1
|
Heather JM, Best K, Oakes T, Gray ER, Roe JK, Thomas N, Friedman N, Noursadeghi M, Chain B. Dynamic Perturbations of the T-Cell Receptor Repertoire in Chronic HIV Infection and following Antiretroviral Therapy. Front Immunol 2016; 6:644. [PMID: 26793190 PMCID: PMC4707277 DOI: 10.3389/fimmu.2015.00644] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/10/2015] [Indexed: 01/23/2023] Open
Abstract
HIV infection profoundly affects many parameters of the immune system and ultimately leads to AIDS, yet which factors are most important for determining resistance, pathology, and response to antiretroviral treatment – and how best to monitor them – remain unclear. We develop a quantitative high-throughput sequencing pipeline to characterize the TCR repertoires of HIV-infected individuals before and after antiretroviral therapy, working from small, unfractionated samples of peripheral blood. This reveals the TCR repertoires of HIV+ individuals to be highly perturbed, with considerably reduced diversity as a small proportion of sequences are highly overrepresented. HIV also causes specific qualitative changes to the repertoire including an altered distribution of V gene usage, depletion of public TCR sequences, and disruption of TCR networks. Short-term antiretroviral therapy has little impact on most of the global damage to repertoire structure, but is accompanied by rapid changes in the abundance of many individual TCR sequences, decreases in abundance of the most common sequences, and decreases in the majority of HIV-associated CDR3 sequences. Thus, high-throughput repertoire sequencing of small blood samples that are easy to take, store, and process can shed light on various aspects of the T-cell immune compartment and stands to offer insights into patient stratification and immune reconstitution.
Collapse
Affiliation(s)
- James M Heather
- Division of Infection and Immunity, University College London , London , UK
| | - Katharine Best
- Division of Infection and Immunity, University College London, London, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, UK
| | - Theres Oakes
- Division of Infection and Immunity, University College London , London , UK
| | - Eleanor R Gray
- Division of Infection and Immunity, University College London , London , UK
| | - Jennifer K Roe
- Division of Infection and Immunity, University College London , London , UK
| | - Niclas Thomas
- Division of Infection and Immunity, University College London , London , UK
| | - Nir Friedman
- Department of Immunology, Weizmann Institute , Rehovot , Israel
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London , London , UK
| | - Benjamin Chain
- Division of Infection and Immunity, University College London , London , UK
| |
Collapse
|
2
|
Skar H, Gutenkunst RN, Wilbe Ramsay K, Alaeus A, Albert J, Leitner T. Daily sampling of an HIV-1 patient with slowly progressing disease displays persistence of multiple env subpopulations consistent with neutrality. PLoS One 2011; 6:e21747. [PMID: 21829600 PMCID: PMC3149046 DOI: 10.1371/journal.pone.0021747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/06/2011] [Indexed: 01/29/2023] Open
Abstract
The molecular evolution of HIV-1 is characterized by frequent substitutions, indels and recombination events. In addition, a HIV-1 population may adapt through frequency changes of its variants. To reveal such population dynamics we analyzed HIV-1 subpopulation frequencies in an untreated patient with stable, low plasma HIV-1 RNA levels and close to normal CD4+ T-cell levels. The patient was intensively sampled during a 32-day period as well as approximately 1.5 years before and after this period (days −664, 1, 2, 3, 11, 18, 25, 32 and 522). 77 sequences of HIV-1 env (approximately 3100 nucleotides) were obtained from plasma by limiting dilution with 7–11 sequences per time point, except day −664. Phylogenetic analysis using maximum likelihood methods showed that the sequences clustered in six distinct subpopulations. We devised a method that took into account the relatively coarse sampling of the population. Data from days 1 through 32 were consistent with constant within-patient subpopulation frequencies. However, over longer time periods, i.e. between days 1…32 and 522, there were significant changes in subpopulation frequencies, which were consistent with evolutionarily neutral fluctuations. We found no clear signal of natural selection within the subpopulations over the study period, but positive selection was evident on the long branches that connected the subpopulations, which corresponds to >3 years as the subpopulations already were established when we started the study. Thus, selective forces may have been involved when the subpopulations were established. Genetic drift within subpopulations caused by de novo substitutions could be resolved after approximately one month. Overall, we conclude that subpopulation frequencies within this patient changed significantly over a time period of 1.5 years, but that this does not imply directional or balancing selection. We show that the short-term evolution we study here is likely representative for many patients of slow and normal disease progression.
Collapse
Affiliation(s)
- Helena Skar
- Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ryan N. Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Karin Wilbe Ramsay
- Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Annette Alaeus
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jan Albert
- Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Thomas Leitner
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
3
|
Schellens IMM, Borghans JAM, Jansen CA, De Cuyper IM, Geskus RB, van Baarle D, Miedema F. Abundance of early functional HIV-specific CD8+ T cells does not predict AIDS-free survival time. PLoS One 2008; 3:e2745. [PMID: 18648514 PMCID: PMC2447878 DOI: 10.1371/journal.pone.0002745] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 06/22/2008] [Indexed: 12/04/2022] Open
Abstract
Background T-cell immunity is thought to play an important role in controlling HIV infection, and is a main target for HIV vaccine development. HIV-specific central memory CD8+ and CD4+ T cells producing IFNγ and IL-2 have been associated with control of viremia and are therefore hypothesized to be truly protective and determine subsequent clinical outcome. However, the cause-effect relationship between HIV-specific cellular immunity and disease progression is unknown. We investigated in a large prospective cohort study involving 96 individuals of the Amsterdam Cohort Studies with a known date of seroconversion whether the presence of cytokine-producing HIV-specific CD8+ T cells early in infection was associated with AIDS-free survival time. Methods and Findings The number and percentage of IFNγ and IL-2 producing CD8+ T cells was measured after in vitro stimulation with an overlapping Gag-peptide pool in T cells sampled approximately one year after seroconversion. Kaplan-Meier survival analysis and Cox proportional hazard models showed that frequencies of cytokine-producing Gag-specific CD8+ T cells (IFNγ, IL-2 or both) shortly after seroconversion were neither associated with time to AIDS nor with the rate of CD4+ T-cell decline. Conclusions These data show that high numbers of functional HIV-specific CD8+ T cells can be found early in HIV infection, irrespective of subsequent clinical outcome. The fact that both progressors and long-term non-progressors have abundant T cell immunity of the specificity associated with low viral load shortly after seroconversion suggests that the more rapid loss of T cell immunity observed in progressors may be a consequence rather than a cause of disease progression.
Collapse
Affiliation(s)
| | - José A. M. Borghans
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Theoretical Biology/Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Christine A. Jansen
- Department of Clinical Viro-Immunology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Iris M. De Cuyper
- Department of Clinical Viro-Immunology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald B. Geskus
- Department of Research, Cluster, Infectious Diseases, Health Service of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Debbie van Baarle
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank Miedema
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
4
|
van Bockel D, Price DA, Asher TE, Venturi V, Suzuki K, Warton K, Davenport MP, Cooper DA, Douek DC, Kelleher AD. Validation of RNA-based molecular clonotype analysis for virus-specific CD8+ T-cells in formaldehyde-fixed specimens isolated from peripheral blood. J Immunol Methods 2007; 326:127-38. [PMID: 17716684 PMCID: PMC2080792 DOI: 10.1016/j.jim.2007.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 07/15/2007] [Accepted: 07/15/2007] [Indexed: 11/28/2022]
Abstract
Recent advances in the field of molecular clonotype analysis have enabled detailed repertoire characterization of viably isolated antigen-specific T cell populations directly ex vivo. However, in the absence of a biologically contained FACS facility, peripheral blood mononuclear cell (PBMC) preparations derived from patients infected with agents such as HIV must be formaldehyde fixed to inactivate the pathogen; this procedure adversely affects nucleic acid template quality. Here, we developed and validated a method to amplify and sequence mRNA species derived from formaldehyde fixed PBMC specimens. Antigen-specific CD8+ cytotoxic T-lymphocyte populations were identified with standard fluorochrome-conjugated peptide-major histocompatibility complex class I tetramers refolded around synthetic peptides representing immunodominant epitopes from HIV p24 Gag (KRWII[M/L]GLNK/HLA B*2705) and CMV pp65 (NLVPMVATV/HLA A*0201 and TPRVTGGGAM/HLA B*0702), and acquired in separate laboratories with or without fixation. In the presence of proteinase K pre-treatment, the observed antigen-specific CD8+ T-cell repertoire determined by molecular clonotype analysis was statistically no different whether derived from fixed or unfixed PBMC. However, oligo-dT recovery methods were not suitable for use with fixed tissue as significant skewing of clonotypic representation was observed. Thus, we have developed a reliable RNA-based method for molecular clonotype analysis that is compatible with formaldehyde fixation and therefore suitable for use with primary human samples isolated by FACS outside the context of a biological safety level 3 containment facility.
Collapse
Affiliation(s)
- David van Bockel
- Centre for Immunology, St Vincent's Hospital, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Brainard DM, Tager AM, Misdraji J, Frahm N, Lichterfeld M, Draenert R, Brander C, Walker BD, Luster AD. Decreased CXCR3+ CD8 T cells in advanced human immunodeficiency virus infection suggest that a homing defect contributes to cytotoxic T-lymphocyte dysfunction. J Virol 2007; 81:8439-50. [PMID: 17553894 PMCID: PMC1951383 DOI: 10.1128/jvi.00199-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To exert their cytotoxic function, cytotoxic T-lymphocytes (CTL) must be recruited into infected lymphoid tissue where the majority of human immunodeficiency virus (HIV) replication occurs. Normally, effector T cells exit lymph nodes (LNs) and home to peripheral sites of infection. How HIV-specific CTL migrate into lymphoid tissue from which they are normally excluded is unknown. We investigated which chemokines and receptors mediate this reverse homing and whether impairment of this homing could contribute to CTL dysfunction as HIV infection progresses. Analysis of CTL chemokine receptor expression in the blood and LNs of untreated HIV-infected individuals with stable, chronic infection or advanced disease demonstrated that LNs were enriched for CXCR3(+) CD8 T cells in all subjects, suggesting a key role for this receptor in CTL homing to infected lymphoid tissue. Compared to subjects with chronic infection, however, subjects with advanced disease had fewer CXCR3(+) CD8 T cells in blood and LNs. CXCR3 expression on bulk and HIV-specific CD8 T cells correlated positively with CD4 count and negatively with viral load. In advanced infection, there was an accumulation of HIV-specific CD8 T cells at the effector memory stage; however, decreased numbers of CXCR3(+) CD8 T cells were seen across all maturation subsets. Plasma CXCL9 and CXCL10 were elevated in both infected groups in comparison to the levels in uninfected controls, whereas lower mRNA levels of CXCR3 ligands and CD8 in LNs were seen in advanced infection. These data suggest that both CXCR3(+) CD8 T cells and LN CXCR3 ligands decrease as HIV infection progresses, resulting in reduced homing of CTL into LNs and contributing to immune dysfunction.
Collapse
Affiliation(s)
- Diana M Brainard
- Massachusetts General Hospital, Building 149, 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Migueles SA, Tilton JC, Connors M. Advances in understanding immunologic control of HIV infection. Curr HIV/AIDS Rep 2005; 1:12-7. [PMID: 16091218 DOI: 10.1007/s11904-004-0002-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Over the past several years, the progress made in understanding the cellular immune response to HIV is likely greater compared to any other time since the beginning of the worldwide epidemic. This progress has largely been made possible by technical advances that have permitted a much more quantitative and highly detailed study of virus-specific cellular immunity in humans than was previously available. However, despite intensive study of the HIV-specific cellular immune response, we do not fully understand the nature of immunologic control in some rare cases and lack of control in most of untreated patients. It has become increasingly clear that HIV replication is poorly controlled in most untreated patients, despite a high-frequency HIV-specific cellular immune response. Therefore, attention has turned to qualitative features of the immune response that may dictate restriction of viral replication. Because most vaccines in preclinical or clinical testing rely on cellular immune responses that may alter disease progression but are unlikely to prevent infection, understanding these qualitative features is of particular importance. Further study could yield critical information for inducing effective immunity in vaccinees, preventing the loss of control of viral replication on the infection of vaccinees, or inducing immunologic control in infected humans.
Collapse
Affiliation(s)
- Stephen A Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1876, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
7
|
Lee SK, Dykxhoorn DM, Kumar P, Ranjbar S, Song E, Maliszewski LE, François-Bongarçon V, Goldfeld A, Swamy NM, Lieberman J, Shankar P. Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV. Blood 2005; 106:818-26. [PMID: 15831707 PMCID: PMC1895148 DOI: 10.1182/blood-2004-10-3959] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Viral heterogeneity is a major hurdle for potential therapeutic use of RNA interference (RNAi) against HIV-1. To determine the extent of RNAi tolerance to mutations, we tested 3 viral target sites with differing propensity for mutations: a highly variable rev sequence, a gag sequence conserved only among clade B isolates, and a vif sequence highly conserved across clades. Lentiviral expression of all 3 shRNAs inhibited replication of the homologous HIV(IIIB) strain. However, they differed in their ability to protect primary CD4 T cells against multiple isolates within and across HIV clades. The least conserved rev sequence inhibited only 2 of 5 clade B isolates. The gag sequence (conserved within clade B) protected 5 of 5 clade B isolates but not other clade viruses with 2 or 3 mutations in the central region. In contrast, the vif sequence, which was conserved across clades except for single mutations at positions 14 and 17, inhibited viruses from 5 different clades. Moreover, siRNAs with introduced mutations at sites of gag sequence polymorphisms showed reduced antiviral activity, whereas mutations in vif siRNA only modestly decreased silencing. Thus, although 1 or 2 mutations at peripheral sites are tolerated, mutations in the central target cleavage region abolish RNAi activity.
Collapse
Affiliation(s)
- Sang-Kyung Lee
- The CBR Institute for Biomedical Research, 800 Huntington Ave, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Casazza JP, Betts MR, Hill BJ, Brenchley JM, Price DA, Douek DC, Koup RA. Immunologic pressure within class I-restricted cognate human immunodeficiency virus epitopes during highly active antiretroviral therapy. J Virol 2005; 79:3653-63. [PMID: 15731259 PMCID: PMC1075692 DOI: 10.1128/jvi.79.6.3653-3663.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 10/22/2004] [Indexed: 12/17/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) and highly active antiretroviral therapy (HAART) are known to exert strong evolutionary pressures on the virus population during human immunodeficiency virus (HIV) infection. However, it is not known whether CTL responses continue to substantially affect viral evolution during treatment. To study the effect of immunologic pressure on viral sequences during HAART, we identified 10 targeted HIV-specific CD8+-T-cell epitopes in five treatment-naive patients, sequenced each epitope in plasma-derived viruses, and then identified evidence of immunologic pressure at these epitopes by comparing the frequency of viral variants in plasma to the frequency of the CD8+-T-cell response for each variant identified. For one of the five patients, evidence of viral evolution was found during therapy. The sequence of the CTL-targeted epitope changed from an apparent escape variant prior to the initiation of therapy, to the sequence that is best recognized by the CTL response after the initiation of therapy, and then finally to a new escape variant during continued therapy. These data show that CTL-mediated pressure can continue to affect viral evolution after the initiation of HAART, even when treatment drives the viral load below detectable levels, and suggest that antiretroviral therapy may preferentially inhibit those virus variants that escape the CTL response.
Collapse
Affiliation(s)
- Joseph P Casazza
- Immunology Laboratory, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Kaufmann DE, Lichterfeld M, Altfeld M, Addo MM, Johnston MN, Lee PK, Wagner BS, Kalife ET, Strick D, Rosenberg ES, Walker BD. Limited durability of viral control following treated acute HIV infection. PLoS Med 2004; 1:e36. [PMID: 15526059 PMCID: PMC524377 DOI: 10.1371/journal.pmed.0010036] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 09/03/2004] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Early treatment of acute HIV infection with highly active antiretroviral therapy, followed by supervised treatment interruption (STI), has been associated with at least transient control of viremia. However, the durability of such control remains unclear. Here we present longitudinal follow-up of a single-arm, open-label study assessing the impact of STI in the setting of acute HIV-1 infection. METHODS AND FINDINGS Fourteen patients were treated during acute HIV-1 infection and subsequently subjected to an STI protocol that required retreatment if viral load exceeded 50,000 RNA copies/ml plasma or remained above 5,000 copies/ml for more than three consecutive weeks. Eleven of 14 (79%) patients were able to achieve viral loads of less than 5,000 RNA copies/ml for at least 90 d following one, two, or three interruptions of treatment. However, a gradual increase in viremia and decline in CD4+ T cell counts was observed in most individuals. By an intention-to-treat analysis, eight (57%), six (43%), and three (21%) of 14 patients achieved a maximal period of control of 180, 360, and 720 d, respectively, despite augmentation of HIV-specific CD4+ and CD8+ T cell responses. The magnitude of HIV-1-specific cellular immune responses before treatment interruption did not predict duration of viremia control. The small sample size and lack of concurrent untreated controls preclude assessment of possible clinical benefit despite failure to control viremia by study criteria. CONCLUSIONS These data indicate that despite initial control of viremia, durable viral control to less than 5,000 RNA copies/ml plasma in patients following treated acute HIV-1 infection occurs infrequently. Determination of whether early treatment leads to overall clinical benefit will require a larger and randomized clinical trial. These data may be relevant to current efforts to develop an HIV-1 vaccine designed to retard disease progression rather than prevent infection since they indicate that durable maintenance of low-level viremia may be difficult to achieve.
Collapse
Affiliation(s)
- Daniel E Kaufmann
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Mathias Lichterfeld
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Marcus Altfeld
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Marylyn M Addo
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Mary N Johnston
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Paul K Lee
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Bradford S Wagner
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Elizabeth T Kalife
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Daryld Strick
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Eric S Rosenberg
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Bruce D Walker
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
- 2Howard Hughes Medical Institute, Massachusetts General Hospital and Division of AIDSHarvard Medical School, Boston, MassachusettsUnited States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Ince MN, Harnisch B, Xu Z, Lee SK, Lange C, Moretta L, Lederman M, Lieberman J. Increased expression of the natural killer cell inhibitory receptor CD85j/ILT2 on antigen-specific effector CD8 T cells and its impact on CD8 T-cell function. Immunology 2004; 112:531-42. [PMID: 15270723 PMCID: PMC1782522 DOI: 10.1046/j.1365-2567.2004.01907.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 03/09/2004] [Accepted: 04/23/2004] [Indexed: 01/12/2023] Open
Abstract
We investigated whether inhibitory natural killer cell receptor (iNKR) expression contributes to impaired antigen-specific cytotoxicity and interferon-gamma (IFN-gamma) production by CD8 T cells during chronic infection. iNKR immunoglobulin-like transcript-2 (ILT2/CD85j) is expressed on 40-55% of cytomegalovirus (CMV)-, Epstein-Barr virus (EBV)- and human immunodeficiency virus (HIV)-specific CD8 T cells in both healthy and HIV-infected donors. Other iNKRs (CD158a, b1, e1/e2, k, CD94/NKG2A) are expressed on only a small minority of CD8 T cells and are not preferentially expressed on tetramer-staining virus-specific cells. In normal donors, ILT2 is expressed largely on perforin(+) CD27(-) effector cells. However, in HIV-infected donors, only a third of ILT2(+) cells are also perforin(+). In both normal and HIV-infected donors, ILT2(+) cells are prone to spontaneous apoptosis. Therefore, ILT2 is normally expressed during effector cytotoxic T-lymphocyte (CTL) differentiation, but can also be expressed when effector maturation is incomplete, as in HIV infection. The effect of ILT2 on CD8 cell function was assessed by preincubating effector cells with ILT2 antibody. While blocking ILT2 engagement has no appreciable effect on cytotoxicity, it increases antiviral IFN-gamma production by approximately threefold in both normal and HIV-infected donors. Thus, ILT2 expression, increased on antiviral CD8 cells in chronic infection, may interfere with protective CD8 T-cell function by suppressing IFN-gamma production.
Collapse
Affiliation(s)
- M Nedim Ince
- CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Brainard DM, Tharp WG, Granado E, Miller N, Trocha AK, Ren XH, Conrad B, Terwilliger EF, Wyatt R, Walker BD, Poznansky MC. Migration of antigen-specific T cells away from CXCR4-binding human immunodeficiency virus type 1 gp120. J Virol 2004; 78:5184-93. [PMID: 15113900 PMCID: PMC400356 DOI: 10.1128/jvi.78.10.5184-5193.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell-mediated immunity depends in part on appropriate migration and localization of cytotoxic T lymphocytes (CTL), a process regulated by chemokines and adhesion molecules. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode chemotactically active proteins, suggesting that dysregulation of immune cell trafficking may be a strategy for immune evasion. HIV-1 gp120, a retroviral envelope protein, has been shown to act as a T-cell chemoattractant via binding to the chemokine receptor and HIV-1 coreceptor CXCR4. We have previously shown that T cells move away from the chemokine stromal cell-derived factor 1 (SDF-1) in a concentration-dependent and CXCR4 receptor-mediated manner. Here, we demonstrate that CXCR4-binding HIV-1 X4 gp120 causes the movement of T cells, including HIV-specific CTL, away from high concentrations of the viral protein. This migratory response is CD4 independent and inhibited by anti-CXCR4 antibodies and pertussis toxin. Additionally, the expression of X4 gp120 by target cells reduces CTL efficacy in an in vitro system designed to account for the effect of cell migration on the ability of CTL to kill their target cells. Recombinant X4 gp120 also significantly reduced antigen-specific T-cell infiltration at a site of antigen challenge in vivo. The repellant activity of HIV-1 gp120 on immune cells in vitro and in vivo was shown to be dependent on the V2 and V3 loops of HIV-1 gp120. These data suggest that the active movement of T cells away from CXCR4-binding HIV-1 gp120, which we previously termed fugetaxis, may provide a novel mechanism by which HIV-1 evades challenge by immune effector cells in vivo.
Collapse
Affiliation(s)
- Diana M Brainard
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, 5th Floor,Charlestown, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kemal KS, Foley B, Burger H, Anastos K, Minkoff H, Kitchen C, Philpott SM, Gao W, Robison E, Holman S, Dehner C, Beck S, Meyer WA, Landay A, Kovacs A, Bremer J, Weiser B. HIV-1 in genital tract and plasma of women: compartmentalization of viral sequences, coreceptor usage, and glycosylation. Proc Natl Acad Sci U S A 2003; 100:12972-7. [PMID: 14557540 PMCID: PMC240729 DOI: 10.1073/pnas.2134064100] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Worldwide, 90% of HIV-1 infections are transmitted heterosexually. Because the genital mucosa are the sites of initial contact with HIV-1 for most exposed individuals, study of the virus from the genital tract is critical for the development of vaccines and therapeutics. Previous analyses of HIV-1 in various tissues have documented compartmentalization of viral genomes. Whether compartmentalization was associated with viral phenotypic differences or immune status, however, was not well understood. We compared HIV-1 gp120 env sequences from the genital tract and plasma of 12 women. Eight women displayed compartmentalized HIV-1 RNA genomes, with viral sequences from each site that were clearly discrete, yet phylogenetically related. The remaining four exhibited env sequences that were intermingled between the two sites. Women with compartmentalized HIV-1 genomes had higher CD4+ cell counts than those displaying intermingled strains (P = 0.02). Intrapatient HIV-1 recombinants comprising sequences that were characteristic of both sites were identified. We next compared viral phenotypes in each compartment. HIV-1 coreceptor usage was often compartmentalized (P 0.01). The number of N-linked glycosylation sites, associated with neutralization resistance, also differed between compartments (P < 0.01). Furthermore, disparities between the density of gp120 glycosylations in each compartment correlated with higher CD4+ counts (P = 0.03). These data demonstrate that the genital tract and plasma can harbor populations of replicating HIV-1 with different phenotypes. The association of higher CD4+ cell counts with compartmentalization of viral genomes and density of gp120 glycosylations suggests that the immune response influences the development of viral genotypes in each compartment. These findings are relevant to the prevention and control of HIV-1 infection.
Collapse
Affiliation(s)
- Kimdar Sherefa Kemal
- New York State Department of Health, Wadsworth Center, 120 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Altfeld M, Addo MM, Shankarappa R, Lee PK, Allen TM, Yu XG, Rathod A, Harlow J, O'Sullivan K, Johnston MN, Goulder PJR, Mullins JI, Rosenberg ES, Brander C, Korber B, Walker BD. Enhanced detection of human immunodeficiency virus type 1-specific T-cell responses to highly variable regions by using peptides based on autologous virus sequences. J Virol 2003; 77:7330-40. [PMID: 12805431 PMCID: PMC164796 DOI: 10.1128/jvi.77.13.7330-7340.2003] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The antigenic diversity of human immunodeficiency virus type 1 (HIV-1) represents a significant challenge for vaccine design as well as the comprehensive assessment of HIV-1-specific immune responses in infected persons. In this study we assessed the impact of antigen variability on the characterization of HIV-1-specific T-cell responses by using an HIV-1 database to determine the sequence variability at each position in all expressed HIV-1 proteins and a comprehensive data set of CD8 T-cell responses to a reference strain of HIV-1 in infected persons. Gamma interferon Elispot analysis of HIV-1 clade B-specific T-cell responses to 504 overlapping peptides spanning the entire expressed HIV-1 genome derived from 57 infected subjects demonstrated that the average amino acid variability within a peptide (entropy) was inversely correlated to the measured frequency at which the peptide was recognized (P = 6 x 10(-7)). Subsequent studies in six persons to assess T-cell responses against p24 Gag, Tat, and Vpr peptides based on autologous virus sequences demonstrated that 29% (12 of 42) of targeted peptides were only detected with peptides representing the autologous virus strain compared to the HIV-1 clade B consensus sequence. The use of autologous peptides also allowed the detection of significantly stronger HIV-1-specific T-cell responses in the more variable regulatory and accessory HIV-1 proteins Tat and Vpr (P = 0.007). Taken together, these data indicate that accurate assessment of T-cell responses directed against the more variable regulatory and accessory HIV-1 proteins requires reagents based on autologous virus sequences. They also demonstrate that CD8 T-cell responses to the variable HIV-1 proteins are more common than previously reported.
Collapse
Affiliation(s)
- Marcus Altfeld
- Partners AIDS Research Center and Infectious Disease Unit, Massachusetts General Hospital, and Division of AIDS, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Migueles SA, Laborico AC, Imamichi H, Shupert WL, Royce C, McLaughlin M, Ehler L, Metcalf J, Liu S, Hallahan CW, Connors M. The differential ability of HLA B*5701+ long-term nonprogressors and progressors to restrict human immunodeficiency virus replication is not caused by loss of recognition of autologous viral gag sequences. J Virol 2003; 77:6889-98. [PMID: 12768008 PMCID: PMC156173 DOI: 10.1128/jvi.77.12.6889-6898.2003] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2002] [Accepted: 03/18/2003] [Indexed: 01/04/2023] Open
Abstract
Although the HLA B(*)5701 class I allele is highly overrepresented among human immunodeficiency virus (HIV)-infected long-term nonprogressors (LTNPs), it is also present at the expected frequency (11%) in patients with progressive HIV infection. Whether B57(+) progressors lack restriction of viral replication because of escape from recognition of highly immunodominant B57-restricted gag epitopes by CD8(+) T cells remains unknown. In this report, we investigate the association between restriction of virus replication and recognition of autologous virus sequences in 27 B(*)57(+) patients (10 LTNPs and 17 progressors). Amplification and direct sequencing of single molecules of viral cDNA or proviral DNA revealed low frequencies of genetic variations in these regions of gag. Furthermore, CD8(+) T-cell recognition of autologous viral variants was preserved in most cases. In two patients, responses to autologous viral variants were not demonstrable at one epitope. By using a novel technique to isolate primary CD4(+) T cells expressing autologous viral gene products, it was found that 1 to 13% of CD8(+) T cells were able to respond to these cells by gamma interferon production. In conclusion, escape-conferring mutations occur infrequently within immunodominant B57-restricted gag epitopes and are not the primary mechanism of virus evasion from immune control in B(*)5701(+) HIV-infected patients. Qualitative features of the virus-specific CD8(+) T-cell response not measured by current assays remain the most likely determinants of the differential abilities of HLA B(*)5701(+) LTNPs and progressors to restrict virus replication.
Collapse
Affiliation(s)
- Stephen A Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|