accelerated disease progression in certain circumstances. Moreover, the relationship between the timing of IL-15 administration and disease progression remains unclear. The IL-15 superagonist N-803 was developed to expand the therapeutic potential of IL-15 by maximizing its tissue distribution and half-life. N-803 has garnered enthusiasm recently as a way to enhance the innate and cellular immune responses to HIV/SIV by improving CD8+ T cell recognition and killing of virus-infected cells and directing immune cells to mucosal sites and lymph nodes, the primary sites of virus replication. N-803 has also been evaluated in "shock and kill" strategies due to its potential to reverse latency (shock) and enhance antiviral immunity (kill). This review examines the current literature about the effects of IL-15 and N-803 on innate and cellular immunity, viral burden, and latency reversal in the context of HIV/SIV, and their therapeutic potential both alone and combined with additional interventions such as antiretroviral therapy (ART) and vaccination.
Collapse
Affiliation(s)
| | - Shelby O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA;
| |
Collapse
|
48
|
The active human immunodeficiency virus reservoir during antiretroviral therapy: emerging players in viral persistence. Curr Opin HIV AIDS 2021; 16:193-199. [PMID: 33973900 DOI: 10.1097/coh.0000000000000685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To discuss the role of CD4+ T cells with active Human immunodeficiency virus (HIV), meaning infected cells with transcriptional and/or translational viral activity during antiretroviral therapy (ART), focusing on new technologies for its detection, potential cell markers for its characterization, and evidences on the contribution of the active HIV reservoir to long-term viral persistence. RECENT FINDINGS HIV-infected cells expressing viral ribonucleic acid are systematically detected in subjects on long-term ART. In recent years, powerful new tools have provided significant insights into the nature, quantification, and identification of cells with active HIV, including the identification of new cell markers, and the presence of viral activity in specific cell populations located in different cellular and anatomical compartments. Moreover, studies on viral sequence integrity have identified cell clones with intact viral genomes and active viral transcription that could potentially persist for years. Together, new investigations support the notion that the active reservoir could represent a relevant fraction of long-term infected cells, and therefore, the study of its cell sources and mechanisms of maintenance could represent a significant advance in our understanding of viral persistence and the development of new curative strategies. SUMMARY The presence of HIV-infected cells with viral expression during ART has been traditionally overlooked for years. Based on recent investigations, this active viral reservoir could play an important role in HIV persistence.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW HIV persists in distinct cellular and anatomical compartments in the body including blood, Central nervous system, and lymphoid tissues (spleen, lymph nodes [LNs], gut-associated lymphoid tissue) by diverse mechanisms despite antiretroviral therapy. Within LNs, human and animal studies have highlighted that a specific CD4 T cell subset - called T follicular helper cells locating in B cell follicles is enriched in cells containing replication-competent HIV as compared to extra-follicular CD4 T cells. Therefore, the objective of the present review is to focus on the potential mechanisms allowing HIV to persist within LN microenvironment. RECENT FINDINGS The combination of factors that might be involved in the regulation of HIV persistence within LNs remain to be fully identified but may include - the level of activation, antiretroviral drug concentrations, presence of cytolytic mechanisms and/or regulatory cells, in addition to cell survival and proliferation propensity which would ultimately determine the fate of HIV-infected cells within LN tissue areas. SUMMARY HIV persistence in blood and distinct body compartments despite long-standing and potent therapy is one of the major barriers to a cure. Given that the HIV reservoir is established early and is highly complex based on composition, viral diversity, distribution, replication competence, migration dynamics across the human body and possible compartmentalization in specific tissues, combinatorial therapeutic approaches are needed that may synergize to target multiple viral reservoirs to achieve a cure for HIV infection.
Collapse
Affiliation(s)
- Riddhima Banga
- Divisions of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
50
|
Ensoli B, Moretti S, Borsetti A, Maggiorella MT, Buttò S, Picconi O, Tripiciano A, Sgadari C, Monini P, Cafaro A. New insights into pathogenesis point to HIV-1 Tat as a key vaccine target. Arch Virol 2021; 166:2955-2974. [PMID: 34390393 PMCID: PMC8363864 DOI: 10.1007/s00705-021-05158-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
Despite over 30 years of enormous effort and progress in the field, no preventative and/or therapeutic vaccines against human immunodeficiency virus (HIV) are available. Here, we briefly summarize the vaccine strategies and vaccine candidates that in recent years advanced to efficacy trials with mostly unsatisfactory results. Next, we discuss a novel and somewhat contrarian approach based on biological and epidemiological evidence, which led us to choose the HIV protein Tat for the development of preventive and therapeutic HIV vaccines. Toward this goal, we review here the role of Tat in the virus life cycle as well as experimental and epidemiological evidence supporting its key role in the natural history of HIV infection and comorbidities. We then discuss the preclinical and clinical development of a Tat therapeutic vaccine, which, by improving the functionality and homeostasis of the immune system and by reducing the viral reservoir in virologically suppressed vaccinees, helps to establish key determinants for intensification of combination antiretroviral therapy (cART) and a functional cure. Future developments and potential applications of the Tat therapeutic vaccine are also discussed, as well as the rationale for its use in preventative strategies. We hope this contribution will lead to a reconsideration of the current paradigms for the development of HIV/AIDS vaccines, with a focus on targeting of viral proteins with key roles in HIV pathogenesis.
Collapse
Affiliation(s)
- Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Teresa Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|