1
|
Protto V, Miteva MT, Iannuzzi F, Marcocci ME, Li Puma DD, Piacentini R, Belli M, Sansone L, Pietrantoni A, Grassi C, Palamara AT, De Chiara G. HSV-1 infection induces phosphorylated tau propagation among neurons via extracellular vesicles. mBio 2024; 15:e0152224. [PMID: 39189744 PMCID: PMC11481531 DOI: 10.1128/mbio.01522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Extracellular vesicles (EV), key players in cell-to-cell communication, may contribute to disease propagation in several neurodegenerative diseases, including Alzheimer's disease (AD), by favoring the dissemination of neurotoxic proteins within the brain. Interestingly, growing evidence supports the role of herpes simplex virus type 1 (HSV-1) infection in the pathogenesis of AD. Here, we investigated whether HSV-1 infection could promote the spread of phosphorylated tau (ptau) among neurons via EV. We analyzed the ptau species that were secreted via EV following HSV-1 infection in neuroblastoma cells and primary neurons, focusing particularly on T205, T181, and T217, the phosphorylation sites mainly associated with AD. Moreover, by overexpressing human tau tagged with GFP (htauGFP), we found that recipient tau knockout (KO) neurons uptook EV that are loaded with HSV-1-induced phtauGFP. Finally, we exploited an in vivo model of acute infection and assessed that cerebral HSV-1 infection promotes the release of ptau via EV in the brain of infected mice. Overall, our data suggest that, following HSV-1 infection, EV play a role in tau spreading within the brain, thus contributing to neurodegeneration.IMPORTANCEHerpes simplex virus type 1 (HSV-1) infection that reaches the brain has been repeatedly linked with the appearance of the pathognomonic markers of Alzheimer's disease (AD), including accumulation of amyloid beta and hyperphosphorylated tau proteins, and cognitive deficits. AD is a multifactorial neurodegenerative disease representing the most common form of dementia in the elderly, and no cure is currently available, thus prompting additional investigation on potential risk factors and pathological mechanisms. Here, we demonstrate that the virus exploits the extracellular vesicles (EV) to disseminate phosphorylated tau (ptau) among brain cells. Importantly, we provide evidence that the HSV-1-induced EV-bearing ptau can be undertaken by recipient neurons, thus likely contributing to misfolding and aggregation of native tau, as reported for other AD models. Hence, our data highlight a novel mechanism exploited by HSV-1 to propagate tau-related damage in the brain.
Collapse
Affiliation(s)
- V. Protto
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - M. T. Miteva
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - F. Iannuzzi
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - M. E. Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - D. D. Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - R. Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - M. Belli
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
- Laboratory of Molecular, Cellular and Ultrastructural Pathology, IRCCS San Raffaele Roma, Rome, Italy
| | - L. Sansone
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
- Laboratory of Molecular, Cellular and Ultrastructural Pathology, IRCCS San Raffaele Roma, Rome, Italy
| | - A. Pietrantoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - C. Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - A. T. Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - G. De Chiara
- Institute of Translational Pharmacology, CNR, Rome, Italy
| |
Collapse
|
2
|
Hu NW, Ondrejcak T, Klyubin I, Yang Y, Walsh DM, Livesey FJ, Rowan MJ. Patient-derived tau and amyloid-β facilitate long-term depression in vivo: role of tumour necrosis factor-α and the integrated stress response. Brain Commun 2024; 6:fcae333. [PMID: 39391333 PMCID: PMC11465085 DOI: 10.1093/braincomms/fcae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/22/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease is characterized by a progressive cognitive decline in older individuals accompanied by the deposition of two pathognomonic proteins amyloid-β and tau. It is well documented that synaptotoxic soluble amyloid-β aggregates facilitate synaptic long-term depression, a major form of synaptic weakening that correlates with cognitive status in Alzheimer's disease. Whether synaptotoxic tau, which is also associated strongly with progressive cognitive decline in patients with Alzheimer's disease and other tauopathies, also causes facilitation remains to be clarified. Young male adult and middle-aged rats were employed. Synaptotoxic tau and amyloid-β were obtained from different sources including (i) aqueous brain extracts from patients with Alzheimer's disease and Pick's disease tauopathy; (ii) the secretomes of induced pluripotent stem cell-derived neurons from individuals with trisomy of chromosome 21; and (iii) synthetic amyloid-β. In vivo electrophysiology was performed in urethane anaesthetized animals. Evoked field excitatory postsynaptic potentials were recorded from the stratum radiatum in the CA1 area of the hippocampus with electrical stimulation to the Schaffer collateral-commissural pathway. To study the enhancement of long-term depression, relatively weak low-frequency electrical stimulation was used to trigger peri-threshold long-term depression. Synaptotoxic forms of tau or amyloid-β were administered intracerebroventricularly. The ability of agents that inhibit the cytokine tumour necrosis factor-α or the integrated stress response to prevent the effects of amyloid-β or tau on long-term depression was assessed after local or systemic injection, respectively. We found that diffusible tau from Alzheimer's disease or Pick's disease patients' brain aqueous extracts or the secretomes of trisomy of chromosome 21 induced pluripotent stem cell-derived neurons, like Alzheimer's disease brain-derived amyloid-β and synthetic oligomeric amyloid-β, potently enhanced synaptic long-term depression in live rats. We further demonstrated that long-term depression facilitation by both tau and amyloid-β was age-dependent, being more potent in middle-aged compared with young animals. Finally, at the cellular level, we provide pharmacological evidence that tumour necrosis factor-α and the integrated stress response are downstream mediators of long-term depression facilitation by both synaptotoxic tau and amyloid-β. Overall, these findings reveal the promotion of an age-dependent synaptic weakening by both synaptotoxic tau and amyloid-β. Pharmacologically targeting shared mechanisms of tau and amyloid-β synaptotoxicity, such as tumour necrosis factor-α or the integrated stress response, provides an attractive strategy to treat early Alzheimer's disease.
Collapse
Affiliation(s)
- Neng-Wei Hu
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Yin Yang
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frederick J Livesey
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London WC1N 1DZ, UK
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| |
Collapse
|
3
|
Tsintzas E, Niccoli T. Using Drosophila amyloid toxicity models to study Alzheimer's disease. Ann Hum Genet 2024; 88:349-363. [PMID: 38517001 DOI: 10.1111/ahg.12554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 03/23/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and is characterised by a progressive loss of neurons, which manifests as gradual memory decline, followed by cognitive loss. Despite the significant progress in identifying novel biomarkers and understanding the prodromal pathology and symptomatology, AD remains a significant unmet clinical need. Lecanemab and aducanumab, the only Food and Drug Administration approved drugs to exhibit some disease-modifying clinical efficacy, target Aβ amyloid, underscoring the importance of this protein in disease aetiology. Nevertheless, in the absence of a definitive cure, the utilisation of preclinical models remains imperative for the identification of novel therapeutic targets and the evaluation of potential therapeutic agents. Drosophila melanogaster is a model system that can be used as a research tool to investigate neurodegeneration and therapeutic interventions. The short lifespan, low price and ease of husbandry/rearing make Drosophila an advantageous model organism from a practical perspective. However, it is the highly conserved genome and similarity of Drosophila and human neurobiology which make flies a powerful tool to investigate neurodegenerative mechanisms. In addition, the ease of transgenic modifications allows for early proof of principle studies for future therapeutic approaches in neurodegenerative research. This mini review will specifically focus on utilising Drosophila as an in vivo model of amyloid toxicity in AD.
Collapse
Affiliation(s)
- Elli Tsintzas
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| |
Collapse
|
4
|
Lane RM, Darreh-Shori T, Junge C, Li D, Yang Q, Edwards AL, Graham DL, Moore K, Mummery CJ. Onset of Alzheimer disease in apolipoprotein ɛ4 carriers is earlier in butyrylcholinesterase K variant carriers. BMC Neurol 2024; 24:116. [PMID: 38594621 PMCID: PMC11003149 DOI: 10.1186/s12883-024-03611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The authors sought to examine the impact of the K-variant of butyrylcholinesterase (BCHE-K) carrier status on age-at-diagnosis of Alzheimer disease (AD) in APOE4 carriers. METHODS Patients aged 50-74 years with cerebrospinal fluid (CSF) biomarker-confirmed AD, were recruited to clinical trial (NCT03186989 since June 14, 2017). Baseline demographics, disease characteristics, and biomarkers were evaluated in 45 patients according to BCHE-K and APOE4 allelic status in this post-hoc study. RESULTS In APOE4 carriers (N = 33), the mean age-at-diagnosis of AD in BCHE-K carriers (n = 11) was 6.4 years earlier than in BCHE-K noncarriers (n = 22, P < .001, ANOVA). In APOE4 noncarriers (N = 12) there was no observed influence of BCHE-K. APOE4 carriers with BCHE-K also exhibited slightly higher amyloid and tau accumulations compared to BCHE-K noncarriers. A predominantly amyloid, limited tau, and limbic-amnestic phenotype was exemplified by APOE4 homozygotes with BCHE-K. In the overall population, multiple regression analyses demonstrated an association of amyloid accumulation with APOE4 carrier status (P < .029), larger total brain ventricle volume (P < .021), less synaptic injury (Ng, P < .001), and less tau pathophysiology (p-tau181, P < .005). In contrast, tau pathophysiology was associated with more neuroaxonal damage (NfL, P = .002), more synaptic injury (Ng, P < .001), and higher levels of glial activation (YKL-40, P = .01). CONCLUSION These findings have implications for the genetic architecture of prognosis in early AD, not the genetics of susceptibility to AD. In patients with early AD aged less than 75 years, the mean age-at-diagnosis of AD in APOE4 carriers was reduced by over 6 years in BCHE-K carriers versus noncarriers. The functional status of glia may explain many of the effects of APOE4 and BCHE-K on the early AD phenotype. TRIAL REGISTRATION NCT03186989 since June 14, 2017.
Collapse
Affiliation(s)
- Roger M Lane
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA.
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatric, Karolinska Institutet, Stockholm, Sweden
| | - Candice Junge
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Dan Li
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Qingqing Yang
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | | | | - Katrina Moore
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | |
Collapse
|
5
|
Li G, Iliff J, Shofer J, Mayer CL, Meabon J, Cook D, Pagulayan KF, Raskind MA, Zetterberg H, Blennow K, Peskind ER. CSF β-Amyloid and Tau Biomarker Changes in Veterans With Mild Traumatic Brain Injury. Neurology 2024; 102:e209197. [PMID: 38478804 DOI: 10.1212/wnl.0000000000209197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/13/2023] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Moderate-to-severe traumatic brain injuries (TBI) have been reported to increase the risk of Alzheimer disease (AD). Whether mild TBI (mTBI) in veterans confers a similar increased risk of AD is less known. This study investigated early AD changes using CSF biomarkers in veterans with blast mTBI. METHODS This was a cross-sectional case-control study of veterans with mTBI and non-mTBI veterans and civilians from 2 study sources. Blast-mTBI veterans had at least 1 war zone blast or combined blast/impact mTBI meeting Veterans Affairs (VA) and Department of Defense (DoD) criteria for mTBI. Non-mTBI participants had no lifetime history of TBI. All participants underwent standardized clinical and neuropsychological assessments and lumbar puncture for collection of the CSF. CSF biomarkers were measured using MesoScale Discovery assays for Aβ40 and Aβ42 and INNOTEST ELISAs for phosphorylated tau181 (p-tau181) and total tau (t-tau). RESULTS Our sample comprised 51 participants with mTBI and 85 non-mTBI participants with mean (SD) ages 34.0 (10.1) and 33.5 years (8.9), respectively. All participants but 1 (99%) were male. Differences in CSF AD biomarkers between mTBI and non-mTBI groups were age dependent and most pronounced at older ages (omnibus test p ≤ 0.08). At age 50 years, the mTBI group had lower mean [95% CI] CSF Aβ42 and Aβ40 than the non-mTBI group by 154 [-12 to 319] and 1864 [610-3,118] pg/mL, respectively. By contrast, CSF p-tau181 and t-tau mean levels remained relatively constant with age in participants with mTBI, while tending to be higher at older ages for the non-mTBI group. The mTBI group also demonstrated poorer cognitive performance at older ages (omnibus p < 0.08): at age 50 years, the mean TMT-B time was higher by 34 seconds [10-58] and the mean CVLT-II short-delay recall was lower by 4.2 points [1.9-6.6]. Poorer verbal memory and verbal fluency performance were associated with lower CSF Aβ42 (p ≤ 0.05) in older participants. DISCUSSION CSF Aβ levels decreased in middle-aged veterans with blast-related mTBI. These data suggest that chronic neuropathologic processes associated with blast mTBI share properties in common with pathogenic processes known to portend AD onset, thus raising concern that veterans with blast-related mTBI may develop a dementing disorder later in life.
Collapse
Affiliation(s)
- Ge Li
- From the Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC) (G.L., J.I., J.S., C.L.M., J.M., K.F.P., M.A.R., E.R.P.) and Geriatric Research Education and Clinical Center (GRECC) (G.L., D.C.), Veterans Affairs Puget Sound Health Care System, Seattle, WA; Departments of Psychiatry and Behavioral Sciences (G.L., J.I., J.S., D.C., M.A.R., E.R.P.), Neurology (J.I.), Radiology (C.L.M.), Pharmacology (D.C.), Rehabilitation Medicine (K.F.P.), and Division of Gerontology and Geriatric Medicine Department of Medicine, (D.C.), University of Washington School of Medicine, Seattle, WA; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; and Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI
| | - Jeffrey Iliff
- From the Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC) (G.L., J.I., J.S., C.L.M., J.M., K.F.P., M.A.R., E.R.P.) and Geriatric Research Education and Clinical Center (GRECC) (G.L., D.C.), Veterans Affairs Puget Sound Health Care System, Seattle, WA; Departments of Psychiatry and Behavioral Sciences (G.L., J.I., J.S., D.C., M.A.R., E.R.P.), Neurology (J.I.), Radiology (C.L.M.), Pharmacology (D.C.), Rehabilitation Medicine (K.F.P.), and Division of Gerontology and Geriatric Medicine Department of Medicine, (D.C.), University of Washington School of Medicine, Seattle, WA; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; and Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI
| | - Jane Shofer
- From the Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC) (G.L., J.I., J.S., C.L.M., J.M., K.F.P., M.A.R., E.R.P.) and Geriatric Research Education and Clinical Center (GRECC) (G.L., D.C.), Veterans Affairs Puget Sound Health Care System, Seattle, WA; Departments of Psychiatry and Behavioral Sciences (G.L., J.I., J.S., D.C., M.A.R., E.R.P.), Neurology (J.I.), Radiology (C.L.M.), Pharmacology (D.C.), Rehabilitation Medicine (K.F.P.), and Division of Gerontology and Geriatric Medicine Department of Medicine, (D.C.), University of Washington School of Medicine, Seattle, WA; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; and Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI
| | - Cynthia L Mayer
- From the Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC) (G.L., J.I., J.S., C.L.M., J.M., K.F.P., M.A.R., E.R.P.) and Geriatric Research Education and Clinical Center (GRECC) (G.L., D.C.), Veterans Affairs Puget Sound Health Care System, Seattle, WA; Departments of Psychiatry and Behavioral Sciences (G.L., J.I., J.S., D.C., M.A.R., E.R.P.), Neurology (J.I.), Radiology (C.L.M.), Pharmacology (D.C.), Rehabilitation Medicine (K.F.P.), and Division of Gerontology and Geriatric Medicine Department of Medicine, (D.C.), University of Washington School of Medicine, Seattle, WA; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; and Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI
| | - James Meabon
- From the Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC) (G.L., J.I., J.S., C.L.M., J.M., K.F.P., M.A.R., E.R.P.) and Geriatric Research Education and Clinical Center (GRECC) (G.L., D.C.), Veterans Affairs Puget Sound Health Care System, Seattle, WA; Departments of Psychiatry and Behavioral Sciences (G.L., J.I., J.S., D.C., M.A.R., E.R.P.), Neurology (J.I.), Radiology (C.L.M.), Pharmacology (D.C.), Rehabilitation Medicine (K.F.P.), and Division of Gerontology and Geriatric Medicine Department of Medicine, (D.C.), University of Washington School of Medicine, Seattle, WA; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; and Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI
| | - David Cook
- From the Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC) (G.L., J.I., J.S., C.L.M., J.M., K.F.P., M.A.R., E.R.P.) and Geriatric Research Education and Clinical Center (GRECC) (G.L., D.C.), Veterans Affairs Puget Sound Health Care System, Seattle, WA; Departments of Psychiatry and Behavioral Sciences (G.L., J.I., J.S., D.C., M.A.R., E.R.P.), Neurology (J.I.), Radiology (C.L.M.), Pharmacology (D.C.), Rehabilitation Medicine (K.F.P.), and Division of Gerontology and Geriatric Medicine Department of Medicine, (D.C.), University of Washington School of Medicine, Seattle, WA; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; and Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI
| | - Kathleen F Pagulayan
- From the Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC) (G.L., J.I., J.S., C.L.M., J.M., K.F.P., M.A.R., E.R.P.) and Geriatric Research Education and Clinical Center (GRECC) (G.L., D.C.), Veterans Affairs Puget Sound Health Care System, Seattle, WA; Departments of Psychiatry and Behavioral Sciences (G.L., J.I., J.S., D.C., M.A.R., E.R.P.), Neurology (J.I.), Radiology (C.L.M.), Pharmacology (D.C.), Rehabilitation Medicine (K.F.P.), and Division of Gerontology and Geriatric Medicine Department of Medicine, (D.C.), University of Washington School of Medicine, Seattle, WA; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; and Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI
| | - Murray A Raskind
- From the Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC) (G.L., J.I., J.S., C.L.M., J.M., K.F.P., M.A.R., E.R.P.) and Geriatric Research Education and Clinical Center (GRECC) (G.L., D.C.), Veterans Affairs Puget Sound Health Care System, Seattle, WA; Departments of Psychiatry and Behavioral Sciences (G.L., J.I., J.S., D.C., M.A.R., E.R.P.), Neurology (J.I.), Radiology (C.L.M.), Pharmacology (D.C.), Rehabilitation Medicine (K.F.P.), and Division of Gerontology and Geriatric Medicine Department of Medicine, (D.C.), University of Washington School of Medicine, Seattle, WA; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; and Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI
| | - Henrik Zetterberg
- From the Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC) (G.L., J.I., J.S., C.L.M., J.M., K.F.P., M.A.R., E.R.P.) and Geriatric Research Education and Clinical Center (GRECC) (G.L., D.C.), Veterans Affairs Puget Sound Health Care System, Seattle, WA; Departments of Psychiatry and Behavioral Sciences (G.L., J.I., J.S., D.C., M.A.R., E.R.P.), Neurology (J.I.), Radiology (C.L.M.), Pharmacology (D.C.), Rehabilitation Medicine (K.F.P.), and Division of Gerontology and Geriatric Medicine Department of Medicine, (D.C.), University of Washington School of Medicine, Seattle, WA; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; and Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI
| | - Kaj Blennow
- From the Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC) (G.L., J.I., J.S., C.L.M., J.M., K.F.P., M.A.R., E.R.P.) and Geriatric Research Education and Clinical Center (GRECC) (G.L., D.C.), Veterans Affairs Puget Sound Health Care System, Seattle, WA; Departments of Psychiatry and Behavioral Sciences (G.L., J.I., J.S., D.C., M.A.R., E.R.P.), Neurology (J.I.), Radiology (C.L.M.), Pharmacology (D.C.), Rehabilitation Medicine (K.F.P.), and Division of Gerontology and Geriatric Medicine Department of Medicine, (D.C.), University of Washington School of Medicine, Seattle, WA; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; and Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI
| | - Elaine R Peskind
- From the Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC) (G.L., J.I., J.S., C.L.M., J.M., K.F.P., M.A.R., E.R.P.) and Geriatric Research Education and Clinical Center (GRECC) (G.L., D.C.), Veterans Affairs Puget Sound Health Care System, Seattle, WA; Departments of Psychiatry and Behavioral Sciences (G.L., J.I., J.S., D.C., M.A.R., E.R.P.), Neurology (J.I.), Radiology (C.L.M.), Pharmacology (D.C.), Rehabilitation Medicine (K.F.P.), and Division of Gerontology and Geriatric Medicine Department of Medicine, (D.C.), University of Washington School of Medicine, Seattle, WA; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; and Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI
| |
Collapse
|
6
|
Alhadidy MM, Kanaan NM. Biochemical approaches to assess the impact of post-translational modifications on pathogenic tau conformations using recombinant protein. Biochem Soc Trans 2024; 52:301-318. [PMID: 38348781 PMCID: PMC10903483 DOI: 10.1042/bst20230596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/29/2024]
Abstract
Tau protein is associated with many neurodegenerative disorders known as tauopathies. Aggregates of tau are thought of as a main contributor to neurodegeneration in these diseases. Increasingly, evidence points to earlier, soluble conformations of abnormally modified monomers and multimeric tau as toxic forms of tau. The biological processes driving tau from physiological species to pathogenic conformations remain poorly understood, but certain avenues are currently under investigation including the functional consequences of various pathological tau changes (e.g. mutations, post-translational modifications (PTMs), and protein-protein interactions). PTMs can regulate several aspects of tau biology such as proteasomal and autophagic clearance, solubility, and aggregation. Moreover, PTMs can contribute to the transition of tau from normal to pathogenic conformations. However, our understating of how PTMs specifically regulate the transition of tau into pathogenic conformations is partly impeded by the relative lack of structured frameworks to assess and quantify these conformations. In this review, we describe a set of approaches that includes several in vitro assays to determine the contribution of PTMs to tau's transition into known pathogenic conformations. The approaches begin with different methods to create recombinant tau proteins carrying specific PTMs followed by validation of the PTMs status. Then, we describe a set of biochemical and biophysical assays that assess the contribution of a given PTM to different tau conformations, including aggregation, oligomerization, exposure of the phosphatase-activating domain, and seeding. Together, these approaches can facilitate the advancement of our understanding of the relationships between PTMs and tau conformations.
Collapse
Affiliation(s)
- Mohammed M. Alhadidy
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| | - Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
7
|
Parra MA, Gazes Y, Habeck C, Stern Y. Exploring the Association between Amyloid-β and Memory Markers for Alzheimer's Disease in Cognitively Unimpaired Older Adults. J Prev Alzheimers Dis 2024; 11:339-347. [PMID: 38374740 PMCID: PMC11007669 DOI: 10.14283/jpad.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
BACKGROUND Memory tests vary in their sensitivity for detection of pre-symptomatic Alzheimer's disease (AD). The Visual Short-Term Memory Binding Test (VSTMBT) identifies AD-related performance deficits in older adults who are otherwise cognitively unimpaired. OBJECTIVE We investigated the association of this psychometric measure with brain amyloidosis and atrophy. DESIGN Cross-sectional mixed and correlational. SETTING Cognitive Reserve Study from Columbia University. PARTICIPANTS a sample of 39 cognitively unimpaired older adults (Age: M=65.3, SD=3.07) was obtained from the above study. MEASUREMENTS Extensive neuropsychological and neuroimaging (MRI and amyloid-β PET) assessments were carried out. RESULTS Performance on the VSTMBT allowed us to split the sample into Low Binding Cost (LBC, N=21) and High Binding Cost (HBC, N=18). Groups were matched according to age [p=0.702], years of education [0.071], and sex [p=0.291]. HBC's performance was comparable to that seen in symptomatic AD. Groups only differed in their amyloid-β deposition on PET in regions of the right ventral stream linked to visual cognition and affected early in AD pathogenesis (lateral-occipital cortex, p = 0.008; fusiform gyrus, p = 0.017; and entorhinal cortex, p = 0.046). Other regions known to be linked to low-level visual integration function also revealed increased amyloid-β deposition in HBC. CONCLUSIONS VSTMB deficits are associated with neuropathogenesis (i.e., amyloid-β deposition) in the earliest affected regions in pre-symptomatic AD. The VSTMB test holds potential for the identification of cognitively unimpaired older adults with very early AD pathogenesis and may thus be a useful tool for early intervention trials or other forms of clinical research.
Collapse
Affiliation(s)
- M A Parra
- Dr Mario A Parra, Department of Psychological Sciences and Health, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow, G1 1QE, Room GH521, Tel.+44 (0) 141 548 4362,
| | | | | | | |
Collapse
|
8
|
Haut F, Argyrousi EK, Arancio O. Re-Arranging the Puzzle between the Amyloid-Beta and Tau Pathology: An APP-Centric Approach. Int J Mol Sci 2023; 25:259. [PMID: 38203429 PMCID: PMC10779219 DOI: 10.3390/ijms25010259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
After several years of research in the field of Alzheimer's disease (AD), it is still unclear how amyloid-beta (Aβ) and Tau, two key hallmarks of the disease, mediate the neuropathogenic events that lead to AD. Current data challenge the "Amyloid Cascade Hypothesis" that has prevailed in the field of AD, stating that Aβ precedes and triggers Tau pathology that will eventually become the toxic entity in the progression of the disease. This perspective also led the field of therapeutic approaches towards the development of strategies that target Aβ or Tau. In the present review, we discuss recent literature regarding the neurotoxic role of both Aβ and Tau in AD, as well as their physiological function in the healthy brain. Consequently, we present studies suggesting that Aβ and Tau act independently of each other in mediating neurotoxicity in AD, thereafter, re-evaluating the "Amyloid Cascade Hypothesis" that places Tau pathology downstream of Aβ. More recent studies have confirmed that both Aβ and Tau could propagate the disease and induce synaptic and memory impairments via the amyloid precursor protein (APP). This finding is not only interesting from a mechanistic point of view since it provides better insights into the AD pathogenesis but also from a therapeutic point of view since it renders APP a common downstream effector for both Aβ and Tau. Subsequently, therapeutic strategies that act on APP might provide a more viable and physiologically relevant approach for targeting AD.
Collapse
Affiliation(s)
- Florence Haut
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
| | - Elentina K. Argyrousi
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
9
|
Sarparast M, Hinman J, Pourmand E, Vonarx D, Ramirez L, Ma W, Liachko NF, Alan JK, Lee KSS. Cytochrome P450 and Epoxide Hydrolase Metabolites in Aβ and tau-induced Neurodegeneration: Insights from Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560527. [PMID: 37873467 PMCID: PMC10592936 DOI: 10.1101/2023.10.02.560527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This study aims to uncover potent cytochrome P450 (CYP) and epoxide hydrolase (EH) metabolites implicated in Aβ and/or tau-induced neurodegeneration, independent of neuroinflammation, by utilizing Caenorhabditis elegans (C. elegans) as a model organism. Our research reveals that Aβ and/or tau expression in C. elegans disrupts the oxylipin profile, and epoxide hydrolase inhibition alleviates the ensuing neurodegeneration, likely through elevating the epoxy-to-hydroxy ratio of various CYP-EH metabolites. In addition, our results indicated that the Aβ and tau likely affect the CYP-EH metabolism of PUFA through different mechanism. These findings emphasize the intriguing relationship between lipid metabolites and neurodegenerations, in particular, those linked to Aβ and/or tau aggregation. Furthermore, our investigation sheds light on the crucial and captivating role of CYP PUFA metabolites in C. elegans physiology, opening up possibilities for broader implications in mammalian and human contexts.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jennifer Hinman
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Elham Pourmand
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Derek Vonarx
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Leslie Ramirez
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Wenjuan Ma
- Center for Statistical Training and Consulting (CSTAT), Michigan State University, East Lansing, MI, USA
| | - Nicole F. Liachko
- Geriatrics Research Education and Clinical Center, Veterrans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jamie K. Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
Jiang S, Wang X, Cao T, Kang R, Huang L. Insights on therapeutic potential of clemastine in neurological disorders. Front Mol Neurosci 2023; 16:1279985. [PMID: 37840769 PMCID: PMC10568021 DOI: 10.3389/fnmol.2023.1279985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Clemastine, a Food and Drug Administration (FDA)-approved compound, is recognized as a first-generation, widely available antihistamine that reduces histamine-induced symptoms. Evidence has confirmed that clemastine can transport across the blood-brain barrier and act on specific neurons and neuroglia to exert its protective effect. In this review, we summarize the beneficial effects of clemastine in various central nervous system (CNS) disorders, including neurodegenerative disease, neurodevelopmental deficits, brain injury, and psychiatric disorders. Additionally, we highlight key cellular links between clemastine and different CNS cells, in particular in oligodendrocyte progenitor cells (OPCs), oligodendrocytes (OLs), microglia, and neurons.
Collapse
Affiliation(s)
- Sufang Jiang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xueji Wang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianyu Cao
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rongtian Kang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lining Huang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Ministry of Education, Shijiazhuang, Hebei, China
| |
Collapse
|
11
|
Dridi H, Liu Y, Reiken S, Liu X, Argyrousi EK, Yuan Q, Miotto MC, Sittenfeld L, Meddar A, Soni RK, Arancio O, Lacampagne A, Marks AR. Heart failure-induced cognitive dysfunction is mediated by intracellular Ca 2+ leak through ryanodine receptor type 2. Nat Neurosci 2023; 26:1365-1378. [PMID: 37429912 PMCID: PMC10400432 DOI: 10.1038/s41593-023-01377-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Cognitive dysfunction (CD) in heart failure (HF) adversely affects treatment compliance and quality of life. Although ryanodine receptor type 2 (RyR2) has been linked to cardiac muscle dysfunction, its role in CD in HF remains unclear. Here, we show in hippocampal neurons from individuals and mice with HF that the RyR2/intracellular Ca2+ release channels were subjected to post-translational modification (PTM) and were leaky. RyR2 PTM included protein kinase A phosphorylation, oxidation, nitrosylation and depletion of the stabilizing subunit calstabin2. RyR2 PTM was caused by hyper-adrenergic signaling and activation of the transforming growth factor-beta pathway. HF mice treated with a RyR2 stabilizer drug (S107), beta blocker (propranolol) or transforming growth factor-beta inhibitor (SD-208), or genetically engineered mice resistant to RyR2 Ca2+ leak (RyR2-p.Ser2808Ala), were protected against HF-induced CD. Taken together, we propose that HF is a systemic illness driven by intracellular Ca2+ leak that includes cardiogenic dementia.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA.
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Xiaoping Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Elentina K Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Marco C Miotto
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | | | | | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Alain Lacampagne
- PHYMEDEXP, University of Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
- LIA1185 CNRS, Montpellier, France
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA.
| |
Collapse
|
12
|
Li Puma DD, Colussi C, Bandiera B, Puliatti G, Rinaudo M, Cocco S, Paciello F, Re A, Ripoli C, De Chiara G, Bertozzi A, Palamara AT, Piacentini R, Grassi C. Interleukin 1β triggers synaptic and memory deficits in Herpes simplex virus type-1-infected mice by downregulating the expression of synaptic plasticity-related genes via the epigenetic MeCP2/HDAC4 complex. Cell Mol Life Sci 2023; 80:172. [PMID: 37261502 DOI: 10.1007/s00018-023-04817-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Extensive research provides evidence that neuroinflammation underlies numerous brain disorders. However, the molecular mechanisms by which inflammatory mediators determine synaptic and cognitive dysfunction occurring in neurodegenerative diseases (e.g., Alzheimer's disease) are far from being fully understood. Here we investigated the role of interleukin 1β (IL-1β), and the molecular cascade downstream the activation of its receptor, to the synaptic dysfunction occurring in the mouse model of multiple Herpes simplex virus type-1 (HSV-1) reactivations within the brain. These mice are characterized by neuroinflammation and memory deficits associated with a progressive accumulation of neurodegenerative hallmarks (e.g., amyloid-β protein and tau hyperphosphorylation). Here we show that mice undergone two HSV-1 reactivations in the brain exhibited increased levels of IL-1β along with significant alterations of: (1) cognitive performances; (2) hippocampal long-term potentiation; (3) expression synaptic-related genes and pre- and post-synaptic proteins; (4) dendritic spine density and morphology. These effects correlated with activation of the epigenetic repressor MeCP2 that, in association with HDAC4, affected the expression of synaptic plasticity-related genes. Specifically, in response to HSV-1 infection, HDAC4 accumulated in the nucleus and promoted MeCP2 SUMOylation that is a post-translational modification critically affecting the repressive activity of MeCP2. The blockade of IL-1 receptors by the specific antagonist Anakinra prevented the MeCP2 increase and the consequent downregulation of gene expression along with rescuing structural and functional indices of neurodegeneration. Collectively, our findings provide novel mechanistic evidence on the role played by HSV-1-activated IL-1β signaling pathways in synaptic deficits leading to cognitive impairment.
Collapse
Affiliation(s)
- Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Claudia Colussi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Engineering, Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, 00185, Rome, Italy
| | - Bruno Bandiera
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Giulia Puliatti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Agnese Re
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council (CNR), 00133, Rome, Italy
| | - Alessia Bertozzi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Department of Engineering, Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, 00185, Rome, Italy
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore Di Sanità, 00161, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Cenci Bolognetti Foundation, 00185, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
13
|
Whiteaker P, George AA. Discoveries and future significance of research into amyloid-beta/α7-containing nicotinic acetylcholine receptor (nAChR) interactions. Pharmacol Res 2023; 191:106743. [PMID: 37084859 PMCID: PMC10228377 DOI: 10.1016/j.phrs.2023.106743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/23/2023]
Abstract
Initiated by findings that Alzheimer's disease is associated with a profound loss of cholinergic markers in human brain, decades of studies have examined the interactions between specific subtypes of nicotinic acetylcholine receptors and amyloid-β [derived from the amyloid precursor protein (APP), which is cleaved to yield variable isoforms of amyloid-β]. We review the evolving understanding of amyloid-β's roles in Alzheimer's disease and pioneering studies that highlighted a role of nicotinic acetylcholine receptors in mediating important aspects of amyloid-β's effects. This review also surveys the current state of research into amyloid-β / nicotinic acetylcholine receptor interactions. The field has reached an exciting point in which common themes are emerging from the wide range of prior research and a range of accessible, relevant model systems are available to drive further progress. We highlight exciting new areas of inquiry and persistent challenges that need to be considered while conducting this research. Studies of amyloid-β and the nicotinic acetylcholine receptor populations that it interacts with provide opportunities for innovative basic and translational scientific breakthroughs related to nicotinic receptor biology, Alzheimer's disease, and cholinergic contributions to cognition more broadly.
Collapse
Affiliation(s)
- Paul Whiteaker
- Virginia Commonwealth University School of Medicine, Department of Pharmacology and Toxicology, VCU Health Sciences Research Building, Box 980613, Richmond, VA 23298-0613, USA
| | - Andrew A George
- Virginia Commonwealth University School of Medicine, Department of Pharmacology and Toxicology, VCU Health Sciences Research Building, Box 980613, Richmond, VA 23298-0613, USA.
| |
Collapse
|
14
|
Sulimai N, Brown J, Lominadze D. Vascular Effects on Cerebrovascular Permeability and Neurodegeneration. Biomolecules 2023; 13:biom13040648. [PMID: 37189395 DOI: 10.3390/biom13040648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/17/2023] Open
Abstract
Neurons and glial cells in the brain are protected by the blood brain barrier (BBB). The local regulation of blood flow is determined by neurons and signal conducting cells called astrocytes. Although alterations in neurons and glial cells affect the function of neurons, the majority of effects are coming from other cells and organs of the body. Although it seems obvious that effects beginning in brain vasculature would play an important role in the development of various neuroinflammatory and neurodegenerative pathologies, significant interest has only been directed to the possible mechanisms involved in the development of vascular cognitive impairment and dementia (VCID) for the last decade. Presently, the National Institute of Neurological Disorders and Stroke applies considerable attention toward research related to VCID and vascular impairments during Alzheimer's disease. Thus, any changes in cerebral vessels, such as in blood flow, thrombogenesis, permeability, or others, which affect the proper vasculo-neuronal connection and interaction and result in neuronal degeneration that leads to memory decline should be considered as a subject of investigation under the VCID category. Out of several vascular effects that can trigger neurodegeneration, changes in cerebrovascular permeability seem to result in the most devastating effects. The present review emphasizes the importance of changes in the BBB and possible mechanisms primarily involving fibrinogen in the development and/or progression of neuroinflammatory and neurodegenerative diseases resulting in memory decline.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| | - Jason Brown
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| | - David Lominadze
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| |
Collapse
|
15
|
Meftah S, Gan J. Alzheimer's disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression. Front Synaptic Neurosci 2023; 15:1129036. [PMID: 36970154 PMCID: PMC10033629 DOI: 10.3389/fnsyn.2023.1129036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
The synapse has consistently been considered a vulnerable and critical target within Alzheimer's disease, and synapse loss is, to date, one of the main biological correlates of cognitive decline within Alzheimer's disease. This occurs prior to neuronal loss with ample evidence that synaptic dysfunction precedes this, in support of the idea that synaptic failure is a crucial stage within disease pathogenesis. The two main pathological hallmarks of Alzheimer's disease, abnormal aggregates of amyloid or tau proteins, have had demonstrable effects on synaptic physiology in animal and cellular models of Alzheimer's disease. There is also growing evidence that these two proteins may have a synergistic effect on neurophysiological dysfunction. Here, we review some of the main findings of synaptic alterations in Alzheimer's disease, and what we know from Alzheimer's disease animal and cellular models. First, we briefly summarize some of the human evidence to suggest that synapses are altered, including how this relates to network activity. Subsequently, animal and cellular models of Alzheimer's disease are considered, highlighting mouse models of amyloid and tau pathology and the role these proteins may play in synaptic dysfunction, either in isolation or examining how the two pathologies may interact in dysfunction. This specifically focuses on neurophysiological function and dysfunction observed within these animal models, typically measured using electrophysiology or calcium imaging. Following synaptic dysfunction and loss, it would be impossible to imagine that this would not alter oscillatory activity within the brain. Therefore, this review also discusses how this may underpin some of the aberrant oscillatory patterns seen in animal models of Alzheimer's disease and human patients. Finally, an overview of some key directions and considerations in the field of synaptic dysfunction in Alzheimer's disease is covered. This includes current therapeutics that are targeted specifically at synaptic dysfunction, but also methods that modulate activity to rescue aberrant oscillatory patterns. Other important future avenues of note in this field include the role of non-neuronal cell types such as astrocytes and microglia, and mechanisms of dysfunction independent of amyloid and tau in Alzheimer's disease. The synapse will certainly continue to be an important target within Alzheimer's disease for the foreseeable future.
Collapse
Affiliation(s)
- Soraya Meftah
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jian Gan
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Yu J, Wu D, Zhao Y, Guo L, Liu P. Study on multi-target effects of PIMPC on Aβ/Cu 2+-induced Alzheimer's disease model of rats. Brain Res 2023; 1802:148226. [PMID: 36586663 DOI: 10.1016/j.brainres.2022.148226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3), a key role in the pathogenesis of Alzheimer's disease (AD), has been linked with the formation of β-amyloid (Aβ), tubulin-associated unit (tau) protein phosphorylation and apoptosis. Moreover, the excessive presence of elements such as copper (Cu) can promote Aβ aggregation and increase the risk of AD. Combined with the role of GSK-3 and metal elements in AD, a metal-chelating imine GSK-3 inhibitor N-(4-{[(2-amino-5-phenylpyridin-3-ylidene)imino]methyl}pyridin-2-yl)cyclopropanecarboxamide (PIMPC) was designed and synthesized. In our study, Aβ/Cu2+-induced AD rat model was established and treated with PIMPC. The results indicated that PIMPC can not only down-regulate the high expression levels of Aβ, tau and p-tau proteins of the AD rats, but also chelate Cu and aluminum (Al) elements in the brain. In addition, PIMPC may play an anti-apoptotic effect by down-regulating the high expression of cleaved Caspase-3 protein, and it can modulate ATPase and nitric oxide synthase (NOS) levels, oxidative stress and neurotransmitter disturbance. In summary, PIMPC acts on multiple targets to relieve the learning and memory impairment of AD rats induced by Aβ/Cu2+.
Collapse
Affiliation(s)
- Jiasi Yu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dan Wu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanan Zhao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Linli Guo
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
17
|
Natale F, Fusco S, Grassi C. Dual role of brain-derived extracellular vesicles in dementia-related neurodegenerative disorders: cargo of disease spreading signals and diagnostic-therapeutic molecules. Transl Neurodegener 2022; 11:50. [PMID: 36437458 PMCID: PMC9701396 DOI: 10.1186/s40035-022-00326-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022] Open
Abstract
Neurodegenerative disorders are one of the most common causes of disability and represent 6.3% of the global burden of disease. Among them, Alzheimer's, Parkinson's, and Huntington's diseases cause cognitive decline, representing the most disabling symptom on both personal and social levels. The molecular mechanisms underlying the onset and progression of dementia are still poorly understood, and include secretory factors potentially affecting differentiated neurons, glial cells and neural stem cell niche. In the last decade, much attention has been devoted to exosomes as novel carriers of information exchanged among both neighbouring and distant cells. These vesicles can be generated and internalized by different brain cells including neurons, neural stem cells, astrocytes, and microglia, thereby affecting neural plasticity and cognitive functions in physiological and pathological conditions. Here, we review data on the roles of exosomes as carriers of bioactive molecules potentially involved in the pathogenesis of neurodegenerative disorders and detectable in biological fluids as biomarkers of dementia. We also discuss the experimental evidence of the therapeutic potential of stem cell-derived vesicles in experimental models of neurodegeneration-dependent cognitive decline.
Collapse
Affiliation(s)
- Francesca Natale
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Salvatore Fusco
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Grassi
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
18
|
Otero-Garcia M, Mahajani SU, Wakhloo D, Tang W, Xue YQ, Morabito S, Pan J, Oberhauser J, Madira AE, Shakouri T, Deng Y, Allison T, He Z, Lowry WE, Kawaguchi R, Swarup V, Cobos I. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer's disease. Neuron 2022; 110:2929-2948.e8. [PMID: 35882228 PMCID: PMC9509477 DOI: 10.1016/j.neuron.2022.06.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023]
Abstract
Tau aggregation in neurofibrillary tangles (NFTs) is closely associated with neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the molecular signatures that distinguish between aggregation-prone and aggregation-resistant cell states are unknown. We developed methods for the high-throughput isolation and transcriptome profiling of single somas with NFTs from the human AD brain, quantified the susceptibility of 20 neocortical subtypes for NFT formation and death, and identified both shared and cell-type-specific signatures. NFT-bearing neurons shared a marked upregulation of synaptic transmission-related genes, including a core set of 63 genes enriched for synaptic vesicle cycling. Oxidative phosphorylation and mitochondrial dysfunction were highly cell-type dependent. Apoptosis was only modestly enriched, and the susceptibilities of NFT-bearing and NFT-free neurons for death were highly similar. Our analysis suggests that NFTs represent cell-type-specific responses to stress and synaptic dysfunction. We provide a resource for biomarker discovery and the investigation of tau-dependent and tau-independent mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Marcos Otero-Garcia
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sameehan U Mahajani
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Debia Wakhloo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weijing Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yue-Qiang Xue
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samuel Morabito
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jane Oberhauser
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Angela E Madira
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tamara Shakouri
- Department of Pathology, University of California, Los Angeles, CA 90095, USA
| | - Yongning Deng
- Department of Pathology, University of California, Los Angeles, CA 90095, USA; Department of Neurology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Thomas Allison
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
| | - Zihuai He
- Department Neurology and Neurological Sciences and Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - William E Lowry
- Department of Molecular Cell and Developmental Biology, Broad Center for Regenerative Medicine and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Riki Kawaguchi
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Vivek Swarup
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Inma Cobos
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Puma DDL, Ripoli C, Puliatti G, Pastore F, Lazzarino G, Tavazzi B, Arancio O, Piacentini R, Grassi C. Extracellular tau oligomers affect extracellular glutamate handling by astrocytes through downregulation of GLT-1 expression and impairment of NKA1A2 function. Neuropathol Appl Neurobiol 2022; 48:e12811. [PMID: 35274343 PMCID: PMC9262805 DOI: 10.1111/nan.12811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 11/29/2022]
Abstract
AIMS Several studies reported that astrocytes support neuronal communication by the release of gliotransmitters, including ATP and glutamate. Astrocytes also play a fundamental role in buffering extracellular glutamate in the synaptic cleft, thus limiting the risk of excitotoxicity in neurons. We previously demonstrated that extracellular tau oligomers (ex-oTau), by specifically targeting astrocytes, affect glutamate-dependent synaptic transmission via a reduction in gliotransmitter release. The aim of this work was to determine if ex-oTau also impair the ability of astrocytes to uptake extracellular glutamate, thus further contributing to ex-oTau-dependent neuronal dysfunction. METHODS Primary cultures of astrocytes and organotypic brain slices were exposed to ex-oTau (200 nM) for 1 hour. Extracellular glutamate buffering by astrocytes was studied by: Na+ imaging; electrophysiological recordings; high-performance liquid chromatography; Western blot and immunofluorescence. Experimental paradigms avoiding ex-oTau internalization (i.e., heparin pre-treatment and amyloid precursor protein knockout astrocytes) were used to dissect intracellular vs. extracellular effects of oTau. RESULTS Ex-oTau uploading in astrocytes significantly affected glutamate-transporter-1 expression and function, thus impinging on glutamate buffering activity. Ex-oTau also reduced Na-K-ATPase activity because of pump mislocalization on the plasma membrane, with no significant changes in expression. This effect was independent of oTau internalization and it caused Na+ overload and membrane depolarization in ex-oTau-targeted astrocytes. CONCLUSIONS Ex-oTau exerted a complex action on astrocytes, at both intracellular and extracellular levels. The net effect was dysregulated glutamate signalling in terms of both release and uptake that relied on reduced expression of glutamate-transporter-1, altered function and localization of NKA1A1, and NKA1A2. Consequently, Na+ gradients and all Na+ -dependent transports were affected.
Collapse
Affiliation(s)
- Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulia Puliatti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Pastore
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giacomo Lazzarino
- UniCamillus Saint Camillus International University of Health Sciences, Rome, Italy
| | - Barbara Tavazzi
- UniCamillus Saint Camillus International University of Health Sciences, Rome, Italy
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and Department of Medicine, Columbia University, New York, NY, United States
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
20
|
Zhang Y, Huang Q, Wang S, Liao Z, Jin H, Huang S, Hong X, Liu Y, Pang J, Shen Q, Wang Q, Li C, Ji L. The Food Additive β-Caryophyllene Exerts Its Neuroprotective Effects Through the JAK2-STAT3-BACE1 Pathway. Front Aging Neurosci 2022; 14:814432. [PMID: 35296033 PMCID: PMC8919047 DOI: 10.3389/fnagi.2022.814432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Despite extensive research on Alzheimer’s disease (AD), its diagnosis and treatment remain challenging, and no effective therapies are currently available. Amyloid β (Aβ) extracellular plaques and intracellular neurofibrillary tangles are the histological characteristics of AD that have been directly linked to neuropathological events such as synaptic and neuronal cell loss. In this study, we explored whether the “JAK2-STAT3-BACE1” pathway is involved in neuroprotection conferred by the food flavouring agent β-caryophyllene (BCP). PC-12 cells with overexpressed amyloid-β protein precursor (APP) were utilised to construct an AD model in vitro, which was then split into four groups, namely control, empty vector, APP overexpression, and BCP (5, 10, and 20 μM). CCK-8 was used to evaluate cell viability, immunofluorescence was utilised to examine synaptic morphology, and quantitative real-time polymerase chain reaction and western blot were used to examine gene and protein expression levels. The relative expression levels of JAK2, STAT3, and BACE1 mRNA in the transfected PC-12 cells were found to be significantly upregulated. The cell morphology altered dramatically 72 h after transfection, becoming rounder, with a decrease in cell number. BCP exhibited the potential to dramatically increase PC-12 cell viability while protecting cell morphology. BCP inhibited APP, JAK2, STAT3, BACE1 mRNA and BACE1 protein overexpression, as well as JAK2 and STAT3 hyperphosphorylation. Molecular docking simulated the docking of BCP with JAK2, STAT3, BACE1, CB2. And JAK2 was found to be the most stable protein. In conclusion, inhibition of the “JAK2-STAT3-BACE1” signalling pathway may be one of the mechanisms through which BCP protects neurons and antagonises Aβ’s neurotoxicity.
Collapse
Affiliation(s)
- Yujia Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaoyan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sichen Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ziqian Liao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haichao Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiming Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Pang
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- *Correspondence: Qing Shen,
| | - Qingcheng Wang
- Department of Cardiology, Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, China
- Qingcheng Wang,
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Changyu Li,
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Liting Ji,
| |
Collapse
|
21
|
Mu L, Cai J, Gu B, Yu L, Li C, Liu QS, Zhao L. Treadmill Exercise Prevents Decline in Spatial Learning and Memory in 3×Tg-AD Mice through Enhancement of Structural Synaptic Plasticity of the Hippocampus and Prefrontal Cortex. Cells 2022; 11:cells11020244. [PMID: 35053360 PMCID: PMC8774241 DOI: 10.3390/cells11020244] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 01/08/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by deficits in learning and memory. A pathological feature of AD is the alterations in the number and size of synapses, axon length, dendritic complexity, and dendritic spine numbers in the hippocampus and prefrontal cortex. Treadmill exercise can enhance synaptic plasticity in mouse or rat models of stroke, ischemia, and dementia. The aim of this study was to examine the effects of treadmill exercise on learning and memory, and structural synaptic plasticity in 3×Tg-AD mice, a mouse model of AD. Here, we show that 12 weeks treadmill exercise beginning in three-month-old mice improves spatial working memory in six-month-old 3×Tg-AD mice, while non-exercise six-month-old 3×Tg-AD mice exhibited impaired spatial working memory. To investigate potential mechanisms for the treadmill exercise-induced improvement of spatial learning and memory, we examined structural synaptic plasticity in the hippocampus and prefrontal cortex of six-month-old 3×Tg-AD mice that had undergone 12 weeks of treadmill exercise. We found that treadmill exercise led to increases in synapse numbers, synaptic structural parameters, the expression of synaptophysin (Syn, a presynaptic marker), the axon length, dendritic complexity, and the number of dendritic spines in 3×Tg-AD mice and restored these parameters to similar levels of non-Tg control mice without treadmill exercise. In addition, treadmill exercise also improved these parameters in non-Tg control mice. Strengthening structural synaptic plasticity may represent a potential mechanism by which treadmill exercise prevents decline in spatial learning and memory and synapse loss in 3×Tg-AD mice.
Collapse
Affiliation(s)
- Lianwei Mu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Jiajia Cai
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| | - Laikang Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| | - Cui Li
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
- School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, China
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
- Correspondence: ; Tel.: +86-158-1043-5675
| |
Collapse
|
22
|
Abstract
Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disease. Due to its long clinical course and lack of an effective treatment, AD has become a major public health problem in the USA and worldwide. Due to variation in age-at-onset, AD is classified into early-onset (< 60 years) and late-onset (≥ 60 years) forms with early-onset accounting for only 5-10% of all cases. With the exception of a small number of early-onset cases that are afflicted because of high penetrant single gene mutations in APP, PSEN1, and PSEN2 genes, AD is genetically heterogeneous, especially the late-onset form having a polygenic or oligogenic risk inheritance. Since the identification of APOE as the most significant risk factor for late-onset AD in 1993, the path to the discovery of additional AD risk genes had been arduous until 2009 when the use of large genome-wide association studies opened up the discovery gateways that led the identification of ~ 95 additional risk loci from 2009 to early 2022. This article reviews the history of AD genetics followed by the potential molecular pathways and recent application of functional genomics methods to identify the causal AD gene(s) among the many genes that reside within a single locus. The ultimate goal of integrating genomics and functional genomics is to discover novel pathways underlying the AD pathobiology in order to identify drug targets for the therapeutic treatment of this heterogeneous disorder.
Collapse
Affiliation(s)
- M Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Cheng KC, Hwang YL, Chiang HC. The double-edged sword effect of HDAC6 in Aβ toxicities. FASEB J 2021; 36:e22072. [PMID: 34907598 DOI: 10.1096/fj.202101061r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is marked by cognitive impairment, massive cell death, and reduced life expectancy. Pathologically, accumulated beta-amyloid (Aβ) aggregates and hyperphosphorylated tau protein is the hallmark of the disease. Although changes in cellular function and protein accumulates have been demonstrated in many different AD animal models, the molecular mechanism involved in different cellular functions and the correlation and causative relation between different protein accumulations remain elusive. Our in vivo genetic studies revealed that the molecular mechanisms involved in memory loss and lifespan shortening are different and that tau plays an essential role in mediating Aβ-induced early death. We found that when the first deacetylase (DAC) domain of histone deacetylase 6 (HDAC6) activity was increased, it regulated cortactin deacetylation to reverse Aβ-induced learning and memory deficit, but with no effect on the lifespan of the Aβ flies. On the other hand, an increased amount of the second DAC domain of HDAC6 promoted tau phosphorylation to facilitate Aβ-induced lifespan shortening without affecting learning performance in the Aβ flies. Our data also confirmed decreased acetylation in two major HDAC6 downstream proteins, suggesting increased HDAC6 activity in Aβ flies. Our data established the double-edged sword effect of HDAC6 activity in Aβ-induced pathologies. Not only did we segregate memory loss and lifespan shortening in Aβ flies, but we also provided evidence to link the Aβ with tau signaling.
Collapse
Affiliation(s)
- Kuan-Chung Cheng
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Luen Hwang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsueh-Cheng Chiang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
24
|
Candesartan protects against d-galactose induced - Neurotoxicity and memory deficit via modulation of autophagy and oxidative stress. Toxicol Appl Pharmacol 2021; 435:115827. [PMID: 34906534 DOI: 10.1016/j.taap.2021.115827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 01/25/2023]
Abstract
PURPOSE d-galactose induces neuroinflammation and memory deficit via oxidative stress. Candesartan is an angiotensin II-receptor blocker and has proved neuroprotective properties. This study aimed to investigate the neuroprotective effect of candesartan against d-galactose induced neuroinflammation and memory deficit via autophagy. METHODS Twenty-eight male Wistar rats aged 3 months were divided into four equal groups: control (vehicle), d-gal (100 mg/kg d-galactose), cand (1 mg/kg candesartan), and cand+d-gal (100 mg/kg d-galactose & 1 mg/kg candesartan). All treatments were given orally and daily for 4 weeks. Assessment of memory was done using Morris water maze (MWM) test. Brain tissue was assessed for malondialdehyde (MDA), total thiol, catalase activity, glial fibrillary acidic protein (GFAP) and gene expression of TNF-α, GDNF-1 as well as autophagy genes (Beclin 1 and ATG 5). RESULTS Prophylactic treatment of candesartan in d-galactose-treated rats significantly (p < 0.001) reduced oxidative stress via reduction of MDA as well as elevation of catalase activity and total thiol levels. Additionally, candesartan prophylactic treatment significantly increased gene expression of GDNF-1 and decreased gene expression of TNF-α. Furthermore, candesartan significantly increased the expression of autophagy related gene (Beclin 1 and ATG 5) in cand+d-gal treated rats. These results were supported by the histopathological findings which showed that candesartan prevented the neuronal injury in the cerebral cortex and hippocampus and decreased GFAP positive cells of the d-galactose-treated rats. Moreover, MWM test showed that candesartan significantly improved memory deficit in cand+d-gal treated rats. CONCLUSION Candesartan prevents d-galactose-induced neurotoxicity and memory deficit via activating autophagy and decreasing oxidative stress. Therefore, candesartan was a good candidate for age-related neurodegenerative disorders and memory deficit.
Collapse
|
25
|
Genetic deletion of α7 nicotinic acetylcholine receptors induces an age-dependent Alzheimer's disease-like pathology. Prog Neurobiol 2021; 206:102154. [PMID: 34453977 DOI: 10.1016/j.pneurobio.2021.102154] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/29/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
The accumulation of amyloid-beta peptide (Aβ) and the failure of cholinergic transmission are key players in Alzheimer's disease (AD). However, in the healthy brain, Aβ contributes to synaptic plasticity and memory acting through α7 subtype nicotinic acetylcholine receptors (α7nAChRs). Here, we hypothesized that the α7nAChR deletion blocks Aβ physiological function and promotes a compensatory increase in Aβ levels that, in turn, triggers an AD-like pathology. To validate this hypothesis, we studied the age-dependent phenotype of α7 knock out mice. We found that α7nAChR deletion caused an impairment of hippocampal synaptic plasticity and memory at 12 months of age, paralleled by an increase of Amyloid Precursor Protein expression and Aβ levels. This was accompanied by other classical AD features such as a hyperphosphorylation of tau at residues Ser 199, Ser 396, Thr 205, a decrease of GSK-3β at Ser 9, the presence of paired helical filaments and neurofibrillary tangles, neuronal loss and an increase of GFAP-positive astrocytes. Our findings suggest that α7nAChR malfunction might precede Aβ and tau pathology, offering a different perspective to interpret the failure of anti-Aβ therapies against AD and to find novel therapeutical approaches aimed at restoring α7nAChRs-mediated Aβ function at the synapse.
Collapse
|
26
|
Chuang Y, Van I, Zhao Y, Xu Y. Icariin ameliorate Alzheimer's disease by influencing SIRT1 and inhibiting Aβ cascade pathogenesis. J Chem Neuroanat 2021; 117:102014. [PMID: 34407393 DOI: 10.1016/j.jchemneu.2021.102014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
Of all types of dementia, Alzheimer's disease is the type that has the highest proportion of cases and is the cause of substantial medical and economic burden. The mechanism of Alzheimer's disease is closely associated with the aggregation of amyloid-β protein and causes neurotoxicity and extracellular accumulation in the brain and to intracellular neurofibrillary tangles caused by tau protein hyperphosphorylation in the brain tissue. Previous studies have demonstrated that sirtuin1 downregulation is involved in the pathological mechanism of Alzheimer's disease. The decrease of sirtuin1 level would cause Alzheimer's disease by means of promoting the amyloidogenic pathway to generate amyloid-β species and thereby triggering amyloid-β cascade reaction, such as tau protein hyperphosphorylation, neuron autophagy, neuroinflammation, oxidative stress, and neuron apoptosis. Currently, there is no effective treatment for Alzheimer's disease, it is necessary to develop new treatment strategies. According to the theory of traditional Chinese medicine and based on the mechanism of the disease, tonifying the kidneys is one of the principles for the treatment of Alzheimer's disease and Epimedium is a well-known Chinese medicine for tonifying kidney. Therefore, investigating the influence of the components of Epimedium on the pathological characteristics of Alzheimer's disease may provide a reference for the treatment of Alzheimer's disease in the future. In this article, we summarise the effects and mechanism of icariin, the main ingredient extracted from Epimedium, in ameliorating Alzheimer's disease by regulating sirtuin1 to inhibit amyloid-β protein and improve other amyloid-β cascade pathogenesis.
Collapse
Affiliation(s)
- Yaochen Chuang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China; Kiang Wu Nursing College of Macau, Macao, 999078, China
| | - Iatkio Van
- Kiang Wu Nursing College of Macau, Macao, 999078, China.
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China.
| |
Collapse
|
27
|
Zampar S, Wirths O. Characterization of a Mouse Model of Alzheimer's Disease Expressing Aβ4-42 and Human Mutant Tau. Int J Mol Sci 2021; 22:ijms22105191. [PMID: 34069029 PMCID: PMC8156793 DOI: 10.3390/ijms22105191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/04/2023] Open
Abstract
The relationship between the two most prominent neuropathological hallmarks of Alzheimer’s Disease (AD), extracellular amyloid-β (Aβ) deposits and intracellular accumulation of hyperphosphorylated tau in neurofibrillary tangles (NFT), remains at present not fully understood. A large body of evidence places Aβ upstream in the cascade of pathological events, triggering NFTs formation and the subsequent neuron loss. Extracellular Aβ deposits were indeed causative of an increased tau phosphorylation and accumulation in several transgenic models but the contribution of soluble Aβ peptides is still controversial. Among the different Aβ variants, the N-terminally truncated peptide Aβ4–42 is among the most abundant. To understand whether soluble Aβ4–42 peptides impact the onset or extent of tau pathology, we have crossed the homozygous Tg4–42 mouse model of AD, exclusively expressing Aβ4–42 peptides, with the PS19 (P301S) tau transgenic model. Behavioral assessment showed that the resulting double-transgenic line presented a partial worsening of motor performance and spatial memory deficits in the aged group. While an increased loss of distal CA1 pyramidal neurons was detected in young mice, no significant alterations in hippocampal tau phosphorylation were observed in immunohistochemical analyses.
Collapse
|
28
|
Chang CW, Shao E, Mucke L. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science 2021; 371:371/6532/eabb8255. [PMID: 33632820 DOI: 10.1126/science.abb8255] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several lines of evidence implicate the protein tau in the pathogenesis of multiple brain disorders, including Alzheimer's disease, other neurodegenerative conditions, autism, and epilepsy. Tau is abundant in neurons and interacts with microtubules, but its main functions in the brain remain to be defined. These functions may involve the regulation of signaling pathways relevant to diverse biological processes. Informative disease models have revealed a plethora of abnormal tau species and mechanisms that might contribute to neuronal dysfunction and loss, but the relative importance of their respective contributions is uncertain. This knowledge gap poses major obstacles to the development of truly impactful therapeutic strategies. The current expansion and intensification of efforts to translate mechanistic insights into tau-related therapeutics should address this issue and could deliver better treatments for a host of devastating conditions.
Collapse
Affiliation(s)
- Che-Wei Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Eric Shao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA. .,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
29
|
Abstract
Diverse models have been advanced for the evolution of the genetic code. Here, models for tRNA, aminoacyl-tRNA synthetase (aaRS) and genetic code evolution were combined with an understanding of EF-Tu suppression of tRNA 3rd anticodon position wobbling. The result is a highly detailed scheme that describes the placements of all amino acids in the standard genetic code. The model describes evolution of 6-, 4-, 3-, 2- and 1-codon sectors. Innovation in column 3 of the code is explained. Wobbling and code degeneracy are explained. Separate distribution of serine sectors between columns 2 and 4 of the code is described. We conclude that very little chaos contributed to evolution of the genetic code and that the pattern of evolution of aaRS enzymes describes a history of the evolution of the code. A model is proposed to describe the biological selection for the earliest evolution of the code and for protocell evolution.
Collapse
Affiliation(s)
- Lei Lei
- Department of Biology, University of New England, Biddeford, ME, USA
| | - Zachary Frome Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, USA
| |
Collapse
|
30
|
Li Puma DD, Piacentini R, Grassi C. Does Impairment of Adult Neurogenesis Contribute to Pathophysiology of Alzheimer's Disease? A Still Open Question. Front Mol Neurosci 2021; 13:578211. [PMID: 33551741 PMCID: PMC7862134 DOI: 10.3389/fnmol.2020.578211] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Adult hippocampal neurogenesis is a physiological mechanism contributing to hippocampal memory formation. Several studies associated altered hippocampal neurogenesis with aging and Alzheimer's disease (AD). However, whether amyloid-β protein (Aβ)/tau accumulation impairs adult hippocampal neurogenesis and, consequently, the hippocampal circuitry, involved in memory formation, or altered neurogenesis is an epiphenomenon of AD neuropathology contributing negligibly to the AD phenotype, is, especially in humans, still debated. The detrimental effects of Aβ/tau on synaptic function and neuronal viability have been clearly addressed both in in vitro and in vivo experimental models. Until some years ago, studies carried out on in vitro models investigating the action of Aβ/tau on proliferation and differentiation of hippocampal neural stem cells led to contrasting results, mainly due to discrepancies arising from different experimental conditions (e.g., different cellular/animal models, different Aβ and/or tau isoforms, concentrations, and/or aggregation profiles). To date, studies investigating in situ adult hippocampal neurogenesis indicate severe impairment in most of transgenic AD mice; this impairment precedes by several months cognitive dysfunction. Using experimental tools, which only became available in the last few years, research in humans indicated that hippocampal neurogenesis is altered in cognitive declined individuals affected by either mild cognitive impairment or AD as well as in normal cognitive elderly with a significant inverse relationship between the number of newly formed neurons and cognitive impairment. However, despite that such information is available, the question whether impaired neurogenesis contributes to AD pathogenesis or is a mere consequence of Aβ/pTau accumulation is not definitively answered. Herein, we attempted to shed light on this complex and very intriguing topic by reviewing relevant literature on impairment of adult neurogenesis in mouse models of AD and in AD patients analyzing the temporal relationship between the occurrence of altered neurogenesis and the appearance of AD hallmarks and cognitive dysfunctions.
Collapse
Affiliation(s)
- Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
31
|
Wilczyńska K, Waszkiewicz N. Diagnostic Utility of Selected Serum Dementia Biomarkers: Amyloid β-40, Amyloid β-42, Tau Protein, and YKL-40: A Review. J Clin Med 2020; 9:jcm9113452. [PMID: 33121040 PMCID: PMC7692800 DOI: 10.3390/jcm9113452] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Dementia is a group of disorders that causes dysfunctions in human cognitive and operating functions. Currently, it is not possible to conduct a fast, low-invasive dementia diagnostic process with the use of peripheral blood biomarkers, however, there is a great deal of research in progress covering this subject. Research on dementia biomarkers in serum validates anticipated health and economic benefits from early screening tests. Biomarkers are also essential for improving the process of developing new drugs. Methods: The result analysis, of current studies on selected biomarker concentrations (Aβ40, Aβ42, t-tau, and YKL-40) and their combination in the serum of patients with dementia and mild cognitive disorders, involved a search for papers available in Medline, PubMed, and Web of Science databases published from 2000 to 2020. Results: The results of conducted cross-sectional studies comparing Aβ40, Aβ42, and Aβ42/Aβ40 among people with cognitive disorders and a control group are incoherent. Most of the analyzed papers showed an increase in t-tau concentration in diagnosed Alzheimer’s disease (AD) patients’ serum, whereas results of mild cognitive impairment (MCI) groups did not differ from the control groups. In several papers on the concentration of YKL-40 and t-tau/Aβ42 ratio, the results were promising. To date, several studies have only covered the field of biomarker concentrations in dementia disorders other than AD. Conclusions: Insufficient amyloid marker test repeatability may result either from imperfection of the used laboratorial techniques or inadequate selection of control groups with their comorbidities. On the basis of current knowledge, t-tau, t-tau/Aβ42, and YKL-40 seem to be promising candidates as biomarkers of cognitive disorders in serum. YKL-40 seems to be a more useful biomarker in early MCI diagnostics, whereas t-tau can be used as a marker of progress of prodromal states in mild AD. Due to the insignificant number of studies conducted to date among patients with dementia disorders other than AD, it is not possible to make a sound assessment of their usefulness in dementia differential diagnostics.
Collapse
|
32
|
Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics. Acta Neuropathol 2020; 140:417-447. [PMID: 32728795 PMCID: PMC7498448 DOI: 10.1007/s00401-020-02196-w] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Tau and amyloid beta (Aβ) are the prime suspects for driving pathology in Alzheimer's disease (AD) and, as such, have become the focus of therapeutic development. Recent research, however, shows that these proteins have been highly conserved throughout evolution and may have crucial, physiological roles. Such functions may be lost during AD progression or be unintentionally disrupted by tau- or Aβ-targeting therapies. Tau has been revealed to be more than a simple stabiliser of microtubules, reported to play a role in a range of biological processes including myelination, glucose metabolism, axonal transport, microtubule dynamics, iron homeostasis, neurogenesis, motor function, learning and memory, neuronal excitability, and DNA protection. Aβ is similarly multifunctional, and is proposed to regulate learning and memory, angiogenesis, neurogenesis, repair leaks in the blood-brain barrier, promote recovery from injury, and act as an antimicrobial peptide and tumour suppressor. This review will discuss potential physiological roles of tau and Aβ, highlighting how changes to these functions may contribute to pathology, as well as the implications for therapeutic development. We propose that a balanced consideration of both the physiological and pathological roles of tau and Aβ will be essential for the design of safe and effective therapeutics.
Collapse
Affiliation(s)
- Sarah A. Kent
- Translational Neuroscience PhD Programme, Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Tara L. Spires-Jones
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Claire S. Durrant
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| |
Collapse
|