1
|
Kurihara T, Shimamura M, Etani Y, Noguchi T, Fukuda Y, Ochiai N, Goshima A, Miura T, Hirao M, Sugimoto A, Ju N, Yamakawa S, Kanamoto T, Nakata K, Okada S, Ebina K. RANKL-derived peptide MHP1-AcN attenuates ovariectomy-induced osteoporosis by targeting RANK and TNFR1 in mice. Bone 2025; 194:117440. [PMID: 40032017 DOI: 10.1016/j.bone.2025.117440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
PURPOSE Estrogen deficiency following menopause increases receptor activator of nuclear factor-kappa B ligand (RANKL) expression in osteoblasts, thereby promoting osteoclast differentiation, and enhances T cell-derived tumor necrosis factor-alpha (TNFα) production, which induces sclerostin expression in osteocytes, thereby inhibiting bone formation. This study aimed to develop a novel uncoupling therapeutic agent for osteoporosis. METHODS We developed microglial healing peptide 1 with N-terminal acetylation and C-terminal amidation (MHP1-AcN), a modified RANKL peptide with N-terminal acetylation and C-terminal amidation lacking the osteoclast activating CD loop. Given the structural similarities of RANK and TNF receptor 1 (TNFR1), we hypothesized that MHP1-AcN could inhibit both the RANKL-RANK and TNFα-TNFR1 pathways to address the pathophysiology of osteoporosis, as evaluated in vitro and in vivo using an ovariectomized mouse model. RESULTS In ovariectomized mice, MHP1-AcN inhibited osteoclastogenesis, reduced osteocytic sclerostin expression, prevented bone loss, and improved the femoral cancellous and cortical bone microarchitecture. Unlike anti-RANKL antibody, MHP1-AcN considerably preserved bone formation by osteoblasts and enhanced bone strength, as evidenced by increases in energy absorption capacity. In vitro, MHP1-AcN bound to both RANK and TNFR1, suppressing osteoclast activity via the RANKL-RANK pathway and reducing sclerostin expression through the TNFα-TNFR1-nuclear factor-kappa B pathway. MHP1-AcN did not affect osteoblast proliferation and differentiation or RANKL expression. CONCLUSION MHP1-AcN effectively inhibits osteoclastogenesis and sclerostin-mediated suppression of bone formation while considerably preserving osteoblast function. These findings suggest that MHP1-AcN, which targets dual pathways critical for bone homeostasis, is a promising uncoupling therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Takuya Kurihara
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Munehisa Shimamura
- Department of Gene & Stem Cell Regenerative Therapy, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Etani
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Sports Medical Biomechanics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takaaki Noguchi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuji Fukuda
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nagahiro Ochiai
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Goshima
- Department of Orthopaedic Surgery, Osaka Rosai Hospital, 1179-3 Nagasonecho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Taihei Miura
- Clinical and Research Institute for Foot and Ankle Surgery, Jujo Hospital, 341-1 Mangoku, Kisarazu, Chiba 292-0003, Japan
| | - Makoto Hirao
- Department of Orthopaedic Surgery, National Hospital Organization Osaka Minami Medical Center, 2-1 Kidohigashi-machi, Kawachinagano, Osaka 586-8521, Japan
| | - Atsushi Sugimoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nan Ju
- Department of Gene & Stem Cell Regenerative Therapy, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Yamakawa
- Department of Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Kanamoto
- Department of Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ken Nakata
- Department of Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kosuke Ebina
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Sports Medical Biomechanics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Sobacchi C, Menale C, Crisafulli L, Ficara F. Role of RANKL Signaling in Bone Homeostasis. Physiology (Bethesda) 2025; 40:0. [PMID: 39255276 DOI: 10.1152/physiol.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
RANKL and its cognate receptor RANK are crucial regulators of bone metabolism in physiological as well as in pathological conditions. Here we go through the works that unveiled the paramount role of this signaling pathway. We focus on the RANKL cytokine, whose alterations are responsible for rare and common bone diseases. We describe recent insights on the regulation of RANKL expression, which provide new hints for the pharmacological regulation of this molecule. Based on the multiple functions exerted by RANKL (within and outside the bone tissue), we advise caution regarding the potential unintended consequences of its inhibition.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| | - Ciro Menale
- Department of Clinical Medicine and Surgery, University of Naples "Federico II," Naples, Italy
| | - Laura Crisafulli
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| | - Francesca Ficara
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
3
|
Wang Z, Deng W, Tang K, Zhou Y, Chen J, Wang B, Zhang Z, Zou J, Zhao W. Isoginkgetin Inhibits RANKL-induced Osteoclastogenesis and Alleviates Bone Loss. Biochem Pharmacol 2025; 231:116673. [PMID: 39613114 DOI: 10.1016/j.bcp.2024.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Osteoporosis is characterized by excessive osteoclast activity leading to bone loss, decreased bone mineral density, and increased susceptibility to fractures. Through in vivo/vitro experiments, along with network pharmacology analysis, we aimed to explore the underlying mechanisms of Isoginkgetin (IGG) in inhibiting osteoclastogenesis, providing valuable insights for further research in the future. Firstly, we ascertained the safe concentration of IGG stimulation on BMMs, followed by a systematic exploration of the concentration gradient at which IGG inhibited osteoclastogenesis using TRAP analysis. An osteoporosis model was established to further validate the in vitro experimental findings by combining Micro-CT and immunohistochemical analysis. The results show that IGG did not exhibit cytotoxicity or proliferative effects on BMMs at concentrations equal to or less than 10 μM. Additionally, IGG inhibited the activity of osteoclastogenesis and bone resorption function at lower concentrations. RT-PCR and Western Blot results demonstrated that IGG could downregulate genes and proteins associated with osteoclastogenesis. The Western Blot results also showed that IGG inhibited the phosphorylation expression of P38, ERK, and P65 in the MAPK and NF-κB pathways. At the same time, it rescued the degradation of IκB-α at 15 and 60 min. IGG can also impact the relative expression levels of oxidative proteins such as SOD-1, HO-1, and catalase, thereby influencing cellular equilibrium and stress levels, ultimately inhibiting the formation of mature OC. In vivo experiments demonstrated that IGG alleviated bone loss caused by osteoclasts and improved relevant parameters of trabecular bone. So, IGG effectively attenuated osteoclastogenesis, and improved bone density, thereby portraying its role in osteoporosis management.
Collapse
Affiliation(s)
- Zihe Wang
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The Third School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Wei Deng
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The First School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Kai Tang
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The First School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Yi Zhou
- Nanjing University of Chinese Medicine, China
| | - Junchun Chen
- Shenzhen University of Advanced Technology, Chinese Academy of Sciences, China
| | - Bin Wang
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; The Third School of Clinical Medicine of Guangzhou University of Chinese Medicine, China
| | - Zhida Zhang
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, China; Guangzhou Medical University, China.
| | - Jian Zou
- Guangzhou University of Chinese Medicine, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, China; Dongguan Hospital of Traditional Chinese Medicine, China.
| | - Wenhua Zhao
- The Second Affiliated Hospital, Guangzhou Medical University, China; Guangzhou Medical University, China.
| |
Collapse
|
4
|
Deng H, Guan Y, Dong Q, An R, Wang J. Chitosan-based biomaterials promote bone regeneration by regulating macrophage fate. J Mater Chem B 2024; 12:7480-7496. [PMID: 39016095 DOI: 10.1039/d3tb02563b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of various osteogenic biomaterials has not only promoted the development of bone tissue engineering but also provided more possibilities for bone defect repair. However, most previous studies have focused on the interaction of biomaterials on endogenous or exogenous stem cells involved in the bone regeneration process while neglecting the effect of changes in the immune microenvironment of bone defect sites on bone regeneration after biomaterial implantation into the host. With the development of bone immunology, the role of various immune cells, especially macrophages, in bone regeneration has gradually attracted the attention of researchers. An increasing number of studies have begun to target macrophages to better promote bone regeneration by modulating the fate of macrophages in a spatiotemporally ordered manner to mimic the changes in the immune microenvironment of bone defect sites during the natural repair process of bone tissue. Chitosan is one of the most abundant natural polysaccharides in the world. In recent years, various chitosan-based biomaterials have been widely used in macrophage fate modulation and bone regeneration. In this review, we review the interaction between macrophages and scaffold materials, general information about chitosan, the modulation of macrophage fate by chitosan-based biomaterials, and their application in bone regeneration.
Collapse
Affiliation(s)
- Huiling Deng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Yuanyuan Guan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Quping Dong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| |
Collapse
|
5
|
Ravazzano L, Colaianni G, Tarakanova A, Xiao YB, Grano M, Libonati F. Multiscale and multidisciplinary analysis of aging processes in bone. NPJ AGING 2024; 10:28. [PMID: 38879533 PMCID: PMC11180112 DOI: 10.1038/s41514-024-00156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/07/2024] [Indexed: 06/19/2024]
Abstract
The world population is increasingly aging, deeply affecting our society by challenging our healthcare systems and presenting an economic burden, thus turning the spotlight on aging-related diseases: exempli gratia, osteoporosis, a silent disease until you suddenly break a bone. The increase in bone fracture risk with age is generally associated with a loss of bone mass and an alteration in the skeletal architecture. However, such changes cannot fully explain increased fragility with age. To successfully tackle age-related bone diseases, it is paramount to comprehensively understand the fundamental mechanisms responsible for tissue degeneration. Aging mechanisms persist at multiple length scales within the complex hierarchical bone structure, raising the need for a multiscale and multidisciplinary approach to resolve them. This paper aims to provide an overarching analysis of aging processes in bone and to review the most prominent outcomes of bone aging. A systematic description of different length scales, highlighting the corresponding techniques adopted at each scale and motivating the need for combining diverse techniques, is provided to get a comprehensive description of the multi-physics phenomena involved.
Collapse
Affiliation(s)
- Linda Ravazzano
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Anna Tarakanova
- School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, 06269, CT, USA
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, CT, 06269, Storrs, USA
| | - Yu-Bai Xiao
- School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, 06269, CT, USA
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Flavia Libonati
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy.
- Department of Mechanical, Energy, Management and Transport Engineering - DIME, University of Genova, Via all'Opera Pia 15, Genova, 16145, Italy.
| |
Collapse
|
6
|
Abstract
Osteoclasts are multinucleated bone-resorbing cells derived from the monocyte/macrophage lineage. The macrophage colony-stimulating factor/receptor activator of nuclear factor κB ligand (M-CSF/RANKL) signaling network governs the differentiation of precursor cells into fusion-competent mononucleated cells. Repetitive fusion of fusion-competent cells produces multinucleated osteoclasts. Osteoclasts are believed to die via apoptosis after bone resorption. However, recent studies have found that osteoclastogenesis in vivo proceeds by replacing the old nucleus of existing osteoclasts with a single newly differentiated mononucleated cell. Thus, the formation of new osteoclasts is minimal. Furthermore, the sizes of osteoclasts can change via cell fusion and fission in response to external conditions. On the other hand, osteoclastogenesis in vitro involves various levels of heterogeneity, including osteoclast precursors, mode of fusion, and properties of the differentiated osteoclasts. To better understand the origin of these heterogeneities and the plasticity of osteoclasts, we examine several processes of osteoclastogenesis in this review. Candidate mechanisms that create heterogeneity involve asymmetric cell division, osteoclast niche, self-organization, and mode of fusion and fission. Elucidation of the plasticity or fluctuation of the M-CSF/RANKL network should be an important topic for future researches.
Collapse
Affiliation(s)
- Jiro Takito
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo, Japan.
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
7
|
Abstract
Osteopetrosis (OPT) is a rare inherited bone disease characterized by a bone resorption defect, due to osteoclast malfunction (in osteoclast-rich, oc-rich, OPT forms) or absence (in oc-poor OPT forms). This causes severe clinical abnormalities, including increased bone density, lack of bone marrow cavity, stunted growth, macrocephaly, progressive deafness, blindness, hepatosplenomegaly, and severe anemia. The oc-poor subtype of OPT is ultra-rare in humans. It is caused by mutations in either the tumor necrosis factor ligand superfamily member 11 (TNFSF11) gene, encoding RANKL (Receptor Activator of Nuclear factor-kappa B [NF-κB] Ligand) which is expressed on cells of mesenchymal origin and lymphocytes, or the TNFRSF member 11A (TNFRSF11A) gene, encoding the RANKL functional receptor RANK which is expressed on cells of myeloid lineage including osteoclasts. Clinical presentation is usually severe with onset in early infancy or in fetal life, although as more patients are reported, expressivity is variable. Phenotypic variability of RANK-deficient OPT sometimes includes hypogammaglobulinemia or radiological features of dysosteosclerosis. Disease progression is somewhat slower in RANKL-deficient OPT than in other 'malignant' subtypes of OPT. While both RANKL and RANK are essential for normal bone turnover, hematopoietic stem cell transplantation (HSCT) is the treatment of choice only for patients with the RANK-deficient form of oc-poor OPT. So far, there is no cure for RANKL-deficient OPT.
Collapse
Affiliation(s)
- Cristina Sobacchi
- CNR-IRGB, Milan Unit, via Fantoli 16/15, 20138 Milan, Italy; Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, MI, Italy.
| | - Mario Abinun
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
8
|
Wang R, Zhang W, Ma H, Zou D, Zhang Z, Wang S. Structural insights into the binding of zoledronic acid with RANKL via computational simulations. Front Mol Biosci 2022; 9:992473. [PMID: 36200071 PMCID: PMC9527314 DOI: 10.3389/fmolb.2022.992473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Zoledronic acid (ZOL) inhibits receptor activator of nuclear factor-κB ligand (RANKL) and reduces bone turnover. This plays an important role in the development of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Previous reports have shown that ZOL binds to the enzyme farnesyl pyrophosphate synthase (FPPS) to block its activity. However, the mechanism of action of ZOL and its interaction with RANKL is still unclear. In this study, we confirmed that ZOL significantly suppressed the bone remodeling in ZOL-treated rats, investigated whether ZOL could bind to RANKL and examined the interactions between these molecules at the atomic level. Surface plasmon resonance (SPR) assay was performed to validate that ZOL could directly bind to RANKL in a dose dependent manner, and the equilibrium constant was calculated (KD = 2.28 × 10−4 M). Then, we used molecular docking simulation to predict the binding site and analyze the binding characteristics of ZOL and RANKL. Through molecular dynamics simulation, we confirmed the stable binding between ZOL and RANKL and observed their dynamic interactions over time. Binding free energy calculations and its decomposition were conducted to obtain the binding free energy −70.67 ± 2.62 kJ/mol for the RANKL–ZOL complex. We identified the key residues of RANKL in the binding region, and these included Tyr217(A), Val277(A), Gly278(A), Val277(B), Gly278(B), and Tyr215(C). Taken together, our results demonstrated the direct interaction between ZOL and RANKL, indicating that the pharmacological action of ZOL might be closely related to RANKL. The design of novel small molecules targeting RANKL might reduce the occurrence of BRONJ.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong Ma
- Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duohong Zou
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyuan Zhang
- Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhiyuan Zhang, ; Shaoyi Wang,
| | - Shaoyi Wang
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Zhiyuan Zhang, ; Shaoyi Wang,
| |
Collapse
|
9
|
Huang D, Zhao C, Li R, Chen B, Zhang Y, Sun Z, Wei J, Zhou H, Gu Q, Xu J. Identification of a binding site on soluble RANKL that can be targeted to inhibit soluble RANK-RANKL interactions and treat osteoporosis. Nat Commun 2022; 13:5338. [PMID: 36097003 PMCID: PMC9468151 DOI: 10.1038/s41467-022-33006-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
One of the major challenges for discovering protein-protein interaction inhibitors is identifying selective and druggable binding sites at the protein surface. Here, we report an approach to identify a small molecular binding site to selectively inhibit the interaction of soluble RANKL and RANK for designing anti-osteoporosis drugs without undesirable immunosuppressive effects. Through molecular dynamic simulations, we discovered a binding site that allows a small molecule to selectively interrupt soluble RANKL-RANK interaction and without interfering with the membrane RANKL-RANK interaction. We describe a highly potent inhibitor, S3-15, and demonstrate its specificity to inhibit the soluble RANKL-RANK interaction with in vitro and in vivo studies. S3-15 exhibits anti-osteoporotic effects without causing immunosuppression. Through in silico and in vitro experiments we further confirm the binding model of S3-15 and soluble RANKL. This work might inspire structure-based drug discovery for targeting protein-protein interactions.
Collapse
Affiliation(s)
- Dane Huang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China ,grid.484195.5Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095 China
| | - Chao Zhao
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Ruyue Li
- grid.484195.5Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095 China
| | - Bingyi Chen
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yuting Zhang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhejun Sun
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Junkang Wei
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Okagu IU, Ezeorba TPC, Aguchem RN, Ohanenye IC, Aham EC, Okafor SN, Bollati C, Lammi C. A Review on the Molecular Mechanisms of Action of Natural Products in Preventing Bone Diseases. Int J Mol Sci 2022; 23:ijms23158468. [PMID: 35955603 PMCID: PMC9368769 DOI: 10.3390/ijms23158468] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
The drugs used for treating bone diseases (BDs), at present, elicit hazardous side effects that include certain types of cancers and strokes, hence the ongoing quest for the discovery of alternatives with little or no side effects. Natural products (NPs), mainly of plant origin, have shown compelling promise in the treatments of BDs, with little or no side effects. However, the paucity in knowledge of the mechanisms behind their activities on bone remodeling has remained a hindrance to NPs’ adoption. This review discusses the pathological development of some BDs, the NP-targeted components, and the actions exerted on bone remodeling signaling pathways (e.g., Receptor Activator of Nuclear Factor κ B-ligand (RANKL)/monocyte/macrophage colony-stimulating factor (M-CSF)/osteoprotegerin (OPG), mitogen-activated protein kinase (MAPK)s/c-Jun N-terminal kinase (JNK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Kelch-like ECH-associated protein 1 (Keap-1)/nuclear factor erythroid 2–related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1), Bone Morphogenetic Protein 2 (BMP2)-Wnt/β-catenin, PhosphatidylInositol 3-Kinase (PI3K)/protein kinase B (Akt)/Glycogen Synthase Kinase 3 Beta (GSK3β), and other signaling pathways). Although majority of the studies on the osteoprotective properties of NPs against BDs were conducted ex vivo and mostly on animals, the use of NPs for treating human BDs and the prospects for future development remain promising.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Timothy P. C. Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Rita N. Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Ikenna C. Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Emmanuel C. Aham
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sunday N. Okafor
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria;
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
- Correspondence: ; Tel.: +39-02-5031-9372
| |
Collapse
|
11
|
Trang NM, Kim EN, Lee HS, Jeong GS. Effect on Osteoclast Differentiation and ER Stress Downregulation by Amygdalin and RANKL Binding Interaction. Biomolecules 2022; 12:biom12020256. [PMID: 35204757 PMCID: PMC8961616 DOI: 10.3390/biom12020256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Bone diseases such as osteoporosis are the result of osteoclast over-activation. There are many therapeutic agents from natural compounds inhibiting the formation of osteoclast that have been reported and are continuously being interested. Amygdalin (AD) is isolated from seeds of Prunus armeniaca L. which has many pharmaceutical effects; however, the effect of AD on osteoclast formation and function remains unknown. Therefore, the underlying mechanism of AD on RANKL-induced osteoclast in RAW 264.7 cells was investigated. Molecular docking simulation revealed that AD can bind to the active sites of RANKL with negative binding affinities. Through TRAP activity, bone resorption, and migration, AD effectively inhibited osteoclast differentiation and function. Expression of transcription factors, such as NFATc1, c-fos, and osteospecific genes (including dcstamp, acp5, ATP6v0d2, and ctsk results) showed an osteoclast differentiated inhibitory effect by AD treatment. In addition, RANKL-induced activation of MAPK, ER stress, and ROS levels in RANKL-induced osteoclast was significantly inhibited while antioxidant enzymes were recovered in the presence of AD. These results suggest that AD may be a potential candidate derived from natural sources for the treatment of osteoclast bone-related diseases.
Collapse
Affiliation(s)
- Nguyen Minh Trang
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (N.M.T.); (E.-N.K.)
| | - Eun-Nam Kim
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (N.M.T.); (E.-N.K.)
| | - Hyun-Su Lee
- School of Medicine, Kyungpook National University, Daegu 41566, Korea;
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Correspondence:
| |
Collapse
|
12
|
Suo F, Zhou X, Setroikromo R, Quax WJ. Receptor Specificity Engineering of TNF Superfamily Ligands. Pharmaceutics 2022; 14:181. [PMID: 35057080 PMCID: PMC8781899 DOI: 10.3390/pharmaceutics14010181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF) ligand family has nine ligands that show promiscuity in binding multiple receptors. As different receptors transduce into diverse pathways, the study on the functional role of natural ligands is very complex. In this review, we discuss the TNF ligands engineering for receptor specificity and summarize the performance of the ligand variants in vivo and in vitro. Those variants have an increased binding affinity to specific receptors to enhance the cell signal conduction and have reduced side effects due to a lowered binding to untargeted receptors. Refining receptor specificity is a promising research strategy for improving the application of multi-receptor ligands. Further, the settled variants also provide experimental guidance for engineering receptor specificity on other proteins with multiple receptors.
Collapse
Affiliation(s)
- Fengzhi Suo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xinyu Zhou
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
13
|
Lertwilaiwittaya P, Suktitipat B, Khongthon P, Pongsapich W, Limwongse C, Pithukpakorn M. Identification of novel mutation in RANKL by whole-exome sequencing in a Thai family with osteopetrosis; a case report and review of RANKL osteopetrosis. Mol Genet Genomic Med 2021; 9:e1727. [PMID: 34056870 PMCID: PMC8372087 DOI: 10.1002/mgg3.1727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
Background Osteopetrosis is a rare form of skeletal dysplasia characterized by increased bone density that leads to bone marrow failure, compressive neuropathy, and skeletal dysmorphism. Molecular diagnosis is essential as it guides treatment and prognosis. We report Thai siblings with an ultra‐rare form of osteopetrosis. Methods The older brother and the younger sister presented with chronic mandibular osteomyelitis in their 20s. Since childhood, they had visual impairment, pathological fracture, and skeletal dysmorphism. Quadruplet whole‐exome sequencing was performed and confirmed with Sanger sequencing. Novel mutation in TNFSF11 (RANKL) c.842T>G, p.Phe281Cys was identified in a homozygous state in both siblings. Results Surgical debridement, antibiotic, and hyperbaric oxygen therapy were used and discontinued over a 6‐month period with normalization of C‐reactive protein. Hematopoietic stem cell transplantation candidacy was excluded by molecular diagnosis. Conclusion We report a novel mutation in an ultra‐rare form of osteopetrosis. Our siblings manifested with a milder phenotype in comparison with nine cases previously published.
Collapse
Affiliation(s)
| | - Bhoom Suktitipat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Integrative Computational BioScience Center, Mahidol University, Bangkok, Thailand
| | - Phongphak Khongthon
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Warut Pongsapich
- Department of Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanin Limwongse
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Manop Pithukpakorn
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Center of Research Excellence in Precision Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Niu Y, Wang Z, Shi Y, Dong L, Wang C. Modulating macrophage activities to promote endogenous bone regeneration: Biological mechanisms and engineering approaches. Bioact Mater 2021; 6:244-261. [PMID: 32913932 PMCID: PMC7451865 DOI: 10.1016/j.bioactmat.2020.08.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023] Open
Abstract
A coordinated interaction between osteogenesis and osteoimmune microenvironment is essential for successful bone healing. In particular, macrophages play a central regulatory role in all stages of bone repair. Depending on the signals they sense, these highly plastic cells can mediate the host immune response against the exterior signals of molecular stimuli and implanted scaffolds, to exert regenerative potency to a varying extent. In this article, we first encapsulate the immunomodulatory functions of macrophages during bone regeneration into three aspects, as sweeper, mediator and instructor. We introduce the phagocytic role of macrophages in different bone healing periods ('sweeper') and overview a variety of paracrine cytokines released by macrophages either mediating cell mobilisation, vascularisation and matrix remodelling ('mediator'), or directly driving the osteogenic differentiation of bone progenitors and bone repair ('instructor'). Then, we systematically classify and discuss the emerging engineering strategies to recruit, activate and modulate the phenotype transition of macrophages, to exploit the power of endogenous macrophages to enhance the performance of engineered bone tissue.
Collapse
Affiliation(s)
- Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Zhenzhen Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Yuchen Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| |
Collapse
|
15
|
Honma M, Ikebuchi Y, Suzuki H. Mechanisms of RANKL delivery to the osteoclast precursor cell surface. J Bone Miner Metab 2021; 39:27-33. [PMID: 33047191 DOI: 10.1007/s00774-020-01157-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/14/2020] [Indexed: 01/19/2023]
Abstract
RANKL is biosynthesized as a single-pass transmembrane protein, and soluble molecular species are produced by enzymatic cleavage at the cell surface. Recent studies have revealed that the transmembrane form of RANKL is a major contributor to the induction of mature osteoclasts under physiological conditions in vivo. In osteoblasts and osteocytes, most newly synthesized RANKL forms a protein complex with OPG and is selectively sorted to lysosomes. Only the small proportion of newly synthesized RANKL that does not form a complex with OPG is transported to the cell surface. Then, the transmembrane RANKL is delivered to the surface of osteoclast precursors to stimulate RANK, and induces the activation of a downstream signaling pathway. The ability of osteocytes to support the formation of mature osteoclasts appears to depend upon the amount of RANKL molecules present on their cell surfaces. However, the way in which osteocytes, which are embedded in the bone matrix, deliver transmembrane RANKL to the cell surfaces of osteoclast precursors, which are localized in the bone marrow cavity, remains to be elucidated. Further studies are needed to clarify the mechanisms underlying this process.
Collapse
Affiliation(s)
- Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yuki Ikebuchi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
16
|
Hanada R. The role of the RANKL/RANK/OPG system in the central nervous systems (CNS). J Bone Miner Metab 2021; 39:64-70. [PMID: 32888064 DOI: 10.1007/s00774-020-01143-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
Abstract
The receptor-activator of NF-κB ligand (RANKL) and its specific receptor RANK have essential roles in regulating bone metabolism and the immune system. Besides, the RANKL/RANK system plays important roles in multiple physiological and pathophysiological processes such as mammary gland development during pregnancy, cancer development, and bone metastasis. While it has long been known that RANKL and RANK are expressed in the central nervous system (CNS), the physiological roles of RANKL/RANK system in the CNS and the underlying molecular mechanisms have been elucidated recently. Over the last decade, several reports showed that the central RANKL/RANK system plays important roles in regulating body temperature, brain ischemia, autoimmune encephalopathy, feeding behavior, and energy metabolism. In this review, it is provided an updated information regarding the roles of RANKL/RANK system in the CNS.
Collapse
Affiliation(s)
- Reiko Hanada
- Department of Neurophysiology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Yufu City, Oita, 879-5593, Japan.
| |
Collapse
|
17
|
Tang RH, Yang J, Fei J. New perspectives on traumatic bone infections. Chin J Traumatol 2020; 23:314-318. [PMID: 32847694 PMCID: PMC7718542 DOI: 10.1016/j.cjtee.2020.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 02/04/2023] Open
Abstract
In this paper, we review the results of previous studies and summarize the effects of various factors on the regulation of bone metabolism in traumatic bone infections. Infection-related bone destruction incorporates pathogens and iatrogenic factors in the process of bone resorption dominated by the skeletal and immune systems. The development of bone immunology has established a bridge of communication between the skeletal system and the immune system. Exploring the effects of pathogens, skeletal systems, immune systems, and antibacterials on bone repair in infectious conditions can help improve the treatment of these diseases.
Collapse
Affiliation(s)
- Ruo-Hui Tang
- Health Team of 96824 Troops of the Chinese People's Liberation Army, Kunming, China
| | - Jing Yang
- Emergency Department, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jun Fei
- Emergency Department, Daping Hospital, Third Military Medical University, Chongqing, China,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China,Corresponding author. Emergency Department, Daping Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
18
|
Rinotas V, Papakyriakou A, Violitzi F, Papaneophytou C, Ouzouni MD, Alexiou P, Strongilos A, Couladouros E, Kontopidis G, Eliopoulos E, Douni E. Discovery of Small-Molecule Inhibitors of Receptor Activator of Nuclear Factor-κB Ligand with a Superior Therapeutic Index. J Med Chem 2020; 63:12043-12059. [PMID: 32955874 DOI: 10.1021/acs.jmedchem.0c01316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) constitutes the master mediator of osteoclastogenesis, while its pharmaceutical inhibition by a monoclonal antibody has been approved for the treatment of postmenopausal osteoporosis. To date, the pursuit of pharmacologically more favorable approaches using low-molecular-weight inhibitors has been hampered by low specificity and high toxicity issues. This study aimed to discover small-molecule inhibitors targeting RANKL trimer formation. Through a systematic screening of 39 analogues of SPD-304, a dual inhibitor of tumor necrosis factor (TNF) and RANKL trimerization, we identified four compounds (1b, 3b, 4a, and 4c) that selectively inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, without affecting TNF activity or osteoblast differentiation. Based on structure-activity observations extracted from the most potent and less toxic inhibitors of RANKL-induced osteoclastogenesis, we synthesized a focused set of compounds that revealed three potent inhibitors (19a, 19b, and 20a) with remarkably low cell-toxicity and improved therapeutic indexes as shown by the LC50 to IC50 ratio. These RANKL-selective inhibitors are an excellent starting point for the development of small-molecule therapeutics against osteolytic diseases.
Collapse
Affiliation(s)
- Vagelis Rinotas
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Foteini Violitzi
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
| | - Christos Papaneophytou
- Department of Biochemistry, Veterinary School, University of Thessaly, 224 Trikalon, 43131 Karditsa, Greece.,Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus
| | - Maria-Dimitra Ouzouni
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Polyxeni Alexiou
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | | | - Elias Couladouros
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Kontopidis
- Department of Biochemistry, Veterinary School, University of Thessaly, 224 Trikalon, 43131 Karditsa, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
| |
Collapse
|
19
|
Qiu H, Qin A, Cheng T, Chim SM, Smithers L, Chen K, Song D, Liu Q, Zhao J, Wang C, Teguh D, Zhang G, Tickner J, Vrielink A, Pavlos NJ, Xu J. A missense mutation sheds light on a novel structure-function relationship of RANKL. J Cell Physiol 2020; 236:2800-2816. [PMID: 32964459 DOI: 10.1002/jcp.30045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022]
Abstract
The tumor necrosis factor (TNF)-like core domain of receptor activator of nuclear factor-κB ligand (RANKL) is a functional domain critical for osteoclast differentiation. One of the missense mutations identified in patients with osteoclast-poor autosomal recessive osteopetrosis (ARO) is located in residue methionine 199 that is replaced with lysine (M199K) amid the TNF-like core domain. However, the structure-function relationship of this mutation is not clear. Sequence-based alignment revealed that the fragment containing human M199 is highly conserved and equivalent to M200 in rat. Using site-directed mutagenesis, we generated three recombinant RANKL mutants M200K/A/E (M200s) by replacing the methionine 200 with lysine (M200K), alanine (M200A), and glutamic acid (M200E), representative of distinct physical properties. TRAcP staining and bone pit assay showed that M200s failed to support osteoclast formation and bone resorption, accompanied by impaired osteoclast-related signal transduction. However, no antagonistic effect was found in M200s against wild-type rat RANKL. Analysis of the crystal structure of RANKL predicted that this methionine residue is located within the hydrophobic core of the protein, thus, likely to be crucial for protein folding and stability. Consistently, differential scanning fluorimetry analysis suggested that M200s were less stable. Western blot analysis analyses further revealed impaired RANKL trimerization by M200s. Furthermore, receptor-ligand binding assay displayed interrupted interaction of M200s to its intrinsic receptors. Collectively, our studies revealed the molecular basis of human M199-induced ARO and elucidated the indispensable role of rodent residue M200 (equivalent to human M199) for the RANKL function.
Collapse
Affiliation(s)
- Heng Qiu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - An Qin
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Shanghai Key Laboratory of Orthopaedic Implant, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taksum Cheng
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Shek M Chim
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Luke Smithers
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Kai Chen
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Dezhi Song
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Department of Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Qian Liu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Department of Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Department of Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Chao Wang
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Dian Teguh
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Ge Zhang
- School of Chinese Medicine, Institute for Advancing Translational Medicine in Bone and Joint Diseases, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jennifer Tickner
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Nathan J Pavlos
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Ko Y, Lee G, Kim B, Park M, Jang Y, Lim W. Modification of the RANKL-RANK-binding site for the immunotherapeutic treatment of osteoporosis. Osteoporos Int 2020; 31:983-993. [PMID: 31863125 DOI: 10.1007/s00198-019-05200-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
UNLABELLED Here, we proposed the use of mutated RANKL as an immunogen for active immunization and to induce anti-cytokine antibodies for osteoporosis treatment. INTRODUCTION Osteoclasts are responsible for bone resorption in bone-related disorders. Anti-cytokine therapeutic antibodies such as denosumab are effective for the treatment of osteoporosis. However, problems with antibody manufacturing and the immunogenicity caused by multiple antibody doses have led to the use of auto-cytokines as immunogens to induce anti-cytokine antibodies. METHODS RANKL was point-mutated based on the crystal structure of the complex of RANKL and its receptor RANK. RESULTS As a proof of concept, immunization with RANKL produced high levels of specific antibodies and blocked osteoclast development in vitro and inhibited osteoporosis in RANKL-treated or ovariectomized mouse models. CONCLUSIONS The results demonstrate the successful use of mutated RANKL as an immunogen for the induction of anti-RANKL immune response. This strategy is useful in general anti-cytokine immunotherapy to avoid toxic side effects of osteoporosis treatment.
Collapse
Affiliation(s)
- Y Ko
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea
| | - G Lee
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea
| | - B Kim
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea
| | - M Park
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea
| | - Y Jang
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea
- Department of Premedical Program, School of Medicine, Chosun University, Gwangju, 61452, South Korea
| | - W Lim
- Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, 61453, South Korea.
- Laboratory of Orthopaedic Research, Chosun University Hospital, Gwangju, 61453, South Korea.
- Department of Premedical Program, School of Medicine, Chosun University, Gwangju, 61452, South Korea.
| |
Collapse
|
21
|
Role of RANK-L as a potential inducer of ILC2-mediated type 2 inflammation in chronic rhinosinusitis with nasal polyps. Mucosal Immunol 2020; 13:86-95. [PMID: 31641233 PMCID: PMC6917894 DOI: 10.1038/s41385-019-0215-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/16/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by type 2 inflammation with accumulation of activated group 2 innate lymphoid cells (ILC2s) and elevation of thymic stromal lymphopoietin (TSLP). A member of the TNF superfamily (TNFSF), TNFSF15, is known to induce the production of type 2 cytokines in ILC2s. Although ILC2s have been implicated in CRSwNP, the presence and role of TNFSFs in ILC2-mediated type 2 inflammation in CRSwNP has not been elucidated. Here, we investigate the involvement of TNFSFs in ILC2-mediated type 2 inflammation in CRSwNP. We found that receptor activator of NF-κB (RANK) ligand (RANK-L (TNFSF11)) was significantly elevated in nasal polyps (NPs), and that the receptor of RANK-L, RANK, was expressed on ILC2s in human peripheral blood and NPs. An agonistic antibody against RANK induced production of type 2 cytokines in human ILC2s, and TSLP significantly enhanced this reaction. The membrane-bound RANK-L was detected mainly on CD45 + immune cells, including TH2 cells in NPs. The co-culture of NP-derived ILC2s and TH2 cells significantly enhanced production of type 2 cytokines, and anti-RANK-L monoclonal antibody suppressed this enhancement. In conclusion, RANK-L, together with TSLP, may play an inductive role in the ILC2-mediated type 2 inflammation in CRSwNP.
Collapse
|
22
|
Raynaud-Messina B, Verollet C, Maridonneau-Parini I. The osteoclast, a target cell for microorganisms. Bone 2019; 127:315-323. [PMID: 31233933 DOI: 10.1016/j.bone.2019.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 02/02/2023]
Abstract
Bone is a highly adaptive tissue with regenerative properties that is subject to numerous diseases. Infection is one of the causes of altered bone homeostasis. Bone infection happens subsequently to bone surgery or to systemic spreading of microorganisms. In addition to osteoblasts, osteoclasts (OCs) also constitute cell targets for pathogens. OCs are multinucleated cells that have the exclusive ability to resorb bone mineral tissue. However, the OC is much more than a bone eater. Beyond its role in the control of bone turnover, the OC is an immune cell that produces and senses inflammatory cytokines, ingests microorganisms and presents antigens. Today, increasing evidence shows that several pathogens use OC as a host cell to grow, generating debilitating bone defects. In this review, we exhaustively inventory the bacteria and viruses that infect OC and report the present knowledge in this topic. We point out that most of the microorganisms enhance the bone resorption activity of OC. We notice that pathogen interactions with the OC require further investigation, in particular to validate the OC as a host cell in vivo and to identify the cellular mechanisms involved in altered bone resorption. Thus, we conclude that the OC is a new cell target for pathogens; this new research area paves the way for new therapeutic strategies in the infections causing bone defects.
Collapse
Affiliation(s)
- Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| |
Collapse
|
23
|
Zhou Y, He X, Zhang D. Study of bone remodeling in corticotomy-assisted orthodontic tooth movement in rats. J Cell Biochem 2019; 120:15952-15962. [PMID: 31190373 DOI: 10.1002/jcb.28872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/07/2022]
Abstract
The goal of this study was to determine the structure change of the alveolar bone and the expression of a group of bone remodeling-related factors. Sixty healthy male Wistar rats were randomly divided into three groups. Selective alveolar decortication (SAD), tooth movement (TM), and "combined therapy" (SAD+TM) was performed in group I, II, and III, respectively. On days 0, 7, 14, 21, and 42, a Micro-CT scan was performed on the maxillary alveolar bone and tooth. In addition, on days 0, 7, 14, 21, 28, and 42, some of the rats were killed by cervical dislocation and tissues were harvested. Analysis of scan data revealed a significant decrease in bone density of the alveolar bone at 14 days post-surgery, and increased at 42 days post-surgery to a level higher than that before the surgery. Microarray and bioinformatics analysis were performed to explore gene expression profile in three groups (SAD, TM, and SAD+TM), and a large number of differentially expressed genes were identified. In addition, real-time polymerase chain reaction was performed to determine the expression of bone remodeling-related factors. The expression of osteoblast-related cytokines, including osteopontin, bone sialoprotein, and osteocalcin, and osteoclast regulators macrophage-colony stimulating factor (M-CSF) and RANKL (activator of nuclear factor KB receptor ligand) were increased in group III, suggesting that there was increased bone synthesis and activation of bone absorption. Moreover, group III had a unique alveolar bone remodeling pattern: RANKL and osteoprotegerin-promoted alveolar remodeling. In conclusion, during the early stage of orthodontic tooth movement, corticotomy can accelerate the movement of teeth, modulate the state of bone metabolism, and activate osteogenesis and osteoclast, which support the theory of regional acceleratory phenomenon.
Collapse
Affiliation(s)
- Yuling Zhou
- The Alveolar Bone, Tsinghua University Yuquan Hospital, Beijing, P.R. China
| | - Xin He
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - Dongliang Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
24
|
Wang Y, Michiels T, Setroikromo R, van Merkerk R, Cool RH, Quax WJ. Creation of RANKL mutants with low affinity for decoy receptor OPG and their potential anti-fibrosis activity. FEBS J 2019; 286:3582-3593. [PMID: 31081236 PMCID: PMC6852375 DOI: 10.1111/febs.14925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/11/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Fibrosis is characterized by the progressive alteration of the tissue structure due to the excessive production of extracellular matrix (ECM). The signaling system encompassing Receptor Activator of Nuclear factor NF‐κB Ligand (RANKL)/RANK/Osteoprotegerin (OPG) was discovered to play an important role in the regulation of ECM formation and degradation in bone tissue. However, whether and how this signaling pathway plays a role in liver or pulmonary ECM degradation is unclear up to now. Interestingly, increased decoy receptor OPG levels are found in fibrotic tissues. We hypothesize that RANKL can stimulate RANK on macrophages and initiate the process of ECM degradation. This process may be inhibited by highly expressed OPG in fibrotic conditions. In this case, RANKL mutants that can bind to RANK without binding to OPG might become promising therapeutic candidates. In this study, we built a structure‐based library containing 44 RANKL mutants and found that the Q236 residue of RANKL is important for OPG binding. We show that RANKL_Q236D can activate RAW cells to initiate the process of ECM degradation and is able to escape from the obstruction by exogenous OPG. We propose that the generation of RANKL mutants with reduced affinity for OPG is a promising strategy for the exploration of new therapeutics against fibrosis.
Collapse
Affiliation(s)
- Yizhou Wang
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Timo Michiels
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Robbert H Cool
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| |
Collapse
|
25
|
Papandreou P, Agakidis C, Scouroliakou M, Karagiozoglou-Lampoudi T, Kaliora A, Kalogeropoulos N, Siahanidou T. Early Postnatal Changes of Bone Turnover Biomarkers in Very Low-Birth-Weight Neonates-The Effect of Two Parenteral Lipid Emulsions with Different Polyunsaturated Fatty Acid Content: A Randomized Double-Blind Study. JPEN J Parenter Enteral Nutr 2019; 44:361-369. [PMID: 30864279 DOI: 10.1002/jpen.1533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND ω-3 polyunsaturated fatty acids (n-3 PUFAs) are reported to have beneficial effect on bone mineral density. This study aimed to evaluate early changes of bone turnover biomarkers in very low-birth-weight (VLBW) neonates and the effect of 2 parenteral lipid emulsions (PLEs) with different PUFA composition. METHODS This is a randomized double-blind study with parallel design. VLBW neonates (n = 66) receiving parenteral nutrition (PN)>70% of daily energy requirements for >14 days were assigned into 2 groups that were prescribed soybean oil-based (n = 35) and n-3-enriched PLE (n = 31), respectively. Osteoprotegerin (OPG), soluble receptor activator of nuclear factor-kB ligand (sRANKL), osteocalcin (OC), interleukin-6 (enzyme-linked immunoblot assay kits), Ca, and P plasma levels were assessed before PLE implementation (T1) and on day 20 of life (T2). RESULTS In the total population, sRANKL and OC significantly increased, whereas OPG and the OPG/sRANKL ratio decreased from T1 to T2. Within each group, T1-to-T2 changes of OC were significant in both groups, whereas those of OPG/sRANKL were significant only in the soybean-based group. Multiple regressions showed an independent effect of group allocation on OPG change. Significant associations were observed between PN duration and sRANKL change (negatively), n-6/n-3 and OC changes (positively), and OPG and sRANKL changes (positively). CONCLUSIONS A high bone-turnover rate in VLBW neonates with predominance of bone resorption is confirmed. The lower rate of OPG/sRANKL reduction in the n-3-enriched PLE group indicates that n-3 PUFA-enriched PLEs may help to attenuate early bone loss in VLBW neonates.
Collapse
Affiliation(s)
- Panos Papandreou
- First Department of Pediatrics, Athens University Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Charalampos Agakidis
- First Department of Pediatrics, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | | | - Thomai Karagiozoglou-Lampoudi
- Clinical Nutrition Lab, Nutrition/Dietetics Department, Alexander Technological Education Institute, Thessaloniki, Greece
| | | | | | - Tania Siahanidou
- First Department of Pediatrics, Athens University Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
26
|
van Dam PA, Verhoeven Y, Trinh XB, Wouters A, Lardon F, Prenen H, Smits E, Baldewijns M, Lammens M. RANK/RANKL signaling inhibition may improve the effectiveness of checkpoint blockade in cancer treatment. Crit Rev Oncol Hematol 2018; 133:85-91. [PMID: 30661662 DOI: 10.1016/j.critrevonc.2018.10.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/12/2018] [Accepted: 10/28/2018] [Indexed: 12/22/2022] Open
Abstract
Binding between the receptor activator of nuclear factor-kB (RANK) and its ligand (RANKL) triggers recruitment of TNF receptor associated factor (TRAF) adaptor proteins and activation of downstream pathways. RANK/RANKL signaling is controlled by a decoy receptor called osteoprotegerin (OPG) which interacts with RANKL. Additional networks regulating RANK/RANKL signaling are active in a context specific manner. RANK/RANKL signaling is essential for the differentiation of bone-resorbing osteoclasts, and is deregulated in pathological processes such as postmenopausal osteoporosis or cancer induced bone destruction. Cells expressing RANK and RANKL are commonly found in the tumor microenvironment. The RANKL/RANK pathway is often overexpressed in tumors of the breast, prostate, endometrium, cervix, stomach, oesophagus and bladder, thyroid and correlated with poor prognosis. RANK signaling plays an important role in the innate and adaptive immune response as it generates regulatory T (Treg) cells and increases production of cytokines. RANK expression induces chemoresistance in vitro through the activation of multiple signal transduction pathways. RANKL blockade improves the efficacy of anti-CTLA-4 monoclonal antibodies against solid tumors and experimental metastases. As RANK inhibition enhances the immune response there is an increasing interest in combining it with immune therapy in an attempt to sensitize immune resistant tumors to immune therapies. Several studies are ongoing to assess this concept. The role of RANK/RANKL inhibition should be further pursued as an immunomodulatory strategy in combination with other treatment modalities.
Collapse
Affiliation(s)
- Peter A van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, B2650, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium.
| | - Yannick Verhoeven
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, B2650, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium
| | - Xuan B Trinh
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, B2650, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium
| | - Hans Prenen
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, B2650, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium; Fase 1 Unit of Experimental Oncology, Antwerp University, Edegem, B2650, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium
| | - Marcella Baldewijns
- Department of Histopathology, Antwerp University Hospital, Edegem, B2650, Belgium
| | - Martin Lammens
- Department of Histopathology, Antwerp University Hospital, Edegem, B2650, Belgium
| |
Collapse
|
27
|
Ahern E, Smyth MJ, Dougall WC, Teng MWL. Roles of the RANKL–RANK axis in antitumour immunity — implications for therapy. Nat Rev Clin Oncol 2018; 15:676-693. [DOI: 10.1038/s41571-018-0095-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Therapeutic Effects of Systemic Administration of the Novel RANKL-Modified Peptide, MHP1, for Ischemic Stroke in Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4637084. [PMID: 30151382 PMCID: PMC6091369 DOI: 10.1155/2018/4637084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Microglial healing peptide 1, "MHP1", is a newly developed synthetic peptide composed of the DE and a part of the EF loop of the receptor activator of nuclear factor-кB (NFκB) ligand (RANKL). Our previous report demonstrated that MHP1 significantly inhibits Toll-like receptor (TLR) 2- and 4-induced inflammation in microglia/macrophages through RANK signaling without osteoclast activation. However, its inhibitory effects on ischemic stroke when administered intravenously have not been clarified. First, we examined whether MHP1 could penetrate the brain parenchyma. Intravenous injection of FITC-conjugated MHP1 demonstrated that MHP1 could cross the blood-brain-barrier in peri-infarct regions, but not in intact regions. Because MHP1 in the parenchyma was reduced at 60 minutes after injection, we speculated that continuous injection was necessary to achieve the therapeutic effects. To check the possible deactivation of MHP1 by continuous injection, the anti-inflammatory effects were checked in MG6 cells after incubation in 37°C for 24 hours. Although the inhibitory effects for IL6 and TNFα were reduced compared to nonincubated MHP1, its anti-inflammatory efficacy remained, indicating that continuous administration with pump was possible. The single and successive continuous administration of MHP1 starting from 4 or 6 hours after cerebral ischemia successfully reduced infarct volume and prevented the exacerbation of neurological deficits with reduced activation of microglia/macrophages and inflammatory cytokines. Different from recombinant RANKL, MHP1 did not activate osteoclasts in the paralytic arm. Although further modification of MHP1 is necessary for stabilization, the MHP1 could be a novel agent for the treatment ischemic stroke.
Collapse
|
29
|
Ng AY, Tu C, Shen S, Xu D, Oursler MJ, Qu J, Yang S. Comparative Characterization of Osteoclasts Derived From Murine Bone Marrow Macrophages and RAW 264.7 Cells Using Quantitative Proteomics. JBMR Plus 2018; 2:328-340. [PMID: 30460336 PMCID: PMC6237207 DOI: 10.1002/jbm4.10058] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 12/29/2022] Open
Abstract
Osteoclasts are bone-resorbing cells differentiated from macrophage/monocyte precursors in response to macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). In vitro models are principally based on primary bone marrow macrophages (BMMs), but RAW 264.7 cells are frequently used because they are widely available, easy to culture, and more amenable to genetic manipulation than primary cells. Increasing evidence, however, has shown that the vastly different origins of these two cell types may have important effects on cell behavior. In particular, M-CSF is a prerequisite for the differentiation of BMMs, by promoting survival and proliferation and priming the cells for RANKL induction. RAW 264.7 cells readily form osteoclasts in the presence of RANKL, but M-CSF is not required. Based on these key differences, we sought to understand their functional implications and how it might affect osteoclast differentiation and related signaling pathways. Using a robust and high-throughput proteomics strategy, we quantified the global protein changes in osteoclasts derived from BMMs and RAW 264.7 cells at 1, 3, and 5 days of differentiation. Data are available via ProteomeXchange with the identifier PXD009610. Correlation analysis of the proteomes demonstrated low concordance between the two cell types (R2 ≈ 0.13). Bioinformatics analysis indicate that RANKL-dependent signaling was intact in RAW 264.7 cells, but biological processes known to be dependent on M-CSF were significantly different, including cell cycle control, cytoskeletal organization, and apoptosis. RAW 264.7 cells exhibited constitutive activation of Erk and Akt that was dependent on the activity of Abelson tyrosine kinase, and the timing of Erk and Akt activation was significantly different between BMMs and RAW 264.7 cells. Our findings provide the first evidence for major discrepancies between BMMs and RAW 264.7 cells, indicating that careful consideration is needed when using the RAW 264.7 cell line for studying M-CSF-dependent signaling and functions. © 2018 American Society for Bone and Mineral Research. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Andrew Yh Ng
- Department of Anatomy and Cell Biology School of Dental Medicine University of Pennsylvania Philadelphia PA USA.,Department of Oral Biology School of Dental Medicine University at Buffalo Buffalo NY USA.,New York State Center of Excellence in Bioinformatics and Life Sciences Buffalo NY USA
| | - Chengjian Tu
- New York State Center of Excellence in Bioinformatics and Life Sciences Buffalo NY USA.,Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences University at Buffalo NY USA
| | - Shichen Shen
- New York State Center of Excellence in Bioinformatics and Life Sciences Buffalo NY USA.,Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences University at Buffalo NY USA
| | - Ding Xu
- Department of Oral Biology School of Dental Medicine University at Buffalo Buffalo NY USA
| | - Merry J Oursler
- Division of Endocrinology Metabolism, Nutrition, and Diabetes Mayo Clinic Rochester MN USA
| | - Jun Qu
- New York State Center of Excellence in Bioinformatics and Life Sciences Buffalo NY USA.,Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences University at Buffalo NY USA
| | - Shuying Yang
- Department of Anatomy and Cell Biology School of Dental Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
30
|
Mbundi L, Meikle ST, Busquets R, Dowell NG, Cercignani M, Santin M. Gadolinium Tagged Osteoprotegerin-Mimicking Peptide: A Novel Magnetic Resonance Imaging Biospecific Contrast Agent for the Inhibition of Osteoclastogenesis and Osteoclast Activity. NANOMATERIALS 2018; 8:nano8060399. [PMID: 29865247 PMCID: PMC6027169 DOI: 10.3390/nano8060399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022]
Abstract
The control of osteoblast/osteoclast cross-talk is crucial in the bone remodelling process and provides a target mechanism in the development of drugs for bone metabolic diseases. Osteoprotegerin is a key molecule in this biosignalling pathway as it inhibits osteoclastogenesis and osteoclast activation to prevent run-away bone resorption. This work reports the synthesis of a known osteoprotegerin peptide analogue, YCEIEFCYLIR (OP3-4), and its tagging with a gadolinium chelate, a standard contrast agent for magnetic resonance imaging. The resulting contrast agent allows the simultaneous imaging and treatment of metabolic bone diseases. The gadolinium-tagged peptide was successfully synthesised, showing unaltered magnetic resonance imaging contrast agent properties, a lack of cytotoxicity, and dose-dependent inhibition of osteoclastogenesis in vitro. These findings pave the way toward the development of biospecific and bioactive contrast agents for the early diagnosis, treatment, and follow up of metabolic bone diseases such as osteoporosis and osteosarcoma.
Collapse
Affiliation(s)
- Lubinda Mbundi
- Department of Surgical Research, Northwick Park Institute for Medical Research, University College London (UCL), Northwick Park & St Marks Hospitals, Watford Road, Harrow, Middlesex HA1 3UJ, UK.
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK.
| | - Steve T Meikle
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK.
| | - Rosa Busquets
- Faculty of Science, Engineering and Computing, Penrhyn Road, Kingston University, Kingston Upon Thames KT1 2EE, UK.
| | - Nicholas G Dowell
- Clinical Imaging and Science Centre (CISC), Centre for Regenerative Medicine and Devices, Brighton and Sussex Medical School, Lewes Road, Brighton BN1 9RR, UK.
| | - Mara Cercignani
- Clinical Imaging and Science Centre (CISC), Centre for Regenerative Medicine and Devices, Brighton and Sussex Medical School, Lewes Road, Brighton BN1 9RR, UK.
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK.
| |
Collapse
|
31
|
Bando JK, Gilfillan S, Song C, McDonald KG, Huang SCC, Newberry RD, Kobayashi Y, Allan DSJ, Carlyle JR, Cella M, Colonna M. The Tumor Necrosis Factor Superfamily Member RANKL Suppresses Effector Cytokine Production in Group 3 Innate Lymphoid Cells. Immunity 2018; 48:1208-1219.e4. [PMID: 29858011 DOI: 10.1016/j.immuni.2018.04.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 12/29/2017] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
While signals that activate group 3 innate lymphoid cells (ILC3s) have been described, the factors that negatively regulate these cells are less well understood. Here we found that the tumor necrosis factor (TNF) superfamily member receptor activator of nuclear factor κB ligand (RANKL) suppressed ILC3 activity in the intestine. Deletion of RANKL in ILC3s and T cells increased C-C motif chemokine receptor 6 (CCR6)+ ILC3 abundance and enhanced production of interleukin-17A (IL-17A) and IL-22 in response to IL-23 and during infection with the enteric murine pathogen Citrobacter rodentium. Additionally, CCR6+ ILC3s produced higher amounts of the master transcriptional regulator RORγt at steady state in the absence of RANKL. RANKL-mediated suppression was independent of T cells, and instead occurred via interactions between CCR6+ ILC3s that expressed both RANKL and its receptor, RANK. Thus, RANK-RANKL interactions between ILC3s regulate ILC3 abundance and activation, suggesting that cell clustering may control ILC3 activity.
Collapse
Affiliation(s)
- Jennifer K Bando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christina Song
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Keely G McDonald
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stanley C-C Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rodney D Newberry
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Hirooka Gohara, Shiojiri Nagano, 399-0781, Japan
| | - David S J Allan
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - James R Carlyle
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
32
|
Lee G, Ko Y, Park M, Kim B, Hyun H, Lim W. Recombinant DNA cloning of the active region of the receptor activator of NF-κB ligand (RANKL) gene and its role in osteoclastogenesis. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0279-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Li F, Li H, Zhai Q, Li F, Wu T, Sha X, Zhang B, Yang W, Lu Z, Tao H. A new vaccine targeting RANKL, prepared by incorporation of an unnatural Amino acid into RANKL, prevents OVX-induced bone loss in mice. Biochem Biophys Res Commun 2018; 499:648-654. [DOI: 10.1016/j.bbrc.2018.03.205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 01/02/2023]
|
34
|
|
35
|
Vanamee ÉS, Faustman DL. Structural principles of tumor necrosis factor superfamily signaling. Sci Signal 2018; 11:11/511/eaao4910. [PMID: 29295955 DOI: 10.1126/scisignal.aao4910] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tumor necrosis factor (TNF) ligand and receptor superfamilies play an important role in cell proliferation, survival, and death. Stimulating or inhibiting TNF superfamily signaling pathways is expected to have therapeutic benefit for patients with various diseases, including cancer, autoimmunity, and infectious diseases. We review our current understanding of the structure and geometry of TNF superfamily ligands, receptors, and their interactions. A trimeric ligand and three receptors, each binding at the interface of two ligand monomers, form the basic unit of signaling. Clustering of multiple receptor subunits is necessary for efficient signaling. Current reports suggest that the receptors are prearranged on the cell surface in a "nonsignaling," resting state in a large hexagonal structure of antiparallel dimers. Receptor activation requires ligand binding, and cross-linking antibodies can stabilize the receptors, thereby maintaining the active, signaling state. On the other hand, an antagonist antibody that locks receptor arrangement in antiparallel dimers effectively blocks signaling. This model may aid the design of more effective TNF signaling-targeted therapies.
Collapse
Affiliation(s)
- Éva S Vanamee
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Denise L Faustman
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
36
|
Wei Y, Zhan Y, Chen P, Liu Z, Zhang H, Liu D, Zhang J, Yu M, Mo W, Zhang J, Zhang X. Heterologous expression, purification and function of the extracellular domain of human RANK. BMC Biotechnol 2017; 17:87. [PMID: 29202831 PMCID: PMC5716252 DOI: 10.1186/s12896-017-0405-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022] Open
Abstract
Background Receptor activator of NF-κB ligand (RANKL)/RANK signaling essentially functions within the skeletal system, particularly participating in osteoclastogenesis and bone resorption. In addition, this signaling pathway has also been shown to influence tumor progression as well as the development and function of the immune system. Therefore, blocking the interaction between RANKL and RANK is a new therapeutic approach to prevent bone-related diseases and cancer. Results The coding sequence encoding the extracellular domain of human RANK (RANK-N) was codon optimized for Pichia pastoris and cloned into the pPIC9K vector, and the recombinant plasmid was then transformed into P. pastoris. The expression of RANK-N protein was confirmed using SDS-PAGE with Coomassie Brilliant Blue stain and western blotting. Recombinant RANK-N protein was purified by a multistep process including ultrafiltration (UF), Sephadex G-50 size-exclusion chromatography and Q-Sepharose Fast Flow ion exchange chromatography, which resulted in a purity >95%. We found that the RANK-N protein can block RANKL-RANK signaling both in vitro and in vivo. Furthermore, using a patient-derived xenograft of human colon cancer, we found that the recombinant RANK-N protein can inhibit the growth of colorectal cancer. Conclusions The results show that a simple system to express and purify functional RANK-N protein has been developed. This work has thus laid a foundation for further research and clinical applications of RANK-N protein in treating bone-related diseases or even colorectal cancer. Electronic supplementary material The online version of this article (10.1186/s12896-017-0405-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yilei Wei
- Department of Blood Transfusion, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yu Zhan
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Pengfei Chen
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhi Liu
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haohao Zhang
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dandan Liu
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jie Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China
| | - Wei Mo
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| | - Xiaoren Zhang
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,Collaborative Innovation Center of System Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.
| |
Collapse
|
37
|
Uversky VN, El-Baky NA, El-Fakharany EM, Sabry A, Mattar EH, Uversky AV, Redwan EM. Functionality of intrinsic disorder in tumor necrosis factor-α and its receptors. FEBS J 2017; 284:3589-3618. [PMID: 28746777 DOI: 10.1111/febs.14182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/15/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a pleiotropic inflammatory cytokine that exerts potent cytotoxic effects on solid tumor cells, while not affecting their normal counterparts. It is also known that TNF-α exerts many of its biological functions via interaction with specific receptors. To understand the potential roles of intrinsic disorder in the functioning of this important cytokine, we explored the peculiarities of intrinsic disorder distribution in human TNF-α and its homologs from various species, ranging from zebrafish to chimpanzee. We also studied the peculiarities of intrinsic disorder distribution in human TNF-α receptors, TNFR1 and TNFR2. Analysis revealed that cytoplasmic domains of TNF-α and its receptors are expected to be highly disordered. Furthermore, although the sequence identities of analyzed TNF-α homologs range from 99.57% (between human and chimpanzee proteins) to 22.33% (between frog and fish proteins), their intrinsic disorder profiles are characterized by a remarkable similarity. These observations indicate that the peculiarities of distribution of the intrinsic disorder propensity within the amino acid sequences are evolutionary conserved, and therefore could be of functional importance for this family of proteins. We also show that disordered and flexible regions of human TNF-α and its TNFR1 and TNFR2 receptors are crucial for some of their biological activities.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Nawal Abd El-Baky
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Esmail M El-Fakharany
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Amira Sabry
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alexey V Uversky
- Center for Data Analytics and Biomedical Informatics, Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
38
|
Wang Y, van Assen AH, Reis CR, Setroikromo R, van Merkerk R, Boersma YL, Cool RH, Quax WJ. Novel RANKL DE-loop mutants antagonize RANK-mediated osteoclastogenesis. FEBS J 2017. [PMID: 28627025 DOI: 10.1111/febs.14142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yizhou Wang
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Aart H.G. van Assen
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Carlos R. Reis
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Ykelien L. Boersma
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Robbert H. Cool
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| |
Collapse
|
39
|
Park OJ, Kim J, Yang J, Yun CH, Han SH. Muramyl Dipeptide, a Shared Structural Motif of Peptidoglycans, Is a Novel Inducer of Bone Formation through Induction of Runx2. J Bone Miner Res 2017; 32:1455-1468. [PMID: 28337794 DOI: 10.1002/jbmr.3137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 12/19/2022]
Abstract
Peptidoglycan fragments released from gut microbiota can be delivered to the bone marrow and affect bone metabolism. We investigated the regulation of bone metabolism by muramyl dipeptide (MDP), which is a shared structural unit of peptidoglycans. Increased bone and mineral density by enhanced bone formation were observed in mice administered with MDP. Remarkably, pretreatment or posttreatment with MDP alleviated bone loss in RANKL-induced osteoporosis mouse models. MDP directly augmented osteoblast differentiation and bone-forming gene expression by Runx2 activation. Despite no direct effect, MDP indirectly attenuated osteoclast differentiation through downregulation of the RANKL/osteoprotegerin (OPG) ratio. MDP increased the expression of the MDP receptor, Nod2, and MDP-induced bone formation and osteoblast activation did not occur during Nod2 deficiency. Other Nod2 ligands also increased bone formation through the induction of Runx2, as MDP did. In conclusion, we suggest that MDP is a novel inducer of bone formation that could potentially be a new therapeutic molecule to protect against osteoporosis. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ok-Jin Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jiseon Kim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jihyun Yang
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, World Class University Biomodulation Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Mbalaviele G, Novack DV, Schett G, Teitelbaum SL. Inflammatory osteolysis: a conspiracy against bone. J Clin Invest 2017; 127:2030-2039. [PMID: 28569732 DOI: 10.1172/jci93356] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are many causes of inflammatory osteolysis, but regardless of etiology and cellular contexts, the osteoclast is the bone-degrading cell. Thus, the impact of inflammatory cytokines on osteoclast formation and function was among the most important discoveries advancing the treatment of focal osteolysis, leading to development of therapeutic agents that either directly block the bone-resorptive cell or do so indirectly via cytokine arrest. Despite these advances, a substantial number of patients with inflammatory arthritis remain resistant to current therapies, and even effective anti-inflammatory drugs frequently do not repair damaged bone. Thus, insights into events such as those impacted by inflammasomes, which signal through cytokine-dependent and -independent mechanisms, are needed to optimize treatment of inflammatory osteolysis.
Collapse
Affiliation(s)
| | - Deborah V Novack
- Department of Medicine, Division of Bone and Mineral Diseases, and.,Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Steven L Teitelbaum
- Department of Medicine, Division of Bone and Mineral Diseases, and.,Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
41
|
Cheminformatics-aided discovery of small-molecule Protein-Protein Interaction (PPI) dual inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB Ligand (RANKL). PLoS Comput Biol 2017; 13:e1005372. [PMID: 28426652 PMCID: PMC5398486 DOI: 10.1371/journal.pcbi.1005372] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
We present an in silico drug discovery pipeline developed and applied for the identification and virtual screening of small-molecule Protein-Protein Interaction (PPI) compounds that act as dual inhibitors of TNF and RANKL through the trimerization interface. The cheminformatics part of the pipeline was developed by combining structure-based with ligand-based modeling using the largest available set of known TNF inhibitors in the literature (2481 small molecules). To facilitate virtual screening, the consensus predictive model was made freely available at: http://enalos.insilicotox.com/TNFPubChem/. We thus generated a priority list of nine small molecules as candidates for direct TNF function inhibition. In vitro evaluation of these compounds led to the selection of two small molecules that act as potent direct inhibitors of TNF function, with IC50 values comparable to those of a previously-described direct inhibitor (SPD304), but with significantly reduced toxicity. These molecules were also identified as RANKL inhibitors and validated in vitro with respect to this second functionality. Direct binding of the two compounds was confirmed both for TNF and RANKL, as well as their ability to inhibit the biologically-active trimer forms. Molecular dynamics calculations were also carried out for the two small molecules in each protein to offer additional insight into the interactions that govern TNF and RANKL complex formation. To our knowledge, these compounds, namely T8 and T23, constitute the second and third published examples of dual small-molecule direct function inhibitors of TNF and RANKL, and could serve as lead compounds for the development of novel treatments for inflammatory and autoimmune diseases.
Collapse
|
42
|
Kurinami H, Shimamura M, Nakagami H, Shimizu H, Koriyama H, Kawano T, Wakayama K, Mochizuki H, Rakugi H, Morishita R. A Novel Therapeutic Peptide as a Partial Agonist of RANKL in Ischemic Stroke. Sci Rep 2016; 6:38062. [PMID: 27897273 PMCID: PMC5126682 DOI: 10.1038/srep38062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022] Open
Abstract
The enhanced receptor activator of nuclear factor-κB (NFκB) ligand (RANKL) and its receptor (RANK) signal have been reported to attenuate ischemic brain injury through inhibition of Toll-like receptor (TLR) 4-mediated inflammation. However, augmentation of the RANKL/RANK signal also accelerates osteoporosis, which is a potential problem in clinical use of RANKL. Therefore, we developed novel peptides, microglial healing peptides (MHPs), which were based on the DE and/or EF loop of RANKL. Among them, MHP1 was the most effective inhibitor of TLR4-induced inflammations in microglia/macrophages. The effects depended on RANK, as confirmed by knockdown experiments. In contrast to RANKL, MHP1 did not stimulate osteoclast differentiation. Unexpectedly, MHP1 inhibited RANKL-induced osteoclast differentiation. These findings suggested that MHP1 was a partial agonist of RANKL, and administration of MHP1 attenuated ischemic injury by decreasing inflammation. MHP1 could be a novel therapeutic agent for treating ischemic stroke.
Collapse
Affiliation(s)
- Hitomi Kurinami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan.,Postgraduate Medical Training Centre, Osaka University Hospital, Japan
| | - Munehisa Shimamura
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan.,Department of Neurology, Osaka University Graduate School of Medicine, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan
| | - Hideo Shimizu
- Department of Nutritional Science, Kansai University of Welfare Sciences, Japan
| | - Hiroshi Koriyama
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan
| | - Tomohiro Kawano
- Department of Neurology, Osaka University Graduate School of Medicine, Japan
| | - Kouji Wakayama
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, the University of Tokyo, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
43
|
Nakabayashi H, Aoyama S, Kawahara M, Nagamune T. Differentiation signalobody: Demonstration of antigen-dependent osteoclast differentiation from a progenitor cell line. J Biosci Bioeng 2016; 122:357-63. [PMID: 26979343 DOI: 10.1016/j.jbiosc.2016.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/13/2016] [Accepted: 02/19/2016] [Indexed: 01/10/2023]
Abstract
A "cytokine-less" in vitro differentiation method would be promising for cost-effective mass production of cells used for regenerative medicine. In this study, we developed a differentiation signalobody S-RANK, in which the extracellular domain of receptor activator of nuclear factor kappa-B (RANK) is replaced with a single-chain variable fragment (scFv) to attain signaling in response to an inexpensive antigen. A murine macrophage cell line RAW264, which is known to differentiate into an osteoclast by RANK ligand (RANKL), was lentivirally transduced with S-RANK. When the resultant cells were cultured with a specific antigen, the cells differentiated into multinucleated tartrate-resistant acid phosphatase-positive osteoclasts. The differentiation efficiency was almost comparable to those induced by RANKL. In addition, the signaling analysis demonstrated that nuclear factor kappa-B and mitogen-activated protein kinase signaling pathways, which are the major signaling pathways downstream of wild-type RANK, were also activated by S-RANK. These results demonstrate that S-RANK sufficiently mimics signal transduction of wild-type RANK. Differentiation signalobodies may be applied for controlling differentiation of other cell types by using appropriate signaling domains.
Collapse
Affiliation(s)
- Hideto Nakabayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Saeko Aoyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahiro Kawahara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
44
|
Role of the RANK/RANKL pathway in breast cancer. Maturitas 2016; 86:10-6. [PMID: 26921922 DOI: 10.1016/j.maturitas.2016.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 01/03/2016] [Indexed: 01/05/2023]
Abstract
The discovery of the OPG/RANK/RANKL pathway two decades ago has initiated novel insights into regulation of bone formation. More recently this pathway has been found to be also relevant in osteoclastic-independent mechanisms, mainly in mammary physiology and breast cancer. RANKL/RANK function is essential for epithelial cell proliferation and cellular survival as well as lobulo-alveolar development. The endogenous OPG functions as a soluble decoy receptor, binding the cytokine RANKL to prevent RANKL from activating its receptor RANK. The regulatory function of RANKL is one of the key factors in progesterone-induced proliferation of the breast. Progesterone has a direct action of progesterone on progesterone-receptor (PR) expressing cells but PR-negative cells are affected indirectly through RANKL-induced paracrine actions leading to proliferation of mammary epithelial PR-negative cells. RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Inhibition of the RANK/RANKL pathway using the monoclonal antibody denosumab can neutralize RANKL and inhibiting its interaction with its receptor RANK. Denosumab is currently used to treat osteoporosis and in prevention of skeletal related events in patients suffering from bone metastases due to solid tumors. As preclinical experiments suggest the RANKL/RANK pathway plays an important role in primary breast cancer development. The interference with the RANK/RANKL system could therefore serve as a potential target for prevention and treatment of breast cancer.
Collapse
|
45
|
Liu C, Zhao Y, He W, Wang W, Chen Y, Zhang S, Ma Y, Gohda J, Ishida T, Walter TS, Owens RJ, Stuart DI, Ren J, Gao B. A RANKL mutant used as an inter-species vaccine for efficient immunotherapy of osteoporosis. Sci Rep 2015; 5:14150. [PMID: 26412210 PMCID: PMC4585926 DOI: 10.1038/srep14150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/14/2015] [Indexed: 01/01/2023] Open
Abstract
Anti-cytokine therapeutic antibodies have been demonstrated to be effective in the treatment of several auto-immune disorders. However, The problems in antibody manufacture and the immunogenicity caused by multiple doses of antibodies inspire people to use auto-cytokine as immunogen to induce anti-cytokine antibodies. Nevertheless, the tolerance for inducing immune response against self-antigen has hindered the wide application of the strategy. To overcome the tolerance, here we proposed a strategy using the inter-species cytokine as immunogen for active immunization (TISCAI) to induce anti-cytokine antibody. As a proof of concept, an inter-species cytokine RANKL was successfully used as immunogen to induce anti-RANKL immune response. Furthermore, to prevent undesirable side-effects, the human RANKL was mutated based on the crystal structure of the complex of human RANKL and its rodent counterpart receptor RANK. We found, the antibodies produced blocked the osteoclast development in vitro and osteoporosis in OVX rat models. The results demonstrated this strategy adopted is very useful for general anti-cytokine immunotherapy for different diseases settings.
Collapse
Affiliation(s)
- Changzhen Liu
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, NO.16, Dongzhimennei South Street, Dongcheng District, Beijing 100700, China
| | - Yunfeng Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Wen He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Wei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Yuan Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Shiqian Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Yijing Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen Xilu, Beijing 100101, China
| | - Jin Gohda
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo 108-8639, Japan
| | - Takaomi Ishida
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo 108-8639, Japan
| | - Thomas S Walter
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, The Henry Welcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Raymond J Owens
- Oxford Protein Production Facility UK, Research Complex at Harwell, Rutherford Appleton Laboratory Harwell, Science and Innovation Campus, Oxfordshire, OX11 0FA, UK
| | - David I Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, The Henry Welcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Jingshan Ren
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, The Henry Welcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | |
Collapse
|
46
|
Wajant H. Principles of antibody-mediated TNF receptor activation. Cell Death Differ 2015; 22:1727-41. [PMID: 26292758 PMCID: PMC4648319 DOI: 10.1038/cdd.2015.109] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022] Open
Abstract
From the beginning of research on receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), agonistic antibodies have been used to stimulate TNFRSF receptors in vitro and in vivo. Indeed, CD95, one of the first cloned TNFRSF receptors, was solely identified as the target of cell death-inducing antibodies. Early on, it became evident from in vitro studies that valency and Fcγ receptor (FcγR) binding of antibodies targeting TNFRSF receptors can be of crucial relevance for agonistic activity. TNFRSF receptor-specific antibodies of the IgM subclass and secondary cross-linked or aggregation prone dimeric antibodies typically display superior agonistic activity compared with dimeric antibodies. Likewise, anchoring of antibodies to cell surface-expressed FcγRs potentiate their ability to trigger TNFRSF receptor signaling. However, only recently has the relevance of oligomerization and FcγR binding for the in vivo activity of antibody-induced TNFRSF receptor activation been straightforwardly demonstrated in vivo. This review discusses the crucial role of oligomerization and/or FcγR binding for antibody-mediated TNFRSF receptor stimulation in light of current models of TNFRSF receptor activation and especially the overwhelming relevance of these issues for the rational development of therapeutic TNFRSF receptor-targeting antibodies.
Collapse
Affiliation(s)
- H Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
47
|
Sutton KMC, Hu T, Wu Z, Siklodi B, Vervelde L, Kaiser P. The functions of the avian receptor activator of NF-κB ligand (RANKL) and its receptors, RANK and osteoprotegerin, are evolutionarily conserved. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:170-184. [PMID: 25796577 DOI: 10.1016/j.dci.2015.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
A new member of the chicken TNF superfamily has recently been identified, namely receptor activator of NF-κB ligand (RANKL), as have its signalling receptor, RANK, and its decoy receptor, osteoprotegerin (OPG). In mammals, RANKL and RANK are transmembrane proteins expressed on the surface of Th1 cells and dendritic cells (DC) respectively, whereas OPG is expressed as a soluble protein from osteoblasts and DC. Recombinant soluble chicken RANKL (chRANKL) forms homotrimers whereas chicken OPG (chOPG) forms homodimers, characteristic of these molecules in mammals. ChRANKL, chRANK and chOPG are expressed at the mRNA level in most tissues and organs. ChRANKL is transcriptionally regulated by Ca(2+) mobilisation and enhances the mRNA expression levels of pro-inflammatory cytokines in bone marrow-derived DC (BMDC); this is inhibited by both chOPG-Fc and soluble chRANK-Fc. However, chRANKL does not enhance the expression of cell surface markers in either BMDC or BM-derived macrophages (BMM). Furthermore, chRANKL enhances the survival of APC similar to its mammalian orthologue.
Collapse
Affiliation(s)
- Kate M C Sutton
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Tuanjun Hu
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Zhiguang Wu
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Botond Siklodi
- CEVA-Phylaxia Veterinary Biologicals Co. Ltd., Szallas u. 5, Budapest H-1107, Hungary
| | - Lonneke Vervelde
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - Pete Kaiser
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
48
|
Schieferdecker A, Voigt M, Riecken K, Braig F, Schinke T, Loges S, Bokemeyer C, Fehse B, Binder M. Denosumab mimics the natural decoy receptor osteoprotegerin by interacting with its major binding site on RANKL. Oncotarget 2015; 5:6647-53. [PMID: 25138051 PMCID: PMC4196153 DOI: 10.18632/oncotarget.2160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bone homeostasis critically relies on the RANKL-RANK-OPG axis which can be targeted by the fully human monoclonal antibody denosumab in conditions with increased bone resporption such as bone metastases. The binding site and therefore the molecular mechanism by which this antibody inhibits RANKL has not been characterized so far. Here, we used random peptide phage display library screenings to identify the denosumab epitope on RANKL. Alignments of phage derived peptide sequences with RANKL suggested that this antibody recognized a linear epitope between position T233 and Y241. Mutational analysis confirmed the core residues as critical for this interaction. The spatial localization of this epitope on a 3-dimensional model of RANKL showed that it overlapped with the major binding sites of OPG and RANK on RANKL. We conclude that denosumab inhibits RANKL by both functional and molecular mimicry of the natural decoy receptor OPG.
Collapse
Affiliation(s)
- Aneta Schieferdecker
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike Voigt
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Braig
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Loges
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mascha Binder
- Department of Oncology and Hematology, BMT with section Pneumology, Hubertus Wald Tumorzentrum / UCCH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
49
|
Higgs JT, Jarboe JS, Lee JH, Chanda D, Lee CM, Deivanayagam C, Ponnazhagan S. Variants of Osteoprotegerin Lacking TRAIL Binding for Therapeutic Bone Remodeling in Osteolytic Malignancies. Mol Cancer Res 2015; 13:819-27. [PMID: 25636966 DOI: 10.1158/1541-7786.mcr-14-0492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/18/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Osteolytic bone damage is a major cause of morbidity in several metastatic pathologies. Current therapies using bisphosphonates provide modest improvement, but cytotoxic side effects still occur prompting the need to develop more effective therapies to target aggressive osteoclastogenesis. Increased levels of receptor activator of NF-κB ligand (TNFSF11/RANKL), leading to RANKL-RANK signaling, remain the key axis for osteoclast activation and bone resorption. Osteoprotegerin (TNFRSF11B/OPG), a decoy receptor for RANKL, is significantly decreased in patients who present with bone lesions. Despite its potential in inhibiting osteoclast activation, OPG also binds to TNF-related apoptosis-inducing ligand (TNFSF10/TRAIL), making tumor cells resistant to apoptosis. Toward uncoupling the events of TRAIL binding of OPG and to improve its utility for bone remodeling without inducing tumor resistance to apoptosis, OPG mutants were developed by structural homology modeling based on interactive domain identification and by superimposing models of OPG, TRAIL, and its receptor DR5 (TNFRSF10B) to identify regions of OPG for rational design. The OPG mutants were purified and extensively characterized for their ability to decrease osteoclast damage without affecting tumor apoptosis pathway both in vitro and in vivo, confirming their potential in bone remodeling following cancer-induced osteolytic damage. IMPLICATIONS OPG variants were developed that lack TRAIL binding, yet retain RANKL binding and suggest new possibilities for therapeutic targeting in osteolytic malignancies.
Collapse
Affiliation(s)
- Jerome T Higgs
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - John S Jarboe
- Department of Biochemistry, The University of Alabama at Birmingham, Birmingham, Alabama. Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Joo Hyoung Lee
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Diptiman Chanda
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Carnellia M Lee
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Champion Deivanayagam
- Department of Vision Sciences, The University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
50
|
Linxi Z, Guirong Z, Xue W, Gang S. The Effect of High Glucose on Proliferation and Expression of Correlation Factors of MG63 Osteoblasts. J HARD TISSUE BIOL 2015. [DOI: 10.2485/jhtb.24.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zhou Linxi
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University
| | - Zhang Guirong
- Department of Orthodontics, Stomatology Hospital of Shenyang
| | - Wang Xue
- Department of Orthodontics, Stomatology Hospital of Shenyang
| | - Shen Gang
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University
| |
Collapse
|