1
|
Kanth SM, Huapaya JA, Gairhe S, Wang H, Tian X, Demirkale CY, Hou C, Ma J, Kuhns DB, Fink DL, Malayeri A, Turkbey E, Harmon SA, Chen MY, Regenold D, Lynch NF, Ramelli S, Li W, Krack J, Kuruppu J, Lionakis MS, Strich JR, Davey R, Childs R, Chertow DS, Kovacs JA, Parizi PT, Suffredini AF. Longitudinal analysis of the lung proteome reveals persistent repair months after mild to moderate COVID-19. Cell Rep Med 2024; 5:101642. [PMID: 38981485 PMCID: PMC11293333 DOI: 10.1016/j.xcrm.2024.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
In order to assess homeostatic mechanisms in the lung after COVID-19, changes in the protein signature of bronchoalveolar lavage from 45 patients with mild to moderate disease at three phases (acute, recovery, and convalescent) are evaluated over a year. During the acute phase, inflamed and uninflamed phenotypes are characterized by the expression of tissue repair and host defense response molecules. With recovery, inflammatory and fibrogenic mediators decline and clinical symptoms abate. However, at 9 months, quantified radiographic abnormalities resolve in the majority of patients, and yet compared to healthy persons, all showed ongoing activation of cellular repair processes and depression of the renin-kallikrein-kinin, coagulation, and complement systems. This dissociation of prolonged reparative processes from symptom and radiographic resolution suggests that occult ongoing disruption of the lung proteome is underrecognized and may be relevant to recovery from other serious viral pneumonias.
Collapse
Affiliation(s)
- Shreya M Kanth
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Julio A Huapaya
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Salina Gairhe
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Honghui Wang
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cumhur Y Demirkale
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chunyan Hou
- Mass Spectrometry and Analytical Pharmacology Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Junfeng Ma
- Mass Spectrometry and Analytical Pharmacology Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Douglas B Kuhns
- Neutrophil Monitoring Lab, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Danielle L Fink
- Neutrophil Monitoring Lab, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Ashkan Malayeri
- Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD 20892, USA
| | - Evrim Turkbey
- Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie A Harmon
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcus Y Chen
- Cardiovascular Branch, National Institute of Heart, Lung, and Blood, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Regenold
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas F Lynch
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Ramelli
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Willy Li
- Pharmacy Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Janell Krack
- Pharmacy Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Janaki Kuruppu
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michail S Lionakis
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey R Strich
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Davey
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Childs
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel S Chertow
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph A Kovacs
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parizad Torabi- Parizi
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony F Suffredini
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Kang YH, Varghese PM, Aiyan AA, Pondman K, Kishore U, Sim RB. Complement-Coagulation Cross-talk: Factor H-mediated regulation of the Complement Classical Pathway activation by fibrin clots. Front Immunol 2024; 15:1368852. [PMID: 38933264 PMCID: PMC11199686 DOI: 10.3389/fimmu.2024.1368852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024] Open
Abstract
The classical pathway of the complement system is activated by the binding of C1q in the C1 complex to the target activator, including immune complexes. Factor H is regarded as the key downregulatory protein of the complement alternative pathway. However, both C1q and factor H bind to target surfaces via charge distribution patterns. For a few targets, C1q and factor H compete for binding to common or overlapping sites. Factor H, therefore, can effectively regulate the classical pathway activation through such targets, in addition to its previously characterized role in the alternative pathway. Both C1q and factor H are known to recognize foreign or altered-self materials, e.g., bacteria, viruses, and apoptotic/necrotic cells. Clots, formed by the coagulation system, are an example of altered self. Factor H is present abundantly in platelets and is a well-known substrate for FXIIIa. Here, we investigated whether clots activate the complement classical pathway and whether this is regulated by factor H. We show here that both C1q and factor H bind to the fibrin formed in microtiter plates and the fibrin clots formed under in vitro physiological conditions. Both C1q and factor H become covalently bound to fibrin clots, and this is mediated via FXIIIa. We also show that fibrin clots activate the classical pathway of complement, as demonstrated by C4 consumption and membrane attack complex detection assays. Thus, factor H downregulates the activation of the classical pathway induced by fibrin clots. These results elucidate the intricate molecular mechanisms through which the complement and coagulation pathways intersect and have regulatory consequences.
Collapse
Affiliation(s)
- Yu-Hoi Kang
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- MediMabBio Inc., Pangyo Business Growth Centre, Gyeonggi-do, Republic of Korea
| | - Praveen M. Varghese
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kirsten Pondman
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology & TechMed Centre, University of Twente, Enschede, Netherlands
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Robert B. Sim
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Asteris PG, Gandomi AH, Armaghani DJ, Tsoukalas MZ, Gavriilaki E, Gerber G, Konstantakatos G, Skentou AD, Triantafyllidis L, Kotsiou N, Braunstein E, Chen H, Brodsky R, Touloumenidou T, Sakellari I, Alkayem NF, Bardhan A, Cao M, Cavaleri L, Formisano A, Guney D, Hasanipanah M, Khandelwal M, Mohammed AS, Samui P, Zhou J, Terpos E, Dimopoulos MA. Genetic justification of COVID-19 patient outcomes using DERGA, a novel data ensemble refinement greedy algorithm. J Cell Mol Med 2024; 28:e18105. [PMID: 38339761 PMCID: PMC10863978 DOI: 10.1111/jcmm.18105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 02/12/2024] Open
Abstract
Complement inhibition has shown promise in various disorders, including COVID-19. A prediction tool including complement genetic variants is vital. This study aims to identify crucial complement-related variants and determine an optimal pattern for accurate disease outcome prediction. Genetic data from 204 COVID-19 patients hospitalized between April 2020 and April 2021 at three referral centres were analysed using an artificial intelligence-based algorithm to predict disease outcome (ICU vs. non-ICU admission). A recently introduced alpha-index identified the 30 most predictive genetic variants. DERGA algorithm, which employs multiple classification algorithms, determined the optimal pattern of these key variants, resulting in 97% accuracy for predicting disease outcome. Individual variations ranged from 40 to 161 variants per patient, with 977 total variants detected. This study demonstrates the utility of alpha-index in ranking a substantial number of genetic variants. This approach enables the implementation of well-established classification algorithms that effectively determine the relevance of genetic variants in predicting outcomes with high accuracy.
Collapse
Affiliation(s)
- Panagiotis G. Asteris
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Amir H. Gandomi
- Faculty of Engineering & ITUniversity of Technology SydneySydneyNew South WalesAustralia
- University Research and Innovation Center (EKIK), Óbuda UniversityBudapestHungary
| | - Danial J. Armaghani
- School of Civil and Environmental EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Markos Z. Tsoukalas
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal MedicineAristotle University of ThessalonikiThessalonikiGreece
| | - Gloria Gerber
- Hematology DivisionJohns Hopkins UniversityBaltimoreUSA
| | - Gerasimos Konstantakatos
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Athanasia D. Skentou
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Leonidas Triantafyllidis
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Nikolaos Kotsiou
- 2nd Propedeutic Department of Internal MedicineAristotle University of ThessalonikiThessalonikiGreece
| | | | - Hang Chen
- Hematology DivisionJohns Hopkins UniversityBaltimoreUSA
| | | | | | - Ioanna Sakellari
- Hematology Department – BMT UnitG Papanicolaou HospitalThessalonikiGreece
| | | | - Abidhan Bardhan
- Civil Engineering DepartmentNational Institute of Technology PatnaPatnaIndia
| | - Maosen Cao
- Department of Engineering MechanicsHohai UniversityNanjingChina
| | - Liborio Cavaleri
- Department of Civil, Environmental, Aerospace and Materials EngineeringUniversity of PalermoPalermoItaly
| | - Antonio Formisano
- Department of Structures for Engineering and ArchitectureUniversity of Naples “Federico II”NaplesItaly
| | - Deniz Guney
- Engineering FacultySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Mahdi Hasanipanah
- Department of Geotechnics and Transportation, Faculty of Civil EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
| | - Manoj Khandelwal
- Institute of Innovation, Science and SustainabilityFederation University AustraliaBallaratVictoriaAustralia
| | | | - Pijush Samui
- Civil Engineering DepartmentNational Institute of Technology PatnaPatnaIndia
| | - Jian Zhou
- School of Resources and Safety EngineeringCentral South UniversityChangshaChina
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Medical School, Faculty of MedicineNational Kapodistrian University of AthensAthensGreece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, Medical School, Faculty of MedicineNational Kapodistrian University of AthensAthensGreece
| |
Collapse
|
4
|
Wong AC, Devason AS, Umana IC, Cox TO, Dohnalová L, Litichevskiy L, Perla J, Lundgren P, Etwebi Z, Izzo LT, Kim J, Tetlak M, Descamps HC, Park SL, Wisser S, McKnight AD, Pardy RD, Kim J, Blank N, Patel S, Thum K, Mason S, Beltra JC, Michieletto MF, Ngiow SF, Miller BM, Liou MJ, Madhu B, Dmitrieva-Posocco O, Huber AS, Hewins P, Petucci C, Chu CP, Baraniecki-Zwil G, Giron LB, Baxter AE, Greenplate AR, Kearns C, Montone K, Litzky LA, Feldman M, Henao-Mejia J, Striepen B, Ramage H, Jurado KA, Wellen KE, O'Doherty U, Abdel-Mohsen M, Landay AL, Keshavarzian A, Henrich TJ, Deeks SG, Peluso MJ, Meyer NJ, Wherry EJ, Abramoff BA, Cherry S, Thaiss CA, Levy M. Serotonin reduction in post-acute sequelae of viral infection. Cell 2023; 186:4851-4867.e20. [PMID: 37848036 PMCID: PMC11227373 DOI: 10.1016/j.cell.2023.09.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.
Collapse
Affiliation(s)
- Andrea C Wong
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ashwarya S Devason
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iboro C Umana
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy O Cox
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lenka Dohnalová
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Molecular Bio Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lev Litichevskiy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Perla
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Patrick Lundgren
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zienab Etwebi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luke T Izzo
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Jihee Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monika Tetlak
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hélène C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone L Park
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Stephen Wisser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron D McKnight
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan D Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwon Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Niklas Blank
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shaan Patel
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina Thum
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Mason
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Christophe Beltra
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michaël F Michieletto
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shin Foong Ngiow
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brittany M Miller
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Megan J Liou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bhoomi Madhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Oxana Dmitrieva-Posocco
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alex S Huber
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Hewins
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Petucci
- Metabolomics Core, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Candice P Chu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gwen Baraniecki-Zwil
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Amy E Baxter
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charlotte Kearns
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen Montone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie A Litzky
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge Henao-Mejia
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Holly Ramage
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kellie A Jurado
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA; Rush Center for Integrated Microbiome and Chronobiology Research, Chicago, IL, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nuala J Meyer
- Division of Pulmonary and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Abramoff
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Sara Cherry
- Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Maayan Levy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Pawar VA, Tyagi A, Verma C, Sharma KP, Ansari S, Mani I, Srivastva SK, Shukla PK, Kumar A, Kumar V. Unlocking therapeutic potential: integration of drug repurposing and immunotherapy for various disease targeting. Am J Transl Res 2023; 15:4984-5006. [PMID: 37692967 PMCID: PMC10492070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
Drug repurposing, also known as drug repositioning, entails the application of pre-approved or formerly assessed drugs having potentially functional therapeutic amalgams for curing various disorders or disease conditions distinctive from their original remedial indication. It has surfaced as a substitute for the development of drugs for treating cancer, cardiovascular diseases, neurodegenerative disorders, and various infectious diseases like Covid-19. Although the earlier lines of findings in this area were serendipitous, recent advancements are based on patient centered approaches following systematic, translational, drug targeting practices that explore pathophysiological ailment mechanisms. The presence of definite information and numerous records with respect to beneficial properties, harmfulness, and pharmacologic characteristics of repurposed drugs increase the chances of approval in the clinical trial stages. The last few years have showcased the successful emergence of repurposed drug immunotherapy in treating various diseases. In this light, the present review emphasises on incorporation of drug repositioning with Immunotherapy targeted for several disorders.
Collapse
Affiliation(s)
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied ScienceDelhi 110054, India
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State UniversityColumbus, Ohio 43201, USA
| | - Kanti Prakash Sharma
- Department of Nutrition Biology, Central University of HaryanaMahendragarh 123029, India
| | - Sekhu Ansari
- Division of Pathology, Cincinnati Children’s Hospital Medical CenterCincinnati, Ohio 45229, USA
| | - Indra Mani
- Department of Microbiology, Gargi College, University of DelhiNew Delhi 110049, India
| | | | - Pradeep Kumar Shukla
- Department of Biological Sciences, Faculty of Science, Sam Higginbottom University of Agriculture, Technology of SciencePrayagraj 211007, UP, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of HaryanaMahendergarh 123031, Haryana, India
| | - Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, Ohio 43210, USA
| |
Collapse
|
6
|
Mariniello DF, Aronne L, Vitale M, Schiattarella A, Pagliaro R, Komici K. Current challenges and perspectives in lung cancer care during COVID-19 waves. Curr Opin Pulm Med 2023; 29:239-247. [PMID: 37132294 PMCID: PMC10241323 DOI: 10.1097/mcp.0000000000000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
PURPOSE OF REVIEW In the era of the SARS-Cov2 pandemic, the multidisciplinary care of patients with lung cancer is the main challenge for clinicians. The depiction of complex networking between SARS-CoV2 and cancer cells is crucial to understanding the downstream signalling pathways leading to more severe clinical behaviour of COVID-19 among lung cancer patients. RECENT FINDINGS The immunosuppressive status caused by both blunted immune response and active anticancer treatments (e.g. radiotherapy, chemotherapy) affects also the response to vaccines. Furthermore, the COVID-19 pandemic has significantly influenced early detection, therapeutic management, and clinical research for patients with lung cancer. SUMMARY SARS-CoV-2 infection does undoubtedly represent a challenge for care of patients with lung cancer. Since symptoms of infection may overlap with underlying condition, diagnosis must be reached and treatment should start as soon as possible. Although any cancer treatment should be procrastinated as long as infection is not cured, every choice must be pondered on individual basis, according to clinical conditions. Underdiagnosis should be avoided, and both surgical and medical treatment must be tailored to each patient. Therapeutic scenario standardization represents a major challenge for clinicians and researchers.
Collapse
Affiliation(s)
| | - Luigi Aronne
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli
| | - Maria Vitale
- CEINGE, Biotecnologie Avanzate
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples
| | - Angela Schiattarella
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli
| | - Raffaella Pagliaro
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli
| | - Klara Komici
- Department of Medicine and Health Sciences University of Molise, Campobasso, Italy
| |
Collapse
|
7
|
Najafi MB, Javanmard SH. Post-COVID-19 Syndrome Mechanisms, Prevention and Management. Int J Prev Med 2023; 14:59. [PMID: 37351054 PMCID: PMC10284243 DOI: 10.4103/ijpvm.ijpvm_508_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/24/2021] [Indexed: 06/24/2023] Open
Abstract
As the population of patients recovering from COVID-19 grows, post COVID-19 challenges are recognizing by ongoing evidences at once. Long COVID is defined as a syndrome with a range of persistent symptoms that remain long after (beyond 12 weeks) the acute SARS-CoV-2 infection. Studies have shown that long COVID can cause multi-organ damages with a wide spectrum of manifestations. Many systems, but not limited to, including respiratory, cardiovascular, nervous, gastrointestinal, and musculoskeletal systems, are involved in long COVID. Fatigue and dyspnea are the most common symptoms of long COVID. Long COVID-19 may be driven by tissue damage caused by virus-specific pathophysiologic changes or secondary to pathological long-lasting inflammatory response because of viral persistence, immune dysregulation, and autoimmune reactions. Some risk factors like sex and age, more than five early symptoms, and specific biomarkers have been revealed as a probable long COVID predicator discussed in this review. It seems that vaccination is the only way for prevention of long COVID and it can also help patients who had already long COVID. Managing long COVID survivors recommended being in a multidisciplinary approach, and a framework for identifying those at high risk for post-acute COVID-19 must be proposed. Possible therapeutic options and useful investigation tools for follow-up are suggested in this review. In sum, as evidence and researches are regularly updated, we provide the current understanding of the epidemiology, clinical manifestation, suspected pathophysiology, associated risk factors, and treatment options of long COVID in this review.
Collapse
Affiliation(s)
- Majed B. Najafi
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh H. Javanmard
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Kosenko E, Tikhonova L, Alilova G, Montoliu C. Erythrocytes Functionality in SARS-CoV-2 Infection: Potential Link with Alzheimer's Disease. Int J Mol Sci 2023; 24:5739. [PMID: 36982809 PMCID: PMC10051442 DOI: 10.3390/ijms24065739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a rapidly spreading acute respiratory infection caused by SARS-CoV-2. The pathogenesis of the disease remains unclear. Recently, several hypotheses have emerged to explain the mechanism of interaction between SARS-CoV-2 and erythrocytes, and its negative effect on the oxygen-transport function that depends on erythrocyte metabolism, which is responsible for hemoglobin-oxygen affinity (Hb-O2 affinity). In clinical settings, the modulators of the Hb-O2 affinity are not currently measured to assess tissue oxygenation, thereby providing inadequate evaluation of erythrocyte dysfunction in the integrated oxygen-transport system. To discover more about hypoxemia/hypoxia in COVID-19 patients, this review highlights the need for further investigation of the relationship between biochemical aberrations in erythrocytes and oxygen-transport efficiency. Furthermore, patients with severe COVID-19 experience symptoms similar to Alzheimer's, suggesting that their brains have been altered in ways that increase the likelihood of Alzheimer's. Mindful of the partly assessed role of structural, metabolic abnormalities that underlie erythrocyte dysfunction in the pathophysiology of Alzheimer's disease (AD), we further summarize the available data showing that COVID-19 neurocognitive impairments most probably share similar patterns with known mechanisms of brain dysfunctions in AD. Identification of parameters responsible for erythrocyte function that vary under SARS-CoV-2 may contribute to the search for additional components of progressive and irreversible failure in the integrated oxygen-transport system leading to tissue hypoperfusion. This is particularly relevant for the older generation who experience age-related disorders of erythrocyte metabolism and are prone to AD, and provide an opportunity for new personalized therapies to control this deadly infection.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
9
|
Alternative pathway dysregulation in tissues drives sustained complement activation and predicts outcome across the disease course in COVID-19. Immunology 2023. [PMID: 36175370 PMCID: PMC9537932 DOI: 10.1111/imm.13585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Complement, a critical defence against pathogens, has been implicated as a driver of pathology in COVID-19. Complement activation products are detected in plasma and tissues and complement blockade is considered for therapy. To delineate roles of complement in immunopathogenesis, we undertook the largest comprehensive study of complement in COVID-19 to date, comprehensive profiling of 16 complement biomarkers, including key components, regulators and activation products, in 966 plasma samples from 682 hospitalized COVID-19 patients collected across the hospitalization period as part of the UK ISARIC4C (International Acute Respiratory and Emerging Infection Consortium) study. Unsupervised clustering of complement biomarkers mapped to disease severity and supervised machine learning identified marker sets in early samples that predicted peak severity. Compared to healthy controls, complement proteins and activation products (Ba, iC3b, terminal complement complex) were significantly altered in COVID-19 admission samples in all severity groups. Elevated alternative pathway activation markers (Ba and iC3b) and decreased alternative pathway regulator (properdin) in admission samples were associated with more severe disease and risk of death. Levels of most complement biomarkers were reduced in severe disease, consistent with consumption and tissue deposition. Latent class mixed modelling and cumulative incidence analysis identified the trajectory of increase of Ba to be a strong predictor of peak COVID-19 disease severity and death. The data demonstrate that early-onset, uncontrolled activation of complement, driven by sustained and progressive amplification through the alternative pathway amplification loop is a ubiquitous feature of COVID-19, further exacerbated in severe disease. These findings provide novel insights into COVID-19 immunopathogenesis and inform strategies for therapeutic intervention.
Collapse
|
10
|
Zinellu A, Mangoni AA. A systematic review and meta-analysis of the association between the neutrophil, lymphocyte, and platelet count, neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio and COVID-19 progression and mortality. Expert Rev Clin Immunol 2022; 18:1187-1202. [PMID: 36047369 DOI: 10.1080/1744666x.2022.2120472] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Severe manifestations of coronavirus disease 2019 (COVID-19) are associated with alterations in blood cells that regulate immunity, inflammation, and hemostasis. We conducted an updated systematic review and meta-analysis of the association between the neutrophil, lymphocyte, and platelet count, neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR), and COVID-19 progression and mortality. METHODS A systematic literature search was conducted in PubMed, Web of Science, and Scopus for studies published between January 2020 and June 2022. RESULTS In 71 studies reporting the investigated parameters within 48 hours of admission, higher NLR (HR 1.21, 95% CI 1.16 to 1.27, p < 0.0001), relative neutrophilia (HR 1.62, 95% CI 1.46 to 1.80, p < 0.0001), relative lymphopenia (HR 1.62, 95% CI 1.27 to 2.08, p < 0.001), and relative thrombocytopenia (HR 1.74, 95% CI 1.36 to 2.22, p < 0.001), but not PLR (p = 0.11), were significantly associated with disease progression and mortality. Between-study heterogeneity was large-to-extreme. The magnitude and direction of the effect size were not modified in sensitivity analysis. CONCLUSIONS NLR and neutrophil, lymphocyte, and platelet count significantly discriminate COVID-19 patients with different progression and survival outcomes. (PROSPERO registration number: CRD42021267875).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.,Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
11
|
Piedra-Mora C, Robinson SR, Tostanoski LH, Dayao DAE, Chandrashekar A, Bauer K, Wrijil L, Ducat S, Hayes T, Yu J, Bondzie EA, McMahan K, Sellers D, Giffin V, Hope D, Nampanya F, Mercado NB, Kar S, Andersen H, Tzipori S, Barouch DH, Martinot AJ. Reduced SARS-CoV-2 disease outcomes in Syrian hamsters receiving immune sera: Quantitative image analysis in pathologic assessments. Vet Pathol 2022; 59:648-660. [PMID: 35521761 DOI: 10.1177/03009858221095794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is a need to standardize pathologic endpoints in animal models of SARS-CoV-2 infection to help benchmark study quality, improve cross-institutional comparison of data, and assess therapeutic efficacy so that potential drugs and vaccines for SARS-CoV-2 can rapidly advance. The Syrian hamster model is a tractable small animal model for COVID-19 that models clinical disease in humans. Using the hamster model, the authors used traditional pathologic assessment with quantitative image analysis to assess disease outcomes in hamsters administered polyclonal immune sera from previously challenged rhesus macaques. The authors then used quantitative image analysis to assess pathologic endpoints across studies performed at different institutions using different tissue processing protocols. The authors detail pathological features of SARS-CoV-2 infection longitudinally and use immunohistochemistry to quantify myeloid cells and T lymphocyte infiltrates during SARS-CoV-2 infection. High-dose immune sera protected hamsters from weight loss and diminished viral replication in tissues and reduced lung lesions. Cumulative pathology scoring correlated with weight loss and was robust in distinguishing IgG efficacy. In formalin-infused lungs, quantitative measurement of percent area affected also correlated with weight loss but was less robust in non-formalin-infused lungs. Longitudinal immunohistochemical assessment of interstitial macrophage infiltrates showed that peak infiltration corresponded to weight loss, yet quantitative assessment of macrophage, neutrophil, and CD3+ T lymphocyte numbers did not distinguish IgG treatment effects. Here, the authors show that quantitative image analysis was a useful adjunct tool for assessing SARS-CoV-2 treatment outcomes in the hamster model.
Collapse
Affiliation(s)
- Cesar Piedra-Mora
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
- Beth Israel Medical Center, Boston, MA
| | - Sally R Robinson
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | - Denise A E Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | | | - Linda Wrijil
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - Sarah Ducat
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - Tammy Hayes
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | | | | | | | | | | | | | | | | | | | - Saul Tzipori
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | - Amanda J Martinot
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| |
Collapse
|
12
|
Jin S, Kusters YHAM, Houben AJHM, Plat J, Joris PJ, Mensink RP, Schalkwijk CG, Stehouwer CDA, van Greevenbroek MMJ. A randomized diet-induced weight-loss intervention reduces plasma complement C3: Possible implication for endothelial dysfunction. Obesity (Silver Spring) 2022; 30:1401-1410. [PMID: 35785477 PMCID: PMC9545581 DOI: 10.1002/oby.23467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Complement C3 and other components of the alternative pathway are higher in individuals with obesity. Moreover, C3 has been identified as a risk factor for cardiovascular disease. This study investigated whether, and how, a weight-loss intervention reduced plasma C3, activated C3 (C3a), and factor D and explored potential biological effects of such a reduction. METHODS The study measured plasma C3, C3a, and factor D by ELISA and measured visceral adipose tissue, subcutaneous adipose tissue, and intrahepatic lipid by magnetic resonance imaging in lean men (n = 25) and men with abdominal obesity (n = 52). The men with obesity were randomized to habitual diet or an 8-week dietary weight-loss intervention. RESULTS The intervention significantly reduced C3 (-0.15 g/L [95% CI: -0.23 to -0.07]), but not C3a or factor D. The C3 reduction was mainly explained by reduction in visceral adipose tissue but not subcutaneous adipose tissue or intrahepatic lipid. This reduction in C3 explained a part of the weight-loss-induced improvement of markers of endothelial dysfunction, particularly the reduction in soluble endothelial selectin and soluble intercellular adhesion molecule. CONCLUSIONS Diet-induced weight loss in men with abdominal obesity could be a way to lower plasma C3 and thereby improve endothelial dysfunction. C3 reduction may be part of the mechanism via which diet-induced weight loss could ameliorate the risk of cardiovascular disease in men with abdominal obesity.
Collapse
Affiliation(s)
- Shunxin Jin
- Department of Internal Medicine, CARIM School for Cardiovascular DiseasesMaastricht University and Medical CenterMaastrichtThe Netherlands
| | - Yvo H. A. M. Kusters
- Department of Internal Medicine, CARIM School for Cardiovascular DiseasesMaastricht University and Medical CenterMaastrichtThe Netherlands
- Top Institute of Food and NutritionWageningenThe Netherlands
| | - Alfons J. H. M. Houben
- Department of Internal Medicine, CARIM School for Cardiovascular DiseasesMaastricht University and Medical CenterMaastrichtThe Netherlands
| | - Jogchum Plat
- Top Institute of Food and NutritionWageningenThe Netherlands
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University and Medical CenterMaastrichtThe Netherlands
| | - Peter J. Joris
- Top Institute of Food and NutritionWageningenThe Netherlands
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University and Medical CenterMaastrichtThe Netherlands
| | - Ronald P. Mensink
- Top Institute of Food and NutritionWageningenThe Netherlands
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University and Medical CenterMaastrichtThe Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular DiseasesMaastricht University and Medical CenterMaastrichtThe Netherlands
- Top Institute of Food and NutritionWageningenThe Netherlands
| | - Coen D. A. Stehouwer
- Department of Internal Medicine, CARIM School for Cardiovascular DiseasesMaastricht University and Medical CenterMaastrichtThe Netherlands
| | - Marleen M. J. van Greevenbroek
- Department of Internal Medicine, CARIM School for Cardiovascular DiseasesMaastricht University and Medical CenterMaastrichtThe Netherlands
| |
Collapse
|
13
|
Cojocaru C, Cojocaru E, Turcanu A, Zaharia D. Clinical challenges of SARS‑CoV‑2 variants (Review). Exp Ther Med 2022; 23:416. [PMID: 35601074 PMCID: PMC9117961 DOI: 10.3892/etm.2022.11343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/08/2022] [Indexed: 11/06/2022] Open
Abstract
Since the first cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, there have been challenges recognizing the clinical features of SARS-CoV-2 and identifying therapeutic options. This has been compounded by viral mutations that affect clinical response and primary epidemiological indicators. Multiple variants of SARS-CoV-2 have been identified and classified on the basis of nomenclature implemented by scientific organizations and the World Health Organisation (WHO). A total of five variants of concern (VOCs) have been identified to date. The present study aimed to analyse clinical and epidemiological features of each variant. Based on these characteristics, predictions were made about potential future evolution. Considering the time and location of SARS-CoV-2 VOC emergence, it was hypothesised that mutations were not due to pressure caused by the vaccines introduced in December 2020 but were dependent on natural characteristics of the virus. In the process of adapting to the human body, SARS-CoV-2 is expected to undergo evolution to become more contagious but less deadly. SARS-CoV-2 was hypothesized to continue spread through isolated epidemic outbreaks due to the unimmunized population, mostly unvaccinated children and adults, and for coronaviruses to continue to present a public health problem.
Collapse
Affiliation(s)
- Cristian Cojocaru
- Medical III Department, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Cojocaru
- Morpho‑Functional Sciences II Department, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adina Turcanu
- Medical III Department, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragos Zaharia
- Department 4 Cardio‑thoracic Pathology, Faculty of Medicine, University of Medicine and Pharmacy ‘Carol Davila’, 050471 Bucharest, Romania
| |
Collapse
|
14
|
Martinez-Fierro ML, González-Fuentes C, Cid-Guerrero D, González Delgado S, Carrillo-Martínez S, Gutierrez-Vela EF, Calzada-Luévano JY, Rocha-Pizaña MR, Martínez-Rendón J, Castañeda-López ME, Garza-Veloz I. Radiological Findings Increased the Successful of COVID-19 Diagnosis in Hospitalized Patients Suspected of Respiratory Viral Infection but with a Negative First SARS-CoV-2 RT-PCR Result. Diagnostics (Basel) 2022; 12:687. [PMID: 35328241 PMCID: PMC8946968 DOI: 10.3390/diagnostics12030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
SARS-CoV-2 is the etiological agent of COVID-19 and may evolve from asymptomatic disease to fatal outcomes. Real-time reverse-transcription polymerase chain reaction (RT-PCR) screening is the gold standard to diagnose severe accurate respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but this test is not 100% accurate, as false negatives can occur. We aimed to evaluate the potential false-negative results in hospitalized patients suspected of viral respiratory disease but with a negative previous SARS-CoV-2 RT-PCR and analyze variables that may increase the success of COVID-19 diagnosis in this group of patients. A total of 55 hospitalized patients suspected of viral respiratory disease but with a previous negative RT-PCR result for SARS-CoV-2 were included. All the participants had clinical findings related to COVID-19 and underwent a second SARS-CoV-2 RT-PCR. Chest-computed axial tomography (CT) was used as an auxiliary tool for COVID-19 diagnosis. After the second test, 36 patients (65.5%) were positive for SARS-CoV-2 (COVID-19 group), and 19 patients (34.5%) were negative (controls). There were differences between the groups in the platelet count and the levels of D-dimer, procalcitonin, and glucose (p < 0.05). Chest CT scans categorized as COVID-19 Reporting and Data System 5 (CO-RADS 5) were more frequent in the COVID-19 group than in the control group (91.7% vs. 52.6%; p = 0.003). CO-RADS 5 remained an independent predictor of COVID-19 diagnosis in a second SARS-CoV-2 screening (p = 0.013; odds ratio = 7.0, 95% confidence interval 1.5−32.7). In conclusion, chest CT classified as CO-RADS 5 was an independent predictor of a positive second SARS-CoV-2 RT-PCR, increasing the odds of COVID-19 diagnosis by seven times. Based on our results, in hospitalized patients with a chest CT classified as CO-RADS 5, a second SARS-CoV-2 RT-PCR test should be mandatory when the first one is negative. This approach could increase SARS-CoV-2 detection up to 65% and could allow for isolation and treatment, thus improving the patient outcome and avoiding further contagion.
Collapse
Affiliation(s)
- Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.G.-F.); (S.G.D.); (S.C.-M.); (J.Y.C.-L.); (J.M.-R.); (M.E.C.-L.)
| | - Carolina González-Fuentes
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.G.-F.); (S.G.D.); (S.C.-M.); (J.Y.C.-L.); (J.M.-R.); (M.E.C.-L.)
- Hospital General “Luz González Cosío”, Circuito Ciudad Gobierno, Zacatecas 98160, Mexico; (D.C.-G.); (E.F.G.-V.)
| | - Dagoberto Cid-Guerrero
- Hospital General “Luz González Cosío”, Circuito Ciudad Gobierno, Zacatecas 98160, Mexico; (D.C.-G.); (E.F.G.-V.)
| | - Samantha González Delgado
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.G.-F.); (S.G.D.); (S.C.-M.); (J.Y.C.-L.); (J.M.-R.); (M.E.C.-L.)
| | - Santiago Carrillo-Martínez
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.G.-F.); (S.G.D.); (S.C.-M.); (J.Y.C.-L.); (J.M.-R.); (M.E.C.-L.)
- Hospital General “Luz González Cosío”, Circuito Ciudad Gobierno, Zacatecas 98160, Mexico; (D.C.-G.); (E.F.G.-V.)
| | | | - Juan Yadid Calzada-Luévano
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.G.-F.); (S.G.D.); (S.C.-M.); (J.Y.C.-L.); (J.M.-R.); (M.E.C.-L.)
- Hospital General “Luz González Cosío”, Circuito Ciudad Gobierno, Zacatecas 98160, Mexico; (D.C.-G.); (E.F.G.-V.)
| | - Maria R. Rocha-Pizaña
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey Campus Puebla, Puebla 72453, Mexico;
| | - Jacqueline Martínez-Rendón
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.G.-F.); (S.G.D.); (S.C.-M.); (J.Y.C.-L.); (J.M.-R.); (M.E.C.-L.)
| | - Maria E. Castañeda-López
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.G.-F.); (S.G.D.); (S.C.-M.); (J.Y.C.-L.); (J.M.-R.); (M.E.C.-L.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.G.-F.); (S.G.D.); (S.C.-M.); (J.Y.C.-L.); (J.M.-R.); (M.E.C.-L.)
| |
Collapse
|
15
|
Caillon A, Trimaille A, Favre J, Jesel L, Morel O, Kauffenstein G. Role of neutrophils, platelets, and extracellular vesicles and their interactions in COVID-19-associated thrombopathy. J Thromb Haemost 2022; 20:17-31. [PMID: 34672094 PMCID: PMC8646423 DOI: 10.1111/jth.15566] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic extended all around the world causing millions of deaths. In addition to acute respiratory distress syndrome, many patients with severe COVID-19 develop thromboembolic complications associated to multiorgan failure and death. Here, we review evidence for the contribution of neutrophils, platelets, and extracellular vesicles (EVs) to the thromboinflammatory process in COVID-19. We discuss how the immune system, influenced by pro-inflammatory molecules, EVs, and neutrophil extracellular traps (NETs), can be caught out in patients with severe outcomes. We highlight how the deficient regulation of the innate immune system favors platelet activation and induces a vicious cycle amplifying an immunothrombogenic environment associated with platelet/NET interactions. In light of these considerations, we discuss potential therapeutic strategies underlining the modulation of purinergic signaling as an interesting target.
Collapse
Affiliation(s)
- Antoine Caillon
- Lady Davis Institute for Medical Research, McGill University, Montréal, Quebec, Canada
| | - Antonin Trimaille
- UMR INSERM 1260, CRBS, Strasbourg University, Strasbourg, France
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Julie Favre
- INSERM, UMR S 1121, Biomaterials and Bioengineering, CRBS, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Laurence Jesel
- UMR INSERM 1260, CRBS, Strasbourg University, Strasbourg, France
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Olivier Morel
- UMR INSERM 1260, CRBS, Strasbourg University, Strasbourg, France
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | | |
Collapse
|
16
|
Gallo CG, Fiorino S, Posabella G, Antonacci D, Tropeano A, Pausini E, Pausini C, Guarniero T, Hong W, Giampieri E, Corazza I, Federico L, de Biase D, Zippi M, Zancanaro M. COVID-19, what could sepsis, severe acute pancreatitis, gender differences, and aging teach us? Cytokine 2021; 148:155628. [PMID: 34411989 PMCID: PMC8343368 DOI: 10.1016/j.cyto.2021.155628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a potentially life-threatening disease, defined as Coronavirus Disease 19 (COVID-19). The most common signs and symptoms of this pathological condition include cough, fever, shortness of breath, and sudden onset of anosmia, ageusia, or dysgeusia. The course of COVID-19 is mild or moderate in more than 80% of cases, but it is severe or critical in about 14% and 5% of infected subjects respectively, with a significant risk of mortality. SARS-CoV-2 related infection is characterized by some pathogenetic events, resembling those detectable in other pathological conditions, such as sepsis and severe acute pancreatitis. All these syndromes are characterized by some similar features, including the coexistence of an exuberant inflammatory- as well as an anti-inflammatory-response with immune depression. Based on current knowledge concerning the onset and the development of acute pancreatitis and sepsis, we have considered these syndromes as a very interesting paradigm for improving our understanding of pathogenetic events detectable in patients with COVID-19. The aim of our review is: 1)to examine the pathogenetic mechanisms acting during the emergence of inflammatory and anti-inflammatory processes in human pathology; 2)to examine inflammatory and anti-inflammatory events in sepsis, acute pancreatitis, and SARS-CoV-2 infection and clinical manifestations detectable in patients suffering from these syndromes also according to the age and gender of these individuals; as well as to analyze the possible common and different features among these pathological conditions; 3)to obtain insights into our knowledge concerning COVID-19 pathogenesis. This approach may improve the management of patients suffering from this disease and it may suggest more effective diagnostic approaches and schedules of therapy, depending on the different phases and/or on the severity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Claudio G Gallo
- Emilian Physiolaser Therapy Center, Castel S. Pietro Terme, Bologna, Italy.
| | - Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | | | - Donato Antonacci
- Medical Science Department, "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo (FG), Italy
| | | | | | | | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, The People's Republic of China
| | - Enrico Giampieri
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Ivan Corazza
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Lari Federico
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | | |
Collapse
|
17
|
Zheng C, Ricci J, Zhang Q, Alawieh A, Yang X, Nadig S, He S, Engel P, Jin J, Atkinson C, Tomlinson S. Characterization of Novel P-Selectin Targeted Complement Inhibitors in Murine Models of Hindlimb Injury and Transplantation. Front Immunol 2021; 12:785229. [PMID: 34899752 PMCID: PMC8654931 DOI: 10.3389/fimmu.2021.785229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/09/2021] [Indexed: 12/05/2022] Open
Abstract
The complement system has long been recognized as a potential druggable target for a variety of inflammatory conditions. Very few complement inhibitors have been approved for clinical use, but a great number are in clinical development, nearly all of which systemically inhibit complement. There are benefits of targeting complement inhibition to sites of activation/disease in terms of efficacy and safety, and here we describe P-selectin targeted complement inhibitors, with and without a dual function of directly blocking P-selectin-mediated cell-adhesion. The constructs are characterized in vitro and in murine models of hindlimb ischemia/reperfusion injury and hindlimb transplantation. Both constructs specifically targeted to reperfused hindlimb and provided protection in the hindlimb ischemia/reperfusion injury model. The P-selectin blocking construct was the more efficacious, which correlated with less myeloid cell infiltration, but with similarly reduced levels of complement deposition. The blocking construct also improved tissue perfusion and, unlike the nonblocking construct, inhibited coagulation, raising the possibility of differential application of each construct, such as in thrombotic vs. hemorrhagic conditions. Similar outcomes were obtained with the blocking construct following vascularized composite graft transplantation, and treatment also significantly increased graft survival. This is outcome may be particularly pertinent in the context of vascularized composite allograft transplantation, since reduced ischemia reperfusion injury is linked to a less rigorous alloimmune response that may translate to the requirement of a less aggressive immunosuppressive regime for this normally nonlife-threatening procedure. In summary, we describe a new generation of targeted complement inhibitor with multi-functionality that includes targeting to vascular injury, P-selectin blockade, complement inhibition and anti-thrombotic activity. The constructs described also bound to both mouse and human P-selectin which may facilitate potential translation.
Collapse
Affiliation(s)
- Chaowen Zheng
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jerec Ricci
- The Lee Patterson Allen Transplant Immunobiology Laboratory, Department of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Qinqin Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Thyroid and Breast Surgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Ali Alawieh
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Xiaofeng Yang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Satish Nadig
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- The Lee Patterson Allen Transplant Immunobiology Laboratory, Department of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pablo Engel
- Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- The Lee Patterson Allen Transplant Immunobiology Laboratory, Department of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
- Department of Pulmonary Medicine, University of Florida, Gainesville, FL, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson Veteran Affairs Medical Center, Charleston, SC, United States
| |
Collapse
|
18
|
Savitt AG, Manimala S, White T, Fandaros M, Yin W, Duan H, Xu X, Geisbrecht BV, Rubenstein DA, Kaplan AP, Peerschke EI, Ghebrehiwet B. SARS-CoV-2 Exacerbates COVID-19 Pathology Through Activation of the Complement and Kinin Systems. Front Immunol 2021; 12:767347. [PMID: 34804054 PMCID: PMC8602850 DOI: 10.3389/fimmu.2021.767347] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Infection with SARS-CoV-2 triggers the simultaneous activation of innate inflammatory pathways including the complement system and the kallikrein-kinin system (KKS) generating in the process potent vasoactive peptides that contribute to severe acute respiratory syndrome (SARS) and multi-organ failure. The genome of SARS-CoV-2 encodes four major structural proteins - the spike (S) protein, nucleocapsid (N) protein, membrane (M) protein, and the envelope (E) protein. However, the role of these proteins in either binding to or activation of the complement system and/or the KKS is still incompletely understood. In these studies, we used: solid phase ELISA, hemolytic assay and surface plasmon resonance (SPR) techniques to examine if recombinant proteins corresponding to S1, N, M and E: (a) bind to C1q, gC1qR, FXII and high molecular weight kininogen (HK), and (b) activate complement and/or the KKS. Our data show that the viral proteins: (a) bind C1q and activate the classical pathway of complement, (b) bind FXII and HK, and activate the KKS in normal human plasma to generate bradykinin and (c) bind to gC1qR, the receptor for the globular heads of C1q (gC1q) which in turn could serve as a platform for the activation of both the complement system and KKS. Collectively, our data indicate that the SARS-CoV-2 viral particle can independently activate major innate inflammatory pathways for maximal damage and efficiency. Therefore, if efficient therapeutic modalities for the treatment of COVID-19 are to be designed, a strategy that includes blockade of the four major structural proteins may provide the best option.
Collapse
Affiliation(s)
- Anne G Savitt
- Department of Microbiology & Immunology, Renaissance School of Medicine of Stony Brook University, Stony Brook, NY, United States.,Department of Medicine, Renaissance School of Medicine of Stony Brook University, Stony Brook, NY, United States
| | - Samantha Manimala
- Department of Medicine, Renaissance School of Medicine of Stony Brook University, Stony Brook, NY, United States
| | - Tiara White
- Department of Microbiology & Immunology, Renaissance School of Medicine of Stony Brook University, Stony Brook, NY, United States.,Department of Medicine, Renaissance School of Medicine of Stony Brook University, Stony Brook, NY, United States
| | - Marina Fandaros
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Huiquan Duan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Xin Xu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Allen P Kaplan
- Pulmonary and Critical Care Division, The Medical University of South Carolina, Charleston, SC, United States
| | - Ellinor I Peerschke
- The Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Berhane Ghebrehiwet
- Department of Microbiology & Immunology, Renaissance School of Medicine of Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
19
|
Abstract
Coronavirus disease 2019 (COVID-19) is characterized by a coagulation dysfunction which has different underlying mechanisms and factors. Patients with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection have an increased risk for thromboembolic and bleeding complications. Incidences are high, and mainly consist of venous thromboembolism (VTE), which significantly contributes to morbidity and mortality in affected patients. Thromboprophylaxis is recommended in all hospitalized COVID-19 patients. Therapeutic doses of antithrombotic agents are only beneficial in noncritically ill patients, and usual care thromboprophylaxis is sufficient in critically ill patients at the ICU. Regarding screening for VTE, high quality evidence is warranted to investigate the significance of asymptomatic DVT in the ICU setting and its influence on PE and mortality.
Collapse
|
20
|
Abstract
CoVID-19 is a multi-symptomatic disease which has made a global impact due to its ability to spread rapidly, and its relatively high mortality rate. Beyond the heroic efforts to develop vaccines, which we do not discuss herein, the response of scientists and clinicians to this complex problem has reflected the need to detect CoVID-19 rapidly, to diagnose patients likely to show adverse symptoms, and to treat severe and critical CoVID-19. Here we aim to encapsulate these varied and sometimes conflicting approaches and the resulting data in terms of chemistry and biology. In the process we highlight emerging concepts, and potential future applications that may arise out of this immense effort.
Collapse
Affiliation(s)
| | - Yimon Aye
- Swiss Federal Institute of Technology in Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
21
|
Ropa J, Trinh T, Aljoufi A, Broxmeyer HE. Consequences of coronavirus infections for primitive and mature hematopoietic cells: new insights and why it matters. Curr Opin Hematol 2021; 28:231-242. [PMID: 33656463 PMCID: PMC8269959 DOI: 10.1097/moh.0000000000000645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In recent history there have been three outbreaks of betacoronavirus infections in humans, with the most recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; causing Coronavirus disease 2019 [COVID-19]) outbreak leading to over two million deaths, with a rapidly rising death toll. Much remains unknown about host cells and tissues affected by coronavirus infections, including the hematopoietic system. Here, we discuss the recent findings examining effects that coronavirus infection or exposure has on hematopoietic cells and the clinical implications for these effects. RECENT FINDINGS Recent studies have centered on SARS-CoV-2, demonstrating that hematopoietic stem and progenitor cells and mature immune cells may be susceptible to infection and are impacted functionally by exposure to SARS-CoV-2 Spike protein. These findings have important implications regarding hematologic complications arising from COVID-19 and other coronavirus-induced disease, which we discuss here. SUMMARY Infection with coronaviruses sometimes leads to hematologic complications in patients, and these hematologic complications are associated with poorer prognosis. These hematologic complications may be caused by coronavirus direct infection or impact on primitive hematopoietic cells or mature immune cells, by indirect effects on these cells, or by a combination thereof. It is important to understand how hematologic complications arise in order to seek new treatments to improve patient outcomes.
Collapse
Affiliation(s)
- James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Thao Trinh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hal E. Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
22
|
Iovino L, Thur LA, Gnjatic S, Chapuis A, Milano F, Hill JA. Shared inflammatory pathways and therapeutic strategies in COVID-19 and cancer immunotherapy. J Immunother Cancer 2021; 9:e002392. [PMID: 33986127 PMCID: PMC8126446 DOI: 10.1136/jitc-2021-002392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 01/28/2023] Open
Abstract
COVID-19, the syndrome caused by the infection with SARS-CoV-2 coronavirus, is characterized, in its severe form, by interstitial diffuse pneumonitis and acute respiratory distress syndrome (ARDS). ARDS and systemic manifestations of COVID-19 are mainly due to an exaggerated immune response triggered by the viral infection. Cytokine release syndrome (CRS), an inflammatory syndrome characterized by elevated levels of circulating cytokines, and endothelial dysfunction are systemic manifestations of COVID-19. CRS is also an adverse event of immunotherapy (IMTX), the treatment of diseases using drugs, cells, and antibodies to stimulate or suppress the immune system. Graft-versus-host disease complications after an allogeneic stem cell transplant, toxicity after the infusion of chimeric antigen receptor-T cell therapy and monoclonal antibodies can all lead to CRS. It is hypothesized that anti-inflammatory drugs used for treatment of CRS in IMTX may be useful in reducing the mortality in COVID-19, whereas IMTX itself may help in ameliorating effects of SARS-CoV-2 infection. In this paper, we focused on the potential shared mechanisms and differences between COVID-19 and IMTX-related toxicities. We performed a systematic review of the clinical trials testing anti-inflammatory therapies and of the data published from prospective trials. Preliminary evidence suggests there might be a benefit in targeting the cytokines involved in the pathogenesis of COVID-19, especially by inhibiting the interleukin-6 pathway. Many other approaches based on novel drugs and cell therapies are currently under investigation and may lead to a reduction in hospitalization and mortality due to COVID-19.
Collapse
Affiliation(s)
- Lorenzo Iovino
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Laurel A Thur
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sacha Gnjatic
- Medicine-Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aude Chapuis
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Filippo Milano
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua A Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
23
|
Höchsmann B, Körper S, Schrezenmeier H. Komplementinhibitoren: neue Therapeutika – neue Indikationen. TRANSFUSIONSMEDIZIN 2021. [DOI: 10.1055/a-1145-5522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ZusammenfassungDas Komplementsystem, ein klassisch transfusionsmedizinisches Thema, hat in den letzten Jahren in allen Bereichen der Medizin an Bedeutung gewonnen. Komplementinhibitoren werden aufgrund eines besseren Verständnisses der Pathophysiologie unterschiedlicher Erkrankungen in einem sich stetig erweiternden Krankheitsspektrum eingesetzt. Dieses reicht von typisch komplementassoziierten Erkrankungen wie der PNH (paroxysmale nächtliche Hämoglobinurie) bis hin zu akuten Krankheitsbildern mit einer Fehlregulation des Komplementsystems, wie COVID-19.
Collapse
Affiliation(s)
- Britta Höchsmann
- Institut für Klinische Transfusionsmedizin und Immungenetik Ulm, DRK-Blutspendedienst Baden-Württemberg-Hessen und Universitätsklinikum Ulm; Institut für Transfusionsmedizin, Universität Ulm
| | - Sixten Körper
- Institut für Klinische Transfusionsmedizin und Immungenetik Ulm, DRK-Blutspendedienst Baden-Württemberg-Hessen und Universitätsklinikum Ulm; Institut für Transfusionsmedizin, Universität Ulm
| | - Hubert Schrezenmeier
- Institut für Klinische Transfusionsmedizin und Immungenetik Ulm, DRK-Blutspendedienst Baden-Württemberg-Hessen und Universitätsklinikum Ulm; Institut für Transfusionsmedizin, Universität Ulm
| |
Collapse
|
24
|
Correcting the imbalanced protective RAS in COVID-19 with angiotensin AT2-receptor agonists. Clin Sci (Lond) 2020; 134:2987-3006. [PMID: 33210709 DOI: 10.1042/cs20200922] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is responsible for the global corona virus disease 2019 (COVID-19) pandemic enters host cells via a mechanism that includes binding to angiotensin converting enzyme (ACE) 2 (ACE2). Membrane-bound ACE2 is depleted as a result of this entry mechanism. The consequence is that the protective renin-angiotensin system (RAS), of which ACE2 is an essential component, is compromised through lack of production of the protective peptides angiotensin-(1-7) and angiotensin-(1-9), and therefore decreased stimulation of Mas (receptor Mas) and angiotensin AT2-receptors (AT2Rs), while angiotensin AT1-receptors (AT1Rs) are overstimulated due to less degradation of angiotensin II (Ang II) by ACE2. The protective RAS has numerous beneficial actions, including anti-inflammatory, anti-coagulative, anti-fibrotic effects along with endothelial and neural protection; opposite to the deleterious effects caused by heightened stimulation of angiotensin AT1R. Given that patients with severe COVID-19 exhibit an excessive immune response, endothelial dysfunction, increased clotting, thromboses and stroke, enhancing the activity of the protective RAS is likely beneficial. In this article, we discuss the evidence for a dysfunctional protective RAS in COVID and develop a rationale that the protective RAS imbalance in COVID-19 may be corrected by using AT2R agonists. We further review preclinical studies with AT2R agonists which suggest that AT2R stimulation may be therapeutically effective to treat COVID-19-induced disorders of various organ systems such as lung, vasculature, or the brain. Finally, we provide information on the design of a clinical trial in which patients with COVID-19 were treated with the AT2R agonist Compound 21 (C21). This trial has been completed, but results have not yet been reported.
Collapse
|
25
|
Mastellos DC, Pires da Silva BGP, Fonseca BAL, Fonseca NP, Auxiliadora-Martins M, Mastaglio S, Ruggeri A, Sironi M, Radermacher P, Chrysanthopoulou A, Skendros P, Ritis K, Manfra I, Iacobelli S, Huber-Lang M, Nilsson B, Yancopoulou D, Connolly ES, Garlanda C, Ciceri F, Risitano AM, Calado RT, Lambris JD. Complement C3 vs C5 inhibition in severe COVID-19: Early clinical findings reveal differential biological efficacy. Clin Immunol 2020; 220:108598. [PMID: 32961333 PMCID: PMC7501834 DOI: 10.1016/j.clim.2020.108598] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Growing clinical evidence has implicated complement as a pivotal driver of COVID-19 immunopathology. Deregulated complement activation may fuel cytokine-driven hyper-inflammation, thrombotic microangiopathy and NET-driven immunothrombosis, thereby leading to multi-organ failure. Complement therapeutics have gained traction as candidate drugs for countering the detrimental consequences of SARS-CoV-2 infection. Whether blockade of terminal complement effectors (C5, C5a, or C5aR1) may elicit similar outcomes to upstream intervention at the level of C3 remains debated. Here we compare the efficacy of the C5-targeting monoclonal antibody eculizumab with that of the compstatin-based C3-targeted drug candidate AMY-101 in small independent cohorts of severe COVID-19 patients. Our exploratory study indicates that therapeutic complement inhibition abrogates COVID-19 hyper-inflammation. Both C3 and C5 inhibitors elicit a robust anti-inflammatory response, reflected by a steep decline in C-reactive protein and IL-6 levels, marked lung function improvement, and resolution of SARS-CoV-2-associated acute respiratory distress syndrome (ARDS). C3 inhibition afforded broader therapeutic control in COVID-19 patients by attenuating both C3a and sC5b-9 generation and preventing FB consumption. This broader inhibitory profile was associated with a more robust decline of neutrophil counts, attenuated neutrophil extracellular trap (NET) release, faster serum LDH decline, and more prominent lymphocyte recovery. These early clinical results offer important insights into the differential mechanistic basis and underlying biology of C3 and C5 inhibition in COVID-19 and point to a broader pathogenic involvement of C3-mediated pathways in thromboinflammation. They also support the evaluation of these complement-targeting agents as COVID-19 therapeutics in large prospective trials.
Collapse
Affiliation(s)
- Dimitrios C Mastellos
- National Center for Scientific Research 'Demokritos', Aghia Paraskevi, Athens, Greece
| | - Bruno G P Pires da Silva
- Department of Medical Imaging, Hematology and Clinical Oncology, University of São Paulo, Ribeirão Preto, School of Medicine, Brazil
| | - Benedito A L Fonseca
- Department of Internal Medicine, University of São Paulo, Ribeirão Preto School of Medicine, Brazil
| | - Natasha P Fonseca
- Department of Medical Imaging, Hematology and Clinical Oncology, University of São Paulo, Ribeirão Preto, School of Medicine, Brazil
| | - Maria Auxiliadora-Martins
- Intensive Care Unit, University Hospital, University of São Paulo, Ribeirão Preto School of Medicine, Brazil
| | - Sara Mastaglio
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annalisa Ruggeri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Sironi
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Peter Radermacher
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, University Hospital of Ulm, Ulm, Germany
| | - Akrivi Chrysanthopoulou
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Panagiotis Skendros
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Ritis
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ilenia Manfra
- AORN San Giuseppe Moscati, Hematology and Hematopoietic Stem Cell Transplantation Unit, Avellino, Italy
| | - Simona Iacobelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Bo Nilsson
- Division of Clinical Immunology, Uppsala University Hospital, Uppsala, Sweden
| | | | - E Sander Connolly
- Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Cecilia Garlanda
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy; Humanitas University, Pieve Emanuele, Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita Salute San Raffaele, Milan, Italy
| | - Antonio M Risitano
- AORN San Giuseppe Moscati, Hematology and Hematopoietic Stem Cell Transplantation Unit, Avellino, Italy; Federico II University of Naples, Naples, Italy
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology and Clinical Oncology, University of São Paulo, Ribeirão Preto, School of Medicine, Brazil
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|