1
|
Knoedler L, Knoedler S, Panayi AC, Lee CAA, Sadigh S, Huelsboemer L, Stoegner VA, Schroeter A, Kern B, Mookerjee V, Lian CG, Tullius SG, Murphy GF, Pomahac B, Kauke-Navarro M. Cellular activation pathways and interaction networks in vascularized composite allotransplantation. Front Immunol 2023; 14:1179355. [PMID: 37266446 PMCID: PMC10230044 DOI: 10.3389/fimmu.2023.1179355] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is an evolving field of reconstructive surgery that has revolutionized the treatment of patients with devastating injuries, including those with limb losses or facial disfigurement. The transplanted units are typically comprised of different tissue types, including skin, mucosa, blood and lymphatic vasculature, muscle, and bone. It is widely accepted that the antigenicity of some VCA components, such as skin, is particularly potent in eliciting a strong recipient rejection response following transplantation. The fine line between tolerance and rejection of the graft is orchestrated by different cell types, including both donor and recipient-derived lymphocytes, macrophages, and other immune and donor-derived tissue cells (e.g., endothelium). Here, we delineate the role of different cell and tissue types during VCA rejection. Rejection of VCA grafts and the necessity of life-long multidrug immunosuppression remains one of the major challenges in this field. This review sheds light on recent developments in decoding the cellular signature of graft rejection in VCA and how these may, ultimately, influence the clinical management of VCA patients by way of novel therapies that target specific cellular processes.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adriana C. Panayi
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Catherine A. A. Lee
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Kern
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vikram Mookerjee
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Masoud AG, Lin J, Zhu LF, Tao K, Ness NW, Kassiri Z, Moore RB, Vanhaesebroeck B, West L, Anderson CC, Oudit GY, Murray AG. Endothelial phosphoinositide 3-kinase-β inactivation confers protection from immune-mediated vascular injury. Am J Transplant 2023; 23:202-213. [PMID: 36804130 DOI: 10.1016/j.ajt.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 01/06/2023]
Abstract
Heart transplant and recipient survival are limited by immune cell-mediated injury of the graft vasculature. We examined the role of the phosphoinositide 3-kinase-β (PI3Kβ) isoform in endothelial cells (EC) during coronary vascular immune injury and repair in mice. In minor histocompatibility-antigen mismatched allogeneic heart grafts, a robust immune response was mounted to each wild-type, PI3Kβ inhibitor-treated, or endothelial-selective PI3Kβ knockout (ECβKO) graft transplanted to wild-type recipients. However, microvascular EC loss and progressive occlusive vasculopathy only developed in control, but not PI3Kβ-inactivated hearts. We observed a delay in inflammatory cell infiltration of the ECβKO grafts, particularly in the coronary arteries. Surprisingly, this was accompanied by an impaired display of proinflammatory chemokine and adhesion molecules by the ECβKO ECs. In vitro, tumor necrosis factor α-stimulated endothelial ICAM1 and VCAM1 expression was blocked by PI3Kβ inhibition or RNA interference. Selective PI3Kβ inhibition also blocked tumor necrosis factor α-stimulated degradation of inhibitor of nuclear factor kappa Bα and nuclear translocation of nuclear factor kappa B p65 in EC. These data identify PI3Kβ as a therapeutic target to reduce vascular inflammation and injury.
Collapse
Affiliation(s)
- Andrew G Masoud
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute, Edmonton, Alberta, Canada
| | - Jiaxin Lin
- Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Lin F Zhu
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Kesheng Tao
- Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Nathan W Ness
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Ronald B Moore
- Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Surgery, University of Alberta, Edmonton, Alberta, Canada; Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Lori West
- Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Colin C Anderson
- Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; UCL Cancer Institute, University College London, London, England, UK; Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Allan G Murray
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Mysore V, Tahir S, Furuhashi K, Arora J, Rosetti F, Cullere X, Yazbeck P, Sekulic M, Lemieux ME, Raychaudhuri S, Horwitz BH, Mayadas TN. Monocytes transition to macrophages within the inflamed vasculature via monocyte CCR2 and endothelial TNFR2. J Exp Med 2022; 219:e20210562. [PMID: 35404389 PMCID: PMC9006314 DOI: 10.1084/jem.20210562] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Monocytes undergo phenotypic and functional changes in response to inflammatory cues, but the molecular signals that drive different monocyte states remain largely undefined. We show that monocytes acquire macrophage markers upon glomerulonephritis and may be derived from CCR2+CX3CR1+ double-positive monocytes, which are preferentially recruited, dwell within glomerular capillaries, and acquire proinflammatory characteristics in the nephritic kidney. Mechanistically, the transition to immature macrophages begins within the vasculature and relies on CCR2 in circulating cells and TNFR2 in parenchymal cells, findings that are recapitulated in vitro with monocytes cocultured with TNF-TNFR2-activated endothelial cells generating CCR2 ligands. Single-cell RNA sequencing of cocultures defines a CCR2-dependent monocyte differentiation path associated with the acquisition of immune effector functions and generation of CCR2 ligands. Immature macrophages are detected in the urine of lupus nephritis patients, and their frequency correlates with clinical disease. In conclusion, CCR2-dependent functional specialization of monocytes into macrophages begins within the TNF-TNFR2-activated vasculature and may establish a CCR2-based autocrine, feed-forward loop that amplifies renal inflammation.
Collapse
Affiliation(s)
- Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Suhail Tahir
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Kazuhiro Furuhashi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jatin Arora
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | | | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
| | - Bruce H. Horwitz
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Kanzawa T, Tokita D, Saiga K, Yamakawa T, Ishigooka H, Fukuda H, Katsumata H, Miyairi S, Ishii R, Hirai T, Imai T, Okumi M, Tanabe K. Role of Fractalkine-CX3CR1 Axis in Acute Rejection of Mouse Heart Allografts Subjected to Ischemia Reperfusion Injury. Transpl Int 2022; 35:10157. [PMID: 35185378 PMCID: PMC8842273 DOI: 10.3389/ti.2022.10157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022]
Abstract
Transplantation outcomes are affected by the increase in rejection associated with ischemia reperfusion injury (IRI). Fractalkine (FKN), a chemokine for recruitment of CX3CR1+ leukocytes, contributes to the pathogenesis of various inflammatory diseases. Herein, we evaluated the importance of the FKN-CX3CR1 axis during IRI-related rejections using a mouse heterotopic heart transplantation model. FKN expression and graft survival was compared between wild-type C57BL/6 recipients transplanted with BALB/c hearts preserved for 8 (WT-IRI) and 0.5 h (WT-control) at 4°C. Graft survival of WT-IRI was shorter than that of WT-control. FKN was expressed on the vascular endothelium in WT-IRI allografts, but minimally in WT-control. The role of the FKN-CX3CR1 axis in IRI-related rejection was directly investigated using the transplant model with CX3CR1-deficient recipients (CX3CR1 KO-IRI) or treatment with anti-mouse FKN monoclonal antibodies. Graft survival of CX3CR1 KO-IRI was longer than that of WT-IRI; antibody treatment prolonged graft survival. The contribution of CX3CR1+ monocytes to IRI-related rejection was evaluated by adoptive transfer to CX3CR1 KO-IRI. Adoptive transfer of CX3CR1+ monocytes attenuated the effect of prolonged graft survival in CX3CR1 KO-IRI. Overall, the FKN-CX3CR1 axis plays a major role during IRI-related rejection; its blockade has the potential to improve the outcomes of deceased donor transplantation.
Collapse
Affiliation(s)
- Taichi Kanzawa
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Daisuke Tokita
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
- Clinical and Academic Research Promotion Center, Tokyo Women’s Medical University, Tokyo, Japan
- *Correspondence: Daisuke Tokita, ; Kan Saiga,
| | - Kan Saiga
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
- Department of Urology, Jyoban Hospital of Tokiwa Foundation, Fukushima, Japan
- *Correspondence: Daisuke Tokita, ; Kan Saiga,
| | - Takafumi Yamakawa
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | | | - Hironori Fukuda
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Haruki Katsumata
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Satoshi Miyairi
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Rumi Ishii
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Toshihito Hirai
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | | | - Masayoshi Okumi
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
5
|
Jang HR, Kim M, Hong S, Lee K, Park MY, Yang KE, Lee CJ, Jeon J, Lee KW, Lee JE, Park JB, Kim K, Kwon GY, Kim YG, Kim DJ, Huh W. Early postoperative urinary MCP-1 as a potential biomarker predicting acute rejection in living donor kidney transplantation: a prospective cohort study. Sci Rep 2021; 11:18832. [PMID: 34552150 PMCID: PMC8458304 DOI: 10.1038/s41598-021-98135-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the clinical relevance of urinary cytokines/chemokines reflecting intrarenal immunologic micromilieu as prognostic markers and the optimal measurement timing after living donor kidney transplantation (LDKT). This prospective cohort study included 77 LDKT patients who were followed for ≥ 5 years. Patients were divided into control (n = 42) or acute rejection (AR, n = 35) group. Early AR was defined as AR occurring within 3 months. Serum and urine cytokines/chemokines were measured serially as follows: intraoperative, 8/24/72 h, 1 week, 3 months, and 1 year after LDKT. Intrarenal total leukocytes, T cells, and B cells were analyzed with immunohistochemistry followed by tissueFAXS. Urinary MCP-1 and fractalkine were also analyzed in a validation cohort. Urinary MCP-1 after one week was higher in the AR group. Urinary MCP-1, fractalkine, TNF-α, RANTES, and IL-6 after one week were significantly higher in the early AR group. Intrarenal total leukocytes and T cells were elevated in the AR group compared with the control group. Urinary fractalkine, MCP-1, and IL-10 showed positive correlation with intrarenal leukocyte infiltration. Post-KT 1 week urinary MCP-1 showed predictive value in the validation cohort. One-week post-KT urinary MCP-1 may be used as a noninvasive diagnostic marker for predicting AR after LDKT.
Collapse
Affiliation(s)
- Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Minjung Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Sungjun Hong
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Mee Yeon Park
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Kyeong Eun Yang
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Junseok Jeon
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Eun Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyunga Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoon Goo Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Dae Joong Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Wooseong Huh
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
6
|
Chen H, Yang J, Zhang S, Qin X, Jin W, Sun L, Li F, Cheng Y. Serological cytokine profiles of cardiac rejection and lung infection after heart transplantation in rats. J Cardiothorac Surg 2019; 14:26. [PMID: 30696462 PMCID: PMC6352329 DOI: 10.1186/s13019-019-0839-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Allograft rejection and infection are the major sources of morbidity and mortality after heart transplant. Early differential diagnosis is clinically crucial but difficult. The aim of the study was to examine serum cytokine profiles associated with each entity and whether such profiles could help to differentiate between them. METHODS Heart allografts from Wistar rats were transplanted to Lewis rats as described by Yokoyama. Cardiac rejection and pulmonary bacterial infection were induced by Cyclosporine cessation and bacteria bronchus injection, and pathologically confirmed. Ninety serological cytokines profiles of the study objects were then simultaneously measured using a biotin label-based cytokine array. The fold change (FC) was used for relative cytokine concentration comparison analysis. RESULTS Four cytokines in cardiac rejection group were significantly dysregulated as compared to health controls (β -Catenin, 0.51 FC; E-Selectin, 0.62 FC; IFN-gamma, 1.87 FC; and IL-13, 0.60 FC, respectively). In pulmonary infection animals, 11 cytokines were remarkably dysregulated in comparison with the control group (CINC-3, 0.57 FC; CNTF R alpha, 0.59 FC; E-Selectin, 0.58 FC; FSL1,0.62 FC; Hepassocin, 0.64 FC; IL-2, 0.26 FC; IL-13, 0.49 FC; NGFR, 0.57 FC; RAGE, 0.50 FC; TIMP-1, 0.49 FC; and IFN-gamma, 1.77 FC, respectively). Eleven cytokines were significantly up-regulated in cardiac rejection group comparing to the pulmonary infection animals (FSL1, 2.32FC; Fractalkine, 1.65FC; GFR alpha-1, 1.64FC; IL-2, 2.72FC; IL-5, 1.60FC; MMP-2, 1.71FC; NGFR, 2.25FC; TGF-beta1, 1.58FC; TGF-beta3, 1.58FC; Thrombospondin, 1.64FC, and TIMP-1, 1.52FC, respectively). CONCLUSIONS The current study illustrated the disease-specific serological cytokine profiles of allograft rejection and pulmonary bacterial infection after cardiac transplant. Such disease associated cytokine portraits might have the potential for early discrimination diagnosis.
Collapse
Affiliation(s)
- Hao Chen
- Department of Thoracic Surgery, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Juhua Yang
- Department of Thoracic Surgery, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Shengchao Zhang
- Department of Thoracic Surgery, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Xuan Qin
- Department of Thoracic Surgery, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Wei Jin
- Department of Thoracic Surgery, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Lihua Sun
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, 1158 East Parkway, Shanghai, 201700, China
| | - Feng Li
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, 1158 East Parkway, Shanghai, 201700, China. .,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yunfeng Cheng
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, 1158 East Parkway, Shanghai, 201700, China. .,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China. .,Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai, 200032, China.
| |
Collapse
|
7
|
Friedman O, Carmel N, Sela M, Abu Jabal A, Inbal A, Ben Hamou M, Krelin Y, Gur E, Shani N. Immunological and inflammatory mapping of vascularized composite allograft rejection processes in a rat model. PLoS One 2017; 12:e0181507. [PMID: 28746417 PMCID: PMC5528841 DOI: 10.1371/journal.pone.0181507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Hand and face vascularized composite allotransplantation (VCA) is an evolving and challenging field with great opportunities. During VCA, massive surgical damage is inflicted on both donor and recipient tissues, which may contribute to the high VCA rejection rates. To segregate between the damage-induced and rejection phase of post-VCA responses, we compared responses occurring up to 5 days following syngeneic versus allogeneic vascularized groin flap transplantations, culminating in transplant acceptance or rejection, respectively. METHODS The immune response elicited upon transplantation of a syngeneic versus allogeneic vascularized groin flap was compared at Post-operative days 2 or 5 by histology, immunohistochemistry and by broad-scope gene and protein analyses using quantitative real-time PCR and Multiplex respectively. RESULTS Immune cell infiltration began at the donor-recipient interface and paralleled expression of a large group of wound healing-associated genes in both allografts and syngrafts. By day 5 post-transplantation, cell infiltration spread over the entire allograft but remained confined to the wound site in the syngraft. This shift correlated with upregulation of IL-18, INFg, CXCL9, 10 and 11, CCL2, CCL5, CX3CL1 and IL-10 in the allograft only, suggesting their role in the induction of the anti-alloantigen adaptive immune response. CONCLUSIONS High resemblance between the cues governing VCA and solid organ rejection was observed. Despite this high resemblance we describe also, for the first time, a damage induced inflammatory component in VCA rejection as immune cell infiltration into the graft initiated at the surgical damage site spreading to the entire allograft only at late stage rejection. We speculate that the highly inflammatory setting created by the unique surgical damage during VCA may enhance acute allograft rejection.
Collapse
Affiliation(s)
- Or Friedman
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Narin Carmel
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Meirav Sela
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ameen Abu Jabal
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Inbal
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Ben Hamou
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yakov Krelin
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Gur
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Shani
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
8
|
Liu Y, Chen W, Wu C, Minze LJ, Kubiak JZ, Li XC, Kloc M, Ghobrial RM. Macrophage/monocyte-specific deletion of Ras homolog gene family member A (RhoA) downregulates fractalkine receptor and inhibits chronic rejection of mouse cardiac allografts. J Heart Lung Transplant 2016; 36:340-354. [PMID: 27692539 DOI: 10.1016/j.healun.2016.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/18/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The cellular and molecular mechanisms of chronic rejection of transplanted organs remain obscure; however, macrophages are known to play a critical role in the injury and repair of allografts. Among multiple factors influencing macrophage infiltration to allografts, the fractalkine chemokine (C-X3-C motif) ligand 1(CX3CL1)/chemokine (C-X3-C motif) receptor 1 (CX3CR1) signaling pathway and actin cytoskeleton, which is regulated by a small guanosine-5׳-triphosphatase Ras homolog gene family member A (RhoA), are of the utmost importance. To define the role of macrophage/RhoA pathway involvement in chronic rejection, we generated mice with monocyte/macrophage-specific deletion of RhoA. METHODS Hearts from BALB/c (H-2d) donors were transplanted into RhoAflox/flox (no Cre) and heterozygous Lyz2Cre+/-RhoAflox/flox recipients treated with cytotoxic T-lymphocyte-associated protein 4 immunoglobulin to inhibit early T-cell response. Allografts were assessed for chronic rejection and monocyte/macrophage functions. RESULTS The deletion of RhoA inhibited macrophage infiltration, neointimal hyperplasia of vasculature, and abrogated chronic rejection of the allografts. The RhoA deletion downregulated G protein-coupled fractalkine receptor CX3CR1, which activates the RhoA pathway and controls monocyte/macrophage trafficking into the vascular endothelium. This in turn promotes, through overproliferation and differentiation of smooth muscle cells in the arterial walls, neointimal hyperplasia. CONCLUSIONS Our finding of codependence of chronic rejection on monocyte/macrophage CX3CR1/CX3CL1 and RhoA signaling pathways may lead to the development of novel anti-chronic rejection therapies.
Collapse
Affiliation(s)
- Yianzhu Liu
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas; Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenhao Chen
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas
| | - Chenglin Wu
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas; The Organ Transplant Center, The First Affiliated Hospital, Su Yat-sen University and Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Gungzhou, China
| | - Laurie J Minze
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas
| | - Jacek Z Kubiak
- CNRS UMR 6290, Institute of Genetics and Development of Rennes, Cell Cycle Group, IFR 140 GFAS, France; University of Rennes 1, Faculty of medicine, Rennes, France; Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| | - Xian C Li
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas.
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas; University of Rennes 1, Faculty of medicine, Rennes, France; The Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
9
|
Chen H, Li F, Zhan Y, Yu W, Lu C, Cheng Y, Mei Y. Circulating cytokine portraits can differentiate between allograft rejection and pulmonary infection in cardiac transplant rats. Interact Cardiovasc Thorac Surg 2016; 23:118-24. [PMID: 27006183 PMCID: PMC4986731 DOI: 10.1093/icvts/ivw051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/28/2016] [Accepted: 02/05/2016] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Cardiac rejection and infection are the leading causes of morbidity and mortality after transplant representing with similar non-specific symptoms. Early discrimination is crucial yet challenging. We proposed that aberrant serum cytokine portraits exist in pulmonary infection and allograft rejection, and such profiles might aid in timely differential diagnosis. METHODS Lewis rat received Wistar rat heart allografts. Allograft rejection (n = 5) and pulmonary infection (n = 7) were induced via cessation of cyclosporine injection and intratracheal inoculation of Pseudomonas aeruginosa, respectively, and pathologically confirmed. A non-rejection and non-infection group (n = 5) was served as healthy controls. The circulating cytokine profiles of the study objects were then simultaneously measured using a multiplex quantitative cytokine array. RESULTS Thirteen cytokines [B7-2, β-nerve growth factor (NGF), chemokine (C-X3-C motif) ligand 1 (Fractalkine), granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon gamma (IFN-γ), interleukin beta (IL-β), IL-2, IL-4, IL-10, chemokine (C-X-C motif) ligand 5 (LIX), L-selectin, chemokine (C-C motif) ligand 2 (MCP-1), brain creatine kinase (TCK-1) and tumour necrosis factor alpha (TNF-α)] were up-regulated in allograft rejecting animals. Among them, B7-2, β-NGF, Fractalkine, GM-CSF, IFN-γ, IL-β, IL-2, IL-4, LIX, MCP-1 and TCK-1 were significantly increased compared with infection rats (all P-values <0.05). B7-2, CNIC-1 and CNIC-2 were increased in infection animals when compared with healthy controls (900.85 ± 259.30 vs 175.04 ± 161.07 pg/ml, 319.68 ± 264.91 vs 13.50 ± 0.00 pg/ml and 51.424 ± 29.51 vs 5.24 ± 1.30 pg/ml, respectively, all P-values <0.05). CONCLUSIONS The present study demonstrated fluctuations in circulating cytokine portraits in cardiac allograft rejection and bacterial pulmonary infection after transplant. Such disease-specific cytokine patterns might facilitate early discrimination between rejection and infection.
Collapse
Affiliation(s)
- Hao Chen
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiyong Yu
- Department of Cardiac Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Chen Lu
- Department of Pathology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunqing Mei
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Metabolic Effects of CX3CR1 Deficiency in Diet-Induced Obese Mice. PLoS One 2015; 10:e0138317. [PMID: 26393344 PMCID: PMC4579121 DOI: 10.1371/journal.pone.0138317] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/28/2015] [Indexed: 12/20/2022] Open
Abstract
The fractalkine (CX3CL1-CX3CR1) chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3β proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.
Collapse
|
11
|
Abstract
Microglia, the major myeloid cells of the central nervous system (CNS) are implicated in physiologic processes and in the pathogenesis of several CNS disorders. Since their initial description early in the 20th century, our ability to identify and isolate microglia has significantly improved and new research is providing insight into the functions of these cells in sickness and in health. Here, we review recent advances in our understanding of the role of microglia in physiological and pathological processes of the CNS with a focus on multiple sclerosis and Alzheimer's disease. Because of the prominent roles CX3CR1 and its ligand fractalkine played in bringing about these advances, we discuss the physiological and pathological roles of microglia as viewed from the CX3CR1-fractalkine perspective, providing a unique viewpoint. Based on the most recent studies of molecular profiling of microglia, we also propose a molecular and functional definition of microglia that incorporates the properties attributed to these cells in recent years.
Collapse
Affiliation(s)
- Richard M Ransohoff
- Neuroinflammation Research Center, Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195
| | - Joseph El Khoury
- Division of Infectious Diseases and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| |
Collapse
|
12
|
Pagani F, Paolicelli RC, Murana E, Cortese B, Di Angelantonio S, Zurolo E, Guiducci E, Ferreira TA, Garofalo S, Catalano M, D'Alessandro G, Porzia A, Peruzzi G, Mainiero F, Limatola C, Gross CT, Ragozzino D. Defective microglial development in the hippocampus of Cx3cr1 deficient mice. Front Cell Neurosci 2015; 9:111. [PMID: 25873863 PMCID: PMC4379915 DOI: 10.3389/fncel.2015.00111] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/11/2015] [Indexed: 11/13/2022] Open
Abstract
Microglial cells participate in brain development and influence neuronal loss and synaptic maturation. Fractalkine is an important neuronal chemokine whose expression increases during development and that can influence microglia function via the fractalkine receptor, CX3CR1. Mice lacking Cx3cr1 show a variety of neuronal defects thought to be the result of deficient microglia function. Activation of CX3CR1 is important for the proper migration of microglia to sites of injury and into the brain during development. However, little is known about how fractalkine modulates microglial properties during development. Here we examined microglial morphology, response to ATP, and K+ current properties in acute brain slices from Cx3cr1 knockout mice across postnatal hippocampal development. We found that fractalkine signaling is necessary for the development of several morphological and physiological features of microglia. Specifically, we found that the occurrence of an outward rectifying K+ current, typical of activated microglia, that peaked during the second and third postnatal week, was reduced in Cx3cr1 knockout mice. Fractalkine signaling also influenced microglial morphology and ability to extend processes in response to ATP following its focal application to the slice. Our results reveal the developmental profile of several morphological and physiological properties of microglia and demonstrate that these processes are modulated by fractalkine signaling.
Collapse
Affiliation(s)
- Francesca Pagani
- Center for Life Nanoscience - Istituto Italiano di Tecnologia@Sapienza, Rome Italy
| | - Rosa C Paolicelli
- Division of Psychiatry Research, University of Zürich, Zürich Switzerland ; Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo Italy
| | - Emanuele Murana
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome Italy
| | - Barbara Cortese
- Consiglio Nazionale delle Ricerche - Institute of Inorganic Methodologies and Plasmas, Department of Physics, Sapienza University of Rome, Rome Italy
| | - Silvia Di Angelantonio
- Center for Life Nanoscience - Istituto Italiano di Tecnologia@Sapienza, Rome Italy ; Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome Italy
| | - Emanuele Zurolo
- Department of Neuropathology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Eva Guiducci
- Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo Italy
| | - Tiago A Ferreira
- Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome Italy ; Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli, Italy
| | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome Italy ; Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli, Italy
| | - Alessandra Porzia
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nanoscience - Istituto Italiano di Tecnologia@Sapienza, Rome Italy
| | - Fabrizio Mainiero
- Department of Experimental Medicine, Sapienza University of Rome Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome Italy ; Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli, Italy
| | - Cornelius T Gross
- Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome Italy ; Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli, Italy
| |
Collapse
|
13
|
Zhang Q, Liu YF, Su ZX, Shi LP, Chen YH. Serum fractalkine and interferon-gamma inducible protein-10 concentrations are early detection markers for acute renal allograft rejection. Transplant Proc 2015; 46:1420-5. [PMID: 24935307 DOI: 10.1016/j.transproceed.2014.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/23/2014] [Accepted: 02/27/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aims of this study were to determine if characterization of serum concentrations of interferon-gamma inducible protein-10 (IP-10), fractalkine, and their receptors (CXCR3 and CX3CR1) were predictive of acute allograft rejection in kidney transplant recipients. METHODS Kidney transplant recipients (n = 52) were enrolled in this study and divide into either the acute rejection (AR, n = 15) or non-acute rejection (NAR, n = 35) groups. Serum samples from recipients were collected 1 day prior to transplantation and on days 1, 3, 5, 7, and 9 post-transplantation. The accuracy of chemokine concentrations for predicting acute rejection episodes was evaluated using receiver operator characteristic (ROC) curves. RESULTS AR was diagnosed in 15 patients based on histologic changes to renal biopsies. AR patients had significantly higher serum fractalkine, CXCR1, IP-10, and CXCR3 levels compared to levels observed in the NAR group and healthy controls. Fractalkine and IP-10 had the largest area under the ROC curve at 0.86 (95% confidence interval: 0.77-0.96). Following steroid therapy, chemokine levels decreased, which may serve to predict the therapeutic response to steroid therapy. CONCLUSION Measuring serum levels of fractalkine, IP-10, and their receptors (especially the fractalkine/IP-10 combination) may serve as a noninvasive approach for the early diagnosis of renal allograft rejection.
Collapse
Affiliation(s)
- Q Zhang
- Department of Urinary Surgery, the First Affiliated Hospital of Jinan University Guangzhou, Guangdong, China
| | - Y-F Liu
- Department of Urinary Surgery, the First Affiliated Hospital of Jinan University Guangzhou, Guangdong, China
| | - Z-X Su
- Department of Urinary Surgery, the First Affiliated Hospital of Jinan University Guangzhou, Guangdong, China.
| | - L-P Shi
- Department of Urinary Surgery, the First Affiliated Hospital of Jinan University Guangzhou, Guangdong, China
| | - Y-H Chen
- Department of Urinary Surgery, the First Affiliated Hospital of Jinan University Guangzhou, Guangdong, China
| |
Collapse
|
14
|
The role of fractalkine (CX3CL1) in regulation of CD4(+) cell migration to the central nervous system in patients with relapsing-remitting multiple sclerosis. Clin Immunol 2015; 157:121-32. [PMID: 25596452 DOI: 10.1016/j.clim.2015.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/03/2015] [Accepted: 01/05/2015] [Indexed: 11/23/2022]
Abstract
Fractalkine (CX3CL1) levels are increased in the cerebrospinal fluid (CSF) of patients with clinically isolated syndrome (CIS), as well as in the CSF and serum samples from patients with relapsing-remitting multiple sclerosis (RRMS). A higher percentage of circulating CD4(+) T-cells expressed its surface receptor (CX3CR1) and intracellular adhesion molecule (ICAM-1) in RRMS patients in comparison to healthy controls (HCs). The CX3CR1(+)ICAM-1(+)CD4(+) T-cells are enriched in the CSF of the RRMS patients. In vitro migration studies revealed that CD4(+) T-cells, which migrated toward a CX3CL1 gradient, expressed higher levels of ICAM-1 than non-migrating cells. CX3CL1 significantly increased IFN-γ and TNF-α gene expression and IFN-γ secretion by CD4(+) T-cells derived from the RRMS patients. CX3CL1 upregulated ICAM-1 expression on the surface of RRMS patient-derived but not HC-derived CD4(+) T-cells. Thus, CX3CL1 induces recruitment of CX3CR1(+)ICAM-1(+)CD4(+) T-cells into the central nervous system (CNS) during the early inflammatory response in MS.
Collapse
|
15
|
Hochheiser K, Kurts C. Selective Dependence of Kidney Dendritic Cells on CX3CR1--Implications for Glomerulonephritis Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 850:55-71. [PMID: 26324346 DOI: 10.1007/978-3-319-15774-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As central regulators of the adaptive immune response, dendritic cells (DCs) are found in virtually all lymphatic and non-lymphatic organs. A compact network of DCs also spans the kidneys. DCs play a central role in maintenance of organ homeostasis as well as in induction of immune responses against invading pathogens. They can mediate protective or destructive functions in a context-dependent manner.We recently identified CX(3)CR1 as a kidney-specific "homing receptor" for DCs. There was a strong reduction of DCs in the kidneys of CX(3)CR1-deficient mice compared to controls. This reduction was not observed in other organs except the small intestine. As a possible underlying reason we found a strong expression of the CX(3)CR1 ligand fractalkine in the kidneys. Due to this CX(3)CR1-dependent reduction of DCs, especially in the renal cortex, a glomerulonephritis (GN) model was ameliorated in CX(3)CR1-deficient mice. In contrast, the immune defense against the most common renal infection, bacterial pyelonephritis (PN), was not significantly influenced by CX(3)CR1-deficiency. This was explained by the much smaller CX(3)CR1-dependency of medullary DCs, which recruit effector cells into the kidney during PN. Additionally, once neutrophils had been recruited by mechanisms distinct from CX(3)CR1, they carried out some of the functions of DCs.Taken together, we suggest CX(3)CR1 as a therapeutic target for GN treatment, as the absence of CX(3)CR1 selectively influences DCs in the kidney without rendering mice more susceptible towards bacterial kidney infections.
Collapse
Affiliation(s)
- Katharina Hochheiser
- Institute of Experimental Immunology(IMMEI), Rheinische Friedrich-Wilhelms University, 53105, Bonn, Germany,
| | | |
Collapse
|
16
|
Wong HS, Jaumouillé V, Heit B, Doodnauth SA, Patel S, Huang YW, Grinstein S, Robinson LA. Cytoskeletal confinement of CX3CL1 limits its susceptibility to proteolytic cleavage by ADAM10. Mol Biol Cell 2014; 25:3884-99. [PMID: 25253723 PMCID: PMC4244198 DOI: 10.1091/mbc.e13-11-0633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CX3CL1 diffuses within confined regions of the plasma membrane. CX3CL1 is confined by the cortical actin cytoskeleton, not lipid rafts. Actin confinement regions protect CX3CL1 from proteolysis by limiting its interactions with ADAM10. CX3CL1 is a unique chemokine that acts both as a transmembrane endothelial adhesion molecule and, upon proteolytic cleavage, a soluble chemoattractant for circulating leukocytes. The constitutive release of soluble CX3CL1 requires the interaction of its transmembrane species with the integral membrane metalloprotease ADAM10, yet the mechanisms governing this process remain elusive. Using single-particle tracking and subdiffraction imaging, we studied how ADAM10 interacts with CX3CL1. We observed that the majority of cell surface CX3CL1 diffused within restricted confinement regions structured by the cortical actin cytoskeleton. These confinement regions sequestered CX3CL1 from ADAM10, precluding their association. Disruption of the actin cytoskeleton reduced CX3CL1 confinement and increased CX3CL1–ADAM10 interactions, promoting the release of soluble chemokine. Our results demonstrate a novel role for the cytoskeleton in limiting membrane protein proteolysis, thereby regulating both cell surface levels and the release of soluble ligand.
Collapse
Affiliation(s)
- Harikesh S Wong
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Valentin Jaumouillé
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sasha A Doodnauth
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Sajedabanu Patel
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Yi-Wei Huang
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Lisa A Robinson
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Paediatrics, University of Toronto, Toronto, ON M5S 2J7, Canada
| |
Collapse
|
17
|
Pharmacological inhibition of the chemokine receptor CX3CR1 attenuates disease in a chronic-relapsing rat model for multiple sclerosis. Proc Natl Acad Sci U S A 2014; 111:5409-14. [PMID: 24706865 DOI: 10.1073/pnas.1316510111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
One hallmark of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) is infiltration of leukocytes into the CNS, where chemokines and their receptors play a major mediatory role. CX3CR1 is a chemokine receptor involved in leukocyte adhesion and migration and hence a mediator of immune defense reactions. The role of CX3CR1 in MS and EAE pathogenesis however remains to be fully assessed. Here, we demonstrate CX3CR1 mRNA expression on inflammatory cells within active plaque areas in MS brain autopsies. To test whether blocking CNS infiltration of peripheral leukocytes expressing CX3CR1 would be a suitable treatment strategy for MS, we developed a selective, high-affinity inhibitor of CX3CR1 (AZD8797). The compound is active outside the CNS and AZD8797 treatment in Dark Agouti rats with myelin oligodendrocyte glycoprotein-induced EAE resulted in reduced paralysis, CNS pathology, and incidence of relapses. The compound is effective when starting treatment before onset, as well as after the acute phase. This treatment strategy is mechanistically similar to, but more restricted than, current very late antigen-4-directed approaches that have significant side effects. We suggest that blocking CX3CR1 on leukocytes outside the CNS could be an alternative approach to treat MS.
Collapse
|
18
|
Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 2014; 17:400-6. [DOI: 10.1038/nn.3641] [Citation(s) in RCA: 779] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/02/2014] [Indexed: 02/07/2023]
|
19
|
Zhang Q, Reed EF. Array-based methods for diagnosis and prevention of transplant rejection. Expert Rev Mol Diagn 2014; 6:165-78. [PMID: 16512777 DOI: 10.1586/14737159.6.2.165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA microarray is a microhybridization-based assay that is used to simultaneously study the expression of thousands of genes, thus providing a global view of gene expression in a tissue sample. This powerful technique has been adopted by many biomedical disciplines and will likely have a profound impact on the diagnosis, treatment and prognosis of human diseases. This review article presents an overview of the application of microarray technology to the field of solid-organ transplantation.
Collapse
Affiliation(s)
- Qiuheng Zhang
- Immunogenetics Center, Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
20
|
Elevated expression of fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) in the dorsal root ganglia and spinal cord in experimental autoimmune encephalomyelitis: implications in multiple sclerosis-induced neuropathic pain. BIOMED RESEARCH INTERNATIONAL 2013; 2013:480702. [PMID: 24175290 PMCID: PMC3794538 DOI: 10.1155/2013/480702] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/02/2013] [Accepted: 07/15/2013] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) disease resulting from a targeted autoimmune-mediated attack on myelin proteins in the CNS. The release of Th1 inflammatory mediators in the CNS activates macrophages, antibodies, and microglia resulting in myelin damage and the induction of neuropathic pain (NPP). Molecular signaling through fractalkine (CX3CL1), a nociceptive chemokine, via its receptor (CX3CR1) is thought to be associated with MS-induced NPP. An experimental autoimmune encephalomyelitis (EAE) model of MS was utilized to assess time dependent gene and protein expression changes of CX3CL1 and CX3CR1. Results revealed significant increases in mRNA and the protein expression of CX3CL1 and CX3CR1 in the dorsal root ganglia (DRG) and spinal cord (SC) 12 days after EAE induction compared to controls. This increased expression correlated with behavioural thermal sensory abnormalities consistent with NPP. Furthermore, this increased expression correlated with the peak neurological disability caused by EAE induction. This is the first study to identify CX3CL1 signaling through CX3CR1 via the DRG/SC anatomical connection that represents a critical pathway involved in NPP induction in an EAE model of MS.
Collapse
|
21
|
Hochheiser K, Heuser C, Krause TA, Teteris S, Ilias A, Weisheit C, Hoss F, Tittel AP, Knolle PA, Panzer U, Engel DR, Tharaux PL, Kurts C. Exclusive CX3CR1 dependence of kidney DCs impacts glomerulonephritis progression. J Clin Invest 2013; 123:4242-54. [PMID: 23999431 DOI: 10.1172/jci70143] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/03/2013] [Indexed: 01/25/2023] Open
Abstract
DCs and macrophages both express the chemokine receptor CX3CR1. Here we demonstrate that its ligand, CX3CL1, is highly expressed in the murine kidney and intestine. CX3CR1 deficiency markedly reduced DC numbers in the healthy and inflamed kidney cortex, and to a lesser degree in the kidney medulla and intestine, but not in other organs. CX3CR1 also promoted influx of DC precursors in crescentic glomerulonephritis, a DC-dependent aggressive type of nephritis. Disease severity was strongly attenuated in CX3CR1-deficient mice. Primarily CX3CR1-dependent DCs in the kidney cortex processed antigen for the intrarenal stimulation of T helper cells, a function important for glomerulonephritis progression. In contrast, medullary DCs played a specialized role in inducing innate immunity against bacterial pyelonephritis by recruiting neutrophils through rapid chemokine production. CX3CR1 deficiency had little effect on the immune defense against pyelonephritis, as medullary DCs were less CX3CR1 dependent than cortical DCs and because recruited neutrophils produced chemokines to compensate for the DC paucity. These findings demonstrate that cortical and medullary DCs play specialized roles in their respective kidney compartments. We identify CX3CR1 as a potential therapeutic target in glomerulonephritis that may involve fewer adverse side effects, such as impaired anti-infectious defense or compromised DC functions in other organs.
Collapse
|
22
|
Taube D, Xu J, Yang XP, Undrovinas A, Peterson E, Harding P. Fractalkine depresses cardiomyocyte contractility. PLoS One 2013; 8:e69832. [PMID: 23936109 PMCID: PMC3728327 DOI: 10.1371/journal.pone.0069832] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/14/2013] [Indexed: 12/02/2022] Open
Abstract
Background Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO) exhibit reduced cardiac function. Gene array on left ventricles (LV) showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium. Methods Fractalkine was measured in LV of 28–32 week old male EP4 KO and wild type controls (WT) by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM) from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso) stimulation. Results LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca2+ transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery. Conclusions Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium.
Collapse
Affiliation(s)
- David Taube
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Jiang Xu
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Xiao-Ping Yang
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Albertas Undrovinas
- Cardiovascular Research Division, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Edward Peterson
- Department of Internal Medicine and Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Pamela Harding
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
23
|
Garcia JA, Pino PA, Mizutani M, Cardona SM, Charo IF, Ransohoff RM, Forsthuber TG, Cardona AE. Regulation of adaptive immunity by the fractalkine receptor during autoimmune inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 191:1063-72. [PMID: 23817416 DOI: 10.4049/jimmunol.1300040] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fractalkine, a chemokine anchored to neurons or peripheral endothelial cells, serves as an adhesion molecule or as a soluble chemoattractant. Fractalkine binds CX3CR1 on microglia and circulating monocytes, dendritic cells, and NK cells. The aim of this study is to determine the role of CX3CR1 in the trafficking and function of myeloid cells to the CNS during experimental autoimmune encephalomyelitis (EAE). Our results show that, in models of active EAE, Cx3cr1(-/-) mice exhibited more severe neurologic deficiencies. Bone marrow chimeric mice confirmed that CX3CR1 deficiency in bone marrow enhanced EAE severity. Notably, CX3CR1 deficiency was associated with an increased accumulation of CD115(+)Ly6C(-)CD11c(+) dendritic cells into EAE-affected brains that correlated with enhanced demyelination and neuronal damage. Furthermore, higher IFN-γ and IL-17 levels were detected in cerebellar and spinal cord tissues of CX3CR1-deficient mice. Analyses of peripheral responses during disease initiation revealed a higher frequency of IFN-γ- and IL-17-producing T cells in lymphoid tissues of CX3CR1-deficient as well as enhanced T cell proliferation induced by CX3CR1-deficient dendritic cells. In addition, adoptive transfer of myelin oligodendrocyte glycoprotein35-55-reactive wild-type T cells induced substantially more severe EAE in CX3CR1-deficient recipients when compared with wild-type recipients. Collectively, the data demonstrate that besides its role in chemoattraction, CX3CR1 is a key regulator of myeloid cell activation contributing to the establishment of adaptive immune responses.
Collapse
Affiliation(s)
- Jenny A Garcia
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Khan B, Rangasamy S, McGuire PG, Howdieshell TR. The role of monocyte subsets in myocutaneous revascularization. J Surg Res 2013; 183:963-75. [PMID: 23498341 DOI: 10.1016/j.jss.2013.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/31/2013] [Accepted: 02/08/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND The controlled recruitment of monocytes from the circulation to the site of injury and their differentiation into tissue macrophages are critical events in the reconstitution of tissue integrity. Subsets of monocytes/macrophages have been implicated in the pathogenesis of atherosclerosis and tumor vascularity; however, the significance of monocyte heterogeneity in physiologic neovascularization is just emerging. MATERIALS AND METHODS A cranial-based, peninsular-shaped myocutaneous flap was surgically created on the dorsum of wild-type mice (C57BL6) and populations of mice with genetic deletion of subset-specific chemokine ligand-receptor axes important in monocyte trafficking and function (CCL2(-/-) and CX3CR1(-/-)) (n=36 total; 12 mice per group, nine with flap and three unoperated controls). Planimetric analysis of digital photographic images was utilized to determine flap surface viability in wild-type and knockout mice. Real-time myocutaneous flap perfusion and functional revascularization was determined by laser speckle contrast imaging. Image analysis of CD-31 immunostained sections confirmed flap microvascular density and anatomy. Macrophage quantification and localization in flap tissues was determined by F4/80 gene and protein expression. Quantitative reverse transcription-polymerase chain reaction was performed on nonoperative back skin and postoperative flap tissue specimens to determine local gene expression. RESULTS Myocutaneous flaps created on wild type and CX3CR1(-/-) mice were engrafted to the recipient site, resulting in viability. In contrast, distal full thickness cutaneous necrosis and resultant flap dehiscence was evident by d 10 in CCL2(-/-) mice. Over 10 d, laser speckle contrast imaging documented immediate graded flap ischemia in all three groups of mice, functional flap revascularization in wild type and CX3CR1(-/-) mice, and lack of distal flap reperfusion in CCL2(-/-) mice. Immunostaining of serial histologic specimens confirmed marked increases in microvascular density and number of macrophages in wild type mice, intermediate increases in CX3CR1(-/-) mice, and no significant change in vessel count or macrophage quantity in CCL2(-/-) mice over the study interval. Finally, quantitative reverse transcriptase polymerase chain reaction demonstrated that the loss of function of chemokine ligand and receptor genes influenced the transcription of local genes involved in monocyte chemotaxis and wound angiogenesis. CONCLUSIONS In a graded-ischemia wound healing model, monocyte recruitment was severely impaired in CCL2(-/-) mice, resulting in failure of flap revascularization and concomitant cutaneous necrosis. Analysis of CX3CR1-deficient mice revealed adequate monocyte recruitment and revascularization for flap survival; however, the myeloid cell response and magnitude of neovascularization were dampened compared with wild type mice.
Collapse
Affiliation(s)
- Bilal Khan
- Department of Surgery, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
25
|
Wang YM, Zhou JJ, Wang Y, Watson D, Zhang GY, Hu M, Wu H, Zheng G, Wang Y, Durkan AM, Harris DCH, Alexander SI. Daedalic DNA vaccination against self antigens as a treatment for chronic kidney disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:326-333. [PMID: 23412421 PMCID: PMC3563188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/17/2013] [Indexed: 06/01/2023]
Abstract
Chronic kidney disease (CKD) is a major cause of death and morbidity in Australia and worldwide. DNA vaccination has been used for targeting foreign antigens to induce immune responses and prevent autoimmune disease, viral infection and cancer. However, the use of DNA vaccination has been restricted by a limited ability to induce strong immune responses, especially against self-antigens which are limited by mechanisms of self-tolerance. Furthermore, there have been few studies on the potential of DNA vaccination in chronic inflammatory diseases, including CKD. We have established strategies of DNA vaccination targeting specific self-antigens in the immune system including co-stimulatory pathways, T cell receptors and chemokine molecules, which have been effective in protecting against the development of CKD in a variety of animal models. In particular, we find that the efficacy of DNA vaccination is improved by dendritic cell (DC) targeting and can protect against animal models of autoimmune nephritis mimicking human membranous nephropathy. In this review, we summarize several approaches that have been tested to improve the efficacy of DNA vaccination in CKD models, including enhanced DNA vaccine delivery methods, DNA vaccine modifications and new molecular targets for DNA vaccination. Finally, we discuss the specific application of DNA vaccination for preventing and treating CKD.
Collapse
Affiliation(s)
- Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Moriyama M, Hayashida JN, Toyoshima T, Ohyama Y, Shinozaki S, Tanaka A, Maehara T, Nakamura S. Cytokine/chemokine profiles contribute to understanding the pathogenesis and diagnosis of primary Sjögren's syndrome. Clin Exp Immunol 2012; 169:17-26. [PMID: 22670774 PMCID: PMC3390469 DOI: 10.1111/j.1365-2249.2012.04587.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To investigate the pathogenesis of localized autoimmune damage in Sjögren's syndrome (SS) by examining the expression patterns of cytokines, chemokines and chemokine receptors at sites of autoimmune damage. mRNA expression of these molecules in the labial salivary glands (LSGs) and peripheral blood mononuclear cells (PBMCs) from 36 SS patients was examined using a real-time polymerase chain reaction-based method. Subsets of the infiltrating lymphocytes and chemokines/chemokine receptors expression in the LSG specimens were examined by immunohistochemistry. Cytokines/chemokine concentrations in the saliva were analysed using flow cytometry or enzyme-linked immunosorbent assay. mRNA expression of T helper type 1 (Th1) cytokines, chemokines and chemokine receptors was higher in LSGs than in PBMCs. In contrast, mRNA expression of Th2 cytokines, chemokines [thymus and activation-regulated chemokine (TARC/CCL17), macrophage-derived chemokine (MDC/CCL22)] and chemokine receptor (CCR4) was associated closely with strong lymphocytic accumulation in LSGs. Furthermore, TARC and MDC were detected immunohistochemically in/around the ductal epithelial cells in LSGs, whereas CCR4 was detected on infiltrating lymphocytes. The concentrations of these cytokines/chemokines were significantly higher in the saliva from SS patients than those from controls, and the concentrations of Th2 cytokines/chemokines were associated closely with strong lymphocytic accumulation in LSGs. These results suggest that SS might be initiated and/or maintained by Th1 and Th17 cells and progress in association with Th2 cells via the interaction between particular chemokines/chemokine receptors. Furthermore, the measurement of cytokines/chemokines in saliva is suggested to be useful for diagnosis and also to reveal disease status.
Collapse
Affiliation(s)
- M Moriyama
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Todorova D, Sabatier F, Doria E, Lyonnet L, Vacher Coponat H, Robert S, Despoix N, Legris T, Moal V, Loundou A, Morange S, Berland Y, George FD, Burtey S, Paul P. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells. PLoS One 2011; 6:e26663. [PMID: 22039526 PMCID: PMC3200359 DOI: 10.1371/journal.pone.0026663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 09/30/2011] [Indexed: 11/19/2022] Open
Abstract
Background Circulating CD34+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN) could target progenitor cell injury by Natural Killer (NK) cells, thereby limiting their availability for vascular repair. Methodology/Principal Findings We show that CD34+-derived Endothelial Colony Forming Cells (ECFC) can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34+ cells expressing FKN was identified as an independent variable inversely correlated to CD34+ progenitor cell count. We further showed that treatment of CD34+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. Conclusions Our data highlights a novel mechanism by which FKN expression on CD34+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.
Collapse
Affiliation(s)
- Dilyana Todorova
- Aix-Marseille University, Laboratoire de Physiopathologie de l'Endothélium –UMR-S 608 INSERM, 13005, Marseille, France
| | - Florence Sabatier
- Aix-Marseille University, Laboratoire de Physiopathologie de l'Endothélium –UMR-S 608 INSERM, 13005, Marseille, France
| | - Evelyne Doria
- Laboratoire d'Hématologie, CHU Conception, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Luc Lyonnet
- Laboratoire d'Hématologie, CHU Conception, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Henri Vacher Coponat
- Centre de Néphrologie et de Transplantation rénale, Hôpital de la Conception, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Stéphane Robert
- Aix-Marseille University, Laboratoire de Physiopathologie de l'Endothélium –UMR-S 608 INSERM, 13005, Marseille, France
| | - Nicolas Despoix
- Aix-Marseille University, Laboratoire de Physiopathologie de l'Endothélium –UMR-S 608 INSERM, 13005, Marseille, France
| | - Tristan Legris
- Centre de Néphrologie et de Transplantation rénale, Hôpital de la Conception, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Valérie Moal
- Centre de Néphrologie et de Transplantation rénale, Hôpital de la Conception, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Anderson Loundou
- Unité d'Aide méthodologique à la Recherche Clinique et Epidémiologique, DRRC, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Sophie Morange
- Centre d'Investigation Clinique, Hôpital de la Conception, Marseille, France
| | - Yvon Berland
- Centre de Néphrologie et de Transplantation rénale, Hôpital de la Conception, Assistance Publique Hôpitaux de Marseille, Marseille, France
- Centre d'Investigation Clinique, Hôpital de la Conception, Marseille, France
| | - Francoise Dignat George
- Aix-Marseille University, Laboratoire de Physiopathologie de l'Endothélium –UMR-S 608 INSERM, 13005, Marseille, France
- Laboratoire d'Hématologie, CHU Conception, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Stéphane Burtey
- Aix-Marseille University, Laboratoire de Physiopathologie de l'Endothélium –UMR-S 608 INSERM, 13005, Marseille, France
- Centre de Néphrologie et de Transplantation rénale, Hôpital de la Conception, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Pascale Paul
- Aix-Marseille University, Laboratoire de Physiopathologie de l'Endothélium –UMR-S 608 INSERM, 13005, Marseille, France
- Laboratoire d'Hématologie, CHU Conception, Assistance Publique Hôpitaux de Marseille, Marseille, France
- * E-mail:
| |
Collapse
|
28
|
Abstract
The CX3C chemokine family is composed of only one member, CX3CL1, also known as fractalkine, which in mice is the sole ligand of the G protein-coupled, 7-transmembrane receptor CX3CR1. Unlike classic small peptide chemokines, CX3CL1 is synthesized as a membrane-anchored protein that can promote integrin-independent adhesion. Subsequent cleavage by metalloproteases, either constitutive or induced, can generate shed CX3CL1 entities that potentially have chemoattractive activity. To study the CX3C interface in tissues of live animals, we generated transgenic mice (CX3CL1cherry:CX3CR1gfp), which express red and green fluorescent reporter genes under the respective control of the CX3CL1 and CX3CR1 promoters. Furthermore, we performed a structure/function analysis to differentiate the in vivo functions of membrane-tethered versus shed CX3CL1 moieties by comparing their respective ability to correct established defects in macrophage function and leukocyte survival in CX3CL1-deficient mice. Specifically, expression of CX3CL1(105Δ), an obligatory soluble CX3CL1 isoform, reconstituted the formation of transepithelial dendrites by intestinal macrophages but did not rescue circulating Ly6Clo CX3CR1hi blood monocytes in CX3CR1gfp/gfp mice. Instead, monocyte survival required the full-length membrane-anchored CX3CL1, suggesting differential activities of tethered and shed CX3CL1 entities.
Collapse
|
29
|
Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT. Synaptic pruning by microglia is necessary for normal brain development. Science 2011; 333:1456-8. [PMID: 21778362 DOI: 10.1126/science.1202529] [Citation(s) in RCA: 2900] [Impact Index Per Article: 207.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microglia are highly motile phagocytic cells that infiltrate and take up residence in the developing brain, where they are thought to provide a surveillance and scavenging function. However, although microglia have been shown to engulf and clear damaged cellular debris after brain insult, it remains less clear what role microglia play in the uninjured brain. Here, we show that microglia actively engulf synaptic material and play a major role in synaptic pruning during postnatal development in mice. These findings link microglia surveillance to synaptic maturation and suggest that deficits in microglia function may contribute to synaptic abnormalities seen in some neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rosa C Paolicelli
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015 Monterotondo, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen Z, Phillips LK, Gould E, Campisi J, Lee SW, Ormerod BK, Zwierzchoniewska M, Martinez OM, Palmer TD. MHC mismatch inhibits neurogenesis and neuron maturation in stem cell allografts. PLoS One 2011; 6:e14787. [PMID: 21479168 PMCID: PMC3068158 DOI: 10.1371/journal.pone.0014787] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 02/27/2011] [Indexed: 12/26/2022] Open
Abstract
Background The role of histocompatibility and immune recognition in stem cell transplant therapy has been controversial, with many reports arguing that undifferentiated stem cells are protected from immune recognition due to the absence of major histocompatibility complex (MHC) markers. This argument is even more persuasive in transplantation into the central nervous system (CNS) where the graft rejection response is minimal. Methodology/Principal Findings In this study, we evaluate graft survival and neuron production in perfectly matched vs. strongly mismatched neural stem cells transplanted into the hippocampus in mice. Although allogeneic cells survive, we observe that MHC-mismatch decreases surviving cell numbers and strongly inhibits the differentiation and retention of graft-derived as well as endogenously produced new neurons. Immune suppression with cyclosporine-A did not improve outcome but non-steroidal anti-inflammatory drugs, indomethacin or rosiglitazone, were able to restore allogeneic neuron production, integration and retention to the level of syngeneic grafts. Conclusions/Significance These results suggest an important but unsuspected role for innate, rather than adaptive, immunity in the survival and function of MHC-mismatched cellular grafts in the CNS.
Collapse
Affiliation(s)
- Zhiguo Chen
- Stanford Institute for Stem Cell Biology and Regenerative Medicine and Department of Neurosurgery, Stanford, California, United States of America
- * E-mail:
| | - Lori K. Phillips
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Elizabeth Gould
- Stanford Institute for Stem Cell Biology and Regenerative Medicine and Department of Neurosurgery, Stanford, California, United States of America
| | - Jay Campisi
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Star W. Lee
- Stanford Institute for Stem Cell Biology and Regenerative Medicine and Department of Neurosurgery, Stanford, California, United States of America
| | - Brandi K. Ormerod
- Stanford Institute for Stem Cell Biology and Regenerative Medicine and Department of Neurosurgery, Stanford, California, United States of America
| | - Monika Zwierzchoniewska
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Olivia M. Martinez
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Theo D. Palmer
- Stanford Institute for Stem Cell Biology and Regenerative Medicine and Department of Neurosurgery, Stanford, California, United States of America
| |
Collapse
|
31
|
Nakajima T, Palchevsky V, Perkins DL, Belperio JA, Finn PW. Lung transplantation: infection, inflammation, and the microbiome. Semin Immunopathol 2011; 33:135-56. [DOI: 10.1007/s00281-011-0249-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 01/12/2011] [Indexed: 12/29/2022]
|
32
|
|
33
|
Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM, Lamb BT. CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer's disease mouse models. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2549-62. [PMID: 20864679 DOI: 10.2353/ajpath.2010.100265] [Citation(s) in RCA: 380] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microglia, the primary immune effector cells in the brain, continually monitor the tissue parenchyma for pathological alterations and become activated in Alzheimer's disease. Loss of signaling between neurons and microglia via deletion of the microglial receptor, CX3CR1, worsens phenotypes in various models of neurodegenerative diseases. In contrast, CX3CR1 deficiency ameliorates pathology in murine stroke models. To examine the role of CX3CR1 in Alzheimer's disease-related β-amyloid pathology, we generated APPPS1 and R1.40 transgenic mouse models of Alzheimer's disease deficient for CX3CR1. Surprisingly, CX3CR1 deficiency resulted in a gene dose-dependent reduction in β-amyloid deposition in both the APPPS1 and R1.40 mouse models of AD. Immunohistochemical analysis revealed reduced staining for CD68, a marker of microglial activation. Furthermore, quantitative immunohistochemical analysis revealed reduced numbers of microglia surrounding β-amyloid deposits in the CX3CR1-deficient APPPS1 animals. The reduced β-amyloid pathology correlated with reduced levels of TNFα and CCL2 mRNAs, but elevated IL1β mRNA levels, suggesting an altered neuroinflammatory milieu. Finally, to account for these seemingly disparate results, both in vitro and in vivo studies provided evidence that CX3CL1/CX3CR1 signaling alters the phagocytic capacity of microglia, including the uptake of Aβ fibrils. Taken together, these results demonstrate that loss of neuron-microglial fractalkine signaling leads to reduced β-amyloid deposition in mouse models of AD that is potentially mediated by altered activation and phagocytic capability of CX3CR1-deficient microglia.
Collapse
Affiliation(s)
- Sungho Lee
- Lerner Research Institute, The Cleveland Clinic, Department of Neurosciences, Case Western Reserve University School of Medicine, 9500 Euclid Avenue, NC30, Cleveland, OH 44195-0001, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
D'Haese JG, Demir IE, Friess H, Ceyhan GO. Fractalkine/CX3CR1: why a single chemokine-receptor duo bears a major and unique therapeutic potential. Expert Opin Ther Targets 2010; 14:207-19. [PMID: 20055718 DOI: 10.1517/14728220903540265] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE OF THE FIELD Fractalkine, also known as CX3CL1, is the unique member of the fourth class of chemokines and mediates both chemotaxis and adhesion of inflammatory cells via its highly selective receptor CX3CR1. Fractalkine mediates inflammatory responses and pain sensation and is involved in the pathogenesis and progression of numerous inflammatory disorders and malignancies. AREAS COVERED IN THIS REVIEW We performed a Medline/PubMed search to detect all published studies that explored the role of fractalkine and CX3CR1 and the possibilities of therapeutic intervention in the fractalkine/CX3CR1 axis in a wide range of clinical disorders, using CX3CR1 blocking antibodies, different fractalkine antagonists, CX3CR1 depletion or transfection of fractalkine expression vectors. WHAT THE READER WILL GAIN This review summarizes the role of fractalkine and its receptor CX3CR1 in various diseases, focusing on their high potential as novel therapeutic targets, with special emphasis on pancreatic diseases. TAKE HOME MESSAGE The reviewed studies provide promising results demonstrating fractalkine and CX3CR1 as potential target molecules for future therapeutics that may attenuate pain, inflammation and furthermore serve as an anti-cancer therapy. However, to date, no therapeutics targeting fractalkine or CX3CR1 are in clinical use.
Collapse
Affiliation(s)
- Jan G D'Haese
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, D-81675 Munich, Germany
| | | | | | | |
Collapse
|
35
|
Expression of CXCR6 on CD8+ T cells was up-regulated in allograft rejection. Transpl Immunol 2010; 22:179-83. [DOI: 10.1016/j.trim.2009.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 11/07/2009] [Accepted: 12/08/2009] [Indexed: 01/06/2023]
|
36
|
Li B, Xu W, Xu L, Jiang Z, Wen Z, Li K, Xiong S. I-TAC is a dominant chemokine in controlling skin intragraft inflammation via recruiting CXCR3+ cells into the graft. Cell Immunol 2010; 260:83-91. [PMID: 19875106 DOI: 10.1016/j.cellimm.2009.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 08/16/2009] [Accepted: 09/04/2009] [Indexed: 02/05/2023]
Abstract
Chemokines play a critical role in the acute transplant rejection. In order to provide an overview of the chemokine expression during the course of acute allograft rejection, the intragraft expression profile of 11 chemokines representative of all four chemokine subfamilies was analyzed in a murine skin transplantation model of acute rejection. It was found that RANTES/CCL5, TARC/CCL17 and FKN/CX(3)CL1 were expressed at equivalent levels in iso- and allografts. However, the other eight chemokines expression was up-regulated to some extent in allograft compared with that in isograft. The levels of MIP-1alpha/CCL3, MIP-3alpha/CCL20 and CTACK/CCL27 were progressively increased from early stage (day 3 post-transplantation) to late stage (day 11). Mig/CXCL9, IP-10/CXCL10, I-TAC/CXCL11, CXCL16 and LTN/XCL1 expression was elevated at middle stage (day 7), and peaked at late stage. Among the up-regulated chemokines, I-TAC was the most obviously elevated chemokine. Therefore, the effect of I-TAC on the skin acute allograft rejection was evaluated. Block of I-TAC by the intradermal injection of anti-I-TAC monoclonal antibody (mAb) reduced the number of CXCR3(+) cells in skin allograft and significantly prolonged the skin allograft survival. The mAb treatment did not influence the proliferation of the intragraft infiltrating cells in response to the allogeneic antigens, but significantly decreased the number of the infiltrating cells and consequently lowered the secretion of IFN-gamma and TNF-alpha. These data indicate I-TAC might be a dominant chemokine involved in the intradermal infiltration and I-TAC-targeted intervening strategies would have potential application for the alleviation of acute transplant rejection.
Collapse
Affiliation(s)
- Baohua Li
- Department of Immunology, Institute for Immunobiology, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | |
Collapse
|
37
|
Bachstetter AD, Morganti JM, Jernberg J, Schlunk A, Mitchell SH, Brewster KW, Hudson CE, Cole MJ, Harrison JK, Bickford PC, Gemma C. Fractalkine and CX 3 CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging 2009; 32:2030-44. [PMID: 20018408 DOI: 10.1016/j.neurobiolaging.2009.11.022] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/20/2009] [Accepted: 11/26/2009] [Indexed: 11/16/2022]
Abstract
Microglia have neuroprotective capacities, yet chronic activation can promote neurotoxic inflammation. Neuronal fractalkine (FKN), acting on CX(3)CR1, has been shown to suppress excessive microglia activation. We found that disruption in FKN/CX(3)CR1 signaling in young adult rodents decreased survival and proliferation of neural progenitor cells through IL-1β. Aged rats were found to have decreased levels of hippocampal FKN protein; moreover, interruption of CX(3)CR1 function in these animals did not affect neurogenesis. The age-related loss of FKN could be restored by exogenous FKN reversing the age-related decrease in hippocampal neurogenesis. There were no measureable changes in young animals by the addition of exogenous FKN. The results suggest that FKN/CX(3)CR1 signaling has a regulatory role in modulating hippocampal neurogenesis via mechanisms that involve indirect modification of the niche environment. As elevated neuroinflammation is associated with many age-related neurodegenerative diseases, enhancing FKN/CX(3)CR1 interactions could provide an alternative therapeutic approach to slow age-related neurodegeneration.
Collapse
Affiliation(s)
- Adam D Bachstetter
- Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Huang YW, Su P, Liu GY, Crow MR, Chaukos D, Yan H, Robinson LA. Constitutive endocytosis of the chemokine CX3CL1 prevents its degradation by cell surface metalloproteases. J Biol Chem 2009; 284:29644-53. [PMID: 19723636 DOI: 10.1074/jbc.m109.045682] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CX(3)CL1, a chemokine with transmembrane and soluble species, plays a key role in inflammation by acting as both chemoattractant and adhesion molecule. CX(3)CL1 is the only chemokine known to undergo constitutive internalization, raising the possibility that dynamic equilibrium between the endocytic compartment and the plasma membrane critically regulates the availability and processing of CX(3)CL1 at the cell surface. We therefore investigated how transmembrane CX(3)CL1 is internalized. Inhibition of dynamin using a nonfunctional allele or of clathrin using specific small interfering RNA prevented endocytosis of the chemokine in CX(3)CL1-expressing human ECV-304 cells. Perusal of the cytoplasmic domain of CX(3)CL1 revealed two putative adaptor protein-2 (AP-2)-binding motifs. Accordingly, CX(3)CL1 co-localized with AP-2 at the plasma membrane. We generated a mutant allele of CX(3)CL1 lacking the cytoplasmic tail. Deletion of the cytosolic tail precluded internalization of the chemokine. We used site-directed mutagenesis to disrupt AP-2-binding motifs, singly or in combination, which resulted in diminished internalization of CX(3)CL1. Although CX(3)CL1 was present in both superficial and endomembrane compartments, ADAM10 (a disintegrin and metalloprotease 10) and tumor necrosis factor-converting enzyme, the two metalloproteases that cleave CX(3)CL1, localized predominantly to the plasmalemma. Inhibition of endocytosis using the dynamin inhibitor, Dynasore, promoted rapid metalloprotease-dependent shedding of CX(3)CL1 from the cell surface into the surrounding medium. These findings indicate that the cytoplasmic tail of CX(3)CL1 facilitates its constitutive clathrin-mediated endocytosis. Such regulation enables intracellular storage of a sizable pool of presynthesized CX(3)CL1 that protects the chemokine from degradation by metalloproteases at the plasma membrane.
Collapse
Affiliation(s)
- Yi-Wei Huang
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto M5G1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Stepanian A, Benchenni S, Beillat-Lucas T, Omnes S, Defay F, Peynaud-Debayle E, Baron G, Le Querrec A, Dreyfus M, Salomon L, Tsatsaris V, de Prost D, Mandelbrot L. Search for an association between V249I and T280M CX3CR1 genetic polymorphisms, endothelial injury and preeclampsia: the ECLAXIR study. PLoS One 2009; 4:e6192. [PMID: 19587779 PMCID: PMC2702686 DOI: 10.1371/journal.pone.0006192] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 06/08/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Preeclampsia and coronary-artery disease share risk factors, suggesting common pathophysiological mechanisms. CX3CR1/CX3CL1 mediates leukocyte migration and adhesion and has been implicated in the pathophysiology of several inflammatory diseases. M280/I249 variants of CX3CR1 are associated with an atheroprotective effect and reduced endothelial dysfunction. The aim of this study was to search for an association between V249I and T280M polymorphisms of CX3CR1, preeclampsia and endothelial dysfunction. METHODOLOGY/PRINCIPAL FINDINGS We explored these polymorphisms with real-time polymerase chain reaction in a case-control study (184 white women with preeclampsia and 184 matched normotensive pregnant women). Endothelial dysfunction biomarkers including von Willebrand factor, VCAM-1 and thrombomodulin, as well as the soluble form of CX3CL1 were measured by enzyme-linked immunosorbent assays (ELISA). The I249 and M280 alleles were associated neither with preeclampsia, nor with its more severe form or with endothelial injury. In contrast, we found a trend toward increased CX3CL1 levels in preeclampsia patients, especially in early-onset- preeclampsia as compared to its level in later-onset- preeclampsia. CONCLUSIONS/SIGNIFICANCE This is the first study to characterize the CX3CR1 gene polymorphisms in patients with preeclampsia. We found no differences in genotype or haplotype frequencies between patients with PE and normal pregnancies, suggesting that maternal CX3CR1 V249I and T280M polymorphisms do not increase susceptibility to preeclampsia. Further studies should be performed to directly evaluate the pathophysiological role of CX3CL1, a molecule abundantly expressed in endometrium, which has been shown to stimulate human trophoblast migration.
Collapse
Affiliation(s)
- Alain Stepanian
- AP-HP, Hôpital Louis Mourier, Service d'Hématologie Biologique, Colombes, France
- CIB Phénogen du GHU Nord, Paris, France
| | - Soraya Benchenni
- AP-HP, Hôpital Louis Mourier, Service d'Hématologie Biologique, Colombes, France
| | - Tiphaine Beillat-Lucas
- CHU Clémenceau, Unité de Gynécologie-Obstétrique et Médecine de la Reproduction, Caen, France
| | - Sophie Omnes
- AP-HP, Hôpital Bichat-Claude-Bernard, Service de Gynécologie-Obstétrique, Paris, France
| | - Fannie Defay
- AP-HP, Hôpital Bichat-Claude Bernard, Département d'Epidémiologie, Biostatistique et Recherche Clinique, Paris, France
| | - Edith Peynaud-Debayle
- AP-HP, Hôpital Louis Mourier, Service d'Hématologie Biologique, Colombes, France
- CIB Phénogen du GHU Nord, Paris, France
| | - Gabriel Baron
- AP-HP, Hôpital Bichat-Claude Bernard, Département d'Epidémiologie, Biostatistique et Recherche Clinique, Paris, France
| | - Agnès Le Querrec
- CHU Côte de Nacre, Service d'Hématologie Biologique, Caen, France
| | - Michel Dreyfus
- CHU Clémenceau, Unité de Gynécologie-Obstétrique et Médecine de la Reproduction, Caen, France
| | - Laurence Salomon
- AP-HP, Hôpital Louis Mourier, Département de Santé Publique (Evaluation, Recherche Clinique, Information médicale, Vigilances)–(DIM), Colombes, France
| | - Vassilis Tsatsaris
- AP-HP, Groupe Hospitalier Cochin Saint-Vincent de Paul, Service de Gynécologie-Obstétrique, Paris, France
| | - Dominique de Prost
- AP-HP, Hôpital Louis Mourier, Service d'Hématologie Biologique, Colombes, France
- CIB Phénogen du GHU Nord, Paris, France
- Université Paris 7–Denis Diderot, Paris, France
| | - Laurent Mandelbrot
- AP-HP, Hôpital Louis Mourier, Service de Gynécologie-Obstétrique, Colombes, France
- Université Paris 7–Denis Diderot, Paris, France
| | | |
Collapse
|
41
|
Hess S, Methe H, Kim JO, Edelman ER. NF-kappaB activity in endothelial cells is modulated by cell substratum interactions and influences chemokine-mediated adhesion of natural killer cells. Cell Transplant 2009; 18:261-73. [PMID: 19558775 PMCID: PMC2857529 DOI: 10.3727/096368909788534979] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Because changes in subendothelial matrix composition are associated with alterations of the endothelial immune phenotype, we sought to understand if cytokine-induced NF-kappaB activity and downstream effects depend on substrate adherence of endothelial cells (EC). We compared the upstream phosphorylation cascade, activation of NF-kappaB, and expression/secretion of downstream effects of EC grown on tissue culture polystyrene plates (TCPS) with EC embedded within collagen-based matrices (MEEC). Adhesion of natural killer (NK) cells was quantified in vitro and in vivo. NF-kappaB subunit p65 nuclear levels were significantly lower and p50 significantly higher in cytokine-stimulated MEEC than in EC-TCPS. Despite similar surface expression of TNF-alpha receptors, MEEC had significantly decreased secretion and expression of IL-6, IL-8, MCP-1, VCAM-1, and ICAM-1. Attenuated fractalkine expression and secretion in MEEC (two to threefold lower than in EC-TCPS; p < 0.0002) correlated with 3.7-fold lower NK cell adhesion to EC (6,335 +/- 420 vs. 1,735 +/- 135 cpm; p < 0.0002). Furthermore, NK cell infiltration into sites of EC implantation in vivo was significantly reduced when EC were embedded within matrix. Matrix embedding enables control of EC substratum interaction. This in turn regulates chemokine and surface molecule expression and secretion, in particular of those compounds within NF-kappaB pathways, chemoattraction of NK cells, local inflammation, and tissue repair.
Collapse
Affiliation(s)
- Shmuel Hess
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | |
Collapse
|
42
|
Marchesi F, Piemonti L, Fedele G, Destro A, Roncalli M, Albarello L, Doglioni C, Anselmo A, Doni A, Bianchi P, Laghi L, Malesci A, Cervo L, Malosio M, Reni M, Zerbi A, Di Carlo V, Mantovani A, Allavena P. The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Cancer Res 2008; 68:9060-9. [PMID: 18974152 DOI: 10.1158/0008-5472.can-08-1810] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor perineural dissemination is a hallmark of human pancreatic ductal adenocarcinoma (PDAC) and represents a major source of local tumor recurrence after surgery. In this study, we provide in vitro and in vivo evidence that the chemokine receptor CX3CR1 may be involved in the neurotropism of PDAC cells to local peripheral nerves. Neoplastic cells from PDAC cell lines and surgical specimens express the chemokine receptor CX3CR1, absent in normal pancreatic ducts. Its unique ligand, the transmembrane chemokine CX3CL1, is expressed by neurons and nerve fibers. CX3CR1 + PDAC cell lines migrated in response to human recombinant CX3CL1 and specifically adhered to CX3CL1-expressing cells of neural origin via mechanisms involving activation of G proteins, beta1 integrins, and focal adhesion kinase. In vivo experiments with transplanted PDAC showed that only CX3CR1-transfected tumor cells infiltrated the local peripheral nerves. Immunohistochemistry of CX3CR1 in PDAC specimens revealed that 90% of the samples were positive with a heterogeneous pattern of expression. High receptor score was significantly associated with more prominent tumor perineural infiltration evaluated histologically (P = 0.026). Regression analyses (univariate and multivariate) showed that high CX3CR1 expression and perineural invasion were strongly associated with local and earlier tumor recurrence (P = 0.007). Collectively, this study shows that the CX3CR1 receptor may be involved in PDAC tumor neurotropism and is a relevant and independent risk factor to predict an early local tumor relapse in resected patients. Thus, the CX3CR1-CX3CL1 axis could represent a valuable therapeutic target to prevent tumor perineural dissemination in pancreatic cancer.
Collapse
Affiliation(s)
- Federica Marchesi
- Department of Immunology and Inflammation, IRCCS Clinical Institute Humanitas, Rozzano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Abstract
Transplant vasculopathy (TV) remains the leading cause of late death among heart transplant recipients. Transplant vasculopathy is characterized by progressive neointimal proliferation, leading to ischemic failure of the allograft. Multiple experimental and clinical studies have shown that injury to the graft at various stages of transplantation can be a risk factor for development of transplant vasculopathy. The hallmark of cardiac allograft injury is the infiltration of leukocytes. Recruitment of leukocytes requires intercellular communication between infiltrating cells, endothelium, parenchymal cells, and components of extracellular matrix. These events are mediated via the generation of adhesion molecules, cytokines, and chemokines. The chemokines, by virtue of their specific cell receptor expression, can selectively mediate the local recruitment/activation of distinct leukocytes/cells, allowing for migration across the endothelium and beyond the vascular compartment. This report provides a comprehensive review of the chemokines that participate in the development of transplant vasculopathy.
Collapse
Affiliation(s)
- John A Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angele, CA 90095, USA
| | | |
Collapse
|
45
|
Shimizu K, Mitchell RN. The role of chemokines in transplant graft arterial disease. Arterioscler Thromb Vasc Biol 2008; 28:1937-49. [PMID: 18802020 DOI: 10.1161/atvbaha.107.161232] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite the development of effective immunosuppressive therapy, transplant graft arterial disease (GAD) remains the major limitation to long-term graft survival. Multiple immune and nonimmune risk factors contribute to this vasculopathic intimal hyperplastic process. Thus, initial interplay between host inflammatory cells and donor endothelial cells triggers alloimmune responses, whereas alloantigen-independent factors such as prolonged ischemia, surgical manipulation, ischemia-reperfusion injury, and hyperlipidemia enhance the antigen-dependent events. Intrinsic to all stages of this process are chemokines, a family of 8- to 10-kDa proteins mediating directional migration of immune cells to sites of inflammation and injury. Beyond their role in immune-cell chemotaxis, chemokines also contribute to cellular activation, vascular remodeling, and angiogenesis. Expression of chemokines and their cognate receptors in allografts correlates with acute organ rejection, as well as GAD. Moreover, chemokine or chemokine receptor blockade prolongs graft survival and attenuates GAD in experimental models. Further studies will likely confirm a substantial utility for antichemokine therapy in human organ transplantation.
Collapse
Affiliation(s)
- Koichi Shimizu
- Department of Pathology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
46
|
Ishida Y, Hayashi T, Goto T, Kimura A, Akimoto S, Mukaida N, Kondo T. Essential involvement of CX3CR1-mediated signals in the bactericidal host defense during septic peritonitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:4208-4218. [PMID: 18768878 DOI: 10.4049/jimmunol.181.6.4208] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cecal ligation and puncture (CLP) caused septic peritonitis in wild-type (WT) mice, with approximately 33% mortality within 7 days after the procedure. Concomitantly, the protein level of intraperitoneal CX3CL1/fractalkine was increased, with infiltration by CX3CR1-expressing macrophages into the peritoneum. CLP induced 75% mortality in CX3CR1-deficient (CX3CR1(-/-)) mice, which, however, exhibited a similar degree of intraperitoneal leukocyte infiltration as WT mice. Despite this, CX3CR1(-/-) mice exhibited impairment in intraperitoneal bacterial clearance, together with a reduction in the expression of intraperitoneal inducible NO synthase (iNOS) and bactericidal proinflammatory cytokines, including IL-1beta, TNF-alpha, IFN-gamma, and IL-12, compared with WT mice. Bactericidal ability of peritoneal phagocytes such as neutrophils and macrophages was consistently attenuated in CX3CR1(-/-) mice compared with WT mice. Moreover, when WT macrophages were stimulated in vitro with CX3CL1, their bactericidal activity was augmented in a dose-dependent manner, with enhanced iNOS gene expression and subsequent NO generation. Furthermore, CX3CL1 enhanced the gene expression of IL-1beta, TNF-alpha, IFN-gamma, and IL-12 by WT macrophages with NF-kappaB activation. Thus, CX3CL1-CX3CR1 interaction is crucial for optimal host defense against bacterial infection by activating bacterial killing functions of phagocytes, and by augmenting iNOS-mediated NO generation and bactericidal proinflammatory cytokine production mainly through the NF-kappaB signal pathway, with few effects on macrophage infiltration.
Collapse
MESH Headings
- Animals
- Blood Bactericidal Activity/immunology
- CX3C Chemokine Receptor 1
- Cecum
- Cells, Cultured
- Cytokines/antagonists & inhibitors
- Cytokines/biosynthesis
- Disease Models, Animal
- Escherichia coli Infections/genetics
- Escherichia coli Infections/immunology
- Escherichia coli Infections/pathology
- Genetic Predisposition to Disease
- Immunity, Innate/genetics
- Inflammation Mediators/antagonists & inhibitors
- Inflammation Mediators/metabolism
- Ligation
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/microbiology
- Macrophages, Peritoneal/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Infiltration/immunology
- Peritonitis/genetics
- Peritonitis/immunology
- Peritonitis/microbiology
- Peritonitis/pathology
- Punctures
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Receptors, Chemokine/physiology
- Shock, Septic/genetics
- Shock, Septic/immunology
- Shock, Septic/microbiology
- Shock, Septic/pathology
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
|
47
|
Wildenberg ME, van Helden-Meeuwsen CG, Drexhage HA, Versnel MA. Altered fractalkine cleavage potentially promotes local inflammation in NOD salivary gland. Arthritis Res Ther 2008; 10:R69. [PMID: 18565216 PMCID: PMC2483461 DOI: 10.1186/ar2441] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/06/2008] [Accepted: 06/19/2008] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION In the nonobese diabetic (NOD) mouse model of Sjögren's syndrome, lymphocytic infiltration is preceded by an accumulation of dendritic cells in the submandibular glands (SMGs). NOD mice also exhibit an increased frequency of mature, fractalkine receptor (CX3C chemokine receptor [CX3CR]1) expressing monocytes, which are considered to be precursors for tissue dendritic cells. To unravel further the role played by fractalkine-CX3CR1 interactions in the salivary gland inflammation, we studied the expression of fractalkine in NOD SMGs. METHODS We studied protein expression using Western blot analysis of whole tissue lysates. Protease activity was measured in salivary gland tissue lysates using fluorimetric substrates. Digestive capacity of enzymes was determined by in vitro incubation of recombinant enzyme and fractalkine, followed by protein staining and Western blot. RESULTS Fractalkine was detected in salivary glands of both NOD and control mice at all ages. Western blot analysis showed fractalkine cleavage with increasing age, which was more pronounced in NOD mice. This cleavage resulted in a decrease in the 31 kDa form of the protein, and the generation of an approximately 19 kDa band. Furthermore, in NOD animals older than 15 weeks, we noted the presence of a unique approximately 17 kDa fragment. This cleavage was organ specific, because it did not occur in brain or pancreas. Increased gelatinase and alpha-secretase activity were detected in NOD SMG and contributed to cleavage of the 31 kDa protein. Because aberrant cleavage products may induce autoimmunity, we studied the presence of autoantibodies against fractalkine. Indeed, NOD mice exhibited significantly more antibodies against fractalkine than did control animals. CONCLUSION These data indicate that aberrant proteolytic activity in the NOD SMG results in increased fractalkine cleavage and generation of a unique fractalkine fragment. This specific cleavage may contribute to autoimmunity.
Collapse
Affiliation(s)
- Manon E Wildenberg
- Department of Immunology, Erasmus MC, P,O, Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
48
|
Cornell LD, Smith RN, Colvin RB. Kidney transplantation: mechanisms of rejection and acceptance. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 3:189-220. [PMID: 18039144 DOI: 10.1146/annurev.pathmechdis.3.121806.151508] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We describe the molecular and cellular mechanisms believed to be responsible for the rejection of renal allografts, including acute T cell-mediated rejection, acute antibody-mediated (humoral) rejection, rejection mediated by the innate immune system, and chronic rejection. We present mechanisms of graft acceptance, including accommodation, regulation, and tolerance. Studies in animals have replicated many pathologic features of acute and chronic rejection. We illuminate the pathogenesis of human pathology by reflection from experimental models.
Collapse
Affiliation(s)
- Lynn D Cornell
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|
49
|
Chen Q, Wei H, Sun R, Zhang J, Tian Z. Therapeutic RNA silencing of Cys-X3-Cys chemokine ligand 1 gene prevents mice from adenovirus vector-induced acute liver injury. Hepatology 2008; 47:648-58. [PMID: 18098313 DOI: 10.1002/hep.21993] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Gene therapy using adenovirus vectors may induce acute liver injury. Tissue injury induced by an adenovirus is likely associated with elevated expression of the Cys-X3-Cys chemokine ligand 1 (CX(3)CL1)/fractalkine (FKN) protein at the site of inflammation. However, the extent to which the actions of FKN contribute to liver injury remains unclear. We induced acute liver injury in mice by a hydrodynamics-based injection of adenovirus vector, which was confirmed to depend on the presence of natural killer (NK) cells and NK-dependent interferon-gamma (IFN-gamma). When the transferred adenovirus vector was inserted with the FKN gene, the severity of liver injury increased with much more Cys-X3-Cys chemokine receptor 1 (CX(3)CR1)-positive NK cell recruitment into the liver because of exogenous overproduction of FKN protein. Moreover, when production of endogenous FKN protein was silenced by inserting FKN-small interfering RNA into the adenovirus vector or was neutralized by an FKN-specific antibody, the adenovirus-induced acute severe liver injury was notably prevented with much lower hepatic NK cell infiltration and a significant reduction in the serum levels of IFN-gamma. CONCLUSION Our findings suggest a strategy to prevent or alleviate adenovirus vector-induced acute liver injury by blocking FKN-CX(3)CR1 interaction in adenovirus vector-based gene therapy.
Collapse
Affiliation(s)
- Qingfeng Chen
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | | | | | | | | |
Collapse
|
50
|
Lombardi A, Cantini G, Piscitelli E, Gelmini S, Francalanci M, Mello T, Ceni E, Varano G, Forti G, Rotondi M, Galli A, Serio M, Luconi M. A new mechanism involving ERK contributes to rosiglitazone inhibition of tumor necrosis factor-alpha and interferon-gamma inflammatory effects in human endothelial cells. Arterioscler Thromb Vasc Biol 2008; 28:718-24. [PMID: 18239149 DOI: 10.1161/atvbaha.107.160713] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Microvascular endothelium is one of the main targets of the inflammatory response. On specific activation, endothelial cells recruit Th1-lymphocytes at the inflammatory site. We investigated the intracellular signaling mediating tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma inflammatory response in human microvascular endothelial cells (HMEC-1) and the interfering effects of the peroxisome-proliferator-activated-receptor (PPARgamma) agonist, rosiglitazone (RGZ). METHODS AND RESULTS TNFalpha and IFNgamma, mainly when combined, stimulate IFNgamma-inducible protein of 10 kDa (IP10) and fractalkine production evaluated by ELISA and TaqMan analyses. This effect is not only mediated by activation of the NFkB and Stat1 classic pathways, but also involves a rapid increase in phosphorylation and activation of extracellular signal-regulated kinases (ERK1/2) as measured by Western blot. RGZ interferes with TNFalpha and IFNgamma stimulation of IP10, fractalkine, and adhesion molecule through a novel rapid mechanism which involves the blocking of ERK activation. CONCLUSIONS Our findings shed new light on the mechanisms underlying the inflammatory response of microvascular endothelium and on the possible therapeutic use of RGZ in vasculopathies involving Th1-responses.
Collapse
Affiliation(s)
- Adriana Lombardi
- Department of Clinical Physiopathology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|