1
|
Rikhi R, Basu S, Arora K, Chan KW, Jindal AK, Rawat A, Lau YL, Suri D. Somatic reversion in Wiskott-Aldrich syndrome: Case reports and mechanistic insights. Scand J Immunol 2024; 100:e13408. [PMID: 39304328 DOI: 10.1111/sji.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
This report describes two brothers from India and a Chinese patient with somatic reversion of an inherited deleterious mutation in the WAS gene. Both the Indian siblings had inherited a single nucleotide deletion causing a frameshift mutation (c.1190del, p.Pro397Argfs*48) (variant 1: marked in blue) from the mother. Another variant (variant 2: marked in red), a 12-nucleotide deletion at position 1188-1199 (c.1188_1199del, p.P401_P404del) was also found, which resulted in restoration of the frame and subsequent rescue of the protein sequence. DNA sequencing from buccal mucosal cells revealed only the inherited variant (variant 1), while no reversion mutation was identified in the mucosal cells. Similarly, the Chinese patient was found to have a novel germline 14-base duplication (ACGAAAATGCTTGG) c.120_132 + 1dup (variant 1). This resulted in abolishment of the original splice junction coupled with the creation of a new junction 14 bases 3' and a frameshift mutation with predicted protein truncation p. Thr45Aspfs*. DNA from the patient's PBMC showed co-existence of wild-type and mutated sequences, but only the mutant was present in the buccal cells. Genomic and mRNA analysis of the isolated CD3+ T lymphocytes, CD3- mononuclear cells, and EBV-transformed B lymphocytes indicated that the reverant variant (germline variant was restored to wild-type sequence) were selectively found in CD3+ T lymphocytes.
Collapse
Affiliation(s)
- Rashmi Rikhi
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Suprit Basu
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanika Arora
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Koon-Wing Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong
| | - Ankur Kumar Jindal
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong
| | - Deepti Suri
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
2
|
Oktelik FB, Wang M, Keles S, Eke Gungor H, Cansever M, Can S, Karakoc-Aydiner E, Baris S, Schmitz-Abe K, Benamar M, Chatila TA. DOCK8 deficiency due to a deep intronic variant in two kindreds with hyper-IgE syndrome. Clin Immunol 2024; 268:110384. [PMID: 39437980 PMCID: PMC11531991 DOI: 10.1016/j.clim.2024.110384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Dedicator of cytokinesis 8 (DOCK8) deficiency underlies the majority of cases of patients with autosomal recessive form of the hyper-immunoglobulin E syndrome (HIES). Most DOCK8 mutations involve deletions and splice junction mutations that abrogate protein expression. However, a few patients whose presentation is reminiscent of DOCK8 deficiency have no identifiable mutations. Using Whole Exome Sequencing (WES), we identified a deep intronic homozygous DOCK8 variant located in intron 36 (c.4626 + 76 A > G) in two unrelated patients with features of HIES that resulted in an in-frame 75 base pair intronic sequence insertion in DOCK8 cDNA, resulting in a premature stop codon (p.S1542ins6Ter). This variant resulted in variable decrease in DOCK8 expression that was associated with impaired T cell receptor-triggered actin polymerization, decreased IL-6-induced STAT3 phosphorylation, reduced expression of the Th17 cell markers CCR6 and IL-17, and higher frequencies of GATA3+ T cells indicative of Th2 skewing. Our approach extends the reach of WES in identifying disease-related intronic variants. It highlights the role of non-coding mutations in immunodeficiency disorders, including DOCK8 deficiency, and emphasizes the need to explore these mutations in unexplained inborn errors of immunity.
Collapse
Affiliation(s)
- Fatma Betul Oktelik
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Immunology, Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Istanbul University, Istanbul, Turkiye; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Muyun Wang
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Sevgi Keles
- Necmettin Erbakan University, Medical Faculty, Department of Pediatric Allergy and Immunology, Konya, Turkiye
| | - Hatice Eke Gungor
- University of Health Sciences, Kayseri City Hospital, Department of Pediatric Allergy and Immunology, Kayseri, Turkiye
| | - Murat Cansever
- University of Health Sciences, Kayseri City Hospital, Department of Pediatric Allergy and Immunology, Kayseri, Turkiye
| | - Salim Can
- Marmara University, School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkiye; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkiye; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkiye
| | - Elif Karakoc-Aydiner
- Marmara University, School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkiye; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkiye; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkiye
| | - Safa Baris
- Marmara University, School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkiye; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkiye; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkiye
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Jackson Health System, Miami, FL, USA
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Huynh A, Gray PE, Sullivan A, Mackie J, Guerin A, Rao G, Pathmanandavel K, Mina ED, Hollway G, Hobbs M, Enthoven K, O'Young P, McManus S, Wainwright LH, Higgins M, Noon F, Wong M, Bastard P, Zhang Q, Casanova JL, Hsiao KC, Pinzon-Charry A, Ma CS, Tangye SG. A Novel Case of IFNAR1 Deficiency Identified a Common Canonical Splice Site Variant in DOCK8 in Western Polynesia: The Importance of Validating Variants of Unknown Significance in Under-Represented Ancestries. J Clin Immunol 2024; 44:170. [PMID: 39098944 PMCID: PMC11298505 DOI: 10.1007/s10875-024-01774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Advanced genomic technologies such as whole exome or whole genome sequencing have improved diagnoses and disease outcomes for individuals with genetic diseases. Yet, variants of unknown significance (VUS) require rigorous validation to establish disease causality or modification, or to exclude them from further analysis. Here, we describe a young individual of Polynesian ancestry who in the first 13 mo of life presented with SARS-CoV-2 pneumonia, severe enterovirus meningitis and adenovirus gastroenteritis, and severe adverse reaction to MMR vaccination. Genomic analysis identified a previously reported pathogenic homozygous variant in IFNAR1 (c.1156G > T, p.Glu386* LOF), which is common in Western Polynesia. Moreover, a new and putatively deleterious canonical splice site variant in DOCK8 was also found in homozygosity (c.3234 + 2T > C). This DOCK8 variant is common in Polynesians and other under-represented ancestries in large genomic databases. Despite in silico bioinformatic predictions, extensive in vitro and ex vivo analysis revealed the DOCK8 variant likely be neutral. Thus, our study reports a novel case of IFNAR1 deficiency, but also highlights the importance of functional validation of VUS, including those predicted to be deleterious, and the pressing need to expand our knowledge of the genomic architecture and landscape of under-represented populations and ancestries.
Collapse
Affiliation(s)
- Aimee Huynh
- Queensland Paediatric Immunology and Allergy Service, Children's Health Queensland, Brisbane, QLD, 4101, Australia
| | - Paul E Gray
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- School Medicine, Western Sydney University, Penrith, NSW, Australia
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, Australia
| | - Anna Sullivan
- Queensland Paediatric Immunology and Allergy Service, Children's Health Queensland, Brisbane, QLD, 4101, Australia
- Clinical Immunogenomics Research Consortium, Australasia, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Antoine Guerin
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Geetha Rao
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Erika Della Mina
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Georgina Hollway
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Matthew Hobbs
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Karen Enthoven
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Patrick O'Young
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Sam McManus
- Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | | | | | - Fallon Noon
- Genetic Health Queensland, Brisbane, Australia
| | - Melanie Wong
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- Department of Allergy and Immunology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- University of Paris, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- University of Paris, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, USA
| | - Kuang-Chih Hsiao
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- Starship Child Health, Auckland, New Zealand
- Department of Paediatrics, University of Auckland, Auckland, New Zealand
| | - Alberto Pinzon-Charry
- Queensland Paediatric Immunology and Allergy Service, Children's Health Queensland, Brisbane, QLD, 4101, Australia
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- Griffith University and University of Queensland, Queensland, Australia
| | - Cindy S Ma
- Clinical Immunogenomics Research Consortium, Australasia, Australia
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Stuart G Tangye
- Clinical Immunogenomics Research Consortium, Australasia, Australia.
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Fusaro M, Dupré L. Mechanisms underlying skin inflammation of DOCK8 deficiency. J Allergy Clin Immunol 2024; 154:88-90. [PMID: 38759801 DOI: 10.1016/j.jaci.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Affiliation(s)
- Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France; Laboratoire d'Immunologie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France; Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Biglari S, Moghaddam AS, Tabatabaiefar MA, Sherkat R, Youssefian L, Saeidian AH, Vahidnezhad F, Tsoi LC, Gudjonsson JE, Hakonarson H, Casanova JL, Béziat V, Jouanguy E, Vahidnezhad H. Monogenic etiologies of persistent human papillomavirus infections: A comprehensive systematic review. Genet Med 2024; 26:101028. [PMID: 37978863 PMCID: PMC10922824 DOI: 10.1016/j.gim.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Persistent human papillomavirus infection (PHPVI) causes cutaneous, anogenital, and mucosal warts. Cutaneous warts include common warts, Treeman syndrome, and epidermodysplasia verruciformis, among others. Although more reports of monogenic predisposition to PHPVI have been published with the development of genomic technologies, genetic testing is rarely incorporated into clinical assessments. To encourage broader molecular testing, we compiled a list of the various monogenic etiologies of PHPVI. METHODS We conducted a systematic literature review to determine the genetic, immunological, and clinical characteristics of patients with PHPVI. RESULTS The inclusion criteria were met by 261 of 40,687 articles. In 842 patients, 83 PHPVI-associated genes were identified, including 42, 6, and 35 genes with strong, moderate, and weak evidence for causality, respectively. Autosomal recessive inheritance predominated (69%). PHPVI onset age was 10.8 ± 8.6 years, with an interquartile range of 5 to 14 years. GATA2,IL2RG,DOCK8, CXCR4, TMC6, TMC8, and CIB1 are the most frequently reported PHPVI-associated genes with strong causality. Most genes (74 out of 83) belong to a catalog of 485 inborn errors of immunity-related genes, and 40 genes (54%) are represented in the nonsyndromic and syndromic combined immunodeficiency categories. CONCLUSION PHPVI has at least 83 monogenic etiologies and a genetic diagnosis is essential for effective management.
Collapse
Affiliation(s)
- Sajjad Biglari
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Youssefian
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amir Hossein Saeidian
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Hassan Vahidnezhad
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
6
|
Similuk M, Kuijpers T. Nature and nurture: understanding phenotypic variation in inborn errors of immunity. Front Cell Infect Microbiol 2023; 13:1183142. [PMID: 37780853 PMCID: PMC10538643 DOI: 10.3389/fcimb.2023.1183142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
The overall disease burden of pediatric infection is high, with widely varying clinical outcomes including death. Among the most vulnerable children, those with inborn errors of immunity, reduced penetrance and variable expressivity are common but poorly understood. There are several genetic mechanisms that influence phenotypic variation in inborn errors of immunity, as well as a body of knowledge on environmental influences and specific pathogen triggers. Critically, recent advances are illuminating novel nuances for fundamental concepts on disease penetrance, as well as raising new areas of inquiry. The last few decades have seen the identification of almost 500 causes of inborn errors of immunity, as well as major advancements in our ability to characterize somatic events, the microbiome, and genotypes across large populations. The progress has not been linear, and yet, these developments have accumulated into an enhanced ability to diagnose and treat inborn errors of immunity, in some cases with precision therapy. Nonetheless, many questions remain regarding the genetic and environmental contributions to phenotypic variation both within and among families. The purpose of this review is to provide an updated summary of key concepts in genetic and environmental contributions to phenotypic variation within inborn errors of immunity, conceptualized as including dynamic, reciprocal interplay among factors unfolding across the key dimension of time. The associated findings, potential gaps, and implications for research are discussed in turn for each major influencing factor. The substantial challenge ahead will be to organize and integrate information in such a way that accommodates the heterogeneity within inborn errors of immunity to arrive at a more comprehensive and accurate understanding of how the immune system operates in health and disease. And, crucially, to translate this understanding into improved patient care for the millions at risk for serious infection and other immune-related morbidity.
Collapse
Affiliation(s)
- Morgan Similuk
- Centralized Sequencing Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Ma CS, Freeman AF, Fleisher TA. Inborn Errors of Immunity: A Role for Functional Testing and Flow Cytometry in Aiding Clinical Diagnosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1579-1591. [PMID: 37054882 PMCID: PMC10330903 DOI: 10.1016/j.jaip.2023.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
With the exponential discovery of new inborn errors of immunity (IEI), it is becoming increasingly difficult to differentiate between a number of the more recently defined disorders. This is compounded by the fact that although IEI primarily present with immunodeficiency, the spectrum of disease is broad and often extends to features typical of autoimmunity, autoinflammation, atopic disease, and/or malignancy. Here we use case studies to discuss the laboratory and genetic tests used that ultimately led to the specific diagnoses.
Collapse
Affiliation(s)
- Cindy S Ma
- Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Thomas A Fleisher
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Md
| |
Collapse
|
8
|
Aluri J, Cooper MA. Somatic mosaicism in inborn errors of immunity: Current knowledge, challenges, and future perspectives. Semin Immunol 2023; 67:101761. [PMID: 37062181 PMCID: PMC11321052 DOI: 10.1016/j.smim.2023.101761] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
Inborn errors of immunity (IEI) are a diverse group of monogenic disorders of the immune system due to germline variants in genes important for the immune response. Over the past decade there has been increasing recognition that acquired somatic variants present in a subset of cells can also lead to immune disorders or 'phenocopies' of IEI. Discovery of somatic mosaicism causing IEI has largely arisen from investigation of seemingly sporadic cases of IEI with predominant symptoms of autoinflammation and/or autoimmunity in which germline disease-causing variants are not detected. Disease-causing somatic mosaicism has been identified in genes that also cause germline IEI, such as FAS, and in genes without significant corresponding germline disease, such as UBA1 and TLR8. There are challenges in detecting low-level somatic variants, and it is likely that the extent of the somatic mosaicism causing IEI is largely uncharted. Here we review the field of somatic mosaicism leading to IEI and discuss challenges and methods for somatic variant detection, including diagnostic approaches for molecular diagnoses of patients.
Collapse
Affiliation(s)
- Jahnavi Aluri
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Lévy R, Gothe F, Momenilandi M, Magg T, Materna M, Peters P, Raedler J, Philippot Q, Rack-Hoch AL, Langlais D, Bourgey M, Lanz AL, Ogishi M, Rosain J, Martin E, Latour S, Vladikine N, Distefano M, Khan T, Rapaport F, Schulz MS, Holzer U, Fasth A, Sogkas G, Speckmann C, Troilo A, Bigley V, Roppelt A, Dinur-Schejter Y, Toker O, Bronken Martinsen KH, Sherkat R, Somekh I, Somech R, Shouval DS, Kühl JS, Ip W, McDermott EM, Cliffe L, Ozen A, Baris S, Rangarajan HG, Jouanguy E, Puel A, Bustamante J, Alyanakian MA, Fusaro M, Wang Y, Kong XF, Cobat A, Boutboul D, Castelle M, Aguilar C, Hermine O, Cheminant M, Suarez F, Yildiran A, Bousfiha A, Al-Mousa H, Alsohime F, Cagdas D, Abraham RS, Knutsen AP, Fevang B, Bhattad S, Kiykim A, Erman B, Arikoglu T, Unal E, Kumar A, Geier CB, Baumann U, Neven B, Rohlfs M, Walz C, Abel L, Malissen B, Marr N, Klein C, Casanova JL, Hauck F, Béziat V. Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency. J Exp Med 2023; 220:e20220275. [PMID: 36515678 PMCID: PMC9754768 DOI: 10.1084/jem.20220275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/17/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Patients with inherited CARMIL2 or CD28 deficiency have defective T cell CD28 signaling, but their immunological and clinical phenotypes remain largely unknown. We show that only one of three CARMIL2 isoforms is produced and functional across leukocyte subsets. Tested mutant CARMIL2 alleles from 89 patients and 52 families impair canonical NF-κB but not AP-1 and NFAT activation in T cells stimulated via CD28. Like CD28-deficient patients, CARMIL2-deficient patients display recalcitrant warts and low blood counts of CD4+ and CD8+ memory T cells and CD4+ TREGs. Unlike CD28-deficient patients, they have low counts of NK cells and memory B cells, and their antibody responses are weak. CARMIL2 deficiency is fully penetrant by the age of 10 yr and is characterized by numerous infections, EBV+ smooth muscle tumors, and mucocutaneous inflammation, including inflammatory bowel disease. Patients with somatic reversions of a mutant allele in CD4+ T cells have milder phenotypes. Our study suggests that CARMIL2 governs immunological pathways beyond CD28.
Collapse
Affiliation(s)
- Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Florian Gothe
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Thomas Magg
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Philipp Peters
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Johannes Raedler
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Anita Lena Rack-Hoch
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - David Langlais
- Dept. of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Mathieu Bourgey
- Dept. of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Anna-Lisa Lanz
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Emmanuel Martin
- Imagine Institute, University of Paris-Cité, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France
| | - Sylvain Latour
- Imagine Institute, University of Paris-Cité, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France
| | - Natasha Vladikine
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Marco Distefano
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | | | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Marian S. Schulz
- Dept. of Women and Child Health, Hospital for Children and Adolescents, Hospitals University of Leipzig, Leipzig, Germany
| | - Ursula Holzer
- Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Anders Fasth
- Dept. of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Gothenburg, Sweden
| | - Georgios Sogkas
- Dept. of Immunology and Rheumatology, Medical School Hannover, Hanover, Germany
| | - Carsten Speckmann
- Dept. of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology and Center for Chronic Immunodeficiency (CCI), Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arianna Troilo
- Dept. of Rheumatology and CCI for Chronic Immunodeficiency, Division of Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Venetia Bigley
- Translational and Clinical Research Institute and NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anna Roppelt
- Dept. of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Yael Dinur-Schejter
- Dept. of Bone Marrow Transplantation, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Ori Toker
- Faculty of Medicine, Hebrew University of Jerusalem, The Allergy and Clinical Immunology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ido Somekh
- Dept. of Pediatric Hematology/Oncology, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
| | - Raz Somech
- The Institute of Gastroenterology, Nutrition and Liver diseases, Schneider Children's Medical Center of Israel, Petah Tikva, Israel, and The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror S. Shouval
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv Israel; The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Hospital, Petach-Tikva, Israel; Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jörn-Sven Kühl
- Dept. of Women and Child Health, Hospital for Children and Adolescents, Hospitals University of Leipzig, Leipzig, Germany
| | - Winnie Ip
- Dept. of Immunology, Great Ormond Street Hospital, London, UK
| | | | - Lucy Cliffe
- Dept. of Pediatrics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Ahmet Ozen
- Dept. of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Safa Baris
- Dept. of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Hemalatha G. Rangarajan
- Division of Hematology, Oncology and Bone Marrow Transplant, Dept. of Pediatrics, Nationwide Children’s Hospital, Columbus, OH
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | | | - Mathieu Fusaro
- Imagine Institute, University of Paris-Cité, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Yi Wang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - David Boutboul
- Dept. of Clinical Immunology, AP-HP, Saint-Louis Hospital, Paris, France
| | - Martin Castelle
- Imagine Institute, University of Paris-Cité, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Claire Aguilar
- Necker Pasteur Center for Infectious Diseases and Tropical Medicine, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Olivier Hermine
- Imagine Institute, University of Paris-Cité, Paris, France
- Dept. of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Morgane Cheminant
- Imagine Institute, University of Paris-Cité, Paris, France
- Dept. of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Felipe Suarez
- Imagine Institute, University of Paris-Cité, Paris, France
- Dept. of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Alisan Yildiran
- Dept. of Pediatric Immunology and Allergy, Ondokuz Mayis University Medical School, Samsun, Turkey
| | - Aziz Bousfiha
- Clinical Immunology, Inflammation and Auto-immunity Laboratory, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Hamoud Al-Mousa
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fahad Alsohime
- Pediatric Intensive Care Unit, Dept. of Pediatrics, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
- Immunology Research Laboratory, Dept. of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Deniz Cagdas
- Section of Pediatric Immunology, Hacettepe University, Ihsan Dogramaci Children’s Hospital, Ankara, Turkey
| | - Roshini S. Abraham
- Dept. of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Alan P. Knutsen
- Pediatric Allergy and Immunology, Cardinal Glennon Children’s Hospital, St. Louis, MO
| | - Borre Fevang
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Sagar Bhattad
- Dept. of Pediatrics, Aster CMI Hospital, Bangalore, India
| | - Ayca Kiykim
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Pediatric Immunology and Allergy, Istanbul, Turkey
| | - Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Tugba Arikoglu
- Dept. of Pediatrics, Division of Pediatric Allergy and Immunology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Ekrem Unal
- Division of Pediatric Hematology Oncology, Dept. of Pediatrics, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Ashish Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Dept. of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Christoph B. Geier
- Dept. of Rheumatology and CCI for Chronic Immunodeficiency, Division of Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich Baumann
- Dept. of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Bénédicte Neven
- Imagine Institute, University of Paris-Cité, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Meino Rohlfs
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, INSERM, CNRS, Marseille, France
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Christoph Klein
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
- Dept. of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Fabian Hauck
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| |
Collapse
|
10
|
Su HC. Insights into the pathogenesis of allergic disease from dedicator of cytokinesis 8 deficiency. Curr Opin Immunol 2023; 80:102277. [PMID: 36508760 PMCID: PMC9972721 DOI: 10.1016/j.coi.2022.102277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
Clinical observations and mechanistic studies in dedicator of cytokinesis 8 (DOCK8)-deficient patients and mice have revealed multiple mechanisms that could contribute to their unusually prevalent and severe allergic disease manifestations. Physical interactions of DOCK8 with STAT3 in B cells and T cells may contribute to increased IgE isotype switching or defective immune synapse formation that decreases T-cell receptor signal strength. A newly discovered TFH13 cell type promotes the development of life-threatening allergy via production of IL-13 and is increased in DOCK8 deficiency. Cytoskeletal derangements and cytothripsis, which were previously shown to account for the increased susceptibility to viral skin infection in DOCK8 deficiency, can lead to interplay between myeloid cells and T cells to ultimately increase production of IL-4, IL-5, and IL-13. Finally, the effects on type-2 innate lymphoid cells may also contribute to allergic disease.
Collapse
Affiliation(s)
- Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States.
| |
Collapse
|
11
|
Hyper IgE syndromes: A clinical approach. Clin Immunol 2022; 237:108988. [DOI: 10.1016/j.clim.2022.108988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
|
12
|
Ravendran S, Hernández SS, König S, Bak RO. CRISPR/Cas-Based Gene Editing Strategies for DOCK8 Immunodeficiency Syndrome. Front Genome Ed 2022; 4:793010. [PMID: 35373187 PMCID: PMC8969908 DOI: 10.3389/fgeed.2022.793010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Defects in the DOCK8 gene causes combined immunodeficiency termed DOCK8 immunodeficiency syndrome (DIDS). DIDS previously belonged to the disease category of autosomal recessive hyper IgE syndrome (AR-HIES) but is now classified as a combined immunodeficiency (CID). This genetic disorder induces early onset of susceptibility to severe recurrent viral and bacterial infections, atopic diseases and malignancy resulting in high morbidity and mortality. This pathological state arises from impairment of actin polymerization and cytoskeletal rearrangement, which induces improper immune cell migration-, survival-, and effector functions. Owing to the severity of the disease, early allogenic hematopoietic stem cell transplantation is recommended even though it is associated with risk of unintended adverse effects, the need for compatible donors, and high expenses. So far, no alternative therapies have been developed, but the monogenic recessive nature of the disease suggests that gene therapy may be applied. The advent of the CRISPR/Cas gene editing system heralds a new era of possibilities in precision gene therapy, and positive results from clinical trials have already suggested that the tool may provide definitive cures for several genetic disorders. Here, we discuss the potential application of different CRISPR/Cas-mediated genetic therapies to correct the DOCK8 gene. Our findings encourage the pursuit of CRISPR/Cas-based gene editing approaches, which may constitute more precise, affordable, and low-risk definitive treatment options for DOCK8 deficiency.
Collapse
Affiliation(s)
| | | | | | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Tangye SG, Gray PE, Pillay BA, Yap JY, Figgett WA, Reeves J, Kummerfeld SK, Stoddard J, Uzel G, Jing H, Su HC, Campbell DE, Sullivan A, Burnett L, Peake J, Ma CS. Hyper-IgE Syndrome due to an Elusive Novel Intronic Homozygous Variant in DOCK8. J Clin Immunol 2022; 42:119-129. [PMID: 34657245 PMCID: PMC10461790 DOI: 10.1007/s10875-021-01152-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
Rare, biallelic loss-of-function mutations in DOCK8 result in a combined immune deficiency characterized by severe and recurrent cutaneous infections, eczema, allergies, and susceptibility to malignancy, as well as impaired humoral and cellular immunity and hyper-IgE. The advent of next-generation sequencing technologies has enabled the rapid molecular diagnosis of rare monogenic diseases, including inborn errors of immunity. These advances have resulted in the implementation of gene-guided treatments, such as hematopoietic stem cell transplant for DOCK8 deficiency. However, putative disease-causing variants revealed by next-generation sequencing need rigorous validation to demonstrate pathogenicity. Here, we report the eventual diagnosis of DOCK8 deficiency in a consanguineous family due to a novel homozygous intronic deletion variant that caused aberrant exon splicing and subsequent loss of expression of DOCK8 protein. Remarkably, the causative variant was not initially detected by clinical whole-genome sequencing but was subsequently identified and validated by combining advanced genomic analysis, RNA-seq, and flow cytometry. This case highlights the need to adopt multipronged confirmatory approaches to definitively solve complex genetic cases that result from variants outside protein-coding exons and conventional splice sites.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
| | - Paul E Gray
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Bethany A Pillay
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jin Yan Yap
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
| | - William A Figgett
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
| | - John Reeves
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Sarah K Kummerfeld
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Huie Jing
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dianne E Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Anna Sullivan
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
- Queensland Children's Hospital and University of Queensland, South Brisbane, Queensland, Australia
| | - Leslie Burnett
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Jane Peake
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
- Queensland Children's Hospital and University of Queensland, South Brisbane, Queensland, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
Kamnev A, Lacouture C, Fusaro M, Dupré L. Molecular Tuning of Actin Dynamics in Leukocyte Migration as Revealed by Immune-Related Actinopathies. Front Immunol 2021; 12:750537. [PMID: 34867982 PMCID: PMC8634686 DOI: 10.3389/fimmu.2021.750537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Motility is a crucial activity of immune cells allowing them to patrol tissues as they differentiate, sample or exchange information, and execute their effector functions. Although all immune cells are highly migratory, each subset is endowed with very distinct motility patterns in accordance with functional specification. Furthermore individual immune cell subsets adapt their motility behaviour to the surrounding tissue environment. This review focuses on how the generation and adaptation of diversified motility patterns in immune cells is sustained by actin cytoskeleton dynamics. In particular, we review the knowledge gained through the study of inborn errors of immunity (IEI) related to actin defects. Such pathologies are unique models that help us to uncover the contribution of individual actin regulators to the migration of immune cells in the context of their development and function.
Collapse
Affiliation(s)
- Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,Laboratoire De Physique Théorique, IRSAMC, Université De Toulouse (UPS), CNRS, Toulouse, France
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| |
Collapse
|
15
|
Miyazawa H, Wada T. Reversion Mosaicism in Primary Immunodeficiency Diseases. Front Immunol 2021; 12:783022. [PMID: 34868061 PMCID: PMC8635092 DOI: 10.3389/fimmu.2021.783022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Reversion mosaicism has been reported in an increasing number of genetic disorders including primary immunodeficiency diseases. Several mechanisms can mediate somatic reversion of inherited mutations. Back mutations restore wild-type sequences, whereas second-site mutations result in compensatory changes. In addition, intragenic recombination, chromosomal deletions, and copy-neutral loss of heterozygosity have been demonstrated in mosaic individuals. Revertant cells that have regained wild-type function may be associated with milder disease phenotypes in some immunodeficient patients with reversion mosaicism. Revertant cells can also be responsible for immune dysregulation. Studies identifying a large variety of genetic changes in the same individual further support a frequent occurrence of reversion mosaicism in primary immunodeficiency diseases. This phenomenon also provides unique opportunities to evaluate the biological effects of restored gene expression in different cell lineages. In this paper, we review the recent findings of reversion mosaicism in primary immunodeficiency diseases and discuss its clinical implications.
Collapse
Affiliation(s)
- Hanae Miyazawa
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
16
|
Yap JY, Moens L, Lin MW, Kane A, Kelleher A, Toong C, Wu KHC, Sewell WA, Phan TG, Hollway GE, Enthoven K, Gray PE, Casas-Martin J, Wouters C, De Somer L, Hershfield M, Bucciol G, Delafontaine S, Ma CS, Tangye SG, Meyts I. Intrinsic Defects in B Cell Development and Differentiation, T Cell Exhaustion and Altered Unconventional T Cell Generation Characterize Human Adenosine Deaminase Type 2 Deficiency. J Clin Immunol 2021; 41:1915-1935. [PMID: 34657246 PMCID: PMC8604888 DOI: 10.1007/s10875-021-01141-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/22/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Deficiency of adenosine deaminase type 2 (ADA2) (DADA2) is a rare inborn error of immunity caused by deleterious biallelic mutations in ADA2. Clinical manifestations are diverse, ranging from severe vasculopathy with lacunar strokes to immunodeficiency with viral infections, hypogammaglobulinemia and bone marrow failure. Limited data are available on the phenotype and function of leukocytes from DADA2 patients. The aim of this study was to perform in-depth immunophenotyping and functional analysis of the impact of DADA2 on human lymphocytes. METHODS In-depth immunophenotyping and functional analyses were performed on ten patients with confirmed DADA2 and compared to heterozygous carriers of pathogenic ADA2 mutations and normal healthy controls. RESULTS The median age of the patients was 10 years (mean 20.7 years, range 1-44 years). Four out of ten patients were on treatment with steroids and/or etanercept or other immunosuppressives. We confirmed a defect in terminal B cell differentiation in DADA2 and reveal a block in B cell development in the bone marrow at the pro-B to pre-B cell stage. We also show impaired differentiation of CD4+ and CD8+ memory T cells, accelerated exhaustion/senescence, and impaired survival and granzyme production by ADA2 deficient CD8+ T cells. Unconventional T cells (i.e. iNKT, MAIT, Vδ2+ γδT) were diminished whereas pro-inflammatory monocytes and CD56bright immature NK cells were increased. Expression of the IFN-induced lectin SIGLEC1 was increased on all monocyte subsets in DADA2 patients compared to healthy donors. Interestingly, the phenotype and function of lymphocytes from healthy heterozygous carriers were often intermediate to that of healthy donors and ADA2-deficient patients. CONCLUSION Extended immunophenotyping in DADA2 patients shows a complex immunophenotype. Our findings provide insight into the cellular mechanisms underlying some of the complex and heterogenous clinical features of DADA2. More research is needed to design targeted therapy to prevent viral infections in these patients with excessive inflammation as the overarching phenotype.
Collapse
Affiliation(s)
- Jin Yan Yap
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia
| | - Leen Moens
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Herestraat 49, 3000, Leuven, EU, Belgium
| | - Ming-Wei Lin
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia.,Department of Clinical Immunology and Immunopathology, Westmead Hospital, Westmead, NSW, Australia.,Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Alisa Kane
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia.,Department of Immunology, Liverpool Hospital, Allergy and HIV, Liverpool, Sydney, Australia.,HIV and Immunology Unit, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, Sydney, NSW, Australia
| | - Anthony Kelleher
- HIV and Immunology Unit, St Vincent's Hospital, Darlinghurst, NSW, Australia.,The Kirby Institute for Infection and Immunity in Society, Sydney, Australia
| | - Catherine Toong
- Department of Immunology, Liverpool Hospital, Allergy and HIV, Liverpool, Sydney, Australia
| | - Kathy H C Wu
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical Genomics, St Vincent's Hospital Darlinghurst, Darlinghurst, NSW, Australia.,School of Medicine, UNSW Sydney, Sydney, Australia.,Discipline of Genetic Medicine, University of Sydney, Sydney, Australia.,School of Medicine, University of Notre Dame, Fremantle, Australia
| | - William A Sewell
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, Sydney, NSW, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia.,HIV and Immunology Unit, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Georgina E Hollway
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia
| | - Karen Enthoven
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia
| | - Paul E Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jose Casas-Martin
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Herestraat 49, 3000, Leuven, EU, Belgium
| | - Carine Wouters
- Department of Microbiology and Immunology, Herestraat 49, 3000, Leuven, EU, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, EU, Belgium
| | - Lien De Somer
- Department of Microbiology and Immunology, Herestraat 49, 3000, Leuven, EU, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, EU, Belgium
| | - Michael Hershfield
- Department of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Giorgia Bucciol
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Herestraat 49, 3000, Leuven, EU, Belgium.,Department of Pediatrics, Division of Inborn Errors of Immunity, University Hospitals Leuven, Herestraat 49, 3000, Leuven, EU Leuven, Belgium
| | - Selket Delafontaine
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Herestraat 49, 3000, Leuven, EU, Belgium.,Department of Pediatrics, Division of Inborn Errors of Immunity, University Hospitals Leuven, Herestraat 49, 3000, Leuven, EU Leuven, Belgium
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, Sydney, NSW, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. .,Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia. .,Faculty of Medicine, St Vincent's Clinical School, Sydney, NSW, Australia.
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Herestraat 49, 3000, Leuven, EU, Belgium. .,Department of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
17
|
Béziat V, Rapaport F, Hu J, Titeux M, Bonnet des Claustres M, Bourgey M, Griffin H, Bandet É, Ma CS, Sherkat R, Rokni-Zadeh H, Louis DM, Changi-Ashtiani M, Delmonte OM, Fukushima T, Habib T, Guennoun A, Khan T, Bender N, Rahman M, About F, Yang R, Rao G, Rouzaud C, Li J, Shearer D, Balogh K, Al Ali F, Ata M, Dabiri S, Momenilandi M, Nammour J, Alyanakian MA, Leruez-Ville M, Guenat D, Materna M, Marcot L, Vladikine N, Soret C, Vahidnezhad H, Youssefian L, Saeidian AH, Uitto J, Catherinot É, Navabi SS, Zarhrate M, Woodley DT, Jeljeli M, Abraham T, Belkaya S, Lorenzo L, Rosain J, Bayat M, Lanternier F, Lortholary O, Zakavi F, Gros P, Orth G, Abel L, Prétet JL, Fraitag S, Jouanguy E, Davis MM, Tangye SG, Notarangelo LD, Marr N, Waterboer T, Langlais D, Doorbar J, Hovnanian A, Christensen N, Bossuyt X, Shahrooei M, Casanova JL. Humans with inherited T cell CD28 deficiency are susceptible to skin papillomaviruses but are otherwise healthy. Cell 2021; 184:3812-3828.e30. [PMID: 34214472 PMCID: PMC8329841 DOI: 10.1016/j.cell.2021.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/03/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022]
Abstract
We study a patient with the human papilloma virus (HPV)-2-driven "tree-man" phenotype and two relatives with unusually severe HPV4-driven warts. The giant horns form an HPV-2-driven multifocal benign epithelial tumor overexpressing viral oncogenes in the epidermis basal layer. The patients are unexpectedly homozygous for a private CD28 variant. They have no detectable CD28 on their T cells, with the exception of a small contingent of revertant memory CD4+ T cells. T cell development is barely affected, and T cells respond to CD3 and CD2, but not CD28, costimulation. Although the patients do not display HPV-2- and HPV-4-reactive CD4+ T cells in vitro, they make antibodies specific for both viruses in vivo. CD28-deficient mice are susceptible to cutaneous infections with the mouse papillomavirus MmuPV1. The control of HPV-2 and HPV-4 in keratinocytes is dependent on the T cell CD28 co-activation pathway. Surprisingly, human CD28-dependent T cell responses are largely redundant for protective immunity.
Collapse
Affiliation(s)
- Vivien Béziat
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; The Rockefeller University, New York, NY 10065, USA.
| | | | - Jiafen Hu
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Matthias Titeux
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | | | | | | | - Élise Bandet
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Roya Sherkat
- Isfahan University of Medical Sciences, AIRC, Isfahan 81746-73461, Iran
| | | | - David M Louis
- Stanford University Medical School, Stanford, CA 94305, USA
| | | | - Ottavia M Delmonte
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Toshiaki Fukushima
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | - Noemi Bender
- German Cancer Research Center, 69120 Heidelberg, Germany
| | | | - Frédégonde About
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Rui Yang
- The Rockefeller University, New York, NY 10065, USA
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Claire Rouzaud
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Jingwei Li
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Debra Shearer
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Karla Balogh
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | - Soroosh Dabiri
- Zahedan University of Medical Sciences, 054 Zahedan, Iran
| | | | - Justine Nammour
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | | | | | - David Guenat
- Papillomavirus National Reference Center, Besançon Hospital, 25030 Besançon, France
| | - Marie Materna
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Léa Marcot
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Natasha Vladikine
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Christine Soret
- Papillomavirus National Reference Center, Besançon Hospital, 25030 Besançon, France
| | | | | | | | - Jouni Uitto
- Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | - Mohammed Zarhrate
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - David T Woodley
- University of Southern California, Los Angeles, CA 90033, USA
| | | | - Thomas Abraham
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | - Lazaro Lorenzo
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Jérémie Rosain
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Mousa Bayat
- Zahedan University of Medical Sciences, 054 Zahedan, Iran
| | - Fanny Lanternier
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Olivier Lortholary
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Faramarz Zakavi
- Ahvaz Jundishapur University of Medical Sciences, 061 Ahvaz, Iran
| | - Philippe Gros
- McGill University, Montreal, QC H3A 0G1, Canada; McGill Research Centre on Complex Traits, Montreal, QC H3G 0B1, Canada
| | | | - Laurent Abel
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; The Rockefeller University, New York, NY 10065, USA
| | - Jean-Luc Prétet
- Papillomavirus National Reference Center, Besançon Hospital, 25030 Besançon, France
| | - Sylvie Fraitag
- Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Emmanuelle Jouanguy
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; The Rockefeller University, New York, NY 10065, USA
| | - Mark M Davis
- HHMI, Stanford University Medical School, Stanford, CA 94305, USA
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Luigi D Notarangelo
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | | - Tim Waterboer
- German Cancer Research Center, 69120 Heidelberg, Germany
| | - David Langlais
- McGill University, Montreal, QC H3A 0G1, Canada; McGill Research Centre on Complex Traits, Montreal, QC H3G 0B1, Canada
| | | | - Alain Hovnanian
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Neil Christensen
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | - Mohammad Shahrooei
- University of Leuven, 3000 Leuven, Belgium; Dr. Shahrooei Lab, Ahvaz, Iran
| | - Jean-Laurent Casanova
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; The Rockefeller University, New York, NY 10065, USA; HHMI, New York, NY 10065, USA.
| |
Collapse
|
18
|
Feurstein S, Drazer M, Godley LA. Germline predisposition to haematopoietic malignancies. Hum Mol Genet 2021; 30:R225-R235. [PMID: 34100074 DOI: 10.1093/hmg/ddab141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Once thought to be exceedingly rare, the advent of next-generation sequencing has revealed a plethora of germline predisposition disorders that confer risk for haematopoietic malignancies (HMs). These syndromes are now recognized to be much more common than previously thought. The recognition of a germline susceptibility risk allele in an individual impacts the clinical management and health surveillance strategies in the index patient and relatives who share the causative DNA variant. Challenges to accurate clinical testing include a lack of familiarity in many health care providers, the requirement for DNA samples that reasonably approximate the germline state, and a lack of standardization among diagnostic platforms as to which genes are sequenced and their capabilities in detecting the full range of variant types that confer risk. Current knowledge gaps include a comprehensive understanding of all predisposition genes; whether scenarios exist in which an allogeneic stem cell transplant using donor haematopoietic stem cells with deleterious variants is permissive; and effective means of delivering genetic counseling and results disclosure for these conditions. We are hopeful that comprehensive germline genetic testing, universal germline testing for all patients with an HM, universal germline testing for allogeneic haematopoietic stem cell donors, and the development of preventive strategies to delay or even prevent malignancies will be available in the near future. These factors will likely contribute to improved health outcomes for at-risk individuals and their family members.
Collapse
Affiliation(s)
- Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Michael Drazer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL.,Department of Human Genetics, The University of Chicago, Chicago, IL
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL.,Department of Human Genetics, The University of Chicago, Chicago, IL
| |
Collapse
|
19
|
Raedler J, Magg T, Rohlfs M, Klein C, Vallée T, Hauck F, Albert MH. Lineage-Specific Chimerism and Outcome After Hematopoietic Stem Cell Transplantation for DOCK8 Deficiency. J Clin Immunol 2021; 41:1536-1548. [PMID: 34080085 PMCID: PMC8452590 DOI: 10.1007/s10875-021-01069-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022]
Abstract
Bi-allelic variants in the dedicator of cytokinesis 8 (DOCK8) gene cause a combined immunodeficiency, characterized by recurrent sinopulmonary and skin infections, food allergies, eczema, eosinophilia, and elevated IgE. Long-term outcome is poor given susceptibility to infections, malignancy, and vascular complications. Allogeneic hematopoietic stem cell transplantation is currently the only curative treatment option and has shown promising outcome. The impact of mixed chimerism on long-term outcome is unclear. We reasoned that reversal of disease phenotype would depend on cell lineage-specific chimerism. DOCK8 variants were confirmed by Sanger and/or exome sequencing and immunoblot and/or intracellular flow cytometry. Donor chimerism was analyzed by XY-fluorescence in situ hybridization or quantitative short tandem repeat PCR. Outcome was assessed by laboratory tests, lymphocyte subsets, intracellular DOCK8 protein flow cytometry, T-cell proliferation analysis, and multiparameter immunoblot allergy screening. We report on nine patients, four of whom with mixed chimerism, with a median follow-up of 78 months after transplantation. Overall, we report successful transplantation with improvement of susceptibility to infections and allergies, and resolution of eczema in all patients. Immunological outcome in patients with mixed chimerism suggests a selective advantage for wild-type donor T-cells but lower donor B-cell chimerism possibly results in a tendency to hypogammaglobulinemia. No increased infectious and allergic complications were associated with mixed chimerism. Aware of the relatively small cohort size, we could not demonstrate a consistent detrimental effect of mixed chimerism on clinical outcomes. We nevertheless advocate aiming for complete donor chimerism in treating DOCK8 deficiency, but recommend reduced toxicity conditioning.
Collapse
Affiliation(s)
- Johannes Raedler
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Magg
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Meino Rohlfs
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Centre for Rare Diseases (M-ZSELMU), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tanja Vallée
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Centre for Rare Diseases (M-ZSELMU), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael H Albert
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
20
|
Aluri J, Cooper MA. Genetic Mosaicism as a Cause of Inborn Errors of Immunity. J Clin Immunol 2021; 41:718-728. [PMID: 33864184 PMCID: PMC8068627 DOI: 10.1007/s10875-021-01037-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Inborn errors of immunity (IEIs) are a heterogeneous group of disorders due to genetic defects in the immune response that have a broad clinical spectrum. Diagnosis of the precise genetic cause of IEI has led to improved care and treatment of patients; however, genetic diagnosis using standard approaches is only successful in ~40% of patients and is particularly challenging in “sporadic” cases without a family history. Standard genetic testing for IEI evaluates for germline changes in genes encoding proteins important for the immune response. It is now clear that IEI can also arise from de novo mutations leading to genetic variants present in germ cells and/or somatic cells. In particular, somatic mosaicism, i.e., post-zygotic genetic changes in DNA sequence, is emerging as a significant contributor to IEI. Testing for somatic mosaicism can be challenging, and both older sequencing techniques such as Sanger sequencing and newer next-generation sequencing may not be sensitive enough to detect variants depending on the platform and analysis tools used. Investigation of multiple tissue samples and specifically targeting sequence technologies to detect low frequency variants is important for detection of variants. This review examines the role and functional consequences of genetic mosaicism in IEI. We emphasize the need to refine the current exome and genome analysis pipeline to efficiently identify mosaic variants and recommend considering somatic mosaicism in disease discovery and in the first-tier of genetic analysis.
Collapse
Affiliation(s)
- Jahnavi Aluri
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, 660 S. Euclid Ave. Box 8208, St. Louis, MO, 63110, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, 660 S. Euclid Ave. Box 8208, St. Louis, MO, 63110, USA.
| |
Collapse
|
21
|
Saettini F, Fazio G, Moratto D, Galbiati M, Zucchini N, Ippolito D, Dinelli ME, Imberti L, Mauri M, Melzi ML, Bonanomi S, Gerussi A, Pinelli M, Barisani C, Bugarin C, Chiarini M, Giacomelli M, Piazza R, Cazzaniga G, Invernizzi P, Giliani SC, Badolato R, Biondi A. Case Report: Hypomorphic Function and Somatic Reversion in DOCK8 Deficiency in One Patient With Two Novel Variants and Sclerosing Cholangitis. Front Immunol 2021; 12:673487. [PMID: 33936120 PMCID: PMC8085392 DOI: 10.3389/fimmu.2021.673487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/30/2021] [Indexed: 02/05/2023] Open
Abstract
DOCK8 deficiency is a combined immunodeficiency due to biallelic variants in dedicator of cytokinesis 8 (DOCK8) gene. The disease has a wide clinical spectrum encompassing recurrent infections (candidiasis, viral and bacterial infections), virally driven malignancies and immune dysregulatory features, including autoimmune (cytopenia and vasculitis) as well as allergic disorders (eczema, asthma, and food allergy). Hypomorphic function and somatic reversion of DOCK8 has been reported to result in incomplete phenotype without IgE overproduction. Here we describe a case of DOCK8 deficiency in a 8-year-old Caucasian girl. The patient's disease was initially classified as autoimmune thrombocytopenia, which then evolved toward a combined immunodeficiency phenotype with recurrent infections, persistent EBV infection and lymphoproliferation. Two novel variants (one deletion and one premature stop codon) were characterized, resulting in markedly reduced, but not absent, DOCK8 expression. Somatic reversion of the DOCK8 deletion was identified in T cells. Hypomorphic function and somatic reversion were associated with restricted T cell repertoire, decreased STAT5 phosphorylation and impaired immune synapse functioning in T cells. Although the patient presented with incomplete phenotype (absence of markedly increase IgE and eosinophil count), sclerosing cholangitis was incidentally detected, thus indicating that hypomorphic function and somatic reversion of DOCK8 may delay disease progression but do not necessarily prevent from severe complications.
Collapse
Affiliation(s)
- Francesco Saettini
- Pediatric Hematology Outpatient Clinic, Department of Pediatrics, Fondazione MBBM, Monza, Italy
- *Correspondence: Francesco Saettini,
| | - Grazia Fazio
- Centro Ricerca Tettamanti, University of Milano Bicocca, Monza, Italy
| | - Daniele Moratto
- Flow Cytometry Laboratory, Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| | - Marta Galbiati
- Centro Ricerca Tettamanti, University of Milano Bicocca, Monza, Italy
| | - Nicola Zucchini
- Division of Pathology, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Davide Ippolito
- Department of Diagnostic Radiology, San Gerardo Hospital, Monza, Italy
| | | | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milano Bicocca and San Gerardo Hospital, Monza, Italy
| | | | - Sonia Bonanomi
- Pediatric Hematology Outpatient Clinic, Department of Pediatrics, Fondazione MBBM, Monza, Italy
| | - Alessio Gerussi
- Division of Gastroenterology, Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Marinella Pinelli
- Cytogenetic and Medical Genetic Unit, Department of Molecular and Translational medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Spedali Civili, Brescia, Italy
| | - Chiara Barisani
- Cytogenetic and Medical Genetic Unit, Department of Molecular and Translational medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Spedali Civili, Brescia, Italy
| | - Cristina Bugarin
- Centro Ricerca Tettamanti, University of Milano Bicocca, Monza, Italy
| | - Marco Chiarini
- Flow Cytometry Laboratory, Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| | - Mauro Giacomelli
- Cytogenetic and Medical Genetic Unit, Department of Molecular and Translational medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Spedali Civili, Brescia, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano Bicocca and San Gerardo Hospital, Monza, Italy
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, University of Milano Bicocca, Monza, Italy
- Department of Medicine and Surgery, University of Milano Bicocca and San Gerardo Hospital, Monza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Silvia Clara Giliani
- Cytogenetic and Medical Genetic Unit, Department of Molecular and Translational medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Spedali Civili, Brescia, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and A. Nocivelli Institute for Molecular Medicine A, University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - Andrea Biondi
- Pediatric Hematology Outpatient Clinic, Department of Pediatrics, Fondazione MBBM, Monza, Italy
- Centro Ricerca Tettamanti, University of Milano Bicocca, Monza, Italy
| |
Collapse
|