1
|
Norte-Muñoz M, Portela-Lomba M, Sobrado-Calvo P, Simón D, Di Pierdomenico J, Gallego-Ortega A, Pérez M, Cabrera-Maqueda JM, Sierra J, Vidal-Sanz M, Moreno-Flores MT, Agudo-Barriuso M. Differential response of injured and healthy retinas to syngeneic and allogeneic transplantation of a clonal cell line of immortalized olfactory ensheathing glia: a double-edged sword. Neural Regen Res 2025; 20:2395-2407. [PMID: 39359096 DOI: 10.4103/nrr.nrr-d-23-01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/19/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00029/figure1/v/2024-09-30T120553Z/r/image-tiff Olfactory ensheathing glia promote axonal regeneration in the mammalian central nervous system, including retinal ganglion cell axonal growth through the injured optic nerve. Still, it is unknown whether olfactory ensheathing glia also have neuroprotective properties. Olfactory ensheathing glia express brain-derived neurotrophic factor, one of the best neuroprotectants for axotomized retinal ganglion cells. Therefore, we aimed to investigate the neuroprotective capacity of olfactory ensheating glia after optic nerve crush. Olfactory ensheathing glia cells from an established rat immortalized clonal cell line, TEG3, were intravitreally injected in intact and axotomized retinas in syngeneic and allogeneic mode with or without microglial inhibition or immunosuppressive treatments. Anatomical and gene expression analyses were performed. Olfactory bulb-derived primary olfactory ensheathing glia and TEG3 express major histocompatibility complex class II molecules. Allogeneically and syngenically transplanted TEG3 cells survived in the vitreous for up to 21 days, forming an epimembrane. In axotomized retinas, only the allogeneic TEG3 transplant rescued retinal ganglion cells at 7 days but not at 21 days. In these retinas, microglial anatomical activation was higher than after optic nerve crush alone. In intact retinas, both transplants activated microglial cells and caused retinal ganglion cell death at 21 days, a loss that was higher after allotransplantation, triggered by pyroptosis and partially rescued by microglial inhibition or immunosuppression. However, neuroprotection of axotomized retinal ganglion cells did not improve with these treatments. The different neuroprotective properties, different toxic effects, and different responses to microglial inhibitory treatments of olfactory ensheathing glia in the retina depending on the type of transplant highlight the importance of thorough preclinical studies to explore these variables.
Collapse
Affiliation(s)
- María Norte-Muñoz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - María Portela-Lomba
- Experimental Sciences Faculty, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Paloma Sobrado-Calvo
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - Diana Simón
- Experimental Sciences Faculty, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Johnny Di Pierdomenico
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - Alejandro Gallego-Ortega
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - Mar Pérez
- Anatomy, Histology and Neuroscience Department, Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cabrera-Maqueda
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
- Center of Neuroimmunology, Service of Neurology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Universitat de Barcelona, Barcelona, Spain
| | - Javier Sierra
- Medicine Faculty, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Manuel Vidal-Sanz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| | - María Teresa Moreno-Flores
- Anatomy, Histology and Neuroscience Department, Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Agudo-Barriuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| |
Collapse
|
2
|
Gao M, Dong Q, Zou D, Yang Z, Guo L, Xu R. Induced neural stem cells regulate microglial activation through Akt-mediated upregulation of CXCR4 and Crry in a mouse model of closed head injury. Neural Regen Res 2025; 20:1416-1430. [PMID: 38934402 DOI: 10.4103/nrr.nrr-d-23-01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/27/2024] [Indexed: 06/28/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00025/figure1/v/2024-07-28T173839Z/r/image-tiff Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair. We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling, influencing their activation such that they can promote neurological recovery. However, the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear. In this study, we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-α expression but suppressed insulin-like growth factor-1 expression. However, recombinant complement receptor 2-conjugated Crry (CR2-Crry) reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia, CXCL12, and tumor necrosis factor-α. Additionally, we observed that, in response to stimulation (including stimulation by CXCL12 secreted by activated microglia), CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4, Crry, and Akt signaling to modulate microglial activation. In agreement with these in vitro experimental results, we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation, leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice. Notably, these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury, cerebral edema, and neurological disorders post-closed head injury. In conclusion, our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry, thereby promoting induced neural stem cell-mediated improvement of neuronal injury, cerebral edema, and neurological disorders following closed head injury.
Collapse
Affiliation(s)
- Mou Gao
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Qin Dong
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Dan Zou
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhijun Yang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Lili Guo
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Vinnakota JM, Biavasco F, Schwabenland M, Chhatbar C, Adams RC, Erny D, Duquesne S, El Khawanky N, Schmidt D, Fetsch V, Zähringer A, Salié H, Athanassopoulos D, Braun LM, Javorniczky NR, Ho JNHG, Kierdorf K, Marks R, Wäsch R, Simonetta F, Andrieux G, Pfeifer D, Monaco G, Capitini C, Fry TJ, Blank T, Blazar BR, Wagner E, Theobald M, Sommer C, Stelljes M, Reicherts C, Jeibmann A, Schittenhelm J, Monoranu CM, Rosenwald A, Kortüm M, Rasche L, Einsele H, Meyer PT, Brumberg J, Völkl S, Mackensen A, Coras R, von Bergwelt-Baildon M, Albert NL, Bartos LM, Brendel M, Holzgreve A, Mack M, Boerries M, Mackall CL, Duyster J, Henneke P, Priller J, Köhler N, Strübing F, Bengsch B, Ruella M, Subklewe M, von Baumgarten L, Gill S, Prinz M, Zeiser R. Targeting TGFβ-activated kinase-1 activation in microglia reduces CAR T immune effector cell-associated neurotoxicity syndrome. NATURE CANCER 2024; 5:1227-1249. [PMID: 38741011 DOI: 10.1038/s43018-024-00764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Cancer immunotherapy with chimeric antigen receptor (CAR) T cells can cause immune effector cell-associated neurotoxicity syndrome (ICANS). However, the molecular mechanisms leading to ICANS are not well understood. Here we examined the role of microglia using mouse models and cohorts of individuals with ICANS. CD19-directed CAR (CAR19) T cell transfer in B cell lymphoma-bearing mice caused microglia activation and neurocognitive deficits. The TGFβ-activated kinase-1 (TAK1)-NF-κB-p38 MAPK pathway was activated in microglia after CAR19 T cell transfer. Pharmacological TAK1 inhibition or genetic Tak1 deletion in microglia using Cx3cr1CreER:Tak1fl/fl mice resulted in reduced microglia activation and improved neurocognitive activity. TAK1 inhibition allowed for potent CAR19-induced antilymphoma effects. Individuals with ICANS exhibited microglia activation in vivo when studied by translocator protein positron emission tomography, and imaging mass cytometry revealed a shift from resting to activated microglia. In summary, we prove a role for microglia in ICANS pathophysiology, identify the TAK1-NF-κB-p38 MAPK axis as a pathogenic signaling pathway and provide a rationale to test TAK1 inhibition in a clinical trial for ICANS prevention after CAR19 T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Janaki Manoja Vinnakota
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Francesca Biavasco
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marius Schwabenland
- Institute for Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Chintan Chhatbar
- Institute for Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Rachael C Adams
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Daniel Erny
- Institute for Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Sandra Duquesne
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nadia El Khawanky
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Dominik Schmidt
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Viktor Fetsch
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Alexander Zähringer
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Henrike Salié
- Department of Medicine II, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dimitrios Athanassopoulos
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas M Braun
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Nora R Javorniczky
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jenny N H G Ho
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Institute for Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Reinhard Marks
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Wäsch
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Federico Simonetta
- Division of Hematology, Geneva University Hospitals Geneva, Geneva, Switzerland
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gianni Monaco
- Institute for Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Single-Cell Omics Platform Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Freiburg, Germany
| | - Christian Capitini
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Terry J Fry
- Center for Cancer and Blood Disorders, Children's Hospital Colorado and Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Blank
- Institute for Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Bruce R Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, USA
| | - Eva Wagner
- Department of Hematology and Medical Oncology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Matthias Theobald
- Department of Hematology and Medical Oncology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias Stelljes
- Department of Medicine/Hematology and Oncology, University of Münster, Münster, Germany
| | - Christian Reicherts
- Department of Medicine/Hematology and Oncology, University of Münster, Münster, Germany
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | | | | | - Martin Kortüm
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joachim Brumberg
- Department of Nuclear Medicine, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, Hematology/Oncology, University Hospital, Ludwig-Maximilians Universität (LMU) Munich, Munich, Germany
| | - Nathalie L Albert
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Mack
- Department of Nephrology, University of Regensburg, Regensburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford, CA, USA
| | - Justus Duyster
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Division of Pediatric Infectious Diseases, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Josef Priller
- Department of Psychiatry, Technischen Universität München (TUM), Munich, Germany
| | - Natalie Köhler
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Felix Strübing
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Munich, Germany
| | - Bertram Bengsch
- Department of Medicine II, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Marion Subklewe
- Department of Medicine III, Hematology/Oncology, University Hospital, Ludwig-Maximilians Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Louisa von Baumgarten
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Neuro-Oncology, Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Saar Gill
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Prinz
- Institute for Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Signalling Research Centres BIOSS and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Targeting TAK1 in microglia to treat CAR T cell neurotoxicity. NATURE CANCER 2024; 5:1143-1144. [PMID: 38769428 DOI: 10.1038/s43018-024-00765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
|
5
|
Asai K, Lee HK, Sato S, Shimizu E, Jung J, Okazaki T, Ogawa M, Shimmura S, Tsubota K, Ogawa Y, Negishi K, Hirayama M. The Necroptosis Pathway Is Upregulated in the Cornea in Mice With Ocular Graft-Versus-Host Disease. Invest Ophthalmol Vis Sci 2024; 65:38. [PMID: 39189995 PMCID: PMC11361379 DOI: 10.1167/iovs.65.10.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Purpose To identify molecular signatures specific for ocular graft-versus-host disease (GVHD) by proteomic analysis of corneas from mice with GVHD. Methods We identified differentially expressed proteins (DEPs) in corneal samples from GVHD model mice and syngeneic control mice 4 weeks after bone marrow transplantation. Data-independent acquisition analysis was performed on individual samples, and the roles of DEPs in biological pathways related to GVHD were evaluated via bioinformatics and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results Three important signaling pathways were upregulated in the cornea in mice with GVHD: (1) the necroptosis pathway, (2) the mitogen-activated protein kinase (MAPK) pathway, and (3) as previously reported, the neutrophil extracellular trap (NET) pathway. In those signaling pathways, we identified new upregulated molecules, including (1) receptor-interacting protein kinase 1 (RIPK1), RIPK3, interferon regulatory factor 9, the interferon-induced double-stranded RNA-activated protein kinase lipoxygenase, and high mobility group box1 (HMGB1) which are damage-associated molecular patterns (DAMPs) in the necroptosis pathway; (2) the sequentially upregulated interleukin 1 (IL-1) receptor-associated kinase (IRAK), an evolutionarily conserved signaling intermediate in the Toll pathway (ECSIT), and p38, which is downstream of the IL-1 receptor and increased CDC42/Rac (Rac2), a Rho family GTPase in the MAPK pathway; and (3) the integrin components CR3 and macrophage-1 antigen (MAC-1), which are DAMPs, and the pyroptosis-related protein gasdermin D (GSDMD) in the NET pathway. Conclusions These novel molecules may help researchers elucidate the pathogenesis of GVHD and identify new therapeutic targets for corneal changes in patients with ocular GVHD.
Collapse
Affiliation(s)
- Kazuki Asai
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hyung Keun Lee
- Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Jaehun Jung
- Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Takahiro Okazaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Clinical Regenerative Medicine, Fujita Health University, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Tsubota Laboratory, Inc., Tokyo, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Vinnakota JM, Adams RC, Athanassopoulos D, Schmidt D, Biavasco F, Zähringer A, Erny D, Schwabenland M, Langenbach M, Wenger V, Salié H, Cook J, Mossad O, Andrieux G, Dersch R, Rauer S, Duquesne S, Monaco G, Wolf P, Blank T, Häne P, Greter M, Becher B, Henneke P, Pfeifer D, Blazar BR, Duyster J, Boerries M, Köhler N, Chhatbar CM, Bengsch B, Prinz M, Zeiser R. Anti-PD-1 cancer immunotherapy induces central nervous system immune-related adverse events by microglia activation. Sci Transl Med 2024; 16:eadj9672. [PMID: 38865481 DOI: 10.1126/scitranslmed.adj9672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
Cancer treatment with anti-PD-1 immunotherapy can cause central nervous system immune-related adverse events (CNS-irAEs). The role of microglia in anti-PD-1 immunotherapy-induced CNS-irAEs is unclear. We found that anti-PD-1 treatment of mice caused morphological signs of activation and major histocompatibility complex (MHC) class II up-regulation on microglia. Functionally, anti-PD-1 treatment induced neurocognitive deficits in mice, independent of T cells, B cells, and natural killer cells. Instead, we found that microglia mediated these CNS-irAEs. Single-cell RNA sequencing revealed major transcriptional changes in microglia upon anti-PD-1 treatment. The anti-PD-1 effects were mediated by anti-PD-1 antibodies interacting directly with microglia and were not secondary to peripheral T cell activation. Using a proteomics approach, we identified spleen tyrosine kinase (Syk) as a potential target in activated microglia upon anti-PD-1 treatment. Syk inhibition reduced microglia activation and improved neurocognitive function without impairing anti-melanoma effects. Moreover, we analyzed CNS tissue from a patient cohort that had received anti-PD-1 treatment. Imaging mass cytometry revealed that anti-PD-1 treatment of patients was associated with increased surface marker expression indicative of microglia activation. In summary, we identified a disease-promoting role for microglia in CNS-irAEs driven by Syk and provide an inhibitor-based approach to interfere with this complication after anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Janaki Manoja Vinnakota
- Department of Medicine I-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, 79104 Freiburg, Germany
| | - Rachael C Adams
- Department of Medicine I-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Queensland, 4006 Brisbane, QLD, Australia
- QIMR Berghofer Medical Research Institute, 4072 Brisbane, QLD, Australia
| | - Dimitrios Athanassopoulos
- Department of Medicine I-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Dominik Schmidt
- Department of Medicine I-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, 79104 Freiburg, Germany
| | - Francesca Biavasco
- Department of Medicine I-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexander Zähringer
- Department of Medicine I-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniel Erny
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
| | - Marius Schwabenland
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
| | - Marlene Langenbach
- Department of Medicine I-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, 79104 Freiburg, Germany
| | - Valentin Wenger
- Department of Medicine I-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Henrike Salié
- Department of Medicine II-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - James Cook
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
| | - Omar Mossad
- Faculty of Biology, Albert-Ludwigs-University, 79104 Freiburg, Germany
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Rick Dersch
- Clinic of Neurology and Neurophysiology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sebastian Rauer
- Clinic of Neurology and Neurophysiology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sandra Duquesne
- Department of Medicine I-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Gianni Monaco
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
- Single-Cell Omics Platform Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Phillipp Wolf
- Department of Medicine I-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Urology, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Blank
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
| | - Philipp Häne
- Institute of Experimental Immunology at the University of Zürich, CH-8057 Zürich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology at the University of Zürich, CH-8057 Zürich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology at the University of Zürich, CH-8057 Zürich, Switzerland
| | - Philipp Henneke
- Center for Chronic Immunodeficiency and Center for Pediatrics, University Medical Center Freiburg, 79106 Freiburg, Germany
- CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Bruce R Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapy, University of Minnesota, Minneapolis, MN 55454, USA
| | - Justus Duyster
- Department of Medicine I-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Natalie Köhler
- Department of Medicine I-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Chintan M Chhatbar
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
| | - Bertram Bengsch
- Department of Medicine II-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
- CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
- Center for Neuro Modulation, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I-Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Liu C, Lan Q, Cao S, Zheng F, Liang Y, Shen J, Wang Y, Ikezoe T, Xu K, Pan B. Thrombin receptor activating peptide-6 decreases acute graft-versus-host disease through activating GPR15. Leukemia 2024; 38:1390-1402. [PMID: 38459169 DOI: 10.1038/s41375-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
G-protein coupled receptor 15 (GPR15) is expressed on T-cells. We previously reported knockout of GPR15 increased acute graft-versus-host disease (GvHD) in mice. In this study, we identified thrombin receptor activating peptide-6 (TRAP-6, peptide sequence: SFLLRN) as an activator of GPR15. GRP15 and β-arrestin2 were needed for TRAP-6-mediated inhibition of mixed lymphocyte reactions. TRAP-6 decreased acute GvHD in allotransplant models in mice, an effect dependent on GPR15-expression in donor T-cells. RNA-seq and protein analyses indicated TRAP-6 increased binding of β-arrestin2/TAB1 and inhibited phosphorylation of TAK1 and NF-κB-P65. GPR15 is expressed differently on CD4+ T-cells and CD8+ T-cells. TRAP-6 inhibited phosphorylation of NF-κB-P65 in CD4+ T-cells but increased granzyme B expression in CD8+ T-cells. TRAP-6 decreased acute GvHD without inhibiting graft-versus-tumor (GvT) efficacy against A20 lymphoma cells. SALLRN, a mutant of TRAP-6, preserved the anti-acute GvHD effect but avoided the adverse effects of TRAP-6. TRAP-6 and SALLRN also decreased allogeneic and xenogeneic reactions induced by human blood mononuclear cells. In conclusion, TRAP-6 activated GPR15 on T-cells and decreased acute GvHD in mice without impairing GvT efficacy.
Collapse
Affiliation(s)
- Cong Liu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qiu Lan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Shuo Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Fei Zheng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Yiwen Liang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Ying Wang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Fukushima, Japan.
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
8
|
Nishikubo M, Matsuo H, Manabe S, Ota K, Ishii J, Hiramoto N, Hara S, Kondo T, Ishikawa T. Donor-derived CD8-predominant T cells in human graft-versus-host disease of the brain after allogeneic transplantation. Br J Haematol 2024; 204:2516-2519. [PMID: 38693664 DOI: 10.1111/bjh.19504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Affiliation(s)
- Masashi Nishikubo
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Hidemasa Matsuo
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sho Manabe
- Department of Legal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Kazuma Ota
- Department of Neurology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Junko Ishii
- Department of Neurology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Nobuhiro Hiramoto
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Shigeo Hara
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Tadakazu Kondo
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| |
Collapse
|
9
|
Moe A, Rayasam A, Sauber G, Shah RK, Doherty A, Yuan CY, Szabo A, Moore BM, Colonna M, Cui W, Romero J, Zamora AE, Hillard CJ, Drobyski WR. Type 2 cannabinoid receptor expression on microglial cells regulates neuroinflammation during graft-versus-host disease. J Clin Invest 2024; 134:e175205. [PMID: 38662453 PMCID: PMC11142740 DOI: 10.1172/jci175205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Neuroinflammation is a recognized complication of immunotherapeutic approaches such as immune checkpoint inhibitor treatment, chimeric antigen receptor therapy, and graft versus host disease (GVHD) occurring after allogeneic hematopoietic stem cell transplantation. While T cells and inflammatory cytokines play a role in this process, the precise interplay between the adaptive and innate arms of the immune system that propagates inflammation in the central nervous system remains incompletely understood. Using a murine model of GVHD, we demonstrate that type 2 cannabinoid receptor (CB2R) signaling plays a critical role in the pathophysiology of neuroinflammation. In these studies, we identify that CB2R expression on microglial cells induces an activated inflammatory phenotype that potentiates the accumulation of donor-derived proinflammatory T cells, regulates chemokine gene regulatory networks, and promotes neuronal cell death. Pharmacological targeting of this receptor with a brain penetrant CB2R inverse agonist/antagonist selectively reduces neuroinflammation without deleteriously affecting systemic GVHD severity. Thus, these findings delineate a therapeutically targetable neuroinflammatory pathway and have implications for the attenuation of neurotoxicity after GVHD and potentially other T cell-based immunotherapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aniko Szabo
- Division of Biostatistics, Institute of Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Bob M. Moore
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University, Saint Louis, Missouri, USA
| | - Weiguo Cui
- Department of Pathology, Northwestern University, Chicago, Illinois, USA
| | - Julian Romero
- Faculty of Experimental Sciences, Francisco de Vitoria University, Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Bernardi C, Charvet C, Zeiser R, Simonetta F. Granulocyte-Macrophage Colony-Stimulating Factor in Allogenic Hematopoietic Stem Cell Transplantation: From Graft-versus-Host Disease to the Graft-versus-Tumor Effect. Transplant Cell Ther 2024; 30:386-395. [PMID: 38224950 DOI: 10.1016/j.jtct.2024.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) is a widely used treatment for a broad range of hematologic malignancies because of its graft-versus-tumor (GVT) effect. Unfortunately, allo-HSCT is still associated with morbidity and mortality related to relapse and transplantation complications, namely graft-versus-host-disease (GVHD). In an era of therapies specifically targeting molecular pathways, transcription factors, and cytokines, a better understanding of GVHD physiopathology is essential for the development of new therapeutic approaches. In this review, we outline the current knowledge of the role of granulocyte- macrophage colony-stimulating factor (GM-CSF) in allo-HSCT. We first discuss the biology of GM-CSF and its signaling pathways, with a focus on the main producing cells, T cells. We discuss recent preclinical studies pointing to a pivotal role of GM-CSF in GVHD, in particular gastrointestinal GVHD. We then summarize the potential role of GM-CSF in the GVT effect, discussing some potential strategies for exploiting GM-CSF in the context of allo-HSCT.
Collapse
Affiliation(s)
- Chiara Bernardi
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Center for Oncohematology, Department of Medicine and Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Céline Charvet
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Robert Zeiser
- Hematology, Oncology and Stem Cell Transplantation, Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium Partner Site Freiburg and German Cancer Research Center, Heidelberg, Germany; Signaling Research Centres BIOSS and Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Center for Oncohematology, Department of Medicine and Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
11
|
Adams RC, Carter-Cusack D, Llanes GT, Hunter CR, Vinnakota JM, Ruitenberg MJ, Vukovic J, Bertolino P, Chand KK, Wixey JA, Nayler SP, Hill GR, Furlan SN, Zeiser R, MacDonald KPA. CSF1R inhibition promotes neuroinflammation and behavioral deficits during graft-versus-host disease in mice. Blood 2024; 143:912-929. [PMID: 38048572 DOI: 10.1182/blood.2023022040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
ABSTRACT Chronic graft-versus-host disease (cGVHD) remains a significant complication of allogeneic hematopoietic stem cell transplantation. Central nervous system (CNS) involvement is becoming increasingly recognized, in which brain-infiltrating donor major histocompatibility complex (MHC) class II+ bone marrow-derived macrophages (BMDM) drive pathology. BMDM are also mediators of cutaneous and pulmonary cGVHD, and clinical trials assessing the efficacy of antibody blockade of colony-stimulating factor 1 receptor (CSF1R) to deplete macrophages are promising. We hypothesized that CSF1R antibody blockade may also be a useful strategy to prevent/treat CNS cGVHD. Increased blood-brain barrier permeability during acute GVHD (aGVHD) facilitated CNS antibody access and microglia depletion by anti-CSF1R treatment. However, CSF1R blockade early after transplant unexpectedly exacerbated aGVHD neuroinflammation. In established cGVHD, vascular changes and anti-CSF1R efficacy were more limited. Anti-CSF1R-treated mice retained donor BMDM, activated microglia, CD8+ and CD4+ T cells, and local cytokine expression in the brain. These findings were recapitulated in GVHD recipients, in which CSF1R was conditionally depleted in donor CX3CR1+ BMDM. Notably, inhibition of CSF1R signaling after transplant failed to reverse GVHD-induced behavioral changes. Moreover, we observed aberrant behavior in non-GVHD control recipients administered anti-CSF1R blocking antibody and naïve mice lacking CSF1R in CX3CR1+ cells, revealing a novel role for homeostatic microglia and indicating that ongoing clinical trials of CSF1R inhibition should assess neurological adverse events in patients. In contrast, transfer of Ifngr-/- grafts could reduce MHC class II+ BMDM infiltration, resulting in improved neurocognitive function. Our findings highlight unexpected neurological immune toxicity during CSF1R blockade and provide alternative targets for the treatment of cGVHD within the CNS.
Collapse
Affiliation(s)
- Rachael C Adams
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dylan Carter-Cusack
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Genesis T Llanes
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christopher R Hunter
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Janaki Manoja Vinnakota
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs University, Freiburg, Germany
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Patrick Bertolino
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Perinatal Research Centre, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD, Australia
| | - Samuel P Nayler
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Scott N Furlan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Robert Zeiser
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- German Cancer Consortium, Partner Site Freiburg, Freiburg, Germany, and German Cancer Research Centre, Heidelberg, Germany
| | - Kelli P A MacDonald
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Emborg ME, Gambardella JC, Zhang A, Federoff HJ. Autologous vs heterologous cell replacement strategies for Parkinson disease and other neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:41-56. [PMID: 39341662 DOI: 10.1016/b978-0-323-90120-8.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Successful cell replacement strategies for brain repair depend on graft integration into the neural network, which is affected by the immune response to the grafted cells. Using Parkinson disease as an example, in this chapter, we consider the immune system interaction and its role in autologous vs heterologous graft survival and integration, as well as past and emerging strategies to overcome the immunologic response. We also reflect on the role of nonhuman primate research to assess novel approaches and consider the role of different stakeholders on advancing the most promising new approaches into the clinic.
Collapse
Affiliation(s)
- Marina E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States.
| | - Julia C Gambardella
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Ai Zhang
- Aspen Neuroscience, San Diego, CA, United States
| | - Howard J Federoff
- Kenai Therapeutics, San Diego, CA, United States; Georgetown University Medical Center, Georgetown, Washington, DC, United States
| |
Collapse
|
13
|
Shaikh SN, Willis EF, Dierich M, Xu Y, Stuart SJS, Gobe GC, Bashaw AA, Rawashdeh O, Kim SJ, Vukovic J. CSF-1R inhibitor PLX3397 attenuates peripheral and brain chronic GVHD and improves functional outcomes in mice. J Neuroinflammation 2023; 20:300. [PMID: 38102698 PMCID: PMC10725001 DOI: 10.1186/s12974-023-02984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a serious complication of otherwise curative allogeneic haematopoietic stem cell transplants. Chronic GVHD induces pathological changes in peripheral organs as well as the brain and is a frequent cause of late morbidity and death after bone-marrow transplantation. In the periphery, bone-marrow-derived macrophages are key drivers of pathology, but recent evidence suggests that these cells also infiltrate into cGVHD-affected brains. Microglia are also persistently activated in the cGVHD-affected brain. To understand the involvement of these myeloid cell populations in the development and/or progression of cGVHD pathology, we here utilized the blood-brain-barrier permeable colony stimulating factor-1 receptor (CSF-1R) inhibitor PLX3397 (pexidartinib) at varying doses to pharmacologically deplete both cell types. We demonstrate that PLX3397 treatment during the development of cGVHD (i.e., 30 days post-transplant) improves disease symptoms, reducing both the clinical scores and histopathology of multiple cGVHD target organs, including the sequestration of T cells in cGVHD-affected skin tissue. Cognitive impairments associated with cGVHD and neuroinflammation were also attenuated by PLX3397 treatment. PLX3397 treatment prior to the onset of cGVHD (i.e., immediately post-transplant) did not change in clinical scores or histopathology. Overall, our data demonstrate significant benefits of using PLX3397 for the treatment of cGVHD and associated organ pathologies in both the periphery and brain, highlighting the therapeutic potential of pexidartinib for this condition.
Collapse
Affiliation(s)
- Samreen N Shaikh
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Emily F Willis
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Max Dierich
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Yi Xu
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Samuel J S Stuart
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Glenda C Gobe
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Abate A Bashaw
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Seung Jae Kim
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
14
|
Butera S, Tavarozzi R, Brunello L, Rivela P, Sofia A, Viero L, Salvio M, Ladetto M, Zallio F. The black swan: a case of central nervous system graft-versus-host disease. J Basic Clin Physiol Pharmacol 2023; 34:805-809. [PMID: 37843253 DOI: 10.1515/jbcpp-2023-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES Graft-versus-host disease (GVHD) of central nervous system is an atypical and rare manifestation of chronic GVHD, presenting with a heterogeneous spectrum of signs and symptoms. Diagnosis of neurological manifestations of GVHD can be highly challenging and remain associated with dismal prognosis, significant morbidity, and reduced quality of life. CASE PRESENTATION In this report, we describe a 39-year-old woman developing neurological signs and symptoms 8 months after allogeneic HSCT magnetic resonance imaging showed multifocal hyperintense lesions involving the periventricular region and frontal subcortical white matter. There was no laboratory evidence of infective or malignant etiology, and the case was diagnosed as CNS-GVHD. The patient was treated with intravenous methylprednisolone pulse therapy and the clinical conditions gradually improved. After few months, patient symptoms progressed despite the addition of high-dose intravenous immunoglobulin, tacrolimus, and a new course of high dose steroids. To engage targeted therapy, the patient underwent brain biopsy that revealed a loss of myelin fibers, perivascular and diffuse infiltration of T cells, and macrophages associated with reactive gliosis, representing a demyelinating disease. We intensified treatment with cyclophosphamide and subsequently introduced ibrutinib as salvage strategy. Despite a magnetic resonance imaging showing great regression of the demyelinating lesions, patient's conditions deteriorated and she died 16 months after HSCT. CONCLUSIONS CNS-GVHD is a rare complication of HSCT that is difficult to diagnose. Based on our experience, brain biopsy may represent a useful diagnostic tool when the clinical features of neurological symptoms are ambiguous or in patients without evidence of preceding chronic GVHD.
Collapse
Affiliation(s)
- Sara Butera
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Rita Tavarozzi
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Lucia Brunello
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Paolo Rivela
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Antonella Sofia
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Lorenzo Viero
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Michela Salvio
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Marco Ladetto
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Francesco Zallio
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| |
Collapse
|
15
|
Zeiser R, Ringden O, Sadeghi B, Gonen-Yaacovi G, Segurado OG. Novel therapies for graft versus host disease with a focus on cell therapies. Front Immunol 2023; 14:1241068. [PMID: 37868964 PMCID: PMC10585098 DOI: 10.3389/fimmu.2023.1241068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Graft versus host disease (GVHD) can occur at any period post allogeneic hematopoietic stem cell transplantation as a common clinical complication contributing to significant morbidity and mortality. Acute GVHD develops in approximately 30-50% of patients receiving transplants from matched related donors. High doses of steroids are used as first-line treatment, but are unsuccessful in around 40% of patients, resulting in the diagnosis of steroid-refractory acute GVHD. Consensus has yet to develop for the management of steroid-refractory acute GVHD, and prognosis at six months has been estimated at around 50%. Thus, it is critical to find effective treatments that increase survival of steroid-refractory acute GVHD. This article describes the currently known characteristics, pathophysiology, and treatments for GVHD, with a special focus on recent advances in cell therapies. In particular, a novel cell therapy using decidua stromal cells (DSCs) was recently shown to have promising results for acute GVHD, with improved effectiveness over previous treatments including mesenchymal stromal cells. At the Karolinska Institute, severe acute GVHD patients treated with placenta-derived DSCs supplemented with either 5% albumin or 10% AB plasma displayed a one-year survival rate of 76% and 47% respectively. Furthermore, patients with steroid-refractory acute GVHD, displayed survival rates of 73% with albumin and 31% with AB plasma-supplemented DSCs, compared to the 20% survival rate in the mesenchymal stromal cell control group. Adverse events and deaths were found to be attributed only to complications of hematopoietic stem cell transplant and GVHD, not to the study intervention. ASC Therapeutics, Inc, in collaboration with the Karolinska Institute, will soon initiate a phase 2 multicenter, open-label study to further assess the efficacy and safety of intravenous DSC treatment in sixty patients with Grade II-IV steroid-refractory acute GVHD. This novel cell therapy represents a promising treatment to combat the poor prognosis that steroid-refractory acute GVHD patients currently face.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Medicine at the University of Freiburg, Freiburg, Germany
| | - Olle Ringden
- Department of Clinical Sciences, Karolinska Institute, Stockholm, Sweden
| | - Behnam Sadeghi
- Department of Clinical Sciences, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
16
|
Moe A, Rayasam A, Sauber G, Shah RK, Yuan CY, Szabo A, Moore BM, Colonna M, Cui W, Romero J, Zamora AE, Hillard CJ, Drobyski WR. MICROGLIAL CELL EXPRESSION OF THE TYPE 2 CANNABINOID RECEPTOR REGULATES IMMUNE-MEDIATED NEUROINFLAMMATION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552854. [PMID: 37645843 PMCID: PMC10462026 DOI: 10.1101/2023.08.10.552854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Neuroinflammation is a recognized complication of immunotherapeutic approaches such as immune checkpoint inhibitor treatment, chimeric antigen receptor therapy, and graft versus host disease (GVHD) occurring after allogeneic hematopoietic stem cell transplantation. While T cells and inflammatory cytokines play a role in this process, the precise interplay between the adaptive and innate arms of the immune system that propagates inflammation in the central nervous system remains incompletely understood. Using a murine model of GVHD, we demonstrate that type 2 cannabinoid receptor (CB2R) signaling plays a critical role in the pathophysiology of neuroinflammation. In these studies, we identify that CB2R expression on microglial cells induces an activated inflammatory phenotype which potentiates the accumulation of donor-derived proinflammatory T cells, regulates chemokine gene regulatory networks, and promotes neuronal cell death. Pharmacological targeting of this receptor with a brain penetrant CB2R inverse agonist/antagonist selectively reduces neuroinflammation without deleteriously affecting systemic GVHD severity. Thus, these findings delineate a therapeutically targetable neuroinflammatory pathway and has implications for the attenuation of neurotoxicity after GVHD and potentially other T cell-based immunotherapeutic approaches.
Collapse
|
17
|
Zeiser R, Prinz M. Immune checkpoint inhibitor induced neurocognitive deficits in patients. Brain Commun 2023; 5:fcad186. [PMID: 37389305 PMCID: PMC10306159 DOI: 10.1093/braincomms/fcad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
This scientific commentary refers to 'Neurological outcomes in immune checkpoint inhibitor-related neurotoxicity', by Farina et al. (https://doi.org/10.1093/braincomms/fcad169).
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Internal Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Signalling Research Centres BIOSS and CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany
| | - Marco Prinz
- Signalling Research Centres BIOSS and CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany
- Institute for Neuropathology, Medical Faculty, University of Freiburg, Germany
- Center for Neuro Modulation, Faculty of Medicine, University of Freiburg, FreiburgGermany
| |
Collapse
|
18
|
Malard F, Holler E, Sandmaier BM, Huang H, Mohty M. Acute graft-versus-host disease. Nat Rev Dis Primers 2023; 9:27. [PMID: 37291149 DOI: 10.1038/s41572-023-00438-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/10/2023]
Abstract
Acute graft-versus-host disease (GVHD) is a common immune complication that can occur after allogeneic haematopoietic cell transplantation (alloHCT). Acute GVHD is a major health problem in these patients, and is associated with high morbidity and mortality. Acute GVHD is caused by the recognition and the destruction of the recipient tissues and organs by the donor immune effector cells. This condition usually occurs within the first 3 months after alloHCT, but later onset is possible. Targeted organs include the skin, the lower and upper gastrointestinal tract and the liver. Diagnosis is mainly based on clinical examination, and complementary examinations are performed to exclude differential diagnoses. Preventive treatment for acute GVHD is administered to all patients who receive alloHCT, although it is not always effective. Steroids are used for first-line treatment, and the Janus kinase 2 (JAK2) inhibitor ruxolitinib is second-line treatment. No validated treatments are available for acute GVHD that is refractory to steroids and ruxolitinib, and therefore it remains an unmet medical need.
Collapse
Affiliation(s)
- Florent Malard
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| | - Ernst Holler
- University Hospital of Regensburg, Department of Internal Medicine 3, Regensburg, Germany
| | - Brenda M Sandmaier
- Fred Hutchinson Cancer Center, Translational Science and Therapeutics Division, Seattle, WA, USA
- University of Washington School of Medicine, Division of Medical Oncology, Seattle, WA, USA
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
- Engineering Laboratory for Stem Cell and Immunity Therapy, Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Mohamad Mohty
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| |
Collapse
|
19
|
Takahashi K, Katayama T, Ichikawa T, Matsuoka S, Kakinoki Y, Yoneda M, Kimura A, Koyama S, Yahara O. Possible Chronic Graft-versus-host Disease in the Central Nervous System Manifesting as Cerebellar Ataxia after Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia. Intern Med 2023; 62:779-786. [PMID: 35945030 PMCID: PMC10037021 DOI: 10.2169/internalmedicine.9720-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 44-year-old woman was admitted to our hospital with a fever, dizziness, and gait disturbance after undergoing allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia followed by graft-versus-host disease. She presented with cerebellar ataxia, nystagmus, and numbness of the lower extremities. Brain magnetic resonance imaging and perfusion scintigraphy showed progressive cerebellar involvement. Cerebrospinal fluid tests showed mildly elevated protein and IgG levels without pleocytosis. Anti-ganglioside antibodies were detected, but their levels did not follow the patient's clinical course. The patient did not respond sufficiently to steroids or other immunotherapies. We herein report the clinical characteristics of this case and a literature review.
Collapse
Affiliation(s)
- Kae Takahashi
- Department of Neurology, Asahikawa City Hospital, Japan
| | | | | | | | | | - Makoto Yoneda
- Faculty of Nursing and Social Welfare Science, Fukui Prefectural University, Japan
| | - Akio Kimura
- Department of Neurology, Gifu University, Japan
| | - Satoshi Koyama
- Department of Internal Medicine, Asahikawa Rehabilitation Hospital, Japan
| | - Osamu Yahara
- Department of Neurology, Asahikawa City Hospital, Japan
| |
Collapse
|
20
|
Cognitive impairments correlate with increased central nervous system immune activation after allogeneic haematopoietic stem cell transplantation. Leukemia 2023; 37:888-900. [PMID: 36792657 PMCID: PMC10079537 DOI: 10.1038/s41375-023-01840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Murine studies indicate that, after allogeneic haematopoietic stem cell transplantation (aHSCT), donor-derived macrophages replace damaged microglia and alloreactive T-cells invade the central nervous system (CNS). The clinical relevance of this is unknown. We assessed CNS immune surveillance and metabolic activity involved in neuronal survival, in relation to fatigue and cognitive dysfunction in 25 long-term survivors after aHSCT. Patients with cognitive dysfunction exhibited increased proportions of activated T-cells and CD16 + NK-cells in the cerebrospinal fluid (CSF). Immune cell activation was paralleled with reduced levels of anti-inflammatory factors involved in T-cell suppression (transforming growth factor-β, programmed death ligand-1), NK-cell regulation (poliovirus receptor, nectin-2), and macrophage and microglia activation (CD200, chemokine [C-X3-C motif] ligand-1). Additionally, the CSF mRNA expression pattern was associated with neuroinflammation and oxidative stress. Furthermore, proteomic, and transcriptomic studies demonstrated decreased levels of neuroprotective factors, and an upregulation of apoptosis pathway genes. The kynurenine pathway of tryptophan metabolism was activated in the CNS of all aHSCT patients, resulting in accumulation of neurotoxic and pro-inflammatory metabolites. Cognitive decline and fatigue are overlooked but frequent complications of aHSCT. This study links post-transplant CNS inflammation and neurotoxicity to our previously reported hypoactivation in the prefrontal cortex during cognitive testing, suggesting novel treatment targets.
Collapse
|
21
|
Schofield HLT, Fabrizio VA, Braniecki S, Pelletier W, Eissa H, Murphy B, Chewning J, Barton KD, Embry LM, Levine JE, Schultz KR, Page KM. Monitoring Neurocognitive Functioning After Pediatric Cellular Therapy or Hematopoietic Cell Transplant: Guidelines From the COG Neurocognition in Cellular Therapies Task Force. Transplant Cell Ther 2022; 28:625-636. [PMID: 35870778 PMCID: PMC10167710 DOI: 10.1016/j.jtct.2022.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Affiliation(s)
| | - Vanessa A Fabrizio
- Division of Bone Marrow Transplant and Cellular Therapy, University of Colorado, Boulder, Colorado
| | - Suzanne Braniecki
- Divisions of Pediatric Psychology and Hematology/Oncology, New York Medical College, New York, New York
| | - Wendy Pelletier
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hesham Eissa
- Division of Bone Marrow Transplant and Cellular Therapy, University of Colorado, Boulder, Colorado
| | - Beverly Murphy
- Duke Medical Center Library & Archives, Duke University, Durham, North Carolina
| | - Joseph Chewning
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Karen D Barton
- Duke Medical Center Library & Archives, Duke University, Durham, North Carolina
| | - Leanne M Embry
- University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - John E Levine
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk R Schultz
- BC Children's Hospital and Research Institute, Vancouver, British Columbia, Canada
| | - Kristin M Page
- Division of Pediatric Hematology/Oncology/BMT, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
22
|
Czech M, Zeiser R, Toubai T. Editorial on Translational Research in Graft-Versus-Host Disease (GVHD) and Graft-Versus-Tumor (GVT) Effect After Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2022; 13:948720. [PMID: 35757690 PMCID: PMC9215278 DOI: 10.3389/fimmu.2022.948720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marie Czech
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signaling Research Centre for Biological Signalling Studies (BIOSS) Freiburg and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tomomi Toubai
- Department of Internal Medicine III, Division of Hematology and Cell Therapy, Faculty of Medicine, Yamagata University, Yamagata, Japan
| |
Collapse
|
23
|
Towards a Better Understanding of the Atypical Features of Chronic Graft-Versus-Host Disease: A Report from the 2020 National Institutes of Health Consensus Project Task Force. Transplant Cell Ther 2022; 28:426-445. [PMID: 35662591 PMCID: PMC9557927 DOI: 10.1016/j.jtct.2022.05.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/31/2022]
Abstract
Alloreactive and autoimmune responses after allogeneic hematopoietic cell transplantation can occur in non-classical chronic graft-versus-host disease (chronic GVHD) tissues and organ systems or manifest in atypical ways in classical organs commonly affected by chronic GVHD. The National Institutes of Health (NIH) consensus projects were developed to improve understanding and classification of the clinical features and diagnostic criteria for chronic GVHD. While still speculative whether atypical manifestations are entirely due to chronic GVHD, these manifestations remain poorly captured by the current NIH consensus project criteria. Examples include chronic GVHD impacting the hematopoietic system as immune mediated cytopenias, endothelial dysfunction, or as atypical features in the musculoskeletal system, central and peripheral nervous system, kidneys, and serous membranes. These purported chronic GVHD features may contribute significantly to patient morbidity and mortality. Most of the atypical chronic GVHD features have received little study, particularly within multi-institutional and prospective studies, limiting our understanding of their frequency, pathogenesis, and relation to chronic GVHD. This NIH consensus project task force report provides an update on what is known and not known about the atypical manifestations of chronic GVHD, while outlining a research framework for future studies to be undertaken within the next three to seven years. We also provide provisional diagnostic criteria for each atypical manifestation, along with practical investigation strategies for clinicians managing patients with atypical chronic GVHD features.
Collapse
|
24
|
de Vasconcelos P, Lacerda JF. Hematopoietic Stem Cell Transplantation for Neurological Disorders: A Focus on Inborn Errors of Metabolism. Front Cell Neurosci 2022; 16:895511. [PMID: 35693884 PMCID: PMC9178264 DOI: 10.3389/fncel.2022.895511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic stem cells have been investigated and applied for the treatment of certain neurological disorders for a long time. Currently, their therapeutic potential is harnessed in autologous and allogeneic hematopoietic stem cell transplantation (HSCT). Autologous HSCT is helpful in immune-mediated neurological diseases such as Multiple Sclerosis. However, clinical benefits derive more from the immunosuppressive conditioning regimen than the interaction between stem cells and the nervous system. Mainly used for hematologic malignancies, allogeneic HSCT explores the therapeutic potential of donor-derived hematopoietic stem cells. In the neurological setting, it has proven to be most valuable in Inborn Errors of Metabolism, a large spectrum of multisystem disorders characterized by congenital deficiencies in enzymes involved in metabolic pathways. Inborn Errors of Metabolism such as X-linked Adrenoleukodystrophy present with brain accumulation of enzymatic substrates that result in progressive inflammatory demyelination. Allogeneic HSCT can halt ongoing inflammatory neural destruction by replacing hematopoietic-originated microglia with donor-derived myeloid precursors. Microglia, the only neural cells successfully transplanted thus far, are the most valuable source of central nervous system metabolic correction and play a significant role in the crosstalk between the brain and hematopoietic stem cells. After transplantation, engrafted donor-derived myeloid cells modulate the neural microenvironment by recapitulating microglial functions and enhancing repair mechanisms such as remyelination. In some disorders, additional benefits result from the donor hematopoietic stem cell secretome that cross-corrects neighboring neural cells via mannose-6-phosphatase paracrine pathways. The limitations of allogeneic HSCT in this setting relate to the slow turnover of microglia and complications such as graft-vs.-host disease. These restraints have accelerated the development of hematopoietic stem cell gene therapy, where autologous hematopoietic stem cells are collected, manipulated ex vivo to overexpress the missing enzyme, and infused back into the patient. With this cellular drug vehicle strategy, the brain is populated by improved cells and exposed to supraphysiological levels of the flawed protein, resulting in metabolic correction. This review focuses on the mechanisms of brain repair resulting from HSCT and gene therapy in Inborn Errors of Metabolism. A brief mention will also be made on immune-mediated nervous system diseases that are treated with this approach.
Collapse
Affiliation(s)
- Pedro de Vasconcelos
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - João F. Lacerda
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
25
|
Neurological complications in adult allogeneic hematopoietic stem cell transplant patients: Incidence, characteristics and long-term follow-up in a multicenter series. Bone Marrow Transplant 2022; 57:1133-1141. [PMID: 35513485 DOI: 10.1038/s41409-022-01690-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/20/2022]
Abstract
Neurological complications (NCs) represent a diagnostic and clinical challenge in allogeneic hematopoietic stem cell transplant (alloHSCT) patients. We retrospectively analyzed NC incidence, etiology, timing, characteristics, outcome, and long-term effects in 2384 adult patients transplanted in seven Italian institutions between January 2007 and December 2019. Ninety-three (3.9%) patients were affected by 96 NCs that were infectious (29.2%), immune/inflammatory (26%), drug-related (12.5%), cerebrovascular (5.2%), metabolic (3.1%), related to central nervous system disease relapse (11.5%) and malignancy (3.1%), or undefined (9.4%). Six patients (6.4%) had neurological manifestations of chronic graft-versus-host disease (GVHD). NCs occurred on average at day +128 (from -5 to +4063). Early (< day +120) and late NCs had similar frequencies (46.9% vs 53.1%, p = 0.39). Thirty-one patients (33.3%) were affected by acute or chronic GVHD at the NC onset. With a median follow-up of 25.4 (0.4-163) months, the overall mortality due to NCs was 22.6%. The median time between NC onset and death was 36 (1-269) days. Infectious NCs were the main cause (61.9%) of NC-related mortality. A persistent neurological impairment occurred in 20.4% patients, 57.9% of whom being affected by immune/inflammatory NCs. This study highlights the rare, yet severe impact of alloHSCT-associated NCs on patient survival and long-term functional ability.
Collapse
|
26
|
Adams RC, Carter-Cusack D, Shaikh SN, Llanes GT, Johnston RL, Quaife-Ryan G, Boyle G, Koufariotis LT, Möller A, Blazar BR, Vukovic J, MacDonald KPA. Donor bone marrow-derived macrophage MHC II drives neuroinflammation and altered behavior during chronic GVHD in mice. Blood 2022; 139:1389-1408. [PMID: 34570880 PMCID: PMC8900272 DOI: 10.1182/blood.2021011671] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
Graft-versus-host disease (GVHD) remains the leading cause of nonrelapse mortality after allogeneic stem cell transplantation for hematological malignancies. Manifestations of GVHD in the central nervous system (CNS) present as neurocognitive dysfunction in up to 60% of patients; however, the mechanisms driving chronic GVHD (cGVHD) in the CNS are yet to be elucidated. Our studies of murine cGVHD revealed behavioral deficits associated with broad neuroinflammation and persistent Ifng upregulation. By flow cytometry, we observed a proportional shift in the donor-derived T-cell population in the cGVHD brain from early CD8 dominance to later CD4 sequestration. RNA sequencing of the hippocampus identified perturbations to structural and functional synapse-related gene expression, together with the upregulation of genes associated with interferon-γ responses and antigen presentation. Neuroinflammation in the cortex of mice and humans during acute GVHD was recently shown to be mediated by resident microglia-derived tumor necrosis factor. In contrast, infiltration of proinflammatory major histocompatibility complex (MHC) class II+ donor bone marrow (BM)-derived macrophages (BMDMs) was identified as a distinguishing feature of CNS cGVHD. Donor BMDMs, which composed up to 50% of the CNS myeloid population, exhibited a transcriptional signature distinct from resident microglia. Recipients of MHC class II knockout BM grafts exhibited attenuated neuroinflammation and behavior comparable to controls, suggestive of a critical role of donor BMDM MHC class II expression in CNS cGVHD. Our identification of disease mediators distinct from those in the acute phase indicates the necessity to pursue alternative therapeutic targets for late-stage neurological manifestations.
Collapse
Affiliation(s)
- Rachael C Adams
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Dylan Carter-Cusack
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Samreen N Shaikh
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Genesis T Llanes
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rebecca L Johnston
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gregory Quaife-Ryan
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Glen Boyle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lambros T Koufariotis
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Möller
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bruce R Blazar
- Masonic Cancer Center and
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN; and
| | - Jana Vukovic
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Kelli P A MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
27
|
Chronic GVHD of the CNS. Blood 2022; 139:1271-1272. [PMID: 35238888 DOI: 10.1182/blood.2021014079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022] Open
|
28
|
Gao J, Xu Y, Ma S, Liang Y, Liu C, Shen J, Sun Z, Niu M, Xu K, Pan B. Inhibition of interleukin-1 receptor-associated kinase 1 decreases murine acute GVHD while preserving graft-versus-lymphoma effect. Transplant Cell Ther 2021; 28:134.e1-134.e10. [PMID: 34896653 DOI: 10.1016/j.jtct.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/11/2021] [Accepted: 12/02/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Activation of antigen presenting cells (APC) is crucial in initiating inflammation and alloreaction during acute graft-versus-host disease (aGVHD), a common life-threatening complication of allogeneic hematopoietic cell transplantation. Interleukin-1 receptor-associated kinase 1 (IRAK1) regulates activation of APC in inflammatory settings. Inhibition of IRAK1 might decrease APC activation and aGVHD. OBJECTIVE To explore the impact of IRAK1 inhibition on APC activation and aGVHD in mice. STUDY DESIGN We administrated a selective IRAK1 inhibitor Jh-X-119-01 to recipient mice receiving allotransplants or co-challenged by A20 lymphoma cells. We assessed aGVHD and graft-versus-lymphoma (GVL) effect. Activations of T-cell and APC were also analyzed. RESULTS Jh-X-119-01 increased survival and decreased aGVHD of recipients. Jh-X-119-01 decreased proportions of Th1 cells and Tc1 cells in the aGVHD model and in the in vitro mixed lymphocyte reaction (MLR). The IRAK1 inhibitor reduced productions of TNFα and IFNγ in macrophages of recipient mice. In the in vitro cultured bone marrow dendric cells (BMDCs), Jh-X-119-01 decreased productions of inflammatory cytokines, reduced expressions of CD80 and CD86, and decreased protein levels of anti-apoptotic Bcl2 and phosphorylated NF-κB p65. RNA-seq analysis showed Jh-X-119-01 had an impact on several pathophysiological processes of BMDCs such as reduction of GVHD-relation genes and regulation of helper T cell differentiation. Importantly, IRAK1 inhibition did not impair cytotoxic function of T-cell or the allotransplant-related GVL effect against A20 lymphoma cells. In addition, the IRAK1 inhibitor did not retard recovery of hematopoietic cells in blood or bone marrow. CONCLUSION We show selective IRAK1 inhibition ameliorates murine aGVHD but preserves GVL effect. Our findings may have implication for using an IRAK1 inhibitor in allotransplant.
Collapse
Affiliation(s)
- Jun Gao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Yan Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Sha Ma
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Yiwen Liang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Cong Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Zengtian Sun
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| | - Bin Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
29
|
Braun LM, Zeiser R. Kinase Inhibition as Treatment for Acute and Chronic Graft- Versus-Host Disease. Front Immunol 2021; 12:760199. [PMID: 34868001 PMCID: PMC8635802 DOI: 10.3389/fimmu.2021.760199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a potentially curative therapy for patients suffering from hematological malignancies via the donor immune system driven graft-versus-leukemia effect. However, the therapy is mainly limited by severe acute and chronic graft-versus-host disease (GvHD), both being life-threatening complications after allo-HCT. GvHD develops when donor T cells do not only recognize remaining tumor cells as foreign, but also the recipient’s tissue, leading to a severe inflammatory disease. Typical GvHD target organs include the skin, liver and intestinal tract. Currently all approved strategies for GvHD treatment are immunosuppressive therapies, with the first-line therapy being glucocorticoids. However, therapeutic options for glucocorticoid-refractory patients are still limited. Novel therapeutic approaches, which reduce GvHD severity while preserving GvL activity, are urgently needed. Targeting kinase activity with small molecule inhibitors has shown promising results in preclinical animal models and clinical trials. Well-studied kinase targets in GvHD include Rho-associated coiled-coil-containing kinase 2 (ROCK2), spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase (BTK) and interleukin-2-inducible T-cell kinase (ITK) to control B- and T-cell activation in acute and chronic GvHD. Janus Kinase 1 (JAK1) and 2 (JAK2) are among the most intensively studied kinases in GvHD due to their importance in cytokine production and inflammatory cell activation and migration. Here, we discuss the role of kinase inhibition as novel treatment strategies for acute and chronic GvHD after allo-HCT.
Collapse
Affiliation(s)
- Lukas M Braun
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Inamoto Y, Zeiser R, Chan GCF. Novel Treatment for Graft-versus-Host Disease. BLOOD CELL THERAPY 2021; 4:101-109. [PMID: 36714067 PMCID: PMC9847314 DOI: 10.31547/bct-2021-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/16/2021] [Indexed: 02/01/2023]
Abstract
Allogeneic hematopoietic cell transplantation is a curative therapy for a variety of hematological diseases, but its success is hampered by acute and chronic graft-versus-host disease (GvHD). In the last five years, multiple novel therapeutic approaches for GvHD have entered the arena. The National Institutes of Health consensus criteria for chronic GvHD have set standards for designing and reporting clinical trials, and preclinical experiments of chronic GvHD have revealed the central roles of regulatory T cells, B-cell signaling, Th17 cells, Tc17 cells, follicular helper T cells, follicular regulatory T cells, and fibrosis-promoting factors. These scientific efforts and the resulting clinical studies led to the approval of ibrutinib, belumosudil and ruxolitinib for the treatment of refractory chronic GvHD. Recently, large randomized phase III trials showed that ruxolitinib was superior to the best available therapy for glucocorticoid-refractory acute GvHD (REACH2 trial) and glucocorticoid-refractory chronic GvHD (REACH3 trial). Furthermore, novel regenerative approaches, including IL-22, R-spondin, and glucogon-like peptide-2, and cellular therapies, such as the transfer of mesenchymal stem cells and regulatory T cells, are under intensive investigation. GvHD prevention using abatacept, dipeptidyl peptidase 4 inhibition, and post-transplant cyclophosphamide are also promising strategies that require further evaluation. In this article, we summarize the emerging knowledge of acute GvHD, chronic GvHD, and preclinical and clinical data of mesenchymal stem cells as GvHD therapy. In the next five years, basic and clinical studies will further advance the field, and dramatic changes in GvHD management will be encountered.
Collapse
Affiliation(s)
- Yoshihiro Inamoto
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong,Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital,Department of Paediatrics and Adolescent Medicine, HKU-Shenzhen Hospital
| |
Collapse
|
31
|
Vinnakota JM, Zeiser R. Acute Graft- Versus-Host Disease, Infections, Vascular Events and Drug Toxicities Affecting the Central Nervous System. Front Immunol 2021; 12:748019. [PMID: 34691059 PMCID: PMC8527894 DOI: 10.3389/fimmu.2021.748019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/21/2021] [Indexed: 02/02/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a curative therapy for patients with hematological malignancies. Acute Graft versus host diseases (GVHD) is a major immune mediated side effect of allo-HCT that can affect the central nervous system (CNS) in addition to post-allo-HCT vascular events, drug toxicity or infections. Here we summarize and discuss recent preclinical data on the CNS as a target of acute GVHD and the known mechanisms contributing to neurotoxicity with a focus on microglia and T cells. We also discuss open questions in the field and place the findings made in mouse models in a clinical context. While in mice the neurological deficits can be assessed in a controlled fashion, in patients the etiology of the CNS damage is difficult to attribute to acute GVHD versus infections, vascular events, and drug-induced toxicity. Ultimately, we discuss novel therapies for GVHD of the CNS. Our understanding of the biological mechanisms that lead to neurotoxicity after allo-HCT increased over the last decade. This review provides insights into CNS manifestations of GVHD versus other etiologies of CNS damage in mice and patients.
Collapse
Affiliation(s)
- Janaki Manoja Vinnakota
- Department of Medicine I - Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I - Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
Non-classical manifestations of acute GVHD. Blood 2021; 138:2165-2172. [PMID: 34482399 DOI: 10.1182/blood.2021012431] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
Acute graft-versus-host disease (GVHD) is a major life-threatening complication after allogeneic hematopoietic cell transplantation (allo-HCT). The classical target organs of acute GVHD include the intestines, liver, and skin. The damage of these organs is relatively easy to detect for the clinician as diarrhea, increased bilirubin, and rash. However, there is increasing evidence that also other organs, where the acute damage is less apparent or more difficult to distinguish from drug toxicity, such as the central nervous system, the lungs, the ovaries and testis, the thymus, the bone marrow and the kidney, can be target organs of acute GVHD. Here, we review current evidence for non-classical manifestations of acute GVHD in rodent models and in patients and discuss them in the context of novel emerging therapies for GVHD. A better understanding of the involvement of the non-classical GVHD target organs may help to improve patient outcomes after allo-HCT.
Collapse
|
33
|
National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IV. The 2020 Highly morbid forms report. Transplant Cell Ther 2021; 27:817-835. [PMID: 34217703 DOI: 10.1016/j.jtct.2021.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Chronic graft-versus-host disease (GVHD) can be associated with significant morbidity, in part because of nonreversible fibrosis, which impacts physical functioning (eye, skin, lung manifestations) and mortality (lung, gastrointestinal manifestations). Progress in preventing severe morbidity and mortality associated with chronic GVHD is limited by a complex and incompletely understood disease biology and a lack of prognostic biomarkers. Likewise, treatment advances for highly morbid manifestations remain hindered by the absence of effective organ-specific approaches targeting "irreversible" fibrotic sequelae and difficulties in conducting clinical trials in a heterogeneous disease with small patient numbers. The purpose of this document is to identify current gaps, to outline a roadmap of research goals for highly morbid forms of chronic GVHD including advanced skin sclerosis, fasciitis, lung, ocular and gastrointestinal involvement, and to propose strategies for effective trial design. The working group made the following recommendations: (1) Phenotype chronic GVHD clinically and biologically in future cohorts, to describe the incidence, prognostic factors, mechanisms of organ damage, and clinical evolution of highly morbid conditions including long-term effects in children; (2) Conduct longitudinal multicenter studies with common definitions and research sample collections; (3) Develop new approaches for early identification and treatment of highly morbid forms of chronic GVHD, especially biologically targeted treatments, with a special focus on fibrotic changes; and (4) Establish primary endpoints for clinical trials addressing each highly morbid manifestation in relationship to the time point of intervention (early versus late). Alternative endpoints, such as lack of progression and improvement in physical functioning or quality of life, may be suitable for clinical trials in patients with highly morbid manifestations. Finally, new approaches for objective response assessment and exploration of novel trial designs for small populations are required.
Collapse
|
34
|
Immunomodulatory Therapies for the Treatment of Graft-versus-host Disease. Hemasphere 2021; 5:e581. [PMID: 34095764 PMCID: PMC8171375 DOI: 10.1097/hs9.0000000000000581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a potentially curative therapy for patients suffering from hematological malignancies, and its therapeutic success is based on the graft-versus-leukemia (GvL) effect. Severe acute and chronic graft-versus-host disease (GvHD) are life-threatening complications after allo-HCT. To date, most of the approved treatment strategies for GvHD rely on broadly immunosuppressive regimens, which limit the beneficial GvL effect by reducing the cytotoxicity of anti-leukemia donor T-cells. Therefore, novel therapeutic strategies that rely on immunomodulatory rather than only immunosuppressive effects could help to improve patient outcomes. Treatments should suppress severe GvHD while preserving anti-leukemia immunity. New treatment strategies include the blockade of T-cell activation via inhibition of dipeptidyl peptidase 4 and cluster of differentiation 28-mediated co-stimulation, reduction of proinflammatory interleukin (IL)-2, IL-6 and tumor necrosis factor-α signaling, as well as kinase inhibition. Janus kinase (JAK)1/2 inhibition acts directly on T-cells, but also renders antigen presenting cells more tolerogenic and blocks dendritic cell-mediated T-cell activation and proliferation. Extracorporeal photopheresis, hypomethylating agent application, and low-dose IL-2 are powerful approaches to render the immune response more tolerogenic by regulatory T-cell induction. The transfer of immunomodulatory and immunosuppressive cell populations, including mesenchymal stromal cells and regulatory T-cells, showed promising results in GvHD treatment. Novel experimental procedures are based on metabolic reprogramming of donor T-cells by reducing glycolysis, which is crucial for cytotoxic T-cell proliferation and activity.
Collapse
|
35
|
Hümmert MW, Stadler M, Hambach L, Gingele S, Bredt M, Wattjes MP, Göhring G, Venturini L, Möhn N, Stangel M, Trebst C, Ganser A, Wegner F, Skripuletz T. Severe allo-immune antibody-associated peripheral and central nervous system diseases after allogeneic hematopoietic stem cell transplantation. Sci Rep 2021; 11:8527. [PMID: 33875720 PMCID: PMC8055885 DOI: 10.1038/s41598-021-87989-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/24/2021] [Indexed: 01/24/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a curative treatment for hematologic malignancies. Acute and chronic graft-versus-host disease (GvHD) are the major immune-mediated complications after alloHSCT. However, there is controversy whether neurologic complications after alloHSCT might represent manifestations of GvHD. We report three patients who acquired distinct, severe immune-mediated peripheral or central nervous system diseases after alloHSCT without other, concomitant GvHD manifestations. One patient had been diagnosed with B-cell chronic lymphocytic leukemia and two patients with high risk myelodysplastic syndrome. Patient #1 presented as LGI1- and GAD-IgG positive immune-mediated encephalitis, patient #2 was diagnosed with MOG-IgG positive encephalomyelitis, and patient #3 had chronic inflammatory polyneuropathy associated with SSA(Ro)-IgG positive Sjögren's syndrome. 100% donor chimerism was detectable in the peripheral blood in all three. The specific antibodies were undetectable in donors' and patients' blood before alloHSCT suggesting that the antibodies had arisen from the transplanted donor immune system. Early intensive immunotherapy led to improvement of clinical symptoms and stability of the neurological disease, however, at the cost of losing the graft-versus-malignancy effect in one patient. In conclusion, we provide evidence of isolated, severe allo-immune diseases of the peripheral and central nervous system as complications of alloHSCT ("neuro-GvHD"). Interdisciplinary surveillance and thorough diagnostic work-up are needed for early diagnosis and treatment of neuro-immunologic complications after alloHSCT to improve the otherwise poor outcome.
Collapse
Affiliation(s)
- Martin W Hümmert
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Department of Clinical Neuroimmunology and Neurochemistry, Hannover Medical School, Hannover, Germany.
| | - Michael Stadler
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Lothar Hambach
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Department of Clinical Neuroimmunology and Neurochemistry, Hannover Medical School, Hannover, Germany
| | - Martin Bredt
- Hannover Medical School, Institute for Pathology, Hannover, Germany
| | - Mike P Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Letizia Venturini
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Nora Möhn
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Department of Clinical Neuroimmunology and Neurochemistry, Hannover Medical School, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Department of Clinical Neuroimmunology and Neurochemistry, Hannover Medical School, Hannover, Germany
| | - Corinna Trebst
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Department of Clinical Neuroimmunology and Neurochemistry, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Department of Clinical Neuroimmunology and Neurochemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Department of Clinical Neuroimmunology and Neurochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
36
|
Li M, Zhang Y, Guan Y, Zhang Z, Dong H, Zhao Y, Deng H. A Case Report of Central Nervous System Graft-Versus-Host Disease and Literature Review. Front Neurol 2021; 12:621392. [PMID: 33776885 PMCID: PMC7987907 DOI: 10.3389/fneur.2021.621392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
As an adverse immune phenomenon, graft-versus-host disease often occurs after allogeneic hematopoietic stem cell transplantation. The incidence of acute and chronic graft-versus-host disease is about 40–60% and the mortality rate can reach 15%, which is a potentially fatal disease. There are rare GvHD cases involving the central nervous system. We reported a rare case of diffuse white matter changes after haploid bone marrow transplantation, summarizing its clinical manifestations and diagnosis and treatment in conjunction with the literature.
Collapse
Affiliation(s)
- Mingming Li
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Yue Zhang
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Yujia Guan
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Zunwei Zhang
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Hanbing Dong
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Yang Zhao
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Hui Deng
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
37
|
MiR-367 alleviates inflammatory injury of microglia by promoting M2 polarization via targeting CEBPA. In Vitro Cell Dev Biol Anim 2020; 56:878-887. [PMID: 33150481 PMCID: PMC7723938 DOI: 10.1007/s11626-020-00519-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
MiR-367 was reported to regulate inflammatory response of microglia. CCAAT/enhancer-binding protein α (C/EBPA) could mediate microglia polarization. In this study, we explored the possible roles of miR-367 and CEBPA in intracerebral hemorrhage (ICH). ICH and normal specimens were obtained from the tissue adjacent to and distant from hematoma of ICH patients, respectively. Microglia were isolated and identified by immunofluorescence. The isolated microglia were treated with erythrocyte lysate and randomly divided into 8 groups using different transfection reagents. The transfection efficiency of miR-367 was determined by qRT-PCR. The expressions of M1 and M2 microglia markers were detected by Western blotting. The relationship between CEBPA and miR-367 was confirmed by dual luciferase reporter system. Flow cytometry was performed to determine the level of apoptosis in the cells transfected with miR-367 and CEBPA in erythrocyte lysate–treated microglia. We found that miR-367 expression level was downregulated in ICH specimens. Erythrocyte lysate–treated microglia was successfully established using erythrocyte lysate, as decreased miR-367 expression was observed. Overexpression of miR-367 could significantly decrease the expressions of MHC-ІІ, IL-1β, and Bax, reduced apoptosis rate, and increased the expressions of CD206, Bal-2, and Arg-1 in erythrocyte lysate–treated microglia. CEBPA was proved to be a direct target for miR-367, which could inhibit microglia M2 polarization and increase apoptosis rate. However, in the presence of both CEBPA and miR-367 mimic, the protein and mRNA expressions of CEBPA were decreased, leading to promoted microglia M2 polarization and a decreased apoptosis rate. MiR-367 regulates microglia polarization by targeting CEBPA and is expected to alleviate ICH-induced inflammatory injury.
Collapse
|
38
|
Vandenhove B, Canti L, Schoemans H, Beguin Y, Baron F, Graux C, Kerre T, Servais S. How to Make an Immune System and a Foreign Host Quickly Cohabit in Peace? The Challenge of Acute Graft- Versus-Host Disease Prevention After Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2020; 11:583564. [PMID: 33193397 PMCID: PMC7609863 DOI: 10.3389/fimmu.2020.583564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (alloHCT) has been used as cellular immunotherapy against hematological cancers for more than six decades. Its therapeutic efficacy relies on the cytoreductive effects of the conditioning regimen but also on potent graft-versus-tumor (GVT) reactions mediated by donor-derived immune cells. However, beneficial GVT effects may be counterbalanced by acute GVHD (aGVHD), a systemic syndrome in which donor immune cells attack healthy tissues of the recipient, resulting in severe inflammatory lesions mainly of the skin, gut, and liver. Despite standard prophylaxis regimens, aGVHD still occurs in approximately 20–50% of alloHCT recipients and remains a leading cause of transplant-related mortality. Over the past two decades, advances in the understanding its pathophysiology have helped to redefine aGVHD reactions and clinical presentations as well as developing novel strategies to optimize its prevention. In this review, we provide a brief overview of current knowledge on aGVHD immunopathology and discuss current approaches and novel strategies being developed and evaluated in clinical trials for aGVHD prevention. Optimal prophylaxis of aGVHD would prevent the development of clinically significant aGVHD, while preserving sufficient immune responsiveness to maintain beneficial GVT effects and immune defenses against pathogens.
Collapse
Affiliation(s)
- Benoît Vandenhove
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium
| | - Lorenzo Canti
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium
| | - Hélène Schoemans
- Department of Clinical Hematology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Hematology, CHU of Liège, University of Liège, Liège, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Hematology, CHU of Liège, University of Liège, Liège, Belgium
| | - Carlos Graux
- Department of Clinical Hematology, CHU UCL Namur (Godinne), Université Catholique de Louvain, Yvoir, Belgium
| | - Tessa Kerre
- Hematology Department, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sophie Servais
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Hematology, CHU of Liège, University of Liège, Liège, Belgium
| |
Collapse
|
39
|
Chen S, Zeiser R. Novel Biomarkers for Outcome After Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:1854. [PMID: 33013836 PMCID: PMC7461883 DOI: 10.3389/fimmu.2020.01854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a well-established curative treatment for various malignant hematological diseases. However, its clinical success is substantially limited by major complications including graft-vs.-host disease (GVHD) and relapse of the underlying disease. Although these complications are known to lead to significant morbidity and mortality, standardized pathways for risk stratification of patients undergoing allo-HSCT are lacking. Recent advances in the development of diagnostic and prognostic tools have allowed the identification of biomarkers in order to predict outcome after allo-HSCT. This review will provide a summary of clinically relevant biomarkers that have been studied to predict the development of acute GVHD, the responsiveness of affected patients to immunosuppressive treatment and the risk of non-relapse mortality. Furthermore, biomarkers associated with increased risk of relapse and subsequent mortality will be discussed.
Collapse
Affiliation(s)
- Sophia Chen
- Department of Immunology, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States.,Department of Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
40
|
Girardi G, Lingo JJ, Fleming SD, Regal JF. Essential Role of Complement in Pregnancy: From Implantation to Parturition and Beyond. Front Immunol 2020; 11:1681. [PMID: 32849586 PMCID: PMC7411130 DOI: 10.3389/fimmu.2020.01681] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The complement cascade was identified over 100 years ago, yet investigation of its role in pregnancy remains an area of intense research. Complement inhibitors at the maternal-fetal interface prevent inappropriate complement activation to protect the fetus. However, this versatile proteolytic cascade also favorably influences numerous stages of pregnancy, including implantation, fetal development, and labor. Inappropriate complement activation in pregnancy can have adverse lifelong sequelae for both mother and child. This review summarizes the current understanding of complement activation during all stages of pregnancy. In addition, consequences of complement dysregulation during adverse pregnancy outcomes from miscarriage, preeclampsia, and pre-term birth are examined. Finally, future research directions into complement activation during pregnancy are considered.
Collapse
Affiliation(s)
- Guillermina Girardi
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Joshua J Lingo
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
41
|
Mezö C, Dokalis N, Mossad O, Staszewski O, Neuber J, Yilmaz B, Schnepf D, de Agüero MG, Ganal-Vonarburg SC, Macpherson AJ, Meyer-Luehmann M, Staeheli P, Blank T, Prinz M, Erny D. Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer's disease. Acta Neuropathol Commun 2020; 8:119. [PMID: 32727612 PMCID: PMC7389451 DOI: 10.1186/s40478-020-00988-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
It was recently revealed that gut microbiota promote amyloid-beta (Aβ) burden in mouse models of Alzheimer’s disease (AD). However, the underlying mechanisms when using either germ-free (GF) housing conditions or treatments with antibiotics (ABX) remained unknown. In this study, we show that GF and ABX-treated 5x familial AD (5xFAD) mice developed attenuated hippocampal Aβ pathology and associated neuronal loss, and thereby delayed disease-related memory deficits. While Aβ production remained unaffected in both GF and ABX-treated 5xFAD mice, we noticed in GF 5xFAD mice enhanced microglial Aβ uptake at early stages of the disease compared to ABX-treated 5xFAD mice. Furthermore, RNA-sequencing of hippocampal microglia from SPF, GF and ABX-treated 5xFAD mice revealed distinct microbiota-dependent gene expression profiles associated with phagocytosis and altered microglial activation states. Taken together, we observed that constitutive or induced microbiota modulation in 5xFAD mice differentially controls microglial Aβ clearance mechanisms preventing neurodegeneration and cognitive deficits.
Collapse
|