1
|
Tissino E, Gaglio A, Nicolò A, Pozzo F, Bittolo T, Rossi FM, Bomben R, Nanni P, Cattarossi I, Zaina E, Zimbo AM, Ianna G, Capasso G, Forestieri G, Moia R, Datta M, Härzschel A, Olivieri J, D'Arena G, Laurenti L, Zaja F, Chiarenza A, Palumbo GA, Martino EA, Gentile M, Rossi D, Gaidano G, Del Poeta G, Laureana R, Del Principe MI, Maity PC, Jumaa H, Hartmann TN, Zucchetto A, Gattei V. The VLA-4 integrin is constitutively active in circulating chronic lymphocytic leukemia cells via BCR autonomous signaling: a novel anchor-independent mechanism exploiting soluble blood-borne ligands. Leukemia 2024; 38:2127-2140. [PMID: 39143370 PMCID: PMC11436378 DOI: 10.1038/s41375-024-02376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
In chronic lymphocytic leukemia (CLL), survival of neoplastic cells depends on microenvironmental signals at lymphoid sites where the crosstalk between the integrin VLA-4 (CD49d/CD29), expressed in ~40% of CLL, and the B-cell receptor (BCR) occurs. Here, BCR engagement inside-out activates VLA-4, thus enhancing VLA-4-mediated adhesion of CLL cells, which in turn obtain pro-survival signals from the surrounding microenvironment. We report that the BCR is also able to effectively inside-out activate the VLA-4 integrin in circulating CD49d-expressing CLL cells through an autonomous antigen-independent BCR signaling. As a consequence, circulating CLL cells exhibiting activated VLA-4 express markers of BCR pathway activation (phospho-BTK and phospho-PLC-γ2) along with higher levels of phospho-ERK and phospho-AKT indicating parallel activation of downstream pathways. Moreover, circulating CLL cells expressing activated VLA-4 bind soluble blood-borne VCAM-1 leading to increased VLA-4-dependent actin polymerization/re-organization and ERK phosphorylation. Finally, evidence is provided that ibrutinib treatment, by affecting autonomous BCR signaling, impairs the constitutive VLA-4 activation eventually decreasing soluble VCAM-1 binding and reducing downstream ERK phosphorylation by circulating CLL cells. This study describes a novel anchor-independent mechanism occurring in circulating CLL cells involving the BCR and the VLA-4 integrin, which help to unravel the peculiar biological and clinical features of CD49d+ CLL.
Collapse
MESH Headings
- Humans
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Cell Adhesion
- Integrin alpha4beta1/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Ligands
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Pyrimidines/pharmacology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- Vascular Cell Adhesion Molecule-1/metabolism
Collapse
Affiliation(s)
- Erika Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| | - Annalisa Gaglio
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Antonella Nicolò
- Institut für Immunologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Tamara Bittolo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Francesca Maria Rossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Paola Nanni
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Ilaria Cattarossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Eva Zaina
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Anna Maria Zimbo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Haematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Giulia Ianna
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Guido Capasso
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Gabriela Forestieri
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Moumita Datta
- Institut für Immunologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Andrea Härzschel
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jacopo Olivieri
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari "Carlo Melzi" DISM, Azienda Ospedaliera Universitaria S. Maria Misericordia, Udine, Italy
| | - Giovanni D'Arena
- Hematology, "S. Luca" Hospital, ASL Salerno, Vallo della Lucania, Italy
| | - Luca Laurenti
- Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome, Italy
| | - Francesco Zaja
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Annalisa Chiarenza
- Division of Hematology, Ferrarotto Hospital, University of Catania, Catania, Italy
| | - Giuseppe A Palumbo
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| | | | - Massimo Gentile
- Haematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| | - Davide Rossi
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | | | | | | | - Palash C Maity
- Institut für Experimentelle Tumorforschung, Universitätsklinikum Ulm, Ulm, Germany
| | - Hassan Jumaa
- Institut für Immunologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| |
Collapse
|
2
|
Vervoordeldonk MYL, Hengeveld PJ, Levin MD, Langerak AW. B cell receptor signaling proteins as biomarkers for progression of CLL requiring first-line therapy. Leuk Lymphoma 2024; 65:1031-1043. [PMID: 38619476 DOI: 10.1080/10428194.2024.2341151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
The molecular landscape of chronic lymphocytic leukemia (CLL) has been extensively characterized, and various potent prognostic biomarkers were discovered. The genetic composition of the B-cell receptor (BCR) immunoglobulin (IG) was shown to be especially powerful for discerning indolent from aggressive disease at diagnosis. Classification based on the IG heavy chain variable gene (IGHV) somatic hypermutation status is routinely applied. Additionally, BCR IGH stereotypy has been implicated to improve risk stratification, through characterization of subsets with consistent clinical profiles. Despite these advances, it remains challenging to predict when CLL progresses to requiring first-line therapy, thus emphasizing the need for further refinement of prognostic indicators. Signaling pathways downstream of the BCR are essential in CLL pathogenesis, and dysregulated components within these pathways impact disease progression. Considering not only genomics but the entirety of factors shaping BCR signaling activity, this review offers insights in the disease for better prognostic assessment of CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Signal Transduction
- Disease Progression
- Biomarkers, Tumor/genetics
- Prognosis
Collapse
Affiliation(s)
- Mischa Y L Vervoordeldonk
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Paul J Hengeveld
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Mazzarello AN, Gugiatti E, Cossu V, Bertola N, Bagnara D, Carta S, Ravera S, Salvetti C, Ibatici A, Ghiotto F, Colombo M, Cutrona G, Marini C, Sambuceti G, Fais F, Bruno S. Unexpected chronic lymphocytic leukemia B cell activation by bisphosphonates. Cancer Immunol Immunother 2024; 73:27. [PMID: 38280019 PMCID: PMC10821833 DOI: 10.1007/s00262-023-03588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/25/2023] [Indexed: 01/29/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is a disease of the elderly, often presenting comorbidities like osteoporosis and requiring, in a relevant proportion of cases, treatment with bisphosphonates (BPs). This class of drugs was shown in preclinical investigations to also possess anticancer properties. We started an in vitro study of the effects of BPs on CLL B cells activated by microenvironment-mimicking stimuli and observed that, depending on drug concentration, hormetic effects were induced on the leukemic cells. Higher doses induced cytotoxicity whereas at lower concentrations, more likely occurring in vivo, the drugs generated a protective effect from spontaneous and chemotherapy-induced apoptosis, and augmented CLL B cell activation/proliferation. This CLL-activation effect promoted by the BPs was associated with markers of poor CLL prognosis and required the presence of bystander stromal cells. Functional experiments suggested that this phenomenon involves the release of soluble factors and is increased by cellular contact between stroma and CLL B cells. Since CLL patients often present comorbidities such as osteoporosis and considering the diverse outcomes in both CLL disease progression and CLL response to treatment among patients, illustrating this phenomenon holds potential significance in driving additional investigations.
Collapse
Affiliation(s)
- Andrea N Mazzarello
- Department of Experimental Medicine (DIMES), University of Genoa, Via De Toni 14, 16132, Genoa, Italy
| | - Elena Gugiatti
- Department of Experimental Medicine (DIMES), University of Genoa, Via De Toni 14, 16132, Genoa, Italy
| | - Vanessa Cossu
- Department of Experimental Medicine (DIMES), University of Genoa, Via De Toni 14, 16132, Genoa, Italy
| | - Nadia Bertola
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Davide Bagnara
- Department of Experimental Medicine (DIMES), University of Genoa, Via De Toni 14, 16132, Genoa, Italy
| | - Sonia Carta
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine (DIMES), University of Genoa, Via De Toni 14, 16132, Genoa, Italy
| | - Chiara Salvetti
- Clinic of Hematology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Adalberto Ibatici
- Division of Hematology and Bone Marrow Transplant, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Ghiotto
- Department of Experimental Medicine (DIMES), University of Genoa, Via De Toni 14, 16132, Genoa, Italy
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Monica Colombo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Franco Fais
- Department of Experimental Medicine (DIMES), University of Genoa, Via De Toni 14, 16132, Genoa, Italy
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine (DIMES), University of Genoa, Via De Toni 14, 16132, Genoa, Italy.
| |
Collapse
|
4
|
Mazzarello AN, Fitch M, Cardillo M, Ng A, Bhuiya S, Sharma E, Bagnara D, Kolitz JE, Barrientos JC, Allen SL, Rai KR, Rhodes J, Hellerstein MK, Chiorazzi N. Characterization of the Intraclonal Complexity of Chronic Lymphocytic Leukemia B Cells: Potential Influences of B-Cell Receptor Crosstalk with Other Stimuli. Cancers (Basel) 2023; 15:4706. [PMID: 37835400 PMCID: PMC10571896 DOI: 10.3390/cancers15194706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) clones contain subpopulations differing in time since the last cell division ("age"): recently born, proliferative (PF; CXCR4DimCD5Bright), intermediate (IF; CXCR4IntCD5Int), and resting (RF; CXCR4BrightCD5Dim) fractions. Herein, we used deuterium (2H) incorporation into newly synthesized DNA in patients to refine the kinetics of CLL subpopulations by characterizing two additional CXCR4/CD5 fractions, i.e., double dim (DDF; CXCR4DimCD5Dim) and double bright (DBF; CXCR4BrightCD5Bright); and intraclonal fractions differing in surface membrane (sm) IgM and IgD densities. Although DDF was enriched in recently divided cells and DBF in older cells, PF and RF remained the most enriched in youngest and oldest cells, respectively. Similarly, smIgMHigh and smIgDHigh cells were the youngest, and smIgMLow and smIgDLow were the oldest, when using smIG levels as discriminator. Surprisingly, the cells closest to the last stimulatory event bore high levels of smIG, and stimulating via TLR9 and smIG yielded a phenotype more consistent with the in vivo setting. Finally, older cells were less sensitive to in vivo inhibition by ibrutinib. Collectively, these data define additional intraclonal subpopulations with divergent ages and phenotypes and suggest that BCR engagement alone is not responsible for the smIG levels found in vivo, and the differential sensitivity of distinct fractions to ibrutinib might account, in part, for therapeutic relapse.
Collapse
Affiliation(s)
- Andrea N. Mazzarello
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Mark Fitch
- Department of Nutritional Sciences & Toxicology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Martina Cardillo
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Anita Ng
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Sabreen Bhuiya
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Esha Sharma
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Davide Bagnara
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Jonathan E. Kolitz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jacqueline C. Barrientos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Steven L. Allen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kanti R. Rai
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Joanna Rhodes
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Marc K. Hellerstein
- Department of Nutritional Sciences & Toxicology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
5
|
Koehrer S, Burger JA. Chronic Lymphocytic Leukemia: Disease Biology. Acta Haematol 2023; 147:8-21. [PMID: 37717577 PMCID: PMC11753505 DOI: 10.1159/000533610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/13/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND B-cell receptor (BCR) signaling is crucial for normal B-cell development and adaptive immunity. In chronic lymphocytic leukemia (CLL), the malignant B cells display many features of normal mature B lymphocytes, including the expression of functional B-cell receptors (BCRs). Cross talk between CLL cells and the microenvironment in secondary lymphatic organs results in BCR signaling and BCR-driven proliferation of the CLL cells. This critical pathomechanism can be targeted by blocking BCR-related kinases (BTK, PI3K, spleen tyrosine kinase) using small-molecule inhibitors. Among these targets, Bruton tyrosine kinase (BTK) inhibitors have the highest therapeutic efficacy; they effectively block leukemia cell proliferation and generally induce durable remissions in CLL patients, even in patients with high-risk disease. By disrupting tissue homing receptor (i.e., chemokine receptor and adhesion molecule) signaling, these kinase inhibitors also mobilize CLL cells from the lymphatic tissues into the peripheral blood (PB), causing a transient redistribution lymphocytosis, thereby depriving CLL cells from nurturing factors within the tissue niches. SUMMARY The clinical success of the BTK inhibitors in CLL underscores the central importance of the BCR in CLL pathogenesis. Here, we review CLL pathogenesis with a focus on the role of the BCR and other microenvironment cues. KEY MESSAGES (i) CLL cells rely on signals from their microenvironment for proliferation and survival. (ii) These signals are mediated by the BCR as well as chemokine and integrin receptors and their respective ligands. (iii) Targeting the CLL/microenvironment interaction with small-molecule inhibitors provides a highly effective treatment strategy, even in high-risk patients.
Collapse
Affiliation(s)
- Stefan Koehrer
- Department of Laboratory Medicine, Klinik Donaustadt, Vienna, Austria
- Labdia Labordiagnostik, Clinical Genetics, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Jan A. Burger
- Department of Leukemia, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Chen SS, Chiorazzi N. Functional consequences of inhibition of Bruton's tyrosine kinase by ibrutinib in chronic lymphocytic leukemia. Hematol Oncol 2023; 41 Suppl 1:119-128. [PMID: 37294973 DOI: 10.1002/hon.3144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The leukemic B cells from patients with chronic lymphocytic leukemia (CLL) require interactions with non-malignant cells and matrix in the tissue microenvironment to survive and grow. These interactions are mediated through the B-cell antigen receptor (BCR), C-X-C chemokine receptor type 4 (CXCR4), and a variety of integrins, including VLA-4. Exciting each receptor type leads to activation of Bruton's tyrosine kinase (BTK), which in turn helps initiate trophic signals that prevent cell death and promote cell activation and growth as well as allowing cells to return to anatomic sites for rescue signals. These represent the two major functional actions targeted by inhibitors of Btk. Here we relate some of the therapeutic actions of ibrutinib, a Btk inhibitor that is extremely helpful for patients with CLL, certain Diffuse Large B-cell Lymphomas (ABC type), and other non-Hodgkin's lymphomas, emphasizing that ibrutinib's value results from blocking beneficial signals, not by inducing lethal ones.
Collapse
Affiliation(s)
- Shih-Shih Chen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Departments of Molecular Medicine and of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
7
|
Vergani S, Bagnara D, Agathangelidis A, Ng AKY, Ferrer G, Mazzarello AN, Palacios F, Yancopoulos S, Yan XJ, Barrientos JC, Rai KR, Stamatopoulos K, Chiorazzi N. CLL stereotyped B-cell receptor immunoglobulin sequences are recurrent in the B-cell repertoire of healthy individuals: Apparent lack of central and early peripheral tolerance censoring. Front Oncol 2023; 13:1112879. [PMID: 37007084 PMCID: PMC10063922 DOI: 10.3389/fonc.2023.1112879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionThe leukemic cells of patients with chronic lymphocytic leukemia (CLL) are often unique, expressing remarkably similar IGHV-IGHD-IGHJ gene rearrangements, “stereotyped BCRs”. The B-cell receptors (BCRs) on CLL cells are also distinctive in often deriving from autoreactive B lymphocytes, leading to the assumption of a defect in immune tolerance.ResultsUsing bulk and single-cell immunoglobulin heavy and light chain variable domain sequencing, we enumerated CLL stereotype-like IGHV-IGHD-IGHJ sequences (CLL-SLS) in B cells from cord blood (CB) and adult peripheral blood (PBMC) and bone marrow (BM of healthy donors. CLL-SLS were found at similar frequencies among CB, BM, and PBMC, suggesting that age does not influence CLL-SLS levels. Moreover, the frequencies of CLL-SLS did not differ among B lymphocytes in the BM at early stages of development, and only re-circulating marginal zone B cells contained significantly higher CLL-SLS frequencies than other mature B-cell subpopulations. Although we identified CLL-SLS corresponding to most of the CLL major stereotyped subsets, CLL-SLS frequencies did not correlate with those found in patients. Interestingly, in CB samples, half of the CLL-SLS identified were attributed to two IGHV-mutated subsets. We also found satellite CLL-SLS among the same normal samples, and they were also enriched in naïve B cells but unexpectedly, these were ~10-fold higher than standard CLL-SLS. In general, IGHV-mutated CLL-SLS subsets were enriched among antigen-experienced B-cell subpopulations, and IGHV-unmutated CLL-SLS were found mostly in antigen-inexperienced B cells. Nevertheless, CLL-SLS with an IGHV-mutation status matching that of CLL clones varied among the normal B-cell subpopulations, suggesting that specific CLL-SLS could originate from distinct subpopulations of normal B cells. Lastly, using single-cell DNA sequencing, we identified paired IGH and IGL rearrangements in normal B lymphocytes resembling those of stereotyped BCRs in CLL, although some differed from those in patients based on IG isotype or somatic mutation.DiscussionCLL-SLS are present in normal B-lymphocyte populations at all stages of development. Thus, despite their autoreactive profile they are not deleted by central tolerance mechanisms, possibly because the level of autoreactivity is not registered as dangerous by deletion mechanisms or because editing of L-chain variable genes occurred which our experimental approach could not identify.
Collapse
Affiliation(s)
- Stefano Vergani
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Davide Bagnara
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Andreas Agathangelidis
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anita Kar Yun Ng
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Andrea N. Mazzarello
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Florencia Palacios
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Xiao-Jie Yan
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Jaqueline C. Barrientos
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kanti R. Rai
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kostas Stamatopoulos
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- *Correspondence: Nicholas Chiorazzi,
| |
Collapse
|
8
|
Mazzarello AN, Koroveshi B, Guardo D, Lanza L, Ghiotto F, Bruno S, Cappelli E. Unexpected CD5 + B Cell Lymphocytosis during SARS-CoV-2 Infection: Relevance for the Pathophysiology of Chronic Lymphocytic Leukemia. J Clin Med 2023; 12:jcm12030998. [PMID: 36769644 PMCID: PMC9918123 DOI: 10.3390/jcm12030998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Recently, cases of fortuitous discovery of Chronic Lymphocytic Leukemia (CLL) during hospitalization for Coronavirus disease (COVID-19) have been reported. These patients did not show a monoclonal B cell expansion before COVID-19 but were diagnosed with CLL upon a sudden lymphocytosis that occurred during hospitalization. The (hyper)lymphocytosis during COVID-19 was also described in patients with overt CLL disease. Contextually, lymphocytosis is an unexpected phenomenon since it is an uncommon feature in the COVID-19 patient population, who rather tend to experience lymphopenia. Thus, lymphocytosis that arises during COVID-19 infection is a thought-provoking behavior, strikingly in contrast with that observed in non-CLL individuals. Herein, we speculate about the possible mechanisms involved with the observed phenomenon. Many of the plausible explanations might have an adverse impact on these CLL patients and further clinical and laboratory investigations might be desirable.
Collapse
Affiliation(s)
| | - Brisejda Koroveshi
- Laboratory of Clinical Pathology, ASL2 Liguria, S. Paolo Hospital, 17100 Savona, Italy
| | - Daniela Guardo
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Lorella Lanza
- Anatomical Pathology, ASL2 Liguria, Santa Corona Hospital, 17027 Pietra Ligure, Italy
| | - Fabio Ghiotto
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Enrico Cappelli
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
- Correspondence:
| |
Collapse
|
9
|
Old and New Facts and Speculations on the Role of the B Cell Receptor in the Origin of Chronic Lymphocytic Leukemia. Int J Mol Sci 2022; 23:ijms232214249. [PMID: 36430731 PMCID: PMC9693457 DOI: 10.3390/ijms232214249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
The engagement of the B cell receptor (BcR) on the surface of leukemic cells represents a key event in chronic lymphocytic leukemia (CLL) since it can lead to the maintenance and expansion of the neoplastic clone. This notion was initially suggested by observations of the CLL BcR repertoire and of correlations existing between certain BcR features and the clinical outcomes of single patients. Based on these observations, tyrosine kinase inhibitors (TKIs), which block BcR signaling, have been introduced in therapy with the aim of inhibiting CLL cell clonal expansion and of controlling the disease. Indeed, the impressive results obtained with these compounds provided further proof of the role of BcR in CLL. In this article, the key steps that led to the determination of the role of BcR are reviewed, including the features of the CLL cell repertoire and the fine mechanisms causing BcR engagement and cell signaling. Furthermore, we discuss the biological effects of the engagement, which can lead to cell survival/proliferation or apoptosis depending on certain intrinsic cell characteristics and on signals that the micro-environment can deliver to the leukemic cells. In addition, consideration is given to alternative mechanisms promoting cell proliferation in the absence of BcR signaling, which can explain in part the incomplete effectiveness of TKI therapies. The role of the BcR in determining clonal evolution and disease progression is also described. Finally, we discuss possible models to explain the selection of a special BcR set during leukemogenesis. The BcR may deliver activation signals to the cells, which lead to their uncontrolled growth, with the possible collaboration of other still-undefined events which are capable of deregulating the normal physiological response of B cells to BcR-delivered stimuli.
Collapse
|
10
|
Kaufman M, Yan XJ, Li W, Ghia EM, Langerak AW, Rassenti LZ, Belessi C, Kay NE, Davi F, Byrd JC, Pospisilova S, Brown JR, Catherwood M, Davis Z, Oscier D, Montillo M, Trentin L, Rosenquist R, Ghia P, Barrientos JC, Kolitz JE, Allen SL, Rai KR, Stamatopoulos K, Kipps TJ, Neuberg D, Chiorazzi N. Impact of the Types and Relative Quantities of IGHV Gene Mutations in Predicting Prognosis of Patients With Chronic Lymphocytic Leukemia. Front Oncol 2022; 12:897280. [PMID: 35903706 PMCID: PMC9315922 DOI: 10.3389/fonc.2022.897280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with CLL with mutated IGHV genes (M-CLL) have better outcomes than patients with unmutated IGHVs (U-CLL). Since U-CLL usually express immunoglobulins (IGs) that are more autoreactive and more effectively transduce signals to leukemic B cells, B-cell receptor (BCR) signaling is likely at the heart of the worse outcomes of CLL cases without/few IGHV mutations. A corollary of this conclusion is that M-CLL follow less aggressive clinical courses because somatic IGHV mutations have altered BCR structures and no longer bind stimulatory (auto)antigens and so cannot deliver trophic signals to leukemic B cells. However, the latter assumption has not been confirmed in a large patient cohort. We tried to address the latter by measuring the relative numbers of replacement (R) mutations that lead to non-conservative amino acid changes (Rnc) to the combined numbers of conservative (Rc) and silent (S) amino acid R mutations that likely do not or cannot change amino acids, "(S+Rc) to Rnc IGHV mutation ratio". When comparing time-to-first-treatment (TTFT) of patients with (S+Rc)/Rnc ≤ 1 and >1, TTFTs were similar, even after matching groups for equal numbers of samples and identical numbers of mutations per sample. Thus, BCR structural change might not be the main reason for better outcomes for M-CLL. Since the total number of IGHV mutations associated better with longer TTFT, better clinical courses appear due to the biologic state of a B cell having undergone many stimulatory events leading to IGHV mutations. Analyses of larger patient cohorts will be needed to definitively answer this question.
Collapse
Affiliation(s)
- Matthew Kaufman
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Xiao-Jie Yan
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Wentian Li
- The Robert S. Boas Center for Genomics & Human Genetics, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Emanuela M. Ghia
- Center for Novel Therapeutics, Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Anton W. Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Laura Z. Rassenti
- Center for Novel Therapeutics, Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | | | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Frederic Davi
- Department of Biological Hematology, Hôpital Pitié-Salpêtrière (AP-HP), Sorbonne Université, Paris, France
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sarka Pospisilova
- Department of Internal Medicine - Hematology and Oncology and Department of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jennifer R. Brown
- Chronic Lymphocytic Leukemia Center, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Mark Catherwood
- Clinical Hematology, Belfast City Hospital, Belfast, Ireland
| | - Zadie Davis
- Department of Molecular Pathology, Royal Bournemouth Hospital, Bournemouth, United Kingdom
| | - David Oscier
- Department of Hematology, Royal Bournemouth Hospital, Bournemouth, United Kingdom
| | - Marco Montillo
- Department of Hematology & Oncology, Niguarda Cancer Center, Niguarda Hospital, Milan, Italy
| | - Livio Trentin
- Hematology Unit, Department of Medicine-(DIMED), University of Padua University Hospital, Padua, Italy
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Ghia
- Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Jacqueline C. Barrientos
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, United States
- Departments of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, United States
- Northwell Health Cancer Institute, Lake Success, NY, United States
| | - Jonathan E. Kolitz
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Northwell Health Cancer Institute, Lake Success, NY, United States
| | - Steven L. Allen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Northwell Health Cancer Institute, Lake Success, NY, United States
| | - Kanti R. Rai
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, United States
- Departments of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, United States
- Northwell Health Cancer Institute, Lake Success, NY, United States
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Thomas J. Kipps
- Center for Novel Therapeutics, Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, United States
- Departments of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, United States
- Northwell Health Cancer Institute, Lake Success, NY, United States
| |
Collapse
|
11
|
Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel) 2022; 14:cancers14122997. [PMID: 35740661 PMCID: PMC9221163 DOI: 10.3390/cancers14122997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Mutations of the NOTCH1 gene are a validated prognostic marker in chronic lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present, the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations, which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN, SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL. Abstract The Notch signaling pathway plays a fundamental role for the terminal differentiation of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1 gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation, other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well as physiological signals from other pathways such as the B-cell receptor. Here we review these mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic and microenvironmental contexts, ultimately result in the same search for proliferative and survival advantages (through activation of MYC), as well as immune escape and therapy evasion (from anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL.
Collapse
|
12
|
Forconi F, Lanham SA, Chiodin G. Biological and Clinical Insight from Analysis of the Tumor B-Cell Receptor Structure and Function in Chronic Lymphocytic Leukemia. Cancers (Basel) 2022; 14:663. [PMID: 35158929 PMCID: PMC8833472 DOI: 10.3390/cancers14030663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
The B-cell receptor (BCR) is essential to the behavior of the majority of normal and neoplastic mature B cells. The identification in 1999 of the two major CLL subsets expressing unmutated immunoglobulin (Ig) variable region genes (U-IGHV, U-CLL) of pre-germinal center origin and poor prognosis, and mutated IGHV (M-CLL) of post-germinal center origin and good prognosis, ignited intensive investigations on structure and function of the tumor BCR. These investigations have provided fundamental insight into CLL biology and eventually the mechanistic rationale for the development of successful therapies targeting BCR signaling. U-CLL and M-CLL are characterized by variable low surface IgM (sIgM) expression and signaling capacity. Variability of sIgM can in part be explained by chronic engagement with (auto)antigen at tissue sites. However, other environmental elements, genetic changes, and epigenetic signatures also contribute to the sIgM variability. The variable levels have consequences on the behavior of CLL, which is in a state of anergy with an indolent clinical course when sIgM expression is low, or pushed towards proliferation and a more aggressive clinical course when sIgM expression is high. Efficacy of therapies that target BTK may also be affected by the variable sIgM levels and signaling and, in part, explain the development of resistance.
Collapse
Affiliation(s)
- Francesco Forconi
- School of Cancer Sciences, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton SO16 6YD, UK; (S.A.L.); (G.C.)
- Department of Haematology, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
| | - Stuart A. Lanham
- School of Cancer Sciences, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton SO16 6YD, UK; (S.A.L.); (G.C.)
| | - Giorgia Chiodin
- School of Cancer Sciences, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton SO16 6YD, UK; (S.A.L.); (G.C.)
| |
Collapse
|