1
|
Khorami-Sarvestani S, Hanash SM, Fahrmann JF, León-Letelier RA, Katayama H. Glycosylation in cancer as a source of biomarkers. Expert Rev Proteomics 2024:1-21. [PMID: 39376081 DOI: 10.1080/14789450.2024.2409224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Glycosylation, the process of glycan synthesis and attachment to target molecules, is a crucial and common post-translational modification (PTM) in mammalian cells. It affects the protein's hydrophilicity, charge, solubility, structure, localization, function, and protection from proteolysis. Aberrant glycosylation in proteins can reveal new detection and therapeutic Glyco-biomarkers, which help to improve accurate early diagnosis and personalized treatment. This review underscores the pivotal role of glycans and glycoproteins as a source of biomarkers in human diseases, particularly cancer. AREAS COVERED This review delves into the implications of glycosylation, shedding light on its intricate roles in cancer-related cellular processes influencing biomarkers. It is underpinned by a thorough examination of literature up to June 2024 in PubMed, Scopus, and Google Scholar; concentrating on the terms: (Glycosylation[Title/Abstract]) OR (Glycan[Title/Abstract]) OR (glycoproteomics[Title/Abstract]) OR (Proteoglycans[Title/Abstract]) OR (Glycomarkers[Title/Abstract]) AND (Cancer[Title/Abstract]) AND ((Diagno*[Title/Abstract]) OR (Progno*[Title/Abstract])). EXPERT OPINION Glyco-biomarkers enhance early cancer detection, allow early intervention, and improve patient prognoses. However, the abundance and complex dynamic glycan structure may make their scientific and clinical application difficult. This exploration of glycosylation signatures in cancer biomarkers can provide a detailed view of cancer etiology and instill hope in the potential of glycosylation to revolutionize cancer research.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ricardo A León-Letelier
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Sastre DE, Bournazos S, Du J, Boder EJ, Edgar JE, Azzam T, Sultana N, Huliciak M, Flowers M, Yoza L, Xu T, Chernova TA, Ravetch JV, Sundberg EJ. Potent efficacy of an IgG-specific endoglycosidase against IgG-mediated pathologies. Cell 2024:S0092-8674(24)01135-8. [PMID: 39437779 DOI: 10.1016/j.cell.2024.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/09/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Endo-β-N-acetylglucosaminidases (ENGases) that specifically hydrolyze the Asn297-linked glycan on immunoglobulin G (IgG) antibodies, the major molecular determinant of fragment crystallizable (Fc) γ receptor (FcγR) binding, are exceedingly rare. All previously characterized IgG-specific ENGases are multi-domain proteins secreted as an immune evasion strategy by Streptococcus pyogenes strains. Here, using in silico analysis and mass spectrometry techniques, we identified a family of single-domain ENGases secreted by pathogenic corynebacterial species that exhibit strict specificity for IgG antibodies. By X-ray crystallographic and surface plasmon resonance analyses, we found that the most catalytically efficient IgG-specific ENGase family member recognizes both protein and glycan components of IgG. Employing in vivo models, we demonstrated the remarkable efficacy of this IgG-specific ENGase in mitigating numerous pathologies that rely on FcγR-mediated effector functions, including T and B lymphocyte depletion, autoimmune hemolytic anemia, and antibody-dependent enhancement of dengue disease, revealing its potential for treating and/or preventing a wide range of IgG-mediated diseases in humans.
Collapse
Affiliation(s)
- Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - E Josephine Boder
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Julia E Edgar
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nazneen Sultana
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maros Huliciak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maria Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lea Yoza
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ting Xu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
3
|
Focosi D. Monoclonal Antibody Therapies Against SARS-CoV-2: Promises and Realities. Curr Top Microbiol Immunol 2024. [PMID: 39126484 DOI: 10.1007/82_2024_268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Monoclonal antibodies targeting the Spike protein of SARS-CoV-2 have been widely deployed in the ongoing COVID-19 pandemic. I review here the impact of those therapeutics in the early pandemic, ranging from structural classification to outcomes in clinical trials to in vitro and in vivo evidence of basal and treatment-emergent immune escape. Unfortunately, the Omicron variant of concern has completely reset all achievements so far in mAb therapy for COVID-19. Despite the intrinsic limitations of this strategy, future developments such as respiratory delivery of further engineered mAb cocktails could lead to improved outcomes.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy.
| |
Collapse
|
4
|
Casadevall A, McConnell S, Focosi D. Considerations for the development of monoclonal antibodies to address new viral variants in COVID-19. Expert Opin Biol Ther 2024; 24:787-797. [PMID: 39088242 DOI: 10.1080/14712598.2024.2388186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Monoclonal antibody (mAb) therapies proved safe and effective in preventing progression of COVID-19 to hospitalization, but most were eventually defeated by continued viral evolution. mAb combinations and those mAbs that were deliberatively selected to target conserved regions of the SARS-CoV-2 spike protein proved more resilient to viral escape variants as evident by longer clinical useful lives. AREAS COVERED We searched PubMed for literature covering the need, development, and use of mAb therapies for COVID-19. As much of humanity now has immunity to SARS-CoV-2, the population at most risk is that of immunocompromised individuals. Hence, there continues to be a need for mAb therapies for immunocompromised patients. However, mAb use in this population carries the risk for selecting mAb-resistant variants, which could pose a public health concern if they disseminate to the general population. EXPERT OPINION Going forward, structural knowledge of the interactions of Spike with its cellular receptor has identified several regions that may be good targets for future mAb therapeutics. A focus on designing variant-resistant mAbs together with cocktails that target several epitopes and the use of other variant mitigating strategies such as the concomitant use of small molecule antivirals and polyclonal preparations could extend the clinical usefulness of future preparations.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Scott McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
5
|
Keating SM, Higgins BW. New technologies in therapeutic antibody development: The next frontier for treating infectious diseases. Antiviral Res 2024; 227:105902. [PMID: 38734210 DOI: 10.1016/j.antiviral.2024.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Adaptive immunity to viral infections requires time to neutralize and clear viruses to resolve infection. Fast growing and pathogenic viruses are quickly established, are highly transmissible and cause significant disease burden making it difficult to mount effective responses, thereby prolonging infection. Antibody-based passive immunotherapies can provide initial protection during acute infection, assist in mounting an adaptive immune response, or provide protection for those who are immune suppressed or immune deficient. Historically, plasma-derived antibodies have demonstrated some success in treating diseases caused by viral pathogens; nonetheless, limitations in access to product and antibody titer reduce success of this treatment modality. Monoclonal antibodies (mAbs) have proven an effective alternative, as it is possible to manufacture highly potent and specific mAbs against viral targets on an industrial scale. As a result, innovative technologies to discover, engineer and manufacture specific and potent antibodies have become an essential part of the first line of treatment in pathogenic viral infections. However, a mAb targeting a specific epitope will allow escape variants to outgrow, causing new variant strains to become dominant and resistant to treatment with that mAb. Methods to mitigate escape have included combining mAbs into cocktails, creating bi-specific or antibody drug conjugates but these strategies have also been challenged by the potential development of escape mutations. New technologies in developing antibodies made as recombinant polyclonal drugs can integrate the strength of poly-specific antibody responses to prevent mutational escape, while also incorporating antibody engineering to prevent antibody dependent enhancement and direct adaptive immune responses.
Collapse
Affiliation(s)
- Sheila M Keating
- GigaGen, Inc. (A Grifols Company), 75 Shoreway Road, San Carlos, CA, 94070, USA.
| | | |
Collapse
|
6
|
Knorr DA, Blanchard L, Leidner RS, Jensen SM, Meng R, Jones A, Ballesteros-Merino C, Bell RB, Baez M, Marino A, Sprott D, Bifulco CB, Piening B, Dahan R, Osorio JC, Fox BA, Ravetch JV. FcγRIIB Is an Immune Checkpoint Limiting the Activity of Treg-Targeting Antibodies in the Tumor Microenvironment. Cancer Immunol Res 2024; 12:322-333. [PMID: 38147316 PMCID: PMC10911703 DOI: 10.1158/2326-6066.cir-23-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Preclinical murine data indicate that fragment crystallizable (Fc)-dependent depletion of intratumoral regulatory T cells (Treg) is a major mechanism of action of anti-CTLA-4. However, the two main antibodies administered to patients (ipilimumab and tremelimumab) do not recapitulate these effects. Here, we investigate the underlying mechanisms responsible for the limited Treg depletion observed with these therapies. Using an immunocompetent murine model humanized for CTLA-4 and Fcγ receptors (FcγR), we show that ipilimumab and tremelimumab exhibit limited Treg depletion in tumors. Immune profiling of the tumor microenvironment (TME) in both humanized mice and humans revealed high expression of the inhibitory Fc receptor, FcγRIIB, which limits antibody-dependent cellular cytotoxicity/phagocytosis. Blocking FcγRIIB in humanized mice rescued the Treg-depleting capacity and antitumor activity of ipilimumab. Furthermore, Fc engineering of antibodies targeting Treg-associated targets (CTLA-4 or CCR8) to minimize FcγRIIB binding significantly enhanced Treg depletion, resulting in increased antitumor activity across various tumor models. Our results define the inhibitory FcγRIIB as an immune checkpoint limiting antibody-mediated Treg depletion in the TME, and demonstrate Fc engineering as an effective strategy to overcome this limitation and improve the efficacy of Treg-targeting antibodies.
Collapse
Affiliation(s)
- David A. Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lucas Blanchard
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
| | - Rom S. Leidner
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Shawn M. Jensen
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Ryan Meng
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Andrew Jones
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
| | | | - Richard B. Bell
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Maria Baez
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
| | - Alessandra Marino
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
| | - David Sprott
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Carlo B. Bifulco
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Brian Piening
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Rony Dahan
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Juan C. Osorio
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bernard A. Fox
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Jeffrey V. Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
| |
Collapse
|
7
|
Focosi D, Casadevall A, Franchini M, Maggi F. Sotrovimab: A Review of Its Efficacy against SARS-CoV-2 Variants. Viruses 2024; 16:217. [PMID: 38399991 PMCID: PMC10891757 DOI: 10.3390/v16020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Among the anti-Spike monoclonal antibodies (mAbs), the S-309 derivative sotrovimab was the most successful in having the longest temporal window of clinical use, showing a high degree of resiliency to SARS-CoV-2 evolution interrupted only by the appearance of the BA.2.86* variant of interest (VOI). This success undoubtedly reflects rational selection to target a highly conserved epitope in coronavirus Spike proteins. We review here the efficacy of sotrovimab against different SARS-CoV-2 variants in outpatients and inpatients, discussing both randomized controlled trials and real-world evidence. Although it could not be anticipated at the time of its development and introduction, sotrovimab's use in immunocompromised individuals who harbor large populations of variant viruses created the conditions for its eventual demise, as antibody selection and viral evolution led to its eventual withdrawal due to inefficacy against later variant lineages. Despite this, based on observational and real-world data, some authorities have continued to promote the use of sotrovimab, but the lack of binding to newer variants strongly argues for the futility of continued use. The story of sotrovimab highlights the power of modern biomedical science to generate novel therapeutics while also providing a cautionary tale for the need to devise strategies to minimize the emergence of resistance to antibody-based therapeutics.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, via Paradisa 2, 56124 Pisa, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, 46100 Mantua, Italy;
| | - Fabrizio Maggi
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy;
| |
Collapse
|
8
|
Hale G, Davy AD, Wilkinson I. Systematic analysis of Fc mutations designed to enhance binding to Fc-gamma receptors. MAbs 2024; 16:2406539. [PMID: 39306747 PMCID: PMC11418285 DOI: 10.1080/19420862.2024.2406539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
A critical attribute of therapeutic antibodies is their ability to engage with humoral or cellular effector mechanisms, and this depends on the ability of the Fc region to bind to complement (C1q) or Fc receptors. Investigators have sought to optimize these effects by engineering the Fc region to bind to a greater or lesser extent to individual receptors. Different approaches have been used in the clinic, but they have not been systematically compared. We have now produced a matched set of anti-CD20 antibodies representing a range of variants and compared their activity in cell-based assays for complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent phagocytosis using a range of individual Fc receptors. We have also compared the thermal stability of the variants by differential scanning fluorimetry (DSF). The results reveal a spectrum of activities which may be appropriate for different applications.
Collapse
|
9
|
Osorio JC, Smith P, Knorr DA, Ravetch JV. The antitumor activities of anti-CD47 antibodies require Fc-FcγR interactions. Cancer Cell 2023; 41:2051-2065.e6. [PMID: 37977147 PMCID: PMC10842210 DOI: 10.1016/j.ccell.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
While anti-CD47 antibodies hold promise for cancer immunotherapy, early-phase clinical trials have shown limited clinical benefit, suggesting that CD47 blockade alone might be insufficient for effective tumor control. Here, we investigate the contributions of the Fc domain of anti-CD47 antibodies required for optimal in vivo antitumor activity across multiple species-matched models, providing insights into the mechanisms behind the efficacy of this emerging class of therapeutic antibodies. Using a mouse model humanized for CD47, SIRPα, and FcγRs, we demonstrate that local administration of Fc-engineered anti-CD47 antibodies with enhanced binding to activating FcγRs promotes tumor infiltration of macrophages and antigen-specific T cells, while depleting regulatory T cells. These effects result in improved long-term systemic antitumor immunity and minimal on-target off-tumor toxicity. Our results highlight the importance of Fc optimization in the development of effective anti-CD47 therapies and provide an attractive strategy to enhance the activity of this promising immunotherapy.
Collapse
Affiliation(s)
- Juan C Osorio
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA.
| | - Patrick Smith
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA
| | - David A Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA; Regeneron, Inc., Tarrytown, NY, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
10
|
Rashidijahanabad Z, Ramadan S, O'Brien NA, Nakisa A, Lang S, Crawford H, Gildersleeve JC, Huang X. Stereoselective Synthesis of Sialyl Lewis a Antigen and the Effective Anticancer Activity of Its Bacteriophage Qβ Conjugate as an Anticancer Vaccine. Angew Chem Int Ed Engl 2023; 62:e202309744. [PMID: 37781858 PMCID: PMC10842512 DOI: 10.1002/anie.202309744,] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Indexed: 06/15/2024]
Abstract
Sialyl Lewisa (sLea ), also known as cancer antigen 19-9 (CA19-9), is a tumor-associated carbohydrate antigen. The overexpression of sLea on the surface of a variety of cancer cells makes it an attractive target for anticancer immunotherapy. However, sLea -based anticancer vaccines have been under-explored. To develop a new vaccine, efficient stereoselective synthesis of sLea with an amine-bearing linker was achieved, which was subsequently conjugated with a powerful carrier bacteriophage, Qβ. Mouse immunization with the Qβ-sLea conjugate generated strong and long-lasting anti-sLea IgG antibody responses, which were superior to those induced by the corresponding conjugate of sLea with the benchmark carrier keyhole limpet hemocyanin. Antibodies elicited by Qβ-sLea were highly selective toward the sLea structure, could bind strongly with sLea -expressing cancer cells and human pancreatic cancer tissues, and kill tumor cells through complement-mediated cytotoxicity. Furthermore, vaccination with Qβ-sLea significantly reduced tumor development in a metastatic cancer model in mice, demonstrating tumor protection for the first time by a sLea -based vaccine, thus highlighting the significant potential of sLea as a promising cancer antigen.
Collapse
Affiliation(s)
- Zahra Rashidijahanabad
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
- Chemistry Department, Faculty of Science, Benha University, 13518, Benha, Qaliobiya, Egypt
| | - Nicholas A O'Brien
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Athar Nakisa
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Howard Crawford
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, 48202, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| |
Collapse
|
11
|
Rashidijahanabad Z, Ramadan S, O'Brien NA, Nakisa A, Lang S, Crawford H, Gildersleeve JC, Huang X. Stereoselective Synthesis of Sialyl Lewis a Antigen and the Effective Anticancer Activity of Its Bacteriophage Qβ Conjugate as an Anticancer Vaccine. Angew Chem Int Ed Engl 2023; 62:e202309744. [PMID: 37781858 PMCID: PMC10842512 DOI: 10.1002/anie.202309744] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Sialyl Lewisa (sLea ), also known as cancer antigen 19-9 (CA19-9), is a tumor-associated carbohydrate antigen. The overexpression of sLea on the surface of a variety of cancer cells makes it an attractive target for anticancer immunotherapy. However, sLea -based anticancer vaccines have been under-explored. To develop a new vaccine, efficient stereoselective synthesis of sLea with an amine-bearing linker was achieved, which was subsequently conjugated with a powerful carrier bacteriophage, Qβ. Mouse immunization with the Qβ-sLea conjugate generated strong and long-lasting anti-sLea IgG antibody responses, which were superior to those induced by the corresponding conjugate of sLea with the benchmark carrier keyhole limpet hemocyanin. Antibodies elicited by Qβ-sLea were highly selective toward the sLea structure, could bind strongly with sLea -expressing cancer cells and human pancreatic cancer tissues, and kill tumor cells through complement-mediated cytotoxicity. Furthermore, vaccination with Qβ-sLea significantly reduced tumor development in a metastatic cancer model in mice, demonstrating tumor protection for the first time by a sLea -based vaccine, thus highlighting the significant potential of sLea as a promising cancer antigen.
Collapse
Affiliation(s)
- Zahra Rashidijahanabad
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
- Chemistry Department, Faculty of Science, Benha University, 13518, Benha, Qaliobiya, Egypt
| | - Nicholas A O'Brien
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Athar Nakisa
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| | - Howard Crawford
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, 48202, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 48824, East Lansing, Michigan, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, 48824, East Lansing, Michigan, USA
| |
Collapse
|
12
|
Yamin R, Kao KS, MacDonald MR, Cantaert T, Rice CM, Ravetch JV, Bournazos S. Human FcγRIIIa activation on splenic macrophages drives dengue pathogenesis in mice. Nat Microbiol 2023; 8:1468-1479. [PMID: 37429907 PMCID: PMC10753935 DOI: 10.1038/s41564-023-01421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/01/2023] [Indexed: 07/12/2023]
Abstract
Although dengue virus (DENV) infection typically causes asymptomatic disease, DENV-infected patients can experience severe complications. A risk factor for symptomatic disease is pre-existing anti-DENV IgG antibodies. Cellular assays suggested that these antibodies can enhance viral infection of Fcγ receptor (FcγR)-expressing myeloid cells. Recent studies, however, revealed more complex interactions between anti-DENV antibodies and specific FcγRs by demonstrating that modulation of the IgG Fc glycan correlates with disease severity. To investigate the in vivo mechanisms of antibody-mediated dengue pathogenesis, we developed a mouse model for dengue disease that recapitulates the unique complexity of human FcγRs. In in vivo mouse models of dengue disease, we discovered that the pathogenic activity of anti-DENV antibodies is exclusively mediated through engagement of FcγRIIIa on splenic macrophages, resulting in inflammatory sequelae and mortality. These findings highlight the importance of IgG-FcγRIIIa interactions in dengue, with important implications for the design of safer vaccination approaches and effective therapeutic strategies.
Collapse
Affiliation(s)
- Rachel Yamin
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Kevin S Kao
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
13
|
Osorio JC, Smith P, Knorr DA, Ravetch JV. The Antitumor Activities of Anti-CD47 Antibodies Require Fc-FcγR interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547082. [PMID: 37455857 PMCID: PMC10347539 DOI: 10.1101/2023.06.29.547082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
While anti-CD47 antibodies hold promise for cancer immunotherapy, early phase clinical trials have shown limited signs of clinical benefit, suggesting that blockade of CD47 alone may not be sufficient for effective tumor control. Here, we investigate the contributions of the Fc domain of anti-CD47 antibodies required for optimal in vivo antitumor activity across multiple species-matched models, providing new insights into the mechanisms underlying the efficacy of this emerging class of therapeutic antibodies. Using a novel mouse model humanized for CD47, SIRPα and FcγRs, we demonstrate that local administration of an Fc-engineered anti-CD47 antibody with enhanced binding to activating FcγRs modulates myeloid and T-cell subsets in the tumor microenvironment, resulting in improved long-term systemic antitumor immunity and minimal on-target off-tumor toxicity. Our results highlight the importance of Fc optimization in the development of effective anti-CD47 therapies and provide a novel approach for enhancing the antitumor activity of this promising immunotherapy.
Collapse
Affiliation(s)
- Juan C Osorio
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Patrick Smith
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
| | - David A Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
14
|
Knorr D, Leidner R, Jensen S, Meng R, Jones A, Ballesteros-Merino C, Bell RB, Baez M, Sprott D, Bifulco C, Piening B, Dahan R, Fox BA, Ravetch J. FcyRIIB is a novel immune checkpoint in the tumor microenvironment limiting activity of Treg-targeting antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.522856. [PMID: 36711504 PMCID: PMC9884505 DOI: 10.1101/2023.01.19.522856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite pre-clinical murine data supporting T regulatory (Treg) cell depletion as a major mechanism by which anti-CTLA-4 antibodies function in vivo, the two main antibodies tested in patients (ipilimumab and tremelimumab) have failed to demonstrate similar effects. We report analogous findings in an immunocompetent murine model humanized for CTLA-4 and Fcy receptors (hCTLA-4/hFcyR mice), where both ipilimumab and tremelimumab fail to show appreciable Treg depletion. Immune profiling of the tumor microenvironment (TME) in both mice and human samples revealed upregulation of the inhibitory Fcy receptor, FcyRIIB, which limits the ability of the antibody Fc fragment of human anti-CTLA-4 antibodies to induce effective antibody dependent cellular cytotoxicty/phagocytosis (ADCC/ADCP). Blocking FcyRIIB in humanized mice rescues Treg depleting capacity and anti-tumor activity of ipilimumab. For another target, CC motif chemokine receptor 8 (CCR8), which is selectively expressed on tumor infiltrating Tregs, we show that Fc engineering to enhance binding to activating Fc receptors, while limiting binding to the inhibitory Fc receptor, leads to consistent Treg depletion and single-agent activity across multiple tumor models, including B16, MC38 and MB49. These data reveal the importance of reducing engagement to the inhibitory Fc receptor to optimize Treg depletion by TME targeting antibodies. Our results define the inhibitory FcyRIIB receptor as a novel immune checkpoint limiting antibody-mediated Treg depletion in tumors, and demonstrate Fc variant engineering as a means to overcome this limitation and augment efficacy for a repertoire of antibodies currently in use or under clinical evaluation in oncology.
Collapse
Affiliation(s)
- David Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rom Leidner
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Shawn Jensen
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Ryan Meng
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Andrew Jones
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
| | | | - R. Bryan Bell
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Maria Baez
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
| | - David Sprott
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Carlo Bifulco
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Brian Piening
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Rony Dahan
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Bernard A. Fox
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR
| | - Jeffrey Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
| |
Collapse
|
15
|
A roadmap for translational cancer glycoimmunology at single cell resolution. J Exp Clin Cancer Res 2022; 41:143. [PMID: 35428302 PMCID: PMC9013178 DOI: 10.1186/s13046-022-02335-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/17/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer cells can evade immune responses by exploiting inhibitory immune checkpoints. Immune checkpoint inhibitor (ICI) therapies based on anti-CTLA-4 and anti-PD-1/PD-L1 antibodies have been extensively explored over the recent years to unleash otherwise compromised anti-cancer immune responses. However, it is also well established that immune suppression is a multifactorial process involving an intricate crosstalk between cancer cells and the immune systems. The cancer glycome is emerging as a relevant source of immune checkpoints governing immunosuppressive behaviour in immune cells, paving an avenue for novel immunotherapeutic options. This review addresses the current state-of-the-art concerning the role played by glycans controlling innate and adaptive immune responses, while shedding light on available experimental models for glycoimmunology. We also emphasize the tremendous progress observed in the development of humanized models for immunology, the paramount contribution of advances in high-throughput single-cell analysis in this context, and the importance of including predictive machine learning algorithms in translational research. This may constitute an important roadmap for glycoimmunology, supporting careful adoption of models foreseeing clinical translation of fundamental glycobiology knowledge towards next generation immunotherapies.
Collapse
|
16
|
Focosi D, McConnell S, Casadevall A, Cappello E, Valdiserra G, Tuccori M. Monoclonal antibody therapies against SARS-CoV-2. THE LANCET. INFECTIOUS DISEASES 2022; 22:e311-e326. [PMID: 35803289 PMCID: PMC9255948 DOI: 10.1016/s1473-3099(22)00311-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Monoclonal antibodies (mAbs) targeting the spike protein of SARS-CoV-2 have been widely used in the ongoing COVID-19 pandemic. In this paper, we review the properties of mAbs and their effect as therapeutics in the pandemic, including structural classification, outcomes in clinical trials that led to the authorisation of mAbs, and baseline and treatment-emergent immune escape. We show how the omicron (B.1.1.529) variant of concern has reset treatment strategies so far, discuss future developments that could lead to improved outcomes, and report the intrinsic limitations of using mAbs as therapeutic agents.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Scott McConnell
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Emiliano Cappello
- Unit of Adverse Drug Reactions Monitoring, Pisa University Hospital, Pisa, Italy; Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Valdiserra
- Unit of Adverse Drug Reactions Monitoring, Pisa University Hospital, Pisa, Italy; Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Tuccori
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
17
|
Pantaleo G, Correia B, Fenwick C, Joo VS, Perez L. Antibodies to combat viral infections: development strategies and progress. Nat Rev Drug Discov 2022; 21:676-696. [PMID: 35725925 PMCID: PMC9207876 DOI: 10.1038/s41573-022-00495-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
Abstract
Monoclonal antibodies (mAbs) are appealing as potential therapeutics and prophylactics for viral infections owing to characteristics such as their high specificity and their ability to enhance immune responses. Furthermore, antibody engineering can be used to strengthen effector function and prolong mAb half-life, and advances in structural biology have enabled the selection and optimization of potent neutralizing mAbs through identification of vulnerable regions in viral proteins, which can also be relevant for vaccine design. The COVID-19 pandemic has stimulated extensive efforts to develop neutralizing mAbs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with several mAbs now having received authorization for emergency use, providing not just an important component of strategies to combat COVID-19 but also a boost to efforts to harness mAbs in therapeutic and preventive settings for other infectious diseases. Here, we describe advances in antibody discovery and engineering that have led to the development of mAbs for use against infections caused by viruses including SARS-CoV-2, respiratory syncytial virus (RSV), Ebola virus (EBOV), human cytomegalovirus (HCMV) and influenza. We also discuss the rationale for moving from empirical to structure-guided strategies in vaccine development, based on identifying optimal candidate antigens and vulnerable regions within them that can be targeted by antibodies to result in a strong protective immune response.
Collapse
Affiliation(s)
- Giuseppe Pantaleo
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland
| | - Bruno Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Craig Fenwick
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland
| | - Victor S Joo
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland
| | - Laurent Perez
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland.
| |
Collapse
|
18
|
Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. J Exp Med 2022; 219:e20211505. [PMID: 35522218 PMCID: PMC9086500 DOI: 10.1084/jem.20211505] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the deadliest cancers and is projected to soon be the second leading cause of cancer death. Median survival of PDA patients is 6-10 mo, with the majority of diagnoses occurring at later, metastatic stages that are refractory to treatment and accompanied by worsening prognoses. Glycosylation is one of the most common types of post-translational modifications. The complex landscape of glycosylation produces an extensive repertoire of glycan moieties, glycoproteins, and glycolipids, thus adding a dynamic and tunable level of intra- and intercellular signaling regulation. Aberrant glycosylation is a feature of cancer progression and influences a broad range of signaling pathways to promote disease onset and progression. However, despite being so common, the functional consequences of altered glycosylation and their potential as therapeutic targets remain poorly understood and vastly understudied in the context of PDA. In this review, the functionality of glycans as they contribute to hallmarks of PDA are highlighted as active regulators of disease onset, tumor progression, metastatic capability, therapeutic resistance, and remodeling of the tumor immune microenvironment. A deeper understanding of the functional consequences of altered glycosylation will facilitate future hypothesis-driven studies and identify novel therapeutic strategies in PDA.
Collapse
Affiliation(s)
| | | | - Jasper Hsu
- Salk Institute for Biological Studies, La Jolla, CA
| | | |
Collapse
|
19
|
Li TJ, Jin KZ, Li H, Ye LY, Li PC, Jiang B, Lin X, Liao ZY, Zhang HR, Shi SM, Lin MX, Fei QL, Xiao ZW, Xu HX, Liu L, Yu XJ, Wu WD. SIGLEC15 amplifies immunosuppressive properties of tumor-associated macrophages in pancreatic cancer. Cancer Lett 2022; 530:142-155. [PMID: 35077803 DOI: 10.1016/j.canlet.2022.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) usually presents infrequent infiltration of T lymphocytes. The known immune-checkpoint inhibitors to date focus on activating T cells and manifest limited effectiveness in PDAC. SIGLEC15 was identified as a novel tumor-associated macrophage (TAM)-related immune-checkpoint in other cancer types, while its immunosuppressive role and clinical significance remained unclear in PDAC. In our study, SIGLEC15 presented immunosuppressive relevance in PDAC via bioinformatic analysis and expressed on TAM and PDAC cells. SIGLEC15+ TAM, rather than SIGLEC15+ PDAC cells or SIGLEC15- TAM, correlated with poor prognosis and immunosuppressive microenvironment in the PDAC microarray cohort. Compared with SIGLEC15- TAM, SIGLEC15+ TAM presented an M2-like phenotype that could be modulated by SIGLEC15 in a tumor cell-dependent manner. In mechanism, SIGLEC15 interacted with PDAC-expressed sialic acid, preferentially α-2, 3 sialic acids, to stimulate SYK phosphorylation in TAM, which further promoted its immunoregulatory cytokines and chemokines production. In vivo, SIGLEC15+ TAM also presented an M2-like phenotype, accelerated tumor growth, and facilitated immunosuppressive microenvironment, which was greatly abolished by SYK inhibitor. Our study highlighted a novel M2-promoting function of SIGLEC15 and strongly suggested SIGLEC15 as a potential immunotherapeutic target for PDAC.
Collapse
Affiliation(s)
- Tian-Jiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Kai-Zhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Long-Yun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Peng-Cheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bruce Jiang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zhen-Yu Liao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hui-Ru Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Sai-Meng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Meng-Xiong Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qing-Lin Fei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zhi-Wen Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hua-Xiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Wei-Ding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
Abstract
Species differences in IgG Fc–Fcγ receptor (FcγR) interactions have made humanized mouse models an attractive strategy to evaluate the efficacy and toxicity of human antibodies. We previously published a humanized FcγR mouse model that fully recapitulates the expression and function of these receptors in vivo. However, the immunogenicity of exogenous human IgG has made long-term assessment of antibody function challenging, since endogenous mouse anti-human IgG responses limit the duration and success of these studies. Here, we present a mouse strain that expresses human IgG1 and FcγRs, thereby conferring tolerance to chronic administration of human IgG and enabling functional assessment of antibodies. Because this strain is appropriate for chronic disease models, we expect that researchers will benefit from its use. Therapeutic human IgG antibodies are routinely tested in mouse models of oncologic, infectious, and autoimmune diseases. However, assessing the efficacy and safety of long-term administration of these agents has been limited by endogenous anti-human IgG immune responses that act to clear human IgG from serum and relevant tissues, thereby reducing their efficacy and contributing to immune complex–mediated pathologies, confounding evaluation of potential toxicity. For this reason, human antibody treatment in mice is generally limited in duration and dosing, thus failing to recapitulate the potential clinical applications of these therapeutics. Here, we report the development of a mouse model that is tolerant of chronic human antibody administration. This model combines both a human IgG1 heavy chain knock-in and a full recapitulation of human Fc receptor (FcγR) expression, providing a unique platform for in vivo testing of human monoclonal antibodies with relevant receptors beyond the short term. Compared to controls, hIgG1 knock-in mice mount minimal anti-human IgG responses, allowing for the persistence of therapeutically active circulating human IgG even in the late stages of treatment in chronic models of immune thrombocytopenic purpura and metastatic melanoma.
Collapse
|
21
|
Abstract
Antibodies have been used to prevent or treat viral infections since the nineteenth century, but the full potential to use passive immunization for infectious diseases has yet to be realized. The advent of efficient methods for isolating broad and potently neutralizing human monoclonal antibodies is enabling us to develop antibodies with unprecedented activities. The discovery of IgG Fc region modifications that extend antibody half-life in humans to three months or more suggests that antibodies could become the principal tool with which we manage future viral epidemics. Antibodies for members of most virus families that cause severe disease in humans have been isolated, and many of them are in clinical development, an area that has accelerated during the effort to prevent or treat COVID-19 (coronavirus disease 2019). Broad and potently neutralizing antibodies are also important research reagents for identification of protective epitopes that can be engineered into active vaccines through structure-based reverse vaccinology. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James E Crowe
- Vanderbilt Vaccine Center, Department of Pediatrics, and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| |
Collapse
|
22
|
Gui CP, Li JY, Fu LM, Luo CG, Zhang C, Tang YM, Zhang LZ, Shu GN, Wu RP, Luo JH. Identification of mRNA vaccines and conserved ferroptosis related immune landscape for individual precision treatment in bladder cancer. JOURNAL OF BIG DATA 2022; 9:88. [PMID: 35818395 PMCID: PMC9261131 DOI: 10.1186/s40537-022-00641-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/27/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND The aim of this study was to identify the ferroptosis induced tumor microenvironment (FeME) landscape in bladder cancer (BCa) for mRNA vaccine development and selecting suitable patients for precision treatment. METHODS Gene expression profiles and clinical information of 1216 BCa patients were extracted from TCGA-BLCA, three GEO databases and IMvigor210 cohort. We comprehensively established the FeME landscape of 1216 BCa samples based on 290 ferroptosis related genes (FRGs), and systematically correlated these regulation patterns with TME cell-infiltrating characteristics. Besides, we identified the patients' ferroptosis risk index (FRI) to predict the prognosis of BCa for precise treatment. RESULTS Six over-expressed and mutated tumor antigens associated with poor prognosis and infiltration of antigen presenting cells were identified in BCa. Furthermore, we demonstrated the evaluation of FeME within individual tumors could predict stages of tumor inflammation, subtypes, genetic variation, and patient prognosis. Then, 5-lncRNA signature was mined to produce the FRI. Low FRI was also linked to increased mutation load, better prognosis and enhanced response to anti-PD-L1 immunotherapy. Besides, an immunotherapy cohort confirmed patients with lower FRI demonstrated significant therapeutic advantages and clinical benefits. CONCLUSIONS TFRC, SCD, G6PD, FADS2, SQLE, and SLC3A2 are potent antigens for developing anti-BCa mRNA vaccine. Establishment of FRI will contribute to enhancing our cognition of TME infiltration characterization and guiding more effective immunotherapy strategies and selecting appropriate patients for tumor vaccine therapy. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40537-022-00641-z.
Collapse
Affiliation(s)
- Cheng-Peng Gui
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Jia-Ying Li
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| | - Liang-Min Fu
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| | - Cheng-Gong Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| | - Chi Zhang
- Department of Urology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Yi-Ming Tang
- Department of Urology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong China
| | - Li-zhen Zhang
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| | - Guan-nan Shu
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| | - Rong-Pei Wu
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| | - Jun-Hang Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| |
Collapse
|
23
|
Hu Z, Bie L, Gao J, Wang X. Insights into Selectin Inhibitor Design from Endogenous Isomeric Ligands of SLe a and SLe x. J Chem Inf Model 2021; 61:6085-6093. [PMID: 34905361 DOI: 10.1021/acs.jcim.1c01356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Selectins interact with cell-surface glycans to promote the initial tethering and rolling of leukocytes, and these interactions are targets for designs of inhibitors to neutralize diseases related to excessive inflammatory responses in many cardiovascular and immune dysfunctions, as well as tumor markers in different cancers. The isomeric endogenous tetrasaccharides, sialyl Lewis X (sLex) and sialyl Lewis A (sLea), are minimal sugar structures required for selectin binding. Understanding their subtle structural variances and significant advanced binding strengths of sLea over sLex could benefit the rational designs for selectin inhibitors. Modeling based on the E-selectin-sLex crystal structure in the present study demonstrated that the N-acetyl group of GlcNAc in sLex could form steric hindrances in the E-selectin-sLex complex, but the hydroxy methylene group of GlcNAc in sLea at the same position allows for stronger binding interactions. The subsequent designed inhibitor with a synthetic accessible linker molecule that has no exo-cyclic moieties replacing GlcNAc displayed comparable dynamic and energetic binding features to sLea. The present study deciphered the clues from endogenous isomeric sLea and sLex and provided insights into designing selectin inhibitors with simplified synthesis.
Collapse
Affiliation(s)
- Zhicheng Hu
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lihua Bie
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaocong Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
24
|
Nawab DH. Vaccinal antibodies: Fc antibody engineering to improve the antiviral antibody response and induce vaccine-like effects. Hum Vaccin Immunother 2021; 17:5532-5545. [PMID: 34844516 PMCID: PMC8903937 DOI: 10.1080/21645515.2021.1985891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/21/2021] [Indexed: 10/19/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic highlights the urgent clinical need for efficient virus therapies and vaccines. Although the functional importance of antibodies is indisputable in viral infections, there are still significant unmet needs that require vast improvements in antibody-based therapeutics. The IgG Fc domain can be engineered to produce antibodies with tailored and potent responses that will meet these clinical demands. Engaging Fc receptors (FcRs) to perform effector functions as cytotoxicity, phagocytosis, complement activation, intracellular neutralization and controlling antibody persistence. Furthermore, it produces vaccine-like effects by activating signals to stimulate T-cell responses, have proven to be required for protection, as neutralization alone does not off the full protection capacity of antibodies. This review highlights antiviral Fc functions and FcRs' contributions in linking innate and adaptive immunity against viral threats. Moreover, it provides the latest Fc engineering strategies to improve the safety and efficacy of human antiviral antibodies and vaccines.
Collapse
Affiliation(s)
- Dhuha H Nawab
- Pharmacy Department, Ministry of Health, Saudi Arabia
| |
Collapse
|
25
|
Ibarlucea-Benitez I, Weitzenfeld P, Smith P, Ravetch JV. Siglecs-7/9 function as inhibitory immune checkpoints in vivo and can be targeted to enhance therapeutic antitumor immunity. Proc Natl Acad Sci U S A 2021; 118:e2107424118. [PMID: 34155121 PMCID: PMC8256000 DOI: 10.1073/pnas.2107424118] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Given the role of myeloid cells in T cell activation and in the antitumor response, targeting checkpoint molecules expressed on this population represents a promising strategy to augment antitumor immunity. However, myeloid checkpoints that can be effectively used as immunotherapy targets are still lacking. Here, we demonstrate the therapeutic potential of targeting the myeloid receptors Siglec-7 and Siglec-9 in vivo. By using a humanized immunocompetent murine model, we demonstrate that human Siglec-7 and Siglec-9, in addition to the murine homolog Siglec-E, inhibit the endogenous antitumor immune response, as well as the response to tumor-targeting and immune checkpoint inhibiting antibodies in vivo. The impact of these Siglecs on tumor progression is highly dependent on the anatomical distribution of the tumor and, as a consequence, the local tumor microenvironment, as tumors with a more immune-suppressive tumor microenvironment are less sensitive to Siglec perturbation. Finally, to assess the potential of these two receptors as targets for immunotherapy, we developed Fc engineered blocking antibodies to Siglec-7 and Siglec-9 and demonstrate that Siglec-7 and Siglec-9 blockade can significantly reduce tumor burden in vivo, demonstrating the therapeutic potential of targeting these two receptors.
Collapse
Affiliation(s)
| | - Polina Weitzenfeld
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065
| | - Patrick Smith
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
26
|
Vaccines in Gastrointestinal Malignancies: From Prevention to Treatment. Vaccines (Basel) 2021; 9:vaccines9060647. [PMID: 34199248 PMCID: PMC8231997 DOI: 10.3390/vaccines9060647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal (GI) malignancies are some of the most common and devastating malignancies and include colorectal, gastric, esophageal, hepatocellular, and pancreatic carcinomas, among others. Five-year survival rates for many of these malignancies remain low. The majority presents at an advanced stage with limited treatment options and poor overall survival. Treatment is advancing but not at the same speed as other malignancies. Chemotherapy and radiation treatments are still only partially effective in GI malignancies and cause significant side effects. Thus, there is an urgent need for novel strategies in the treatment of GI malignancies. Recently, immunotherapy and checkpoint inhibitors have entered as potential new therapeutic options for patients, and thus, cancer vaccines may play a major role in the future of treatment for these malignancies. Further advances in understanding the interaction between the tumor and immune system have led to the development of novel agents, such as cancer vaccines.
Collapse
|
27
|
Corti D, Purcell LA, Snell G, Veesler D. Tackling COVID-19 with neutralizing monoclonal antibodies. Cell 2021; 184:3086-3108. [PMID: 34087172 PMCID: PMC8152891 DOI: 10.1016/j.cell.2021.05.005] [Citation(s) in RCA: 240] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/25/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- COVID-19/pathology
- COVID-19/virology
- Humans
- SARS-CoV-2/immunology
- SARS-CoV-2/isolation & purification
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/immunology
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
| | | | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
28
|
Thurin M. Tumor-Associated Glycans as Targets for Immunotherapy: The Wistar Institute Experience/Legacy. Monoclon Antib Immunodiagn Immunother 2021; 40:89-100. [PMID: 34161162 DOI: 10.1089/mab.2021.0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor cells are characterized by the expression of tumor-specific carbohydrate structures that differ from their normal counterparts. Carbohydrates on tumor cells have phenotypical as well as functional implications, impacting the tumor progression process, from malignant transformation to metastasis formation. Importantly, carbohydrates are structures that play a role in receptor-ligand interaction and elicit the activity of growth factor receptors, integrins, lectins, and other type 1 transmembrane proteins. They have been recognized as biomarkers for cancer diagnosis, and evidence demonstrating their relevance as targets for anticancer therapeutic strategies, including immunotherapy, continues to accumulate. Different approaches targeting carbohydrates include monoclonal antibodies (mAbs), antibody (Ab)-drug conjugates, vaccines, and adhesion antagonists. Development of bispecific antibodies and chimeric antigen receptor (CAR)-modified T cells against tumor-associated carbohydrate antigens (TACAs) as promising cancer immunotherapeutic agents is rapidly evolving. As reviewed here, there are several cancer-associated glycan features that can be leveraged to design rational drug or immune system targets, applying multiple TACA structural and functional features to be targeted as the standard treatment paradigm. Many of the underlying targets were defined by researchers at the Wistar Institute in Philadelphia, Pennsylvania, which provide basis for different immunotherapy approaches.
Collapse
Affiliation(s)
- Magdalena Thurin
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Yamin R, Jones AT, Hoffmann HH, Kao KS, Francis RL, Sheahan TP, Baric RS, Rice CM, Ravetch JV, Bournazos S. Fc-engineered antibody therapeutics with improved efficacy against COVID-19. RESEARCH SQUARE 2021:rs.3.rs-555612. [PMID: 34075373 PMCID: PMC8168397 DOI: 10.21203/rs.3.rs-555612/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monoclonal antibodies (mAbs) with neutralizing activity against SARS-CoV-2 have demonstrated clinical benefit in cases of mild to moderate SARS-CoV-2 infection, substantially reducing the risk for hospitalization and severe disease1-4. Treatment generally requires the administration of high doses of these mAbs with limited efficacy in preventing disease complications or mortality among hospitalized COVID-19 patients5. Here we report the development and evaluation of Fc-optimized anti-SARS-CoV-2 mAbs with superior potency to prevent or treat COVID-19 disease. In several animal models of COVID-19 disease6,7, we demonstrate that selective engagement of activating FcγRs results in improved efficacy in both preventing and treating disease-induced weight loss and mortality, significantly reducing the dose required to confer full protection upon SARS-CoV-2 challenge and treatment of pre-infected animals. Our results highlight the importance of FcγR pathways in driving antibody-mediated antiviral immunity, while excluding any pathogenic or disease-enhancing effects of FcγR engagement of anti-SARS-CoV-2 antibodies upon infection. These findings have important implications for the development of Fc-engineered mAbs with optimal Fc effector function and improved clinical efficacy against COVID-19 disease.
Collapse
Affiliation(s)
- Rachel Yamin
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY
| | - Andrew T Jones
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY
| | | | - Kevin S Kao
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY
| | - Rebecca L Francis
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY
| |
Collapse
|
30
|
Luo G, Jin K, Deng S, Cheng H, Fan Z, Gong Y, Qian Y, Huang Q, Ni Q, Liu C, Yu X. Roles of CA19-9 in pancreatic cancer: Biomarker, predictor and promoter. Biochim Biophys Acta Rev Cancer 2021; 1875:188409. [PMID: 32827580 DOI: 10.1016/j.bbcan.2020.188409] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Carbohydrate antigen 19-9 (CA19-9) is the best validated biomarker and an indicator of aberrant glycosylation in pancreatic cancer. CA19-9 functions as a biomarker, predictor, and promoter in pancreatic cancer. As a biomarker, the sensitivity is approximately 80%, and the major challenges involve false positives in conditions of inflammation and nonpancreatic cancers and false negatives in Lewis-negative Individuals. Lewis antigen status should be determined when using CA19-9 as a biomarker. CA19-9 has screening potential when combined with symptoms and/or risk factors. As a predictor, CA19-9 could be used to assess stage, prognosis, resectability, recurrence, and therapeutic efficacy. Normal baseline levels of CA19-9 are associated with long-term survival. As a promoter, CA19-9 could be used to evaluate the biology of pancreatic cancer. CA19-9 can accelerate pancreatic cancer progression by glycosylating proteins, binding to E-selectin, strengthening angiogenesis, and mediating the immunological response. CA19-9 is an attractive therapeutic target for cancer, and strategies include therapeutic antibodies and vaccines, CA19-9-guided nanoparticles, and inhibition of CA19-9 biosynthesis.
Collapse
Affiliation(s)
- Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Shengming Deng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Yitao Gong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Yunzhen Qian
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China.
| |
Collapse
|
31
|
Huang X, Zhang G, Tang T, Liang T. Identification of tumor antigens and immune subtypes of pancreatic adenocarcinoma for mRNA vaccine development. Mol Cancer 2021; 20:44. [PMID: 33648511 PMCID: PMC7917175 DOI: 10.1186/s12943-021-01310-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although mRNA vaccines have been effective against multiple cancers, their efficacy against pancreatic adenocarcinoma (PAAD) remains undefined. Accumulating evidence suggests that immunotyping can indicate the comprehensive immune status in tumors and their immune microenvironment, which is closely associated with therapeutic response and vaccination potential. The aim of this study was to identify potent antigens in PAAD for mRNA vaccine development, and further distinguish immune subtypes of PAAD to construct an immune landscape for selecting suitable patients for vaccination. METHODS Gene expression profiles and clinical information of 239 PAAD datasets were extracted from ICGC, and RNA-Seq data of 103 samples were retrieved from TCGA. GEPIA was used to calculate differential expression levels and prognostic indices, cBioPortal program was used to compare genetic alterations, and TIMER was used to explore correlation between genes and immune infiltrating cells. Consensus cluster was used for consistency matrix construction and data clustering, DAVID was used for functional annotation, and graph learning-based dimensional reduction was used to depict immune landscape. RESULTS Six overexpressed and mutated tumor antigens associated with poor prognosis and infiltration of antigen presenting cells were identified in PAAD, including ADAM9, EFNB2, MET, TMOD3, TPX2, and WNT7A. Furthermore, five immune subtypes (IS1-IS5) and nine immune gene modules of PAAD were identified that were consistent in both patient cohorts. The immune subtypes showed distinct molecular, cellular and clinical characteristics. IS1 and IS2 exhibited immune-activated phenotypes and correlated to better survival compared to the other subtypes. IS4 and IS5 tumors were immunologically cold and associated with higher tumor mutation burden. Immunogenic cell death modulators, immune checkpoints, and CA125 and CA199, were also differentially expressed among the five immune subtypes. Finally, the immune landscape of PAAD showed a high degree of heterogeneity between individual patients. CONCLUSIONS ADAM9, EFNB2, MET, TMOD3, TPX2, and WNT7A are potent antigens for developing anti-PAAD mRNA vaccine, and patients with IS4 and IS5 tumors are suitable for vaccination.
Collapse
Affiliation(s)
- Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Zhejiang, 310003 Hangzhou China
- Zhejiang University Cancer Center, Zhejiang, 310003 Hangzhou China
- Research Center for Healthcare Data Science, Zhejiang Lab, Zhejiang, 310003 Hangzhou China
| | - Gang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Zhejiang, 310003 Hangzhou China
- Zhejiang University Cancer Center, Zhejiang, 310003 Hangzhou China
- Research Center for Healthcare Data Science, Zhejiang Lab, Zhejiang, 310003 Hangzhou China
| | - Tianyu Tang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Zhejiang, 310003 Hangzhou China
- Zhejiang University Cancer Center, Zhejiang, 310003 Hangzhou China
- Research Center for Healthcare Data Science, Zhejiang Lab, Zhejiang, 310003 Hangzhou China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Zhejiang, 310003 Hangzhou China
- Zhejiang University Cancer Center, Zhejiang, 310003 Hangzhou China
- Research Center for Healthcare Data Science, Zhejiang Lab, Zhejiang, 310003 Hangzhou China
| |
Collapse
|
32
|
Lee T, Teng TZJ, Shelat VG. Carbohydrate antigen 19-9 - tumor marker: Past, present, and future. World J Gastrointest Surg 2020; 12:468-490. [PMID: 33437400 PMCID: PMC7769746 DOI: 10.4240/wjgs.v12.i12.468] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Carbohydrate antigen 19-9 (CA 19-9) is a cell surface glycoprotein complex most commonly associated with pancreatic ductal adenocarcinoma (PDAC). Koprowski first described it in 1979 using a mouse monoclonal antibody in a colorectal carcinoma cell line. Historically, it is one of the most commonly used tumor markers for diagnosing, managing, and prognosticating PDAC. Additionally, elevated CA 19-9 levels are used as an indication for surgery in suspected benign pancreatic conditions. Another common application of CA 19-9 in the biliary tract includes its use as an adjunct in diagnosing cholangiocarcinoma. However, its clinical value is not limited to the hepatopancreatobiliary system. The reality is that the advancing literature has broadened the clinical value of CA 19-9. The potential value of CA 19-9 in patients' workup extends its reach to gastrointestinal cancers - such as colorectal and oesophageal cancer - and further beyond the gastrointestinal tract - including urological, gynecological, pulmonary, and thyroid pathologies. Apart from its role in investigations, CA 19-9 presents a potential therapeutic target in PDAC and acute pancreatitis. In a bid to consolidate its broad utility, we appraised and reviewed the biomarker's current utility and limitations in investigations and management, while discussing the potential applications for CA 19-9 in the works for the future.
Collapse
Affiliation(s)
- Tsinrong Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Thomas Zheng Jie Teng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Vishal G Shelat
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
| |
Collapse
|
33
|
Bournazos S, Corti D, Virgin HW, Ravetch JV. Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection. Nature 2020; 588:485-490. [PMID: 33032297 PMCID: PMC7672690 DOI: 10.1038/s41586-020-2838-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/02/2020] [Indexed: 02/05/2023]
Abstract
Antibodies against viral pathogens represent promising therapeutic agents for the control of infection, and their antiviral efficacy has been shown to require the coordinated function of both the Fab and Fc domains1. The Fc domain engages a wide spectrum of receptors on discrete cells of the immune system to trigger the clearance of viruses and subsequent killing of infected cells1–4. Here we report that Fc engineering of anti-influenza IgG monoclonal antibodies for selective binding to the activating Fcγ receptor FcγRIIa results in enhanced ability to prevent or treat lethal viral respiratory infection in mice, with increased maturation of dendritic cells and the induction of protective CD8+ T cell responses. These findings highlight the capacity for IgG antibodies to induce protective adaptive immunity to viral infection when they selectively activate a dendritic cell and T cell pathway, with important implications for the development of therapeutic antibodies with improved antiviral efficacy against viral respiratory pathogens. An antibody Fc domain variant with enhanced binding to an activating Fc receptor on dendritic cells promotes the induction of a protective CD8 T cell response.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology Inc., Bellinzona, Switzerland
| | | | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
34
|
Complementary Use of Carbohydrate Antigens Lewis a, Lewis b, and Sialyl-Lewis a (CA19.9 Epitope) in Gastrointestinal Cancers: Biological Rationale Towards A Personalized Clinical Application. Cancers (Basel) 2020; 12:cancers12061509. [PMID: 32527016 PMCID: PMC7352550 DOI: 10.3390/cancers12061509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
Carbohydrate antigen 19.9 (CA19.9) is used as a tumor marker for clinical and research purposes assuming that it is abundantly produced by gastrointestinal cancer cells due to a cancer-associated aberrant glycosylation favoring its synthesis. Recent data has instead suggested a different picture, where immunodetection on tissue sections matches biochemical and molecular data. In addition to CA19.9, structurally related carbohydrate antigens Lewis a and Lewis b are, in fact, undetectable in colon cancer, due to the down-regulation of a galactosyltransferase necessary for their synthesis. In the pancreas, no differential expression of CA19.9 or cognate glycosyltransferases occurs in cancer. Ductal cells only express such Lewis antigens in a pattern affected by the relative levels of each glycosyltransferase, which are genetically and epigenetically determined. The elevation of circulating antigens seems to depend on the obstruction of neoplastic ducts and loss of polarity occurring in malignant ductal cells. Circulating Lewis a and Lewis b are indeed promising candidates for monitoring pancreatic cancer patients that are negative for CA19.9, but not for improving the low diagnostic performance of such an antigen. Insufficient biological data are available for gastric and bile duct cancer. Studying each patient in a personalized manner determining all Lewis antigens in the surgical specimens and in the blood, together with the status of the tissue-specific glycosylation machinery, promises fruitful advances in translational research and clinical practice.
Collapse
|
35
|
FcRn, but not FcγRs, drives maternal-fetal transplacental transport of human IgG antibodies. Proc Natl Acad Sci U S A 2020; 117:12943-12951. [PMID: 32461366 DOI: 10.1073/pnas.2004325117] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The IgG Fc domain has the capacity to interact with diverse types of receptors, including the neonatal Fc receptor (FcRn) and Fcγ receptors (FcγRs), which confer pleiotropic biological activities. Whereas FcRn regulates IgG epithelial transport and recycling, Fc effector activities, such as antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis, are mediated by FcγRs, which upon cross-linking transduce signals that modulate the function of effector leukocytes. Despite the well-defined and nonoverlapping functional properties of FcRn and FcγRs, recent studies have suggested that FcγRs mediate transplacental IgG transport, as certain Fc glycoforms were reported to be enriched in fetal circulation. To determine the contribution of FcγRs and FcRn to the maternal-fetal transport of IgG, we characterized the IgG Fc glycosylation in paired maternal-fetal samples from patient cohorts from Uganda and Nicaragua. No differences in IgG1 Fc glycan profiles and minimal differences in IgG2 Fc glycans were noted, whereas the presence or absence of galactose on the Fc glycan of IgG1 did not alter FcγRIIIa or FcRn binding, half-life, or their ability to deplete target cells in FcγR/FcRn humanized mice. Modeling maternal-fetal transport in FcγR/FcRn humanized mice confirmed that only FcRn contributed to transplacental transport of IgG; IgG selectively enhanced for FcRn binding resulted in enhanced accumulation of maternal antibody in the fetus. In contrast, enhancing FcγRIIIa binding did not result in enhanced maternal-fetal transport. These results argue against a role for FcγRs in IgG transplacental transport, suggesting Fc engineering of maternally administered antibody to enhance only FcRn binding as a means to improve maternal-fetal transport of IgG.
Collapse
|
36
|
A combination of two human monoclonal antibodies limits fetal damage by Zika virus in macaques. Proc Natl Acad Sci U S A 2020; 117:7981-7989. [PMID: 32209664 PMCID: PMC7149495 DOI: 10.1073/pnas.2000414117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy can cause fetal abnormalities. Vaccines against ZIKV are under development, but because of potential safety concerns due to disease-enhancing antibodies, and the time required by active immunization to induce protective antibodies, there is a need to explore alternative strategies. Recombinant monoclonal antibodies can be modified to prevent enhancement of infection, and thus could be an efficacious and safe alternative to vaccines to confer rapid protection. We show that prophylactic administration of two engineered antibodies, Z004 and Z021, to pregnant macaques partially protects against fetal neurologic damage and limits vertical transmission of ZIKV. Human infection by Zika virus (ZIKV) during pregnancy can lead to vertical transmission and fetal aberrations, including microcephaly. Prophylactic administration of antibodies can diminish or prevent ZIKV infection in animal models, but whether passive immunization can protect nonhuman primates and their fetuses during pregnancy has not been determined. Z004 and Z021 are neutralizing monoclonal antibodies to domain III of the envelope (EDIII) of ZIKV. Together the two antibodies protect nonpregnant macaques against infection even after Fc modifications to prevent antibody-dependent enhancement (ADE) in vitro and extend their half-lives. Here we report on prophylactic coadministration of the Fc-modified antibodies to pregnant rhesus macaques challenged three times with ZIKV during first and second trimester. The two antibodies did not entirely eliminate maternal viremia but limited vertical transmission, protecting the fetus from neurologic damage. Thus, maternal passive immunization with two antibodies to EDIII can shield primate fetuses from the harmful effects of ZIKV.
Collapse
|
37
|
Luo W, Yang G, Luo W, Cao Z, Liu Y, Qiu J, Chen G, You L, Zhao F, Zheng L, Zhang T. Novel therapeutic strategies and perspectives for metastatic pancreatic cancer: vaccine therapy is more than just a theory. Cancer Cell Int 2020; 20:66. [PMID: 32158356 PMCID: PMC7057654 DOI: 10.1186/s12935-020-1147-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer is an aggressive and malignant tumor with an exceedingly high mortality rate. The quality of life and survival rates of pancreatic cancer patients with metastasis are poor compared with those without metastasis. Thus far, no effective treatment strategy has been established for metastatic pancreatic cancer patients. Therefore, an appropriate therapeutic method based on the elimination of metastatic pancreatic cancer is critical to improve patient outcome. Tumor-targeted vaccines have been widely discussed in recent studies and enabled important breakthroughs in the treatment of pancreatic cancer by preventing the escape of tumor cells from immune surveillance and activating the immune system to eliminate cancer cells. T cells can be activated by the stimulation of tumor-targeted vaccines, but to mount an effective immune response, both immune checkpoint inhibitors and positive costimulatory molecules are required. In this review, we discuss potential tumor-targeted vaccines that can target pancreatic cancer, elaborate the probably appropriate combination of vaccines therapy and evaluate the underlying benefits as well as obstacles in the current therapy for metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Wenhao Luo
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Gang Yang
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Wentao Luo
- 2Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
| | - Zhe Cao
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Yueze Liu
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Jiangdong Qiu
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Guangyu Chen
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Lei You
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Fangyu Zhao
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Lianfang Zheng
- 3Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Taiping Zhang
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China.,4Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| |
Collapse
|