1
|
Gu SX, Butt A, Schulz VP, Rinder HM, Lee AI, Gallagher PG, Hwa J, Bona RD. Phenotypic and genotypic evaluation of bleeding diagnostic dilemmas: Two case studies. Blood Cells Mol Dis 2024; 110:102893. [PMID: 39260211 DOI: 10.1016/j.bcmd.2024.102893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Inherited platelet disorders (IPDs) are a heterogeneous group of conditions that present significant challenges in diagnosis and management. Here, we report two cases of patients presenting with clinically significant bleeding but with unclear etiologies by conventional clinical laboratory testing. Further evaluation, utilizing a combination of high-dimensional multiplexed mass cytometry and genetic sequencing, revealed the underlying causes of bleeding in both cases, leading to definitive diagnoses. These cases underscore the potential utility of combined multimodal approaches in evaluating patients with bleeding disorders. Moreover, these high-parameter methods can offer substantial mechanistic insights and can enhance our understanding of the molecular pathogenesis of IPDs. Future studies involving larger patient cohorts are needed to further validate this strategy, directly comparing its diagnostic yield and accuracy with current clinical laboratory testing approaches, which can ultimately improve patient care.
Collapse
Affiliation(s)
- Sean X Gu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States of America
| | - Ayesha Butt
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America
| | - Vincent P Schulz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States of America
| | - Henry M Rinder
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States of America; Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America
| | - Alfred I Lee
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America
| | - Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States of America; Nationwide Children's Hospital, Department of Pediatrics, Ohio State University, Columbus, OH, United States of America
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America; Yale Cooperative Center of Excellence in Hematology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Robert D Bona
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America.
| |
Collapse
|
2
|
Wang L, Zeng W, Qian Y, Sun Y, Chen M, Liu B, Hu J, Yu P, Dong M. Synonymous variant at the terminal nucleotide in exon 3 of F7 causes abnormal splicing: A case report. Mol Genet Genomic Med 2024; 12:e2492. [PMID: 39007454 PMCID: PMC11247393 DOI: 10.1002/mgg3.2492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Synonymous variants are non-pathogenic due to non-substitution of amino acids. However, synonymous exonic terminal nucleotide substitutions may affect splicing. Splicing variants are easily analyzed at RNA level for genes expressed in blood cells. Minigene analysis provides another method for splicing variant analysis of genes that are poorly or not expressed in peripheral blood. METHODS Whole exome sequencing was performed to screen for potential pathogenic mutations in the proband, which were validated within the family by Sanger sequencing. The pathogenicity of the synonymous mutation was analyzed using the minigene technology. RESULTS The proband harbored the compound heterogeneous variants c. [291G >A; 572-50C >T] and c.681 + 1G >T in F7, of which the synonymous variant c.291G >A was located at the terminal position of exon 3. Minigene analysis revealed exon3 skipping due to this mutation, which may have subsequently affected protein sequence, structure, and function. CONCLUSION Our finding confirmed the pathogenicity of c.291G >A, thus extending the pathogenic mutation spectrum of F7, and providing insights for effective reproductive counseling.
Collapse
Affiliation(s)
- Liya Wang
- Department of Reproductive GeneticsWomen's Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang UniversityHangzhouChina
| | - Wenshan Zeng
- Department of Reproductive GeneticsWomen's Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang UniversityHangzhouChina
| | - Yeqing Qian
- Department of Reproductive GeneticsWomen's Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang UniversityHangzhouChina
| | - Yixi Sun
- Department of Reproductive GeneticsWomen's Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang UniversityHangzhouChina
| | - Min Chen
- Department of Reproductive GeneticsWomen's Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang UniversityHangzhouChina
| | - Bei Liu
- Department of Reproductive GeneticsWomen's Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang UniversityHangzhouChina
| | - Junjie Hu
- Department of Reproductive GeneticsWomen's Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang UniversityHangzhouChina
| | - Ping Yu
- Hangzhou Inogene Clinical LaboratoriesHangzhouChina
| | - Minyue Dong
- Department of Reproductive GeneticsWomen's Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang UniversityHangzhouChina
| |
Collapse
|
3
|
Chueh HW, Shim YJ, Jung HL, Kim N, Hwang SM, Kim M, Choi HS. Current Status of Molecular Diagnosis of Hereditary Hemolytic Anemia in Korea. J Korean Med Sci 2024; 39:e162. [PMID: 38742293 PMCID: PMC11091231 DOI: 10.3346/jkms.2024.39.e162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Hereditary hemolytic anemia (HHA) is considered a group of rare hematological diseases in Korea, primarily because of its unique ethnic characteristics and diagnostic challenges. Recently, the prevalence of HHA has increased in Korea, reflecting the increasing number of international marriages and increased awareness of the disease. In particular, the diagnosis of red blood cell (RBC) enzymopathy experienced a resurgence, given the advances in diagnostic techniques. In 2007, the RBC Disorder Working Party of the Korean Society of Hematology developed the Korean Standard Operating Procedure for the Diagnosis of Hereditary Hemolytic Anemia, which has been continuously updated since then. The latest Korean clinical practice guidelines for diagnosing HHA recommends performing next-generation sequencing as a preliminary step before analyzing RBC membrane proteins and enzymes. Recent breakthroughs in molecular genetic testing methods, particularly next-generation sequencing, are proving critical in identifying and providing insight into cases of HHA with previously unknown diagnoses. These innovative molecular genetic testing methods have now become important tools for the management and care planning of patients with HHA. This review aims to provide a comprehensive overview of recent advances in molecular genetic testing for the diagnosis of HHA, with particular emphasis on the Korean context.
Collapse
Affiliation(s)
- Hee Won Chueh
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Ye Jee Shim
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Hye Lim Jung
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Namhee Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Hyoung Soo Choi
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
4
|
Zhang J, Wang X, Peng Y, Wei J, Luo Y, Luan F, Li H, Zhou Y, Wang C, Yu K. Combined metabolomic and proteomic analysis of sepsis related acute liver injury and its pathogenesis research. Int Immunopharmacol 2024; 130:111666. [PMID: 38412671 DOI: 10.1016/j.intimp.2024.111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Sepsis-induced acute liver injury is common in patients in intensive care units. However, the exact mechanism of this condition remains unclear. The purpose of this study was to investigate the roles and mechanisms of proteins and metabolites in the liver tissue of mice after sepsis and elucidate the molecular biological mechanisms of sepsis-related liver injury. METHODS First, a lipopolysaccharide (LPS)-induced sepsis mouse model was established. Then, according to alanine aminotransferase (ALT) and aspartate aminotransferase (AST) detection in mouse serum and liver histopathological examination (HE) staining, the septic mice were divided into two groups: acute liver injury after sepsis and nonacute liver injury after sepsis. Metabolomics and proteomic analyses were performed on the liver tissues of the two groups of mice to identify significantly different metabolites and proteins. The metabolomics and proteomics results were further analysed to identify the biological indicators and pathogenesis related to the occurrence and development of sepsis-related acute liver injury at the protein and metabolite levels. RESULTS A total of 14 differentially expressed proteins and 46 differentially expressed metabolites were identified. Recombinant Erythrocyte Membrane Protein Band 4.2 (Epb42) and adenosine diphosphate (ADP) may be the key proteins and metabolites responsible for sepsis-related acute liver injury, according to the correlation analysis of proteomics and metabolomics. The expression of the differential protein Epb42 was further verified by western blot (WB) detection. CONCLUSIONS Our study suggests that the differential protein Epb42 may be key proteins causing sepsis-associated acute liver injury, providing new and valuable information on the possible mechanism of sepsis-associated acute liver injury.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China; Department of Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 1 Jiaozhou Road, Shibei District, Qingdao 266011, Shandong, China
| | - Xibo Wang
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Yahui Peng
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Jieling Wei
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Yinghao Luo
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Feiyu Luan
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Hongxu Li
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Yang Zhou
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Changsong Wang
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China.
| | - Kaijiang Yu
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
5
|
Kager L, Jimenez‐Heredia R, Zeitlhofer P, Novak W, Eder SK, Segarra‐Roca A, Frohne A, Nebral K, Haimel M, Geyeregger R, Roetzer‐Londgin K, Haas OA, Boztug K. A single-center cohort study of patients with hereditary spherocytosis in Central Europe reveals a high frequency of novel disease-causing genotypes. Hemasphere 2024; 8:e31. [PMID: 38434532 PMCID: PMC10878193 DOI: 10.1002/hem3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/22/2023] [Indexed: 03/05/2024] Open
Affiliation(s)
- Leo Kager
- St. Anna Children's HospitalMedical University of ViennaViennaAustria
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Raúl Jimenez‐Heredia
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | | | - Wolfgang Novak
- St. Anna Children's HospitalMedical University of ViennaViennaAustria
| | - Sebastian K. Eder
- St. Anna Children's HospitalMedical University of ViennaViennaAustria
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Anna Segarra‐Roca
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
| | - Alexandra Frohne
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
| | | | - Matthias Haimel
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - René Geyeregger
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Katharina Roetzer‐Londgin
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- Labdia LabordiagnostikViennaAustria
| | - Oskar A. Haas
- St. Anna Children's HospitalMedical University of ViennaViennaAustria
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- Labdia LabordiagnostikViennaAustria
| | - Kaan Boztug
- St. Anna Children's HospitalMedical University of ViennaViennaAustria
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
6
|
Ahmed T, Ramonett A, Kwak EA, Kumar S, Flores PC, Ortiz HR, Langlais PR, Hund TJ, Mythreye K, Lee NY. Endothelial tip/stalk cell selection requires BMP9-induced β IV-spectrin expression during sprouting angiogenesis. Mol Biol Cell 2023; 34:ar72. [PMID: 37126382 PMCID: PMC10295478 DOI: 10.1091/mbc.e23-02-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023] Open
Abstract
βIV-Spectrin is a membrane cytoskeletal protein with specialized roles in the nervous system and heart. Recent evidence also indicates a fundamental role for βIV-spectrin in angiogenesis as its endothelial-specific gene deletion in mice enhances embryonic lethality due to hypervascularization and hemorrhagic defects. During early vascular sprouting, βIV-spectrin is believed to inhibit tip cell sprouting in favor of the stalk cell phenotype by mediating VEGFR2 internalization and degradation. Despite these essential roles, mechanisms governing βIV-spectrin expression remain unknown. Here we identify bone morphogenetic protein 9 (BMP9) as a major inducer of βIV-spectrin gene expression in the vascular system. We show that BMP9 signals through the ALK1/Smad1 pathway to induce βIV-spectrin expression, which then recruits CaMKII to the cell membrane to induce phosphorylation-dependent VEGFR2 turnover. Although BMP9 signaling promotes stalk cell behavior through activation of hallmark stalk cell genes ID-1/3 and Hes-1 and Notch signaling cross-talk, we find that βIV-spectrin acts upstream of these pathways as loss of βIV-spectrin in neonate mice leads to retinal hypervascularization due to excessive VEGFR2 levels, increased tip cell populations, and strong Notch inhibition irrespective of BMP9 treatment. These findings demonstrate βIV-spectrin as a BMP9 gene target critical for tip/stalk cell selection during nascent vessel sprouting.
Collapse
Affiliation(s)
- Tasmia Ahmed
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724
| | - Aaron Ramonett
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | - Eun-A Kwak
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research, Tirupati 517507, India
| | - Paola Cruz Flores
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724
| | - Hannah R. Ortiz
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | | | - Thomas J. Hund
- Department of Biomedical Engineering, Ohio State University, Columbus, OH 43210
| | - Karthikeyan Mythreye
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Nam Y. Lee
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
- Comprehensive Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
7
|
Abstract
The World Health Organization estimates that approximately a quarter of the world's population suffers from anemia, including almost half of preschool-age children. Globally, iron deficiency anemia is the most common cause of anemia. Other important causes of anemia in children are hemoglobinopathies, infection, and other chronic diseases. Anemia is associated with increased morbidity, including neurologic complications, increased risk of low birth weight, infection, and heart failure, as well as increased mortality. When approaching a child with anemia, detailed historical information, particularly diet, environmental exposures, and family history, often yield important clues to the diagnosis. Dysmorphic features on physical examination may indicate syndromic causes of anemia. Diagnostic testing involves a stepwise approach utilizing various laboratory techniques. The increasing availability of genetic testing is providing new mechanistic insights into inherited anemias and allowing diagnosis in many previously undiagnosed cases. Population-based approaches are being taken to address nutritional anemias. Novel pharmacologic agents and advances in gene therapy-based therapeutics have the potential to ameliorate anemia-associated disease and provide treatment strategies even in the most difficult and complex cases.
Collapse
Affiliation(s)
- Patrick G Gallagher
- Departments of Pediatrics, Pathology, and Genetics, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
8
|
Roy NBA, Da Costa L, Russo R, Bianchi P, Mañú-Pereira MDM, Fermo E, Andolfo I, Clark B, Proven M, Sanchez M, van Wijk R, van der Zwaag B, Layton M, Rees D, Iolascon A. The use of next-generation sequencing in the diagnosis of rare inherited anaemias: A Joint BSH/EHA Good Practice Paper. Br J Haematol 2022; 198:459-477. [PMID: 35661144 DOI: 10.1111/bjh.18191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/27/2022]
Affiliation(s)
- Noémi B A Roy
- Department of Haematology, Oxford University Hospitals, NHS Foundation Trust, Oxford, UK.,NIHR BRC Blood Theme, Oxford, UK
| | | | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Paola Bianchi
- UOS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | | | - Elisa Fermo
- UOS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | | | - Melanie Proven
- Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mayka Sanchez
- Department of Basic Sciences, Iron metabolism: Regulation and Diseases, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,BloodGenetics S.L. Diagnostics in Inherited Blood Diseases, Barcelona, Spain
| | - Richard van Wijk
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bert van der Zwaag
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mark Layton
- Imperial College London, Hammersmith Hospital, London, UK
| | - David Rees
- King's College Hospital, King's College London, UK
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | | |
Collapse
|
9
|
The Use of Next-generation Sequencing in the Diagnosis of Rare Inherited Anaemias: A Joint BSH/EHA Good Practice Paper. Hemasphere 2022; 6:e739. [PMID: 35686139 PMCID: PMC9170004 DOI: 10.1097/hs9.0000000000000739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Herrera-Tirado IM, Espinoza-Mata LL, Rizo-delaTorre LDC, Becerra-Solano LE, Ibarra-Cortés B, Perea-Díaz FJ. Effects of SPTA1 Gene Variants on the Hematological Phenotype of Mexican Patients with Hereditary Spherocytosis. Genet Test Mol Biomarkers 2022; 26:270-276. [PMID: 35638908 DOI: 10.1089/gtmb.2021.0264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Hereditary spherocytosis (HS) is a common hereditary hemolytic anemia characterized by chronic hemolysis, increased indirect serum bilirubin, the presence of reticulocytes and spherocytes in blood smears, and great heterogeneity at the clinical, biochemical, and molecular levels. The molecular pathology of HS includes genetic variants at five genes: ANK1, EPB42, SLC4A1, SPTA1, and SPTB. Alpha spectrin (SPTA1) deficiency is the second leading cause of HS in Mexican patients. Aim: To assess the effects of five SPTA1 variants on the hematological phenotype of Mexican patients with HS. Materials and Methods: This study included a retrospective cohort of 227 biologically unrelated patients with HS. Variants c.4339-99C>T and c.6531-12C>T in SPTA1 were identified by the amplification-refractory mutation system polymerase chain reaction (ARMS-PCR), and variants c.5572C>T, c.5992C>G, and c.6794T>C were identified by quantitive Real Time-Polymerase Chain Reaction (qRT-PCR) allelic discrimination. Risk tests were performed for each variant with respect to HS clinical severity. Results: The SPTA1 c.5992C>G variant showed association with moderately severe HS (p = 0.006, odds ratio = 5.67, confidence interval95% = 1.6-19.9); the risk increased when the variant was in compound heterozygosity with αLELY and c.6794T>C. Lower hematological levels were observed in simple αLely (c.5572C>T and c.6531-12C>T), and c.5992C>G heterozygotes (red blood cell [RBC] p = 0.028 and 0.010; hemoglobin [Hb] p = 0.030 and 0.002; packed cell volume [PCV] p = 0.034 and 0.002 respectively), and in c.5992C>G+c.6794T>C compound heterozygotes (RBC p = 0.043; Hb p = 0.033; PCV p = 0.043). Additional genetic traits were observed: 15% had HS+Gilbert syndrome and 13% HS+thalassemia. Conclusion: Although most of the studied variants are considered benign, we observed significant associations with phenotypic severity. Therefore, we recommend the inclusion of these variants in molecular screening for HS.
Collapse
Affiliation(s)
- Isis Mariela Herrera-Tirado
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Laura Lucia Espinoza-Mata
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Lourdes Del Carmen Rizo-delaTorre
- División de Medicina Molecular, Centro de Investigación Biomódica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Luis Eduardo Becerra-Solano
- Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| | - Bertha Ibarra-Cortés
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
- Instituto de Genética Humana "Dr. Enrique Corona Rivera," Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Francisco Javier Perea-Díaz
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
11
|
Keup C, Kimmig R, Kasimir-Bauer S. Combinatorial Power of cfDNA, CTCs and EVs in Oncology. Diagnostics (Basel) 2022; 12:870. [PMID: 35453918 PMCID: PMC9031112 DOI: 10.3390/diagnostics12040870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
Liquid biopsy is a promising technique for clinical management of oncological patients. The diversity of analytes circulating in the blood useable for liquid biopsy testing is enormous. Circulating tumor cells (CTCs), cell-free DNA (cfDNA) and extracellular vesicles (EVs), as well as blood cells and other soluble components in the plasma, were shown as liquid biopsy analytes. A few studies directly comparing two liquid biopsy analytes showed a benefit of one analyte over the other, while most authors concluded the benefit of the additional analyte. Only three years ago, the first studies to examine the value of a characterization of more than two liquid biopsy analytes from the same sample were conducted. We attempt to reflect on the recent development of multimodal liquid biopsy testing in this review. Although the analytes and clinical purposes of the published multimodal studies differed significantly, the additive value of the analytes was concluded in almost all projects. Thus, the blood components, as liquid biopsy reservoirs, are complementary rather than competitive, and orthogonal data sets were even shown to harbor synergistic effects. The unmistakable potential of multimodal liquid biopsy testing, however, is dampened by its clinical utility, which is yet to be proven, the lack of methodical standardization and insufficiently mature reimbursement, logistics and data handling.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
12
|
Kalfa TA. Diagnosis and clinical management of red cell membrane disorders. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:331-340. [PMID: 34889366 PMCID: PMC8791164 DOI: 10.1182/hematology.2021000265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Heterogeneous red blood cell (RBC) membrane disorders and hydration defects often present with the common clinical findings of hemolytic anemia, but they may require substantially different management, based on their pathophysiology. An accurate and timely diagnosis is essential to avoid inappropriate interventions and prevent complications. Advances in genetic testing availability within the last decade, combined with extensive foundational knowledge on RBC membrane structure and function, now facilitate the correct diagnosis in patients with a variety of hereditary hemolytic anemias (HHAs). Studies in patient cohorts with well-defined genetic diagnoses have revealed complications such as iron overload in hereditary xerocytosis, which is amenable to monitoring, prevention, and treatment, and demonstrated that splenectomy is not always an effective or safe treatment for any patient with HHA. However, a multitude of variants of unknown clinical significance have been discovered by genetic evaluation, requiring interpretation by thorough phenotypic assessment in clinical and/or research laboratories. Here we discuss genotype-phenotype correlations and corresponding clinical management in patients with RBC membranopathies and propose an algorithm for the laboratory workup of patients presenting with symptoms and signs of hemolytic anemia, with a clinical case that exemplifies such a workup.
Collapse
MESH Headings
- Anemia, Hemolytic, Congenital/diagnosis
- Anemia, Hemolytic, Congenital/genetics
- Anemia, Hemolytic, Congenital/pathology
- Anemia, Hemolytic, Congenital/therapy
- Disease Management
- Elliptocytosis, Hereditary/diagnosis
- Elliptocytosis, Hereditary/genetics
- Elliptocytosis, Hereditary/pathology
- Elliptocytosis, Hereditary/therapy
- Erythrocyte Membrane/pathology
- Genetic Testing
- Humans
- Hydrops Fetalis/diagnosis
- Hydrops Fetalis/genetics
- Hydrops Fetalis/pathology
- Hydrops Fetalis/therapy
- Infant
- Male
- Mutation
- Spherocytosis, Hereditary/diagnosis
- Spherocytosis, Hereditary/genetics
- Spherocytosis, Hereditary/pathology
- Spherocytosis, Hereditary/therapy
Collapse
Affiliation(s)
- Theodosia A. Kalfa
- Correspondence Theodosia A. Kalfa, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7015, Cincinnati, OH 45229-3039; e-mail:
| |
Collapse
|
13
|
Vives-Corrons JL, Krishnevskaya E, Hernández-Rodriguez I, Payán-Pernia S, Sevilla ÁFR, Badell I. Red cell ektacytometry in two patients with chronic hemolytic anemia and three new α-spectrin variants. Ann Hematol 2021; 101:549-555. [PMID: 34845540 DOI: 10.1007/s00277-021-04723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
Red blood cell (RBC) morphology is, in general, the key diagnostic feature for hereditary spherocytosis (HS) and hereditary elliptocytosis (HE). However, in hereditary pyropoikilocytosis (HPP), the severe clinical form of HE, the morphological diagnosis is difficult due to the presence of a RBC morphological picture characterized by a mixture of elliptocytes, spherocytes, tear-drop cells, and fragmented cells. This difficulty increases in new-borns and/or patients requiring frequent transfusions, making impossible the prediction of the disease course or its severity. Recently, it has been demonstrated that the measurement of osmotic gradient ektacytometry (OGE), using a laser-assisted optical rotational ektacytometer LoRRca (MaxSis, RR Mechatronics), allows a clear differentiation between HS and HE, where the truncated osmoscan curve reflects the inability of the already elliptical cells to deform further under shear stress in the face of hypotonicity. In HPP, however, the RBCs appear to have a significantly decreased ability to maintain deformability in these conditions, and the classical trapezoidal profile of HE is less evident or indistinguishable from HS. Here, two unrelated patients with hereditary hemolytic anemia (HHA) due to HPP and HS, respectively, are described with the joint inheritance of a complex set of five genetic defects. Two of these defects are novel alpha-spectrin gene (SPTA1) variants, one is a microdeletion that removes the entire SPTA1 gene, and two are well-known low-expression polymorphic alleles: α-LELY and α-LEPRA. In the HPP patient (ID1), with many circulating spherocytes, the interactions between the two SPTA1 gene variants may lead, in addition to an elongation defect (elliptocytes), to a loss of membrane stability and vesiculation (spherocytes), and RBCs appear to have a significantly decreased ability to maintain deformability in hypotonic conditions. Due to this, the classical trapezoidal profile of HE may become less evident or indistinguishable from HS. The second patient (ID2) was a classical severe form of HS with the presence of more than 20% of spherocytes and few pincered cells. The severity of clinical manifestation is due to the coinheritance of a microdeletion of chromosome 1 that removes the entire SPTA1 gene with a LEPRA SPTA1 variant in trans. The diagnostic interest of both observations is discussed.
Collapse
Affiliation(s)
- Joan-Lluis Vives-Corrons
- Red Cell Pathology and Haematopoietic Disorders (Rare Anaemias Unit), Institute for Leukaemia Research Josep Carreras (IJC), Ctra de Can Ruti, Camí de les Escoles s/n Badalona, 08916, Barcelona, Spain.
| | - Elena Krishnevskaya
- Red Cell Pathology and Haematopoietic Disorders (Rare Anaemias Unit), Institute for Leukaemia Research Josep Carreras (IJC), Ctra de Can Ruti, Camí de les Escoles s/n Badalona, 08916, Barcelona, Spain
| | | | - Salvador Payán-Pernia
- Red Blood Cell Disorders Unit, Hematology Department, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (IBiS-CSIC), Seville, Spain
| | | | - Isabel Badell
- Hematology Department, Hospital Universitari de La Santa Creu i Sant Pau, Barcelona, Spain.,Department of Pediatrics, Hospital Universitari de La Santa Creu i Sant Pau, National Reference Center (CSUR Accreditation) for Hereditary Red Blood Cell Disorders (Hospital de La Santa Creu i Sant Pau-Hospital Sant Joan de Déu), Barcelona, Spain
| |
Collapse
|
14
|
Glenthøj A, Brieghel C, Nardo‐Marino A, van Wijk R, Birgens H, Petersen J. Facilitating EMA binding test performance using fluorescent beads combined with next-generation sequencing. EJHAEM 2021; 2:716-728. [PMID: 35845192 PMCID: PMC9176113 DOI: 10.1002/jha2.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
The eosin-5'-maleimide (EMA) binding test is widely used as diagnostic test for hereditary spherocytosis (HS), one of the most common haemolytic disorders in Caucasian populations. We recently described the advantages of replacing the use of healthy control blood samples with fluorescent beads in a modified EMA binding assay. In this study we further explore this novel approach. We performed targeted next-generation sequencing, modified EMA binding test and osmotic gradient ektacytometry on consecutive individuals referred to our laboratory on the suspicion of HS. In total, 33 of 95 carried a (likely) pathogenic variant, and 24 had variants of uncertain significance (VUS). We identified a total 79 different (likely) pathogenic variants and VUS, including 43 novel mutations. Discarding VUS and recessive mutations in STPA1, we used the occurrence of (likely) pathogenic variants to generate a diagnostic threshold for our modified EMA binding test. Twenty-one of 23 individuals with non-SPTA1 (likely) pathogenic variants had EMA ≥ 43.6 AU, which was the optimal threshold in receiver operating characteristic (ROC) analysis. Accuracy was excellent at 93.4% and close to that of osmotic gradient ektacytometry (98.7%). In conclusion, we were able to simplify the EMA-binding test by using rainbow beads as reference and (likely) pathogenic variants to define an accurate cut-off value.
Collapse
Affiliation(s)
- Andreas Glenthøj
- Centre for HaemoglobinopathiesDepartment of HaematologyRigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Christian Brieghel
- Centre for HaemoglobinopathiesDepartment of HaematologyRigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Amina Nardo‐Marino
- Centre for HaemoglobinopathiesDepartment of HaematologyRigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Richard van Wijk
- Central Diagnostic Laboratory‐ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Henrik Birgens
- Centre for HaemoglobinopathiesDepartment of HaematologyRigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Jesper Petersen
- Centre for HaemoglobinopathiesDepartment of HaematologyRigshospitaletCopenhagen University HospitalCopenhagenDenmark
| |
Collapse
|
15
|
Jamwal M, Aggarwal A, Sharma P, Bansal D, Trehan A, Sachdeva MUS, Naseem S, Maitra A, Das R. Familial genotypic and phenotypic heterogeneity and its implications on genetic counseling exemplified in two cases of hereditary pyropoikilocytosis/erythrocytic spectrin-linked hemolytic anemia masquerading as congenital dyserythropoietic anemia. Pediatr Blood Cancer 2021; 68:e29181. [PMID: 34117698 DOI: 10.1002/pbc.29181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Manu Jamwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anu Aggarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Prashant Sharma
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepak Bansal
- Department of Pediatrics (Hematology-Oncology Unit), Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Department of Pediatrics (Hematology-Oncology Unit), Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shano Naseem
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Reena Das
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
16
|
Gallagher PG. Difficulty in Diagnosis of Hereditary Spherocytosis in the Neonate. Pediatrics 2021; 148:peds.2021-051100. [PMID: 34376531 DOI: 10.1542/peds.2021-051100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Patrick G Gallagher
- Yale New Haven Children's Hospital and Departments of Pediatrics, Pathology, and Genetics, Yale University, New Haven, Connecticut
| |
Collapse
|
17
|
Conboy JG. Unannotated splicing regulatory elements in deep intron space. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1656. [PMID: 33887804 DOI: 10.1002/wrna.1656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
Deep intron space harbors a diverse array of splicing regulatory elements that cooperate with better-known exon-proximal elements to enforce proper tissue-specific and development-specific pre-mRNA processing. Many deep intron elements have been highly conserved through vertebrate evolution, yet remain poorly annotated in the human genome. Recursive splicing exons (RS-exons) and intraexons promote noncanonical, multistep resplicing pathways in long introns, involving transient intermediate structures that are greatly underrepresented in RNA-seq datasets. Decoy splice sites and decoy exons act at a distance to inhibit splicing catalysis at annotated splice sites, with functional consequences such as exon skipping and intron retention. RNA:RNA bridges can juxtapose distant sequences within or across introns to activate deep intron splicing enhancers and silencers, to loop out exons to be skipped, or to select one member of a mutually exclusive set of exons. Similarly, protein bridges mediated by interactions among transcript-bound RNA binding proteins (RBPs) can modulate splicing outcomes. Experimental disruption of deep intron elements serving any of these functions can abrogate normal splicing, strongly suggesting that natural mutations of deep intron elements can do likewise to cause human disease. Understanding noncanonical splicing pathways and discovering deep intron regulatory signals, many of which map hundreds to many thousands of nucleotides from annotated splice junctions, is of great academic interest for basic scientists studying alternative splicing mechanisms. Hopefully, this knowledge coupled with increased analysis of deep intron sequences will also have important medical applications, as better interpretation of deep intron mutations may reveal new disease mechanisms and suggest new therapies. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- John G Conboy
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, California, USA
| |
Collapse
|
18
|
Red cell membrane disorders: structure meets function. Blood 2021; 136:1250-1261. [PMID: 32702754 DOI: 10.1182/blood.2019000946] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
The mature red blood cell (RBC) lacks a nucleus and organelles characteristic of most cells, but it is elegantly structured to perform the essential function of delivering oxygen and removing carbon dioxide from all other cells while enduring the shear stress imposed by navigating small vessels and sinusoids. Over the past several decades, the efforts of biochemists, cell and molecular biologists, and hematologists have provided an appreciation of the complexity of RBC membrane structure, while studies of the RBC membrane disorders have offered valuable insights into structure-function relationships. Within the last decade, advances in genetic testing and its increased availability have made it possible to substantially build upon this foundational knowledge. Although disorders of the RBC membrane due to altered structural organization or altered transport function are heterogeneous, they often present with common clinical findings of hemolytic anemia. However, they may require substantially different management depending on the underlying pathophysiology. Accurate diagnosis is essential to avoid emergence of complications or inappropriate interventions. We propose an algorithm for laboratory evaluation of patients presenting with symptoms and signs of hemolytic anemia with a focus on RBC membrane disorders. Here, we review the genotypic and phenotypic variability of the RBC membrane disorders in order to raise the index of suspicion and highlight the need for correct and timely diagnosis.
Collapse
|
19
|
Bianchi P, Fermo E. Molecular heterogeneity of pyruvate kinase deficiency. Haematologica 2020; 105:2218-2228. [PMID: 33054047 PMCID: PMC7556514 DOI: 10.3324/haematol.2019.241141] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/03/2020] [Indexed: 01/19/2023] Open
Abstract
Red cell pyruvate kinase (PK) deficiency is the most common glycolytic defect associated with congenital non-spherocytic hemolytic anemia. The disease, transmitted as an autosomal recessive trait, is caused by mutations in the PKLR gene and is characterized by molecular and clinical heterogeneity; anemia ranges from mild or fully compensated hemolysis to life-threatening forms necessitating neonatal exchange transfusions and/or subsequent regular transfusion support; complications include gallstones, pulmonary hypertension, extramedullary hematopoiesis and iron overload. Since identification of the first pathogenic variants responsible for PK deficiency in 1991, more than 300 different variants have been reported, and the study of molecular mechanisms and the existence of genotype-phenotype correlations have been investigated in-depth. In recent years, during which progress in genetic analysis, next-generation sequencing technologies and personalized medicine have opened up important landscapes for diagnosis and study of molecular mechanisms of congenital hemolytic anemias, genotyping has become a prerequisite for accessing new treatments and for evaluating disease state and progression. This review examines the extensive molecular heterogeneity of PK deficiency, focusing on the diagnostic impact of genotypes and new acquisitions on pathogenic non-canonical variants. The recent progress and the weakness in understanding the genotype-phenotype correlation, and its practical usefulness in light of new therapeutic opportunities for PK deficiency are also discussed.
Collapse
MESH Headings
- Anemia, Hemolytic, Congenital/diagnosis
- Anemia, Hemolytic, Congenital/genetics
- Anemia, Hemolytic, Congenital/therapy
- Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis
- Anemia, Hemolytic, Congenital Nonspherocytic/genetics
- Humans
- Mutation
- Pyruvate Kinase/deficiency
- Pyruvate Kinase/genetics
- Pyruvate Metabolism, Inborn Errors/diagnosis
- Pyruvate Metabolism, Inborn Errors/genetics
- Pyruvate Metabolism, Inborn Errors/therapy
Collapse
Affiliation(s)
- Paola Bianchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia delle Anemie, Milan, Italy.
| | - Elisa Fermo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia delle Anemie, Milan, Italy
| |
Collapse
|
20
|
Parra M, Zhang W, Vu J, DeWitt M, Conboy JG. Antisense targeting of decoy exons can reduce intron retention and increase protein expression in human erythroblasts. RNA (NEW YORK, N.Y.) 2020; 26:996-1005. [PMID: 32312846 PMCID: PMC7373989 DOI: 10.1261/rna.075028.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
The decoy exon model has been proposed to regulate a subset of intron retention (IR) events involving predominantly larger introns (>1 kb). Splicing reporter studies have shown that decoy splice sites are essential for activity, suggesting that decoys act by engaging intron-terminal splice sites and competing with cross-intron interactions required for intron excision. The decoy model predicts that antisense oligonucleotides may be able to block decoy splice sites in endogenous pre-mRNA, thereby reducing IR and increasing productive gene expression. Indeed, we now demonstrate that targeting a decoy 5' splice site in the O-GlcNAc transferase (OGT) gene reduced IR from ∼80% to ∼20% in primary human erythroblasts, accompanied by increases in spliced OGT RNA and OGT protein expression. The remaining OGT IR was refractory to antisense treatment and might be mediated by independent mechanism(s). In contrast, other retained introns were strongly dependent on decoy function, since antisense targeting of decoy 5' splice sites greatly reduced (SNRNP70) or nearly eliminated (SF3B1) IR in two widely expressed splicing factors, and also greatly reduced IR in transcripts encoding the erythroid-specific structural protein, α-spectrin (SPTA1). These results show that modulating decoy exon function can dramatically alter IR and suggest that dynamic regulation of decoy exons could be a mechanism to fine-tune gene expression post-transcriptionally in many cell types.
Collapse
Affiliation(s)
- Marilyn Parra
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Weiguo Zhang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jonathan Vu
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Mark DeWitt
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - John G Conboy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
21
|
Mansour-Hendili L, Aissat A, Badaoui B, Sakka M, Gameiro C, Ortonne V, Wagner-Ballon O, Pissard S, Picard V, Ghazal K, Bahuau M, Guitton C, Mansour Z, Duplan M, Petit A, Costedoat-Chalumeau N, Michel M, Bartolucci P, Moutereau S, Funalot B, Galactéros F. Exome sequencing for diagnosis of congenital hemolytic anemia. Orphanet J Rare Dis 2020; 15:180. [PMID: 32641076 PMCID: PMC7341591 DOI: 10.1186/s13023-020-01425-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Congenital hemolytic anemia constitutes a heterogeneous group of rare genetic disorders of red blood cells. Diagnosis is based on clinical data, family history and phenotypic testing, genetic analyses being usually performed as a late step. In this study, we explored 40 patients with congenital hemolytic anemia by whole exome sequencing: 20 patients with hereditary spherocytosis and 20 patients with unexplained hemolysis. Results A probable genetic cause of disease was identified in 82.5% of the patients (33/40): 100% of those with suspected hereditary spherocytosis (20/20) and 65% of those with unexplained hemolysis (13/20). We found that several patients carried genetic variations in more than one gene (3/20 in the hereditary spherocytosis group, 6/13 fully elucidated patients in the unexplained hemolysis group), giving a more accurate picture of the genetic complexity of congenital hemolytic anemia. In addition, whole exome sequencing allowed us to identify genetic variants in non-congenital hemolytic anemia genes that explained part of the phenotype in 3 patients. Conclusion The rapid development of next generation sequencing has rendered the genetic study of these diseases much easier and cheaper. Whole exome sequencing in congenital hemolytic anemia could provide a more precise and quicker diagnosis, improve patients’ healthcare and probably has to be democratized notably for complex cases.
Collapse
Affiliation(s)
- Lamisse Mansour-Hendili
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France. .,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.
| | - Abdelrazak Aissat
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Bouchra Badaoui
- Département d'hématologie et d'immunologie, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Mehdi Sakka
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Christine Gameiro
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Valérie Ortonne
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Orianne Wagner-Ballon
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.,Département d'hématologie et d'immunologie, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Serge Pissard
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Véronique Picard
- Département d'hématologie, AP-HP, Hôpital Bicêtre, F-94270, Le Kremlin-Bicêtre, France
| | - Khaldoun Ghazal
- Département de Biochimie, AP-HP, Hôpital Bicêtre, F-94270, Le Kremlin-Bicêtre, France
| | - Michel Bahuau
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Corinne Guitton
- Département d'hématologie pédiatrique, AP-HP, Hôpital Bicêtre, F-94270, Le Kremlin-Bicêtre, France
| | - Ziad Mansour
- Clinique ADASSA, Maternité, F-67000, Strasbourg, France
| | - Mylène Duplan
- Département d'onco-hématologie pédiatrique, CHU d'Angers, 4 Rue Larrey, 49100, Angers, France
| | - Arnaud Petit
- Département d'onco-hématologie pédiatrique, AP-HP, Hôpital Armand Trousseau, F-75012, Paris, France
| | | | - Marc Michel
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.,Département de médecine interne, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Pablo Bartolucci
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.,Département de médecine interne, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Unité des maladies génétiques du globule rouge (UMGGR), AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Stéphane Moutereau
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Benoît Funalot
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Frédéric Galactéros
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.,Département de médecine interne, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Unité des maladies génétiques du globule rouge (UMGGR), AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| |
Collapse
|
22
|
Zaidi AU, Buck S, Gadgeel M, Herrera-Martinez M, Mohan A, Johnson K, Bagla S, Johnson RM, Ravindranath Y. Clinical Diagnosis of Red Cell Membrane Disorders: Comparison of Osmotic Gradient Ektacytometry and Eosin Maleimide (EMA) Fluorescence Test for Red Cell Band 3 (AE1, SLC4A1) Content for Clinical Diagnosis. Front Physiol 2020; 11:636. [PMID: 32636758 PMCID: PMC7318840 DOI: 10.3389/fphys.2020.00636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
The measurement of band 3 (AE1, SLC4A1, CD233) content of red cells by eosin-5- maleimide (EMA) staining is swiftly replacing conventional osmotic fragility (OF) test as a tool for laboratory confirmation of hereditary spherocytosis across the globe. Our group has systematically evaluated the EMA test as a method to screen for a variety of anemias in the last 10 years, and compared these results to those obtained with the osmotic gradient ektacytometry (osmoscans) which we have used over three decades. Our overall experience allowed us to characterize the distinctive patterns with the two tests in several congenital erythrocyte membrane disorders, such as hereditary spherocytosis (HS), hereditary elliptocytosis (HE), Southeast Asian Ovalocytosis (SAO), hereditary pyropoikilocytosis (HPP) variants, erythrocyte volume disorders, various red cell enzymopathies, and hemoglobinopathies. A crucial difference between the two methodologies is that osmoscans measure red blood cell deformability of the entire sample of RBCs, while the EMA test examines the band 3 content of individual RBCs. EMA content is influenced by cell size as smaller red cells have lower amount of total membrane than larger cells. The SAO mutation alters the EMA binding site resulting in a lower EMA MCF even as the band 3 content itself is unchanged. Thus, EMA scan results should be interpreted with caution and both the histograms and dot plots should be analyzed in the context of the clinical picture and morphology.
Collapse
Affiliation(s)
| | - Steven Buck
- Children's Hospital of Michigan, Detroit, MI, United States.,Wayne State University School of Medicine, Detroit, MI, United States
| | - Manisha Gadgeel
- Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Araathi Mohan
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Kenya Johnson
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Shruti Bagla
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Robert M Johnson
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Yaddanapudi Ravindranath
- Children's Hospital of Michigan, Detroit, MI, United States.,Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
23
|
Bianchi P, Fermo E, Lezon‐Geyda K, Beers EJ, Morton HD, Barcellini W, Glader B, Chonat S, Ravindranath Y, Newburger PE, Kollmar N, Despotovic JM, Verhovsek M, Sharma M, Kwiatkowski JL, Kuo KHM, Wlodarski MW, Yaish HM, Holzhauer S, Wang H, Kunz J, Addonizio K, Al‐Sayegh H, London WB, Andres O, Wijk R, Gallagher PG, Grace RFF. Genotype-phenotype correlation and molecular heterogeneity in pyruvate kinase deficiency. Am J Hematol 2020; 95:472-482. [PMID: 32043619 DOI: 10.1002/ajh.25753] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 01/19/2023]
Abstract
Pyruvate kinase (PK) deficiency is a rare recessive congenital hemolytic anemia caused by mutations in the PKLR gene. This study reports the molecular features of 257 patients enrolled in the PKD Natural History Study. Of the 127 different pathogenic variants detected, 84 were missense and 43 non-missense, including 20 stop-gain, 11 affecting splicing, five large deletions, four in-frame indels, and three promoter variants. Within the 177 unrelated patients, 35 were homozygous and 142 compound heterozygous (77 for two missense, 48 for one missense and one non-missense, and 17 for two non-missense variants); the two most frequent mutations were p.R510Q in 23% and p.R486W in 9% of mutated alleles. Fifty-five (21%) patients were found to have at least one previously unreported variant with 45 newly described mutations. Patients with two non-missense mutations had lower hemoglobin levels, higher numbers of lifetime transfusions, and higher rates of complications including iron overload, extramedullary hematopoiesis, and pulmonary hypertension. Rare severe complications, including lower extremity ulcerations and hepatic failure, were seen more frequently in patients with non-missense mutations or with missense mutations characterized by severe protein instability. The PKLR genotype did not correlate with the frequency of complications in utero or in the newborn period. With ICCs ranging from 0.4 to 0.61, about the same degree of clinical similarity exists within siblings as it does between siblings, in terms of hemoglobin, total bilirubin, splenectomy status, and cholecystectomy status. Pregnancy outcomes were similar across genotypes in PK deficient women. This report confirms the wide genetic heterogeneity of PK deficiency.
Collapse
Affiliation(s)
- Paola Bianchi
- U.O.C. EmatologiaU.O.S. Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico Milan Italy
| | - Elisa Fermo
- U.O.C. EmatologiaU.O.S. Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico Milan Italy
| | | | - Eduard J. Beers
- Division Internal Medicine and DermatologyVan Creveldkliniek, University Medical Center Utrecht Utrecht The Netherlands
| | - Holmes D. Morton
- Central Pennsylvania Clinic for Special Children & AdultsBelleville, PA; Lancaster General Hospital Lancaster PA
| | - Wilma Barcellini
- U.O.C. EmatologiaU.O.S. Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico Milan Italy
| | - Bertil Glader
- Lucile Packard Children's HospitalStanford University Palo Alto CA
| | - Satheesh Chonat
- Department of PediatricsEmory University School of Medicine, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta Atlanta GA
| | - Yaddanapudi Ravindranath
- School of MedicinePediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine Detroit MI
| | - Peter E. Newburger
- Department of PediatricsUniversity of Massachusetts Medical School Worcester MA
| | - Nina Kollmar
- Department of Pediatric Hematology/OncologyKlinikum Kassel GmbH Kassel Germany
| | | | | | - Mukta Sharma
- Department of PediatricsChildren's Mercy, School of Medicine University of Missouri Kansas City MO
| | - Janet L. Kwiatkowski
- Division of HematologyChildren's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania Philadelphia PA
| | - Kevin H. M. Kuo
- Division of Hematology, Department of MedicineUniversity Health Network, University of Toronto Toronto Ontario Canada
| | | | - Hassan M. Yaish
- Primary Children's HospitalUniversity of Utah Salt Lake City UT
| | - Susanne Holzhauer
- CharitéUniversity Medicine, Pediatric Hematology and Oncology Berlin Germany
| | - Heng Wang
- DDC Clinic for Special Needs Children Middlefield OH
| | - Joachim Kunz
- Zentrumfür Kinder‐und Jugendmedizin Heidelberg Germany
| | - Kathryn Addonizio
- Dana‐Farber/Boston Children's Cancer and Blood Disorder Center Boston MA
| | - Hasan Al‐Sayegh
- Dana‐Farber/Boston Children's Cancer and Blood Disorder Center Boston MA
| | - Wendy B. London
- Dana‐Farber/Boston Children's Cancer and Blood Disorder Center Boston MA
| | - Oliver Andres
- Department of PediatricsUniversity of Würzburg Würzburg Germany
| | - Richard Wijk
- Central Diagnostic LaboratoryUniversity Medical Center Utrecht Utrecht The Netherlands
| | - Patrick G. Gallagher
- Department of Pediatrics, Department of Genetics, Department of PathologyYale University School of Medicine New Haven CT
| | | |
Collapse
|
24
|
Bianchi P, Vercellati C, Fermo E. How will next generation sequencing (NGS) improve the diagnosis of congenital hemolytic anemia? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:268. [PMID: 32355712 PMCID: PMC7186692 DOI: 10.21037/atm.2020.02.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Paola Bianchi
- UOC Ematologia, UOS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Cristina Vercellati
- UOC Ematologia, UOS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Elisa Fermo
- UOC Ematologia, UOS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| |
Collapse
|
25
|
Donepudi R, Westerfield L, Stonecipher A, A Nassr A, Cortes MS, Espinoza J, Belfort M, Shamshirsaz A. A family affair-Severe fetal and neonatal hemolytic anemia due to novel alpha-spectrin mutations in two siblings. Am J Med Genet A 2019; 182:561-564. [PMID: 31854503 DOI: 10.1002/ajmg.a.61455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 11/06/2022]
Abstract
Hereditary spherocytosis (HS) is the most common cause of inherited, nonimmune hemolytic anemia. When inherited in an autosomal dominant fashion, the anemia is typically mild. However, severe, transfusion-dependent anemia is seen in autosomal recessive HS, which is often associated with deficient or absent red blood cell membrane protein alpha-spectrin. We report a 26-year-old para one who was referred to our center at 28 weeks' gestation due to concerns for fetal anemia. Evaluation revealed elevated peak systolic velocity in the middle cerebral artery by Doppler scan and fetal cardiomegaly. Fetal hematocrit obtained by sampling the umbilical vein was 9% confirming severe fetal anemia. Fetal peripheral smear was consistent with hereditary spherocytosis. Genetic analysis of both parents confirmed heterozygosity for the SPTA1 variants (pathogenic variant c.4180del (p.C1394Afs*25), and a variant of uncertain significance, c.1677G>T (p.G449G)) detected by a hemolytic anemia panel in the patient's first child. It is important to consider genetic causes of anemia in patients presenting with severe nonimmune fetal anemia, including autosomal recessive HS. We present a case of autosomal recessive HS with a novel pathogenic variant in the SPTA1 gene which resulted in significant impact on prenatal management.
Collapse
Affiliation(s)
- Roopali Donepudi
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Fetal Center, Houston, Texas
| | - Lauren Westerfield
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ashley Stonecipher
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Fetal Center, Houston, Texas
| | - Ahmed A Nassr
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Fetal Center, Houston, Texas
| | - Magdalena S Cortes
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Fetal Center, Houston, Texas
| | - Jimmy Espinoza
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Fetal Center, Houston, Texas
| | - Michael Belfort
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Fetal Center, Houston, Texas
| | - Alireza Shamshirsaz
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Fetal Center, Houston, Texas
| |
Collapse
|
26
|
Abstract
Anemia is defined by low levels of circulating hemoglobin, resulting in insufficient tissue oxygenation. This condition results from both genetic and nutritional factors and affects more than a billion people worldwide. For the inherited anemias, progress made over the last 40 years has increased our understanding of the structural basis for normal red cell membrane function and allowed definition of the genetic and pathophysiological bases of many human RBC membrane disorders. Despite these advances, there are continued uncertainties in the genotype-phenotype relationship in cases of severe, membrane-linked anemia. In this issue of the JCI, Gallagher and colleagues have identified a severe form of inherited anemia that results from aberrant splicing of α-spectrin, which in turn leads to abnormal erythrocyte membrane structure and function. The identification and characterization of this splicing-associated genetic disease will facilitate diagnosis and treatment of severe anemia in affected patients. These findings not only improve understanding of red cell disorders, they are likely to impact many disciplines, as the disease-associated alternate branch point utilization defined in the report may be the underlying etiology for many other inherited or acquired disorders.
Collapse
|