1
|
Kitamura RA, Hummel D, Ustione A, Piston DW, Urano F. Dual role of neuroplastin in pancreatic β cells: Regulating insulin secretion and promoting islet inflammation. Proc Natl Acad Sci U S A 2024; 121:e2411234121. [PMID: 39666939 PMCID: PMC11331099 DOI: 10.1073/pnas.2411234121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 12/14/2024] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident secretory protein that reduces inflammation and promotes proliferation in pancreatic β cells. Numerous studies have highlighted the potential of MANF as a therapeutic agent for diabetes mellitus (DM), making it essential to understand the mechanisms underlying MANF's functions. In our previous search for a molecule that mediates MANF signaling, we identified Neuroplastin (NPTN) as a binding partner of MANF that localizes on the cell surface. However, the roles of NPTN in pancreatic β cells remain unclear. In this study, we generated β cell-specific Nptn knockout (KO) mice and conducted metabolic characterization. NPTN deficiency improved glucose tolerance by increasing insulin secretion and β cell mass in the pancreas. Moreover, proliferation and mitochondrial numbers in β cells increased in Nptn KO islets. These phenotypes resulted from elevated cytosolic Ca2+ levels and subsequent activation of downstream molecules. Simultaneously, we demonstrated that NPTN induces the expression of proinflammatory cytokines via the TRAF6-NF-κB axis in β cells. Additionally, NPTN deficiency conferred resistance to streptozotocin-induced diabetic phenotypes. Finally, exogenous MANF treatment in islets or β cells led to similar phenotypes as those observed in NPTN-deficient models. These results indicate that NPTN plays important roles in the regulation of insulin secretion, proliferation, and mitochondrial quantity, as well as proinflammatory responses, which are antagonized by MANF treatment. Thus, targeting the MANF-NPTN interaction may lead to a novel treatment for improving β cell functions in DM.
Collapse
Affiliation(s)
- Rie Asada Kitamura
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO63110
| | - Devynn Hummel
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO63110
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO63110
| | - David W. Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO63110
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
2
|
Wang P, Wood O, Choleva L, Liu H, Karakose E, Lambertini L, Pillard A, Wu V, Garcia-Ocana A, Scott DK, Kumar K, DeVita RJ, Stewart AF. Select DYRK1A Inhibitors Enhance Both Proliferation and Differentiation in Human Pancreatic Beta Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594179. [PMID: 38798411 PMCID: PMC11118480 DOI: 10.1101/2024.05.17.594179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The small molecule DYRK1A inhibitor, harmine, induces human beta cell proliferation, expands beta cell mass, enhances expression of beta cell phenotypic genes, and improves human beta cell function i n vitro and in vivo . It is unknown whether the "pro-differentiation effect" is a DYRK1A inhibitor class-wide effect. Here we compare multiple commonly studied DYRK1A inhibitors. Harmine, 2-2c and 5-IT increase expression of PDX1, MAFA, NKX6.1, SLC2A2, PCSK1, MAFB, SIX2, SLC2A2, SLC30A8, ENTPD3 in normal and T2D human islets. Unexpectedly, GNF4877, CC-401, INDY, CC-401 and Leucettine fail to induce expression of these essential beta cell molecules. Remarkably, the pro-differentiation effect is independent of DYRK1A inhibition: although silencing DYRK1A induces human beta cell proliferation, it has no effect on differentiation; conversely, harmine treatment enhances beta cell differentiation in DYRK1A-silenced islets. A careful screen of multiple DYRK1A inhibitor kinase candidate targets was unable to identify pro-differentiation pathways. Overall, harmine, 2-2c and 5-IT are unique among DYRK1A inhibitors in their ability to enhance both beta cell proliferation and differentiation. While beta cell proliferation is mediated by DYRK1A inhibition, the pro-differentiation effects of harmine, 2-2c and 5-IT are distinct, and unexplained in mechanistic terms. These considerations have important implications for DYRK1A inhibitor pharmaceutical development.
Collapse
|
3
|
Ellsworth PN, Herring JA, Leifer AH, Ray JD, Elison WS, Poulson PD, Crabtree JE, Van Ry PM, Tessem JS. CEBPA Overexpression Enhances β-Cell Proliferation and Survival. BIOLOGY 2024; 13:110. [PMID: 38392328 PMCID: PMC10887016 DOI: 10.3390/biology13020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
A commonality between type 1 and type 2 diabetes is the decline in functional β-cell mass. The transcription factor Nkx6.1 regulates β-cell development and is integral for proper β-cell function. We have previously demonstrated that Nkx6.1 depends on c-Fos mediated upregulation and the nuclear hormone receptors Nr4a1 and Nr4a3 to increase β-cell insulin secretion, survival, and replication. Here, we demonstrate that Nkx6.1 overexpression results in upregulation of the bZip transcription factor CEBPA and that CEBPA expression is independent of c-Fos regulation. In turn, CEBPA overexpression is sufficient to enhance INS-1 832/13 β-cell and primary rat islet proliferation. CEBPA overexpression also increases the survival of β-cells treated with thapsigargin. We demonstrate that increased survival in response to ER stress corresponds with changes in expression of various genes involved in the unfolded protein response, including decreased Ire1a expression. These data show that CEBPA is sufficient to enhance functional β-cell mass by increasing β-cell proliferation and modulating the unfolded protein response.
Collapse
Affiliation(s)
- Peter N Ellsworth
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Jacob A Herring
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Aaron H Leifer
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Jason D Ray
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Weston S Elison
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Peter Daniel Poulson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Jacqueline E Crabtree
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Pam M Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
4
|
Vittal R, Walker NM, McLinden AP, Braeuer RR, Ke F, Fattahi F, Combs MP, Misumi K, Aoki Y, Wheeler DS, Wilke CA, Huang SK, Moore BB, Cao P, Lama VN. Genetic deficiency of the transcription factor NFAT1 confers protection against fibrogenic responses independent of immune influx. Am J Physiol Lung Cell Mol Physiol 2024; 326:L39-L51. [PMID: 37933452 PMCID: PMC11279780 DOI: 10.1152/ajplung.00045.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is marked by unremitting matrix deposition and architectural distortion. Multiple profibrotic pathways contribute to the persistent activation of mesenchymal cells (MCs) in fibrosis, highlighting the need to identify and target common signaling pathways. The transcription factor nuclear factor of activated T cells 1 (NFAT1) lies downstream of second messenger calcium signaling and has been recently shown to regulate key profibrotic mediator autotaxin (ATX) in lung MCs. Herein, we investigate the role of NFAT1 in regulating fibroproliferative responses during the development of lung fibrosis. Nfat1-/--deficient mice subjected to bleomycin injury demonstrated improved survival and protection from lung fibrosis and collagen deposition as compared with bleomycin-injured wild-type (WT) mice. Chimera mice, generated by reconstituting bone marrow cells from WT or Nfat1-/- mice into irradiated WT mice (WT→WT and Nfat1-/-→WT), demonstrated no difference in bleomycin-induced fibrosis, suggesting immune influx-independent fibroprotection in Nfat1-/- mice. Examination of lung tissue and flow sorted lineageneg/platelet-derived growth factor receptor alpha (PDGFRα)pos MCs demonstrated decreased MC numbers, proliferation [↓ cyclin D1 and 5-ethynyl-2'-deoxyuridine (EdU) incorporation], myofibroblast differentiation [↓ α-smooth muscle actin (α-SMA)], and survival (↓ Birc5) in Nfat1-/- mice. Nfat1 deficiency abrogated ATX expression in response to bleomycin in vivo and MCs derived from Nfat1-/- mice demonstrated decreased ATX expression and migration in vitro. Human IPF MCs demonstrated constitutive NFAT1 activation, and regulation of ATX in these cells by NFAT1 was confirmed using pharmacological and genetic inhibition. Our findings identify NFAT1 as a critical mediator of profibrotic processes, contributing to dysregulated lung remodeling and suggest its targeting in MCs as a potential therapeutic strategy in IPF.NEW & NOTEWORTHY Idiopathic pulmonary fibrosis (IPF) is a fatal disease with hallmarks of fibroblastic foci and exuberant matrix deposition, unknown etiology, and ineffective therapies. Several profibrotic/proinflammatory pathways are implicated in accelerating tissue remodeling toward a honeycombed end-stage disease. NFAT1 is a transcriptional factor activated in IPF tissues. Nfat1-deficient mice subjected to chronic injury are protected against fibrosis independent of immune influxes, with suppression of profibrotic mesenchymal phenotypes including proliferation, differentiation, resistance to apoptosis, and autotaxin-related migration.
Collapse
Affiliation(s)
- Ragini Vittal
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Natalie M Walker
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - A Patrick McLinden
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Russell R Braeuer
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Fang Ke
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Fatemeh Fattahi
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Michael P Combs
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Keizo Misumi
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Yoshiro Aoki
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - David S Wheeler
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Carol A Wilke
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States
| | - Steven K Huang
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Bethany B Moore
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States
| | - Pengxiu Cao
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Vibha N Lama
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
5
|
Zhang Y, Fang H, Wang G, Yuan G, Dong R, Luo J, Lyu Y, Wang Y, Li P, Zhou C, Yin W, Xiao H, Sun J, Zeng X. Cyclosporine A-resistant CAR-T cells mediate antitumour immunity in the presence of allogeneic cells. Nat Commun 2023; 14:8491. [PMID: 38123592 PMCID: PMC10733396 DOI: 10.1038/s41467-023-44176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T therapy requires autologous T lymphocytes from cancer patients, a process that is both costly and complex. Universal CAR-T cell treatment from allogeneic sources can overcome this limitation but is impeded by graft-versus-host disease (GvHD) and host versus-graft rejection (HvGR). Here, we introduce a mutated calcineurin subunit A (CNA) and a CD19-specific CAR into the T cell receptor α constant (TRAC) locus to generate cells that are resistant to the widely used immunosuppressant, cyclosporine A (CsA). These immunosuppressant-resistant universal (IRU) CAR-T cells display improved effector function in vitro and anti-tumour efficacy in a leukemia xenograft mouse model in the presence of CsA, compared with CAR-T cells carrying wild-type CNA. Moreover, IRU CAR-T cells retain effector function in vitro and in vivo in the presence of both allogeneic T cells and CsA. Lastly, CsA withdrawal restores HvGR, acting as a safety switch that can eliminate IRU CAR-T cells. These findings demonstrate the efficacy of CsA-resistant CAR-T cells as a universal, 'off-the-shelf' treatment option.
Collapse
Affiliation(s)
- Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China
| | - Hongyu Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China
| | - Guocan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China
| | - Guangxun Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China
| | - Ruoyu Dong
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jijun Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China
| | - Yu Lyu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Hangzhou, 310058, China
| | - Yajie Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Li
- Puluoting Health Technology Co., Ltd, Hangzhou, 310003, China
| | - Chun Zhou
- School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China.
| |
Collapse
|
6
|
Keller MP, Hudkins KL, Shalev A, Bhatnagar S, Kebede MA, Merrins MJ, Davis DB, Alpers CE, Kimple ME, Attie AD. What the BTBR/J mouse has taught us about diabetes and diabetic complications. iScience 2023; 26:107036. [PMID: 37360692 PMCID: PMC10285641 DOI: 10.1016/j.isci.2023.107036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Human and mouse genetics have delivered numerous diabetogenic loci, but it is mainly through the use of animal models that the pathophysiological basis for their contribution to diabetes has been investigated. More than 20 years ago, we serendipidously identified a mouse strain that could serve as a model of obesity-prone type 2 diabetes, the BTBR (Black and Tan Brachyury) mouse (BTBR T+ Itpr3tf/J, 2018) carrying the Lepob mutation. We went on to discover that the BTBR-Lepob mouse is an excellent model of diabetic nephropathy and is now widely used by nephrologists in academia and the pharmaceutical industry. In this review, we describe the motivation for developing this animal model, the many genes identified and the insights about diabetes and diabetes complications derived from >100 studies conducted in this remarkable animal model.
Collapse
Affiliation(s)
- Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelly L. Hudkins
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Anath Shalev
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Melkam A. Kebede
- School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Charles E. Alpers
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Michelle E. Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Mu-U-Min RBA, Diane A, Allouch A, Al-Siddiqi HH. Ca 2+-Mediated Signaling Pathways: A Promising Target for the Successful Generation of Mature and Functional Stem Cell-Derived Pancreatic Beta Cells In Vitro. Biomedicines 2023; 11:1577. [PMID: 37371672 DOI: 10.3390/biomedicines11061577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes mellitus is a chronic disease affecting over 500 million adults globally and is mainly categorized as type 1 diabetes mellitus (T1DM), where pancreatic beta cells are destroyed, and type 2 diabetes mellitus (T2DM), characterized by beta cell dysfunction. This review highlights the importance of the divalent cation calcium (Ca2+) and its associated signaling pathways in the proper functioning of beta cells and underlines the effects of Ca2+ dysfunction on beta cell function and its implications for the onset of diabetes. Great interest and promise are held by human pluripotent stem cell (hPSC) technology to generate functional pancreatic beta cells from diabetic patient-derived stem cells to replace the dysfunctional cells, thereby compensating for insulin deficiency and reducing the comorbidities of the disease and its associated financial and social burden on the patient and society. Beta-like cells generated by most current differentiation protocols have blunted functionality compared to their adult human counterparts. The Ca2+ dynamics in stem cell-derived beta-like cells and adult beta cells are summarized in this review, revealing the importance of proper Ca2+ homeostasis in beta-cell function. Consequently, the importance of targeting Ca2+ function in differentiation protocols is suggested to improve current strategies to use hPSCs to generate mature and functional beta-like cells with a comparable glucose-stimulated insulin secretion (GSIS) profile to adult beta cells.
Collapse
Affiliation(s)
- Razik Bin Abdul Mu-U-Min
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Abdoulaye Diane
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Asma Allouch
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Heba H Al-Siddiqi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| |
Collapse
|
8
|
Patil AR, Schug J, Naji A, Kaestner KH, Faryabi RB, Vahedi G. Computational workflow and interactive analysis of single-cell expression profiling of islets generated by the Human Pancreas Analysis Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522578. [PMID: 36711819 PMCID: PMC9881881 DOI: 10.1101/2023.01.03.522578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Type 1 and Type 2 diabetes are distinct genetic diseases of the pancreas which are defined by the abnormal level of blood glucose. Understanding the initial molecular perturbations that occur during the pathogenesis of diabetes is of critical importance in understanding these disorders. The inability to biopsy the human pancreas of living donors hampers insights into early detection, as the majority of diabetes studies have been performed on peripheral leukocytes from the blood, which is not the site of pathogenesis. Therefore, efforts have been made by various teams including the Human Pancreas Analysis Program (HPAP) to collect pancreatic tissues from deceased organ donors with different clinical phenotypes. HPAP is designed to define the molecular pathogenesis of islet dysfunction by generating detailed datasets of functional, cellular, and molecular information in pancreatic tissues of clinically well-defined organ donors with Type 1 and Type 2 diabetes. Moreover, data generated by HPAP continously become available through a centralized database, PANC-DB, thus enabling the diabetes research community to access these multi-dimensional data prepublication. Here, we present the computational workflow for single-cell RNA-seq data analysis of 258,379 high-quality cells from the pancreatic islets of 67 human donors generated by HPAP, the largest existing scRNA-seq dataset of human pancreatic tissues. We report various computational steps including preprocessing, doublet removal, clustering and cell type annotation across single-cell RNA-seq data from islets of four distintct classes of organ donors, i.e. non-diabetic control, autoantibody positive but normoglycemic, Type 1 diabetic, and Type 2 diabetic individuals. Moreover, we present an interactive tool, called CellxGene developed by the Chan Zuckerberg initiative, to navigate these high-dimensional datasets. Our data and interactive tools provide a reliable reference for singlecell pancreatic islet biology studies, especially diabetes-related conditions.
Collapse
|
9
|
Alghamdi TA, Krentz NA, Smith N, Spigelman AF, Rajesh V, Jha A, Ferdaoussi M, Suzuki K, Yang J, Manning Fox JE, Sun H, Sun Z, Gloyn AL, MacDonald PE. Zmiz1 is required for mature β-cell function and mass expansion upon high fat feeding. Mol Metab 2022; 66:101621. [PMID: 36307047 PMCID: PMC9643564 DOI: 10.1016/j.molmet.2022.101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Identifying the transcripts which mediate genetic association signals for type 2 diabetes (T2D) is critical to understand disease mechanisms. Studies in pancreatic islets support the transcription factor ZMIZ1 as a transcript underlying a T2D GWAS signal, but how it influences T2D risk is unknown. METHODS β-Cell-specific Zmiz1 knockout (Zmiz1βKO) mice were generated and phenotypically characterised. Glucose homeostasis was assessed in Zmiz1βKO mice and their control littermates on chow diet (CD) and high fat diet (HFD). Islet morphology and function were examined by immunohistochemistry and in vitro islet function was assessed by dynamic insulin secretion assay. Transcript and protein expression were assessed by RNA sequencing and Western blotting. In islets isolated from genotyped human donors, we assessed glucose-dependent insulin secretion and islet insulin content by static incubation assay. RESULTS Male and female Zmiz1βKO mice were glucose intolerant with impaired insulin secretion, compared with control littermates. Transcriptomic profiling of Zmiz1βKO islets identified over 500 differentially expressed genes including those involved in β-cell function and maturity, which we confirmed at the protein level. Upon HFD, Zmiz1βKO mice fail to expand β-cell mass and become severely diabetic. Human islets from carriers of the ZMIZ1-linked T2D-risk alleles have reduced islet insulin content and glucose-stimulated insulin secretion. CONCLUSIONS β-Cell Zmiz1 is required for normal glucose homeostasis. Genetic variation at the ZMIZ1 locus may influence T2D-risk by reducing islet mass expansion upon metabolic stress and the ability to maintain a mature β-cell state.
Collapse
Affiliation(s)
- Tamadher A. Alghamdi
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Nicole A.J. Krentz
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nancy Smith
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Aliya F. Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Varsha Rajesh
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alokkumar Jha
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mourad Ferdaoussi
- Department of Pediatrics, University of Alberta, Edmonton AB, T6G2R3, Canada
| | - Kunimasa Suzuki
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Jing Yang
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jocelyn E. Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Han Sun
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Zijie Sun
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Anna L. Gloyn
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA,Stanford Diabetes Research Centre, Stanford University, Stanford, CA, USA,Oxford Centre for Diabetes Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, UK,Corresponding author. Center for Academic Medicine, Division of Endocrinology & Diabetes, Department of Pediatrics, 453 Quarry Road, Palo Alto CA, 94304, USA. http://www.bcell.org
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G2R3, Canada,Corresponding author. Alberta Diabetes Institute, LKS Centre, Rm. 6-126, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
10
|
Hu DM, Zhang WD, Shi ZE, Zhang MY, Li R, Wang QX, Ji XL, Qu YQ. FOXP family DNA methylation correlates with immune infiltration and prognostic value in NSCLC. Front Genet 2022; 13:937069. [PMID: 36160018 PMCID: PMC9500381 DOI: 10.3389/fgene.2022.937069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/15/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Forkhead box P (FOXP) family was introduced as a double-edged sword in tumorigenesis and influenced immunotherapy response by modulating host immunity. This study aimed to summarize the involvement of the FOXP family in non-small cell lung cancer (NSCLC).Methods: The UALCAN, Gene Expression Profiling Interactive Analysis (GEPIA), and Reverse transcription-quantitative polymerase chain reaction (RT‒qPCR) were used to analyse the expression levels of the FOXP family in NSCLC. The prognostic impact was evaluated using Kaplan-Meier Plotter. MethSurv, UALCAN, and cBioPortal were applied to analyse the DNA methylation and mutation status of the FOXP family respectively. COEXPEDIA, STRING, and GeneMANIA were used to explore the interaction mechanism. Finally, TISIDB was used to investigate all of the immune-related characteristics regulated by the FOXP family.Results: The expression levels of FOXP1/3/4 were dysregulated in NSCLC tissues than that in normal tissues. Groups with low expression levels of FOXP1/4 and high expression levels of FOXP2/3 were associated with poor prognosis in NSCLC. The transcriptional levels of FOXP2/3/4 were correlated with DNA methylation in NSCLC. FOXP1/3/4 DNA methylation were correlated with prognosis. Pathway enrichment analysis indicated the FOXP family was mainly related to immune-related pathways. After DNA methylation, the correlations between FOXP family and immune factors were opposite to that before alteration in NSCLC.Conclusion: This study elucidated FOXP family could serve as vital diagnostic and prognostic biomarkers in NSCLC. Our study highlighted novel potential functions of FOXP family DNA methylation in regulation of immune-related signatures in NSCLC.
Collapse
Affiliation(s)
- Dong-Mei Hu
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Wen-Di Zhang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Zhuang-E Shi
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Meng-Yu Zhang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Li
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Qing-Xiang Wang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xiu-Li Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan, China
- *Correspondence: Yi-Qing Qu, ; Xiu-Li Ji,
| | - Yi-Qing Qu
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Yi-Qing Qu, ; Xiu-Li Ji,
| |
Collapse
|
11
|
Wang P, Karakose E, Argmann C, Wang H, Balev M, Brody RI, Rivas HG, Liu X, Wood O, Liu H, Choleva L, Hasson D, Bernstein E, Paulo JA, Scott DK, Lambertini L, DeCaprio JA, Stewart AF. Disrupting the DREAM complex enables proliferation of adult human pancreatic β cells. J Clin Invest 2022; 132:e157086. [PMID: 35700053 PMCID: PMC9337832 DOI: 10.1172/jci157086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Resistance to regeneration of insulin-producing pancreatic β cells is a fundamental challenge for type 1 and type 2 diabetes. Recently, small molecule inhibitors of the kinase DYRK1A have proven effective in inducing adult human β cells to proliferate, but their detailed mechanism of action is incompletely understood. We interrogated our human insulinoma and β cell transcriptomic databases seeking to understand why β cells in insulinomas proliferate, while normal β cells do not. This search reveals the DREAM complex as a central regulator of quiescence in human β cells. The DREAM complex consists of a module of transcriptionally repressive proteins that assemble in response to DYRK1A kinase activity, thereby inducing and maintaining cellular quiescence. In the absence of DYRK1A, DREAM subunits reassemble into the pro-proliferative MMB complex. Here, we demonstrate that small molecule DYRK1A inhibitors induce human β cells to replicate by converting the repressive DREAM complex to its pro-proliferative MMB conformation.
Collapse
Affiliation(s)
- Peng Wang
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - Esra Karakose
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Rachel I. Brody
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hembly G. Rivas
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- The Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xinyue Liu
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Olivia Wood
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - Hongtao Liu
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - Lauryn Choleva
- Diabetes Obesity Metabolism Institute
- Department of Pediatrics
| | - Dan Hasson
- The Tisch Cancer Institute
- Department of Oncological Sciences
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, and
| | - Emily Bernstein
- The Tisch Cancer Institute
- Department of Oncological Sciences
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joao A. Paulo
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Donald K. Scott
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - Luca Lambertini
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - James A. DeCaprio
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- The Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
12
|
Xie Y, Cui Z, Wang N, Li P. Research on Potential Network Markers and Signaling Pathways in Type 2 Diabetes Based on Conditional Cell-Specific Network. Genes (Basel) 2022; 13:1155. [PMID: 35885938 PMCID: PMC9320152 DOI: 10.3390/genes13071155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Traditional methods concerning type 2 diabetes (T2D) are limited to grouped cells instead of each single cell, and thus the heterogeneity of single cells is erased. Therefore, it is still challenging to study T2D based on a single-cell and network perspective. In this study, we construct a conditional cell-specific network (CCSN) for each single cell for the GSE86469 dataset which is a single-cell transcriptional set from nondiabetic (ND) and T2D human islet samples, and obtain a conditional network degree matrix (CNDM). Since beta cells are the key cells leading to T2D, we search for hub genes in CCSN of beta cells and find that ATP6AP2 is essential for regulation and storage of insulin, and the renin-angiotensin system involving ATP6AP2 is related to most pathological processes leading to diabetic nephropathy. The communication between beta cells and other endocrine cells is performed and three gene pairs with obvious interaction are found. In addition, different expression genes (DEGs) are found based on CNDM and the gene expression matrix (GEM), respectively. Finally, 'dark' genes are identified, and enrichment analysis shows that NFATC2 is involved in the VEGF signaling pathway and indirectly affects the production of Prostacyclin (PGI2), which may be a potential biomarker for diabetic nephropathy.
Collapse
Affiliation(s)
| | | | | | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China; (Y.X.); (Z.C.); (N.W.)
| |
Collapse
|
13
|
薛 晓, 李 忠, 赵 明. [Metformin and lipopolysaccharide regulate transcription of NFATc2 gene via the transcription factor RUNX2]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:425-431. [PMID: 35426808 PMCID: PMC9010990 DOI: 10.12122/j.issn.1673-4254.2022.03.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To construct a luciferase reporter gene vector carrying human nuclear factor of activated T cells 2 (NFATc2) gene promoter and examine the effects of metformin and lipopolysaccharide (LPS) on the transcriptional activity of NFATc2 gene. METHODS The promoter sequence of human NFATc2 gene was acquired from UCSC website for PCR amplification. NFATc2 promoter fragment was inserted into pGL3-basic plasmid double cleaved with Kpn Ⅰ and Hind Ⅲ. The resultant recombinant plasmid pGL3-NFATC2-promoter was co-transfected with the internal reference plasmid pRL-TK in 293F cells, and luciferase activity in the cells was detected. Reporter gene vectors of human NFATc2 gene promoter with different fragment lengths were also constructed and assayed for luciferase activity. The changes in transcription activity of NFATc2 gene were assessed after treatment with different concentrations of metformin and LPS for 24 h. We also examined the effect of mutation in RUNX2-binding site in NFATC2 gene promoter on the regulatory effects of metformin and LPS on NFATc2 transcription. RESULTS We successfully constructed pGL3-NFATc2-promoter plasmids carrying different lengths (2170 bp, 2077 bp, 1802 bp, 1651 bp, 1083 bp, 323 bp) of NFATc2 promoter sequences as verified by enzymatic digestion and sequencing. Transfection of 293F cells with the plasmid carrying a 1651 bp NFATc2 promoter (pGL3-1651 bp) resulted in the highest transcriptional activity of NFATc2 gene, and the luciferase activity was approximately 3.3 times that of pGL3-2170 bp (1.843 ± 0.146 vs 0.547 ± 0.085). Moderate (5 mmol/L) and high (10 mmol/L) concentrations of metformin significantly upregulated the transcriptional activity of pGL3-1651 bp by up to 2.5 and 3 folds, respectively. LPS at different doses also upregulated the transcriptional activity of pGL3-1651 bp by at least 1.6 folds. The mutation in the RUNX2 binding site on pGL3-1651 bp obviously reduced metformin- and LPS-induced enhancement of pGL3-1651bp transcription by 1.7 and 2 folds, respectively. CONCLUSION pGL3-NFATc2-promoter can be transcribed and activated in 293F cells, and LPS and metformin can activate the transcription of pGL3- NFATc2-promoter in a RUNX2-dependent manner.
Collapse
Affiliation(s)
- 晓阳 薛
- 南方医科大学第二临床医学院,广东 广州 510515Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - 忠豪 李
- 广东省医学休克微循环重点实验室,南方医科大学基础医学院病理生理学教研室,广东 广州 510515Key Lab of Medical Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 明 赵
- 广东省医学休克微循环重点实验室,南方医科大学基础医学院病理生理学教研室,广东 广州 510515Key Lab of Medical Shock and Microcirculation Research of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
14
|
Miranda JG, Schleicher WE, Wells KL, Ramirez DG, Landgrave SP, Benninger RKP. Dynamic changes in β-cell [Ca 2+] regulate NFAT activation, gene transcription, and islet gap junction communication. Mol Metab 2022; 57:101430. [PMID: 34979329 PMCID: PMC8804269 DOI: 10.1016/j.molmet.2021.101430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Diabetes occurs because of insufficient insulin secretion due to β-cell dysfunction within the islet of Langerhans. Elevated glucose levels trigger β-cell membrane depolarization, action potential generation, and slow sustained free-Ca2+ ([Ca2+]) oscillations, which trigger insulin release. Nuclear factor of activated T-cell (NFAT) is a transcription factor, which is regulated by the increases in [Ca2+] and calceineurin (CaN) activation. NFAT regulation links cell activity with gene transcription in many systems and regulates proliferation and insulin granule biogenesis within the β-cell. However, the link between the regulation of β-cell electrical activity and oscillatory [Ca2+] dynamics with NFAT activation and downstream transcription is poorly understood. Here, we tested whether dynamic changes to β-cell electrical activity and [Ca2+] regulate NFAT activation and downstream transcription. METHODS In cell lines, mouse islets, and human islets, including those from donors with type 2 diabetes, we applied both agonists/antagonists of ion channels together with optogenetics to modulate β-cell electrical activity. We measured the dynamics of [Ca2+] and NFAT activation as well as performed whole transcriptome and functional analyses. RESULTS Both glucose-induced membrane depolarization and optogenetic stimulation triggered NFAT activation as well as increased the transcription of NFAT targets and intermediate early genes (IEGs). Importantly, slow, sustained [Ca2+] oscillation conditions led to NFAT activation and downstream transcription. In contrast, in human islets from donors with type2 diabetes, NFAT activation by glucose was diminished, but rescued upon pharmacological stimulation of electrical activity. NFAT activation regulated GJD2 expression and increased Cx36 gap junction permeability upon elevated oscillatory [Ca2+] dynamics. However, it is unclear if NFAT directly binds the GJD2 gene to regulate expression. CONCLUSIONS This study provides an insight into the specific patterns of electrical activity that regulate NFAT activation, gene transcription, and islet function. In addition, it provides information on how these factors are disrupted in diabetes.
Collapse
Affiliation(s)
- Jose G Miranda
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Wolfgang E Schleicher
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David G Ramirez
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Samantha P Landgrave
- Program in Cell Biology, Stem Cell and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA; Program in Cell Biology, Stem Cell and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|