1
|
Liu Y, Jin F, Zhou L, Li X, Li X, Chen Q, Yang S, Sun J, Qi F. Platelet-derived Growth Factor Receptor-α Induces Contraction Knots and Inflammatory Pain-like Behavior in a Rat Model of Myofascial Trigger Points. Anesthesiology 2024; 141:929-945. [PMID: 39058323 PMCID: PMC11463032 DOI: 10.1097/aln.0000000000005167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Myofascial trigger points (MTrPs) are the primary etiological characteristics of chronic myofascial pain syndrome. Receptor tyrosine kinases (RTKs) are associated with signal transduction in the central mechanisms of chronic pain, but the role of RTKs in the peripheral mechanisms of MTrPs remains unclear. The current study aimed to identify RTKs expression in MTrPs and elucidate the molecular mechanisms through which platelet-derived growth factor receptor-α (PDGFR-α) induces contraction knots and inflammatory pain-like behavior in a rat model of myofascial trigger points. METHODS MTrPs tissue samples were obtained from the trapezius muscles of patients with myofascial pain syndrome through needle biopsy, and PDGFR-α activation was analyzed by microarray, enzyme-linked immunosorbent assay, and histological staining. Sprague-Dawley rats (male and female) were used to investigate PDGFR-α signaling, assessing pain-like behaviors with Randall-Selitto and nest-building tests. Muscle fiber and sarcomere morphologies were observed using histology and electron microscopy. The PDGFR-α binding protein was identified by coimmunoprecipitation, liquid chromatograph mass spectrometer, and molecular docking. PDGFR-α-related protein or gene levels, muscle contraction, and inflammatory markers were determined by Western blot and reverse-transcription quantitative polymerase chain reaction. RESULTS PDGFR-α phosphorylation levels were elevated in the MTrPs tissues of individuals with trapezius muscle pain and were positively correlated with pain intensity. In rats, PDGFR-α activation caused pain-like behaviors and muscle contraction via the Janus kinase 2/signal transducer and activator of transcription-3 (JAK2/STAT3) pathway. JAK2/STAT3 inhibitors reversed the pain-like behaviors and muscle contraction induced by PDGFR-α activation. Collagen type I α 1 (COL1A1) binds to PDGFR-α and promotes its phosphorylation, which contributed to pain-like behaviors and muscle contraction. CONCLUSIONS COL1A1-induced phosphorylation of PDGFR-α and the subsequent activation of the JAK2/STAT3 pathway may induce dysfunctional muscle contraction and increased nociception at MTrPs. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Yu Liu
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feihong Jin
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lingwei Zhou
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuan Li
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyue Li
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qinghe Chen
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaozhong Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jintang Sun
- Research Center for Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Qi
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Defaye M, Altier C. Spare the pain for your gut Treg cells! Trends Pharmacol Sci 2024; 45:859-861. [PMID: 39242334 DOI: 10.1016/j.tips.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Maintaining gut homeostasis requires a complex interplay between the nervous and immune systems and the microbiome, but the nature of their interactions remains unclear. Chiu and Benoist's teams employed designer receptors exclusively activated by designer drugs (DREADD)-based chemogenetics to target specific neuronal cell types and evaluate their effects on both the gut immune system and the microbiota.
Collapse
Affiliation(s)
- Manon Defaye
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525731. [PMID: 39345572 PMCID: PMC11429693 DOI: 10.1101/2023.01.26.525731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential dangers in the environment. However, this function can be detrimental during allergic reactions, since vagal nociceptors can contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance, in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we aimed to investigate the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identified a unique class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the NPY receptor Npy1r. A screening of cytokines and neurotrophins revealed that IL-1β, IL-13 and BDNF drive part of this reprogramming. IL-13 triggered Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, sympathetic neurons and macrophages release NPY in the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells has revealed that a cell-specific knockout of Npy1r in nociceptor neurons in asthmatic mice leads to an increase in airway inflammation mediated by T cells. Opposite findings were observed in asthmatic mice in which nociceptor neurons were chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits nociceptor neurons' activity.
Collapse
Affiliation(s)
- Théo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | | | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet. Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University. Canada
| |
Collapse
|
4
|
Trang KB, Pahl MC, Pippin JA, Su C, Littleton SH, Sharma P, Kulkarni NN, Ghanem LR, Terry NA, O’Brien JM, Wagley Y, Hankenson KD, Jermusyk A, Hoskins JW, Amundadottir LT, Xu M, Brown KM, Anderson SA, Yang W, Titchenell PM, Seale P, Cook L, Levings MK, Zemel BS, Chesi A, Wells AD, Grant SF. 3D genomic features across >50 diverse cell types reveal insights into the genomic architecture of childhood obesity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.08.30.23294092. [PMID: 37693606 PMCID: PMC10491377 DOI: 10.1101/2023.08.30.23294092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18 and FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, ALKAL2 - an inflammation-responsive gene in nerve nociceptors - was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.
Collapse
Affiliation(s)
- Khanh B. Trang
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chun Su
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sheridan H. Littleton
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Prabhat Sharma
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nikhil N. Kulkarni
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Louis R. Ghanem
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, PA, USA
| | - Natalie A. Terry
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, PA, USA
| | - Joan M. O’Brien
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
- Penn Medicine Center for Ophthalmic Genetics in Complex Disease
| | - Yadav Wagley
- Department of Orthopedic Surgery University of Michigan Medical School Ann Arbor, MI, USA
| | - Kurt D. Hankenson
- Department of Orthopedic Surgery University of Michigan Medical School Ann Arbor, MI, USA
| | - Ashley Jermusyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jason W. Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mai Xu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin M Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stewart A. Anderson
- Department of Child and Adolescent Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenli Yang
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M. Titchenell
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Cook
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Megan K. Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Babette S. Zemel
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Voisin T, Labit E, Gaudenzio N, Basso L. Anaplastic lymphoma kinase as a new therapeutic target in inflammatory itch. Allergy 2024. [PMID: 39056456 DOI: 10.1111/all.16260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Affiliation(s)
- Tiphaine Voisin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 - CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Elodie Labit
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 - CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 - CNRS UMR5051, University Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| | - Lilian Basso
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 - CNRS UMR5051, University Toulouse III, Toulouse, France
| |
Collapse
|
6
|
Niu Z, Qu ST, Zhang L, Dai JH, Wang K, Liu Y, Chen L, Song Y, Sun R, Xu ZH, Zhang HL. Trim14-IκBα Signaling Regulates Chronic Inflammatory Pain in Rats and Osteoarthritis Patients. Neuroscience 2024; 548:39-49. [PMID: 38697463 DOI: 10.1016/j.neuroscience.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Chronic inflammatory pain is the highest priority for people with osteoarthritis when seeking medical attention. Despite the availability of NSAIDs and glucocorticoids, central sensitization and peripheral sensitization make pain increasingly difficult to control. Previous studies have identified the ubiquitination system as an important role in the chronic inflammatory pain. Our study displayed that the E3 ubiquitin ligase tripartite motif-containing 14 (Trim14) was abnormally elevated in the serum of patients with osteoarthritis and pain, and the degree of pain was positively correlated with the degree of Trim14 elevation. Furthermore, CFA-induced inflammatory pain rat model showed that Trim14 was significantly increased in the L3-5 spinal dorsal horn (SDH) and dorsal root ganglion (DRG), and in turn the inhibitor of nuclear factor Kappa-B isoform α (IκBα) was decreased after Trim14 elevation. After intrathecal injection of Trim14 siRNA to inhibit Trim14 expression, IκBα expression was reversed and increased, and the pain behaviors and anxiety behaviors of rats were significantly relieved. Overall, these findings suggested that Trim14 may contribute to chronic inflammatory pain by degrading IκBα, and that Trim14 may become a novel therapeutic target for chronic inflammatory pain.
Collapse
Affiliation(s)
- Zheng Niu
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Shu-Ting Qu
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ling Zhang
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Jia-Hao Dai
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ke Wang
- Department of Pain, Suzhou Wuzhong People's Hospital, Suzhou 215128, China
| | - Yun Liu
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Long Chen
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Yu Song
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ren Sun
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Zhen-Hua Xu
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China.
| | - Hai-Long Zhang
- Center of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Granton E, Brown L, Defaye M, Moazen P, Almblad H, Randall TE, Rich JD, Geppert A, Abdullah NS, Hassanabad MF, Hiroki CH, Farias R, Nguyen AP, Schubert C, Lou Y, Andonegui G, Iftinca M, Raju D, Vargas MA, Howell PL, Füzesi T, Bains J, Kurrasch D, Harrison JJ, Altier C, Yipp BG. Biofilm exopolysaccharides alter sensory-neuron-mediated sickness during lung infection. Cell 2024; 187:1874-1888.e14. [PMID: 38518773 DOI: 10.1016/j.cell.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.
Collapse
Affiliation(s)
- Elise Granton
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luke Brown
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Manon Defaye
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Parisa Moazen
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Henrik Almblad
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Trevor E Randall
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jacquelyn D Rich
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andrew Geppert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Nasser S Abdullah
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mortaza F Hassanabad
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carlos H Hiroki
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Raquel Farias
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Angela P Nguyen
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Courtney Schubert
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuefei Lou
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Graciela Andonegui
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mircea Iftinca
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deepa Raju
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mario A Vargas
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tamás Füzesi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine Optogenetics Core Facility, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jaideep Bains
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| | - Deborah Kurrasch
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Joe Jonathan Harrison
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| | - Christophe Altier
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Bryan G Yipp
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
8
|
Defaye M, Bradaia A, Abdullah NS, Agosti F, Iftinca M, Delanne-Cuménal M, Soubeyre V, Svendsen K, Gill G, Ozmaeian A, Gheziel N, Martin J, Poulen G, Lonjon N, Vachiery-Lahaye F, Bauchet L, Basso L, Bourinet E, Chiu IM, Altier C. Induction of antiviral interferon-stimulated genes by neuronal STING promotes the resolution of pain in mice. J Clin Invest 2024; 134:e176474. [PMID: 38690737 PMCID: PMC11060736 DOI: 10.1172/jci176474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024] Open
Abstract
Inflammation and pain are intertwined responses to injury, infection, or chronic diseases. While acute inflammation is essential in determining pain resolution and opioid analgesia, maladaptive processes occurring during resolution can lead to the transition to chronic pain. Here we found that inflammation activates the cytosolic DNA-sensing protein stimulator of IFN genes (STING) in dorsal root ganglion nociceptors. Neuronal activation of STING promotes signaling through TANK-binding kinase 1 (TBK1) and triggers an IFN-β response that mediates pain resolution. Notably, we found that mice expressing a nociceptor-specific gain-of-function mutation in STING exhibited an IFN gene signature that reduced nociceptor excitability and inflammatory hyperalgesia through a KChIP1-Kv4.3 regulation. Our findings reveal a role of IFN-regulated genes and KChIP1 downstream of STING in the resolution of inflammatory pain.
Collapse
Affiliation(s)
- Manon Defaye
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Amyaouch Bradaia
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nasser S. Abdullah
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Francina Agosti
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mircea Iftinca
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mélissa Delanne-Cuménal
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Vanessa Soubeyre
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Kristofer Svendsen
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gurveer Gill
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
| | - Aye Ozmaeian
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nadine Gheziel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Jérémy Martin
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Gaetan Poulen
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Nicolas Lonjon
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Florence Vachiery-Lahaye
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Luc Bauchet
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Lilian Basso
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Emmanuel Bourinet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Isaac M. Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Christophe Altier
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Wojick JA, Paranjapye A, Chiu JK, Mahmood M, Oswell C, Kimmey BA, Wooldridge LM, McCall NM, Han A, Ejoh LL, Chehimi SN, Crist RC, Reiner BC, Korb E, Corder G. A nociceptive amygdala-striatal pathway for chronic pain aversion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579947. [PMID: 38405972 PMCID: PMC10888915 DOI: 10.1101/2024.02.12.579947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The basolateral amygdala (BLA) is essential for assigning positive or negative valence to sensory stimuli. Noxious stimuli that cause pain are encoded by an ensemble of nociceptive BLA projection neurons (BLAnoci ensemble). However, the role of the BLAnoci ensemble in mediating behavior changes and the molecular signatures and downstream targets distinguishing this ensemble remain poorly understood. Here, we show that the same BLAnoci ensemble neurons are required for both acute and chronic neuropathic pain behavior. Using single nucleus RNA-sequencing, we characterized the effect of acute and chronic pain on the BLA and identified enrichment for genes with known functions in axonal and synaptic organization and pain perception. We thus examined the brain-wide targets of the BLAnoci ensemble and uncovered a previously undescribed nociceptive hotspot of the nucleus accumbens shell (NAcSh) that mirrors the stability and specificity of the BLAnoci ensemble and is recruited in chronic pain. Notably, BLAnoci ensemble axons transmit acute and neuropathic nociceptive information to the NAcSh, highlighting this nociceptive amygdala-striatal circuit as a unique pathway for affective-motivational responses across pain states.
Collapse
Affiliation(s)
- Jessica A. Wojick
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Alekh Paranjapye
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juliann K. Chiu
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malaika Mahmood
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corinna Oswell
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blake A. Kimmey
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M. Wooldridge
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nora M. McCall
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan Han
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay L. Ejoh
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samar Nasser Chehimi
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard C. Crist
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin C. Reiner
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica Korb
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Katic L, Priscan A. Multifaceted Roles of ALK Family Receptors and Augmentor Ligands in Health and Disease: A Comprehensive Review. Biomolecules 2023; 13:1490. [PMID: 37892172 PMCID: PMC10605310 DOI: 10.3390/biom13101490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
This review commemorates the 10-year anniversary of the discovery of physiological ligands Augα (Augmentor α; ALKAL2; Fam150b) and Augβ (Augmentor β; ALKAL1; Fam150a) for anaplastic lymphoma kinase (ALK) and leukocyte tyrosine kinase (LTK), previously considered orphan receptors. This manuscript provides an in-depth review of the biophysical and cellular properties of ALK family receptors and their roles in cancer, metabolism, pain, ophthalmology, pigmentation, central nervous system (CNS) function, and reproduction. ALK and LTK receptors are implicated in the development of numerous cancers, and targeted inhibition of their signaling pathways can offer therapeutic benefits. Additionally, ALK family receptors are involved in regulating body weight and metabolism, modulating pain signaling, and contributing to eye development and pigmentation. In the CNS, these receptors play a role in synapse modulation, neurogenesis, and various psychiatric pathologies. Lastly, ALK expression is linked to reproductive functions, with potential implications for patients undergoing ALK inhibitor therapy. Further research is needed to better understand the complex interactions of ALK family receptors and Aug ligands and to repurpose targeted therapy for a wide range of human diseases.
Collapse
Affiliation(s)
- Luka Katic
- Department of Medicine, Icahn School of Medicine at Mount Sinai Morningside/West, 1000 Tenth Avenue, New York, NY 10019, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anamarija Priscan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
11
|
Zhu K, Xia Y, Tian X, He Y, Zhou J, Han R, Guo H, Song T, Chen L, Tian X. Characterization and therapeutic perspectives of differentiation-inducing therapy in malignant tumors. Front Genet 2023; 14:1271381. [PMID: 37745860 PMCID: PMC10514561 DOI: 10.3389/fgene.2023.1271381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer is a major public health issue globally and is one of the leading causes of death. Although available treatments improve the survival rate of some cases, many advanced tumors are insensitive to these treatments. Cancer cell differentiation reverts the malignant phenotype to its original state and may even induce differentiation into cell types found in other tissues. Leveraging differentiation-inducing therapy in high-grade tumor masses offers a less aggressive strategy to curb tumor progression and heightens chemotherapy sensitivity. Differentiation-inducing therapy has been demonstrated to be effective in a variety of tumor cells. For example, differentiation therapy has become the first choice for acute promyelocytic leukemia, with the cure rate of more than 90%. Although an appealing concept, the mechanism and clinical drugs used in differentiation therapy are still in their nascent stage, warranting further investigation. In this review, we examine the current differentiation-inducing therapeutic approach and discuss the clinical applications as well as the underlying biological basis of differentiation-inducing agents.
Collapse
Affiliation(s)
- Kangwei Zhu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuren Xia
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xindi Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuchao He
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jun Zhou
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda, Japan
| | - Ruyu Han
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Guo
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianqiang Song
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Chen
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiangdong Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
12
|
Mucke HAM. Drug Repurposing Patent Applications April-June 2023. Assay Drug Dev Technol 2023; 21:288-295. [PMID: 37668595 DOI: 10.1089/adt.2023.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
|
13
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|