1
|
Payasi A, Yadav MK, Chaudhary S, Aggarwal A. Evaluating nephrotoxicity reduction in a novel polymyxin B formulation: insights from a 3D kidney-on-a-chip model. Antimicrob Agents Chemother 2024; 68:e0021924. [PMID: 39225483 PMCID: PMC11459911 DOI: 10.1128/aac.00219-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
This study aimed to assess the nephrotoxicity associated with VRP-034 (novel formulation of polymyxin B [PMB]) compared to marketed PMB in a three-dimensional (3D) kidney-on-a-chip model. To model the human kidney proximal tubule for analysis, tubular structures were established using 23 triple-channel chips seeded with RPTEC/hTERT1 cells. These cells were exposed to VRP-034 or PMB at seven concentrations (1-200 µM) over 12, 24, and 48 h. A suite of novel kidney injury biomarkers, cell health, and inflammatory markers were quantitatively assessed in the effluent. Additionally, caspase and cytochrome C levels were measured, and cell viability was evaluated using calcein AM and ethidium homodimer-1 (EthD-1). Exposure to marketed PMB resulted in significantly elevated levels (P < 0.05) of four key biomarkers (KIM-1, cystatin C, clusterin, and OPN) compared to VRP-034, particularly at clinically relevant concentrations of ≥10 µM. At 25 µM, all biomarkers demonstrated a significant increase (P < 0.05) with marketed PMB exposure compared to VRP-034. Inflammatory markers (interleukin-6 and interleukin-8) increased significantly (P < 0.05) with marketed PMB at concentrations of ≥5 µM, relative to VRP-034. VRP-034 displayed superior cell health outcomes, exhibiting lower lactate dehydrogenase release, while ATP levels remained comparable. Morphological analysis revealed that marketed PMB induced more severe damage, disrupting tubular integrity. Both treatments activated cytochrome C, caspase-3, caspase-8, caspase-9, and caspase-12 in a concentration-dependent manner; however, caspase activation was significantly reduced (P < 0.05) with VRP-034. This study demonstrates that VRP-034 significantly reduces nephrotoxicity compared to marketed PMB within a 3D microphysiological system, suggesting its potential to enable the use of full therapeutic doses of PMB with an improved safety profile, addressing the need for less nephrotoxic polymyxin antibiotics.
Collapse
Affiliation(s)
- Anurag Payasi
- Department of Cell Culture, Venus Medicine Research Centre, Baddi, Himachal Pradesh, India
| | - Manoj Kumar Yadav
- Department of Cell Culture, Venus Medicine Research Centre, Baddi, Himachal Pradesh, India
| | | | - Anmol Aggarwal
- Department of Pipeline Strategy, Venus Medicine Research Centre, Baddi, Himachal Pradesh, India
| |
Collapse
|
2
|
Gurevich E, Landau D. Tubulointerstitial nephritis in children and adolescents. Pediatr Nephrol 2024:10.1007/s00467-024-06526-y. [PMID: 39320551 DOI: 10.1007/s00467-024-06526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
The tubulointerstitial compartment comprises most of the kidney parenchyma. Inflammation in this compartment (tubulointerstitial nephritis-TIN) can be acute and resolves if the offending factor is withdrawn or may enter a chronic process leading to irreversible kidney damage. Etiologic factors differ, including different exposures, infections, and autoimmune and genetic tendency, and the initial damage can be acute, recurrent, or permanent, determining whether the acute inflammatory process will lead to complete healing or to a chronic course of inflammation leading to fibrosis. Clinical and laboratory findings of TIN are often nonspecific, which may lead to delayed diagnosis and a poorer clinical outcome. We provide a general review of TIN, with special mention of the molecular pathophysiological mechanisms of the associated kidney damage.
Collapse
Affiliation(s)
- Evgenia Gurevich
- Pediatrics Department, Barzilai University Medical Center, Ashqelon, Israel.
- Ben Gurion University of Negev, Faculty of Health Sciences, Beer Sheva, Israel.
| | - Daniel Landau
- Department of Nephrology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Liu J, He Q, Guo G, Zhai C. Analysis of risk factors related to chronic non-healing wound infection and the construction of a clinical prediction model. Exp Dermatol 2024; 33:e15102. [PMID: 38973268 DOI: 10.1111/exd.15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 07/09/2024]
Abstract
This study is aimed to analyse the risk factors associated with chronic non-healing wound infections, establish a clinical prediction model, and validate its performance. Clinical data were retrospectively collected from 260 patients with chronic non-healing wounds treated in the plastic surgery ward of Shanxi Provincial People's Hospital between January 2022 and December 2023 who met the inclusion criteria. Risk factors were analysed, and a clinical prediction model was constructed using both single and multifactor logistic regression analyses to determine the factors associated with chronic non-healing wound infections. The model's discrimination and calibration were assessed via the concordance index (C-index), receiver operating characteristic (ROC) curve and calibration curve. Multivariate logistic regression analysis identified several independent risk factors for chronic non-healing wound infection: long-term smoking (odds ratio [OR]: 4.122, 95% CI: 3.412-5.312, p < 0.05), history of diabetes (OR: 3.213, 95% CI: 2.867-4.521, p < 0.05), elevated C-reactive protein (OR: 2.981, 95% CI: 2.312-3.579, p < 0.05), elevated procalcitonin (OR: 2.253, 95% CI: 1.893-3.412, p < 0.05) and reduced albumin (OR: 1.892, 95% CI: 1.322-3.112, p < 0.05). The clinical prediction model's C-index was 0.762, with the corrected C-index from internal validation using the bootstrap method being 0.747. The ROC curve indicated an area under the curve (AUC) of 0.762 (95% CI: 0.702-0.822). Both the AUC and C-indexes ranged between 0.7 and 0.9, suggesting moderate-to-good predictive accuracy. The calibration chart demonstrated a good fit between the model's calibration curve and the ideal curve. Long-term smoking, diabetes, elevated C-reactive protein, elevated procalcitonin and reduced albumin are confirmed as independent risk factors for bacterial infection in patients with chronic non-healing wounds. The clinical prediction model based on these factors shows robust performance and substantial predictive value.
Collapse
Affiliation(s)
- Jing Liu
- Department of the Comprehensive Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Qiang He
- The Colorectal and Anal Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Gaijuan Guo
- Fenyang City People's Hospital, Fenyang, Shanxi Province, China
| | - Chunbao Zhai
- The Colorectal and Anal Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| |
Collapse
|
4
|
Rodrigues MC, Oliveira LBF, Vieira MAR, Caruso-Neves C, Peruchetti DB. Receptor-mediated endocytosis in kidney cells during physiological and pathological conditions. CURRENT TOPICS IN MEMBRANES 2024; 93:1-25. [PMID: 39181576 DOI: 10.1016/bs.ctm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Mammalian cell membranes are very dynamic where they respond to several environmental stimuli by rearranging the membrane composition by basic biological processes, including endocytosis. In this context, receptor-mediated endocytosis, either clathrin-dependent or caveolae-dependent, is involved in different physiological and pathological conditions. In the last years, an important amount of evidence has been reported that kidney function involves the modulation of different types of endocytosis, including renal protein handling. In addition, the dysfunction of the endocytic machinery is involved with the development of proteinuria as well as glomerular and tubular injuries observed in kidney diseases associated with hypertension, diabetes, and others. In this present review, we will discuss the mechanisms underlying the receptor-mediated endocytosis in different glomerular cells and proximal tubule epithelial cells as well as their modulation by different factors during physiological and pathological conditions. These findings could help to expand the current understanding regarding renal protein handling as well as identify possible new therapeutic targets to halt the progression of kidney disease.
Collapse
Affiliation(s)
- Mariana C Rodrigues
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laura B F Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Aparecida R Vieira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAUDE/FAPERJ, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTI, Rio de Janeiro, RJ, Brazil
| | - Diogo B Peruchetti
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica, INCT-NANOBiofar, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTI, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Li Y, Chen S, Tan J, Zhou Y, Ren M, Zhang Q, Zhao M, Yuan G, Zhang W, Yang F. Combination therapy with DHA and BMSCs suppressed podocyte injury and attenuated renal fibrosis by modulating the TGF- β1/Smad pathway in MN mice. Ren Fail 2023; 45:2120821. [PMID: 36648018 PMCID: PMC9848254 DOI: 10.1080/0886022x.2022.2120821] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Artemisinin has immunomodulatory, anti-inflammatory, and antifibrotic effects. Some studies have demonstrated that artemisinins have a protective effect on the kidney. DHA is a derivative of artemisinin and has effects similar to those of artemisinin. Human bone marrow-derived mesenchymal stem cells (BMSCs) accelerate renal repair following acute injury. In the study, we investigated the effects of combination therapy with DHA and BMSCs on membranous nephropathy (MN) mice. The 24-h urinary protein, serum total cholesterol (TC) and triglyceride (TG) levels, and renal histopathology, were measured to evaluate kidney damage. Anti-PLA2R, IgG, and complement 3 (C3) were detected by ELISA. The expression levels of the podocyte injury-related proteins were analyzed by immunohistochemistry. The protein expression levels of α-SMA, ED-1, TGF-β1, p-Smad2, and p-Smad3 were detected by western blot to analyze renal fibrosis and its regulatory mechanism. Results showed that combination therapy with DHA and BMSCs significantly ameliorated kidney damage in MN model mice by decreasing the levels of 24 h urinary protein, TC and TG. This combination therapy also improved renal histology and reduced the expression of IgG and C3 in the glomerulus. In addition, this combination therapy decreased the expression of podocin and nephrin and relieved renal fibrosis by downregulating α-SMA and ED-1. Furthermore, this combination therapy suppressed TGF-β1 expression and Smad2/3 phosphorylation. This result (i.e., this combination therapy inhibited the TGF-β1/Smad pathway) was also supported in vitro. Taken together, combination therapy with DHA and BMSCs ameliorated podocyte injury and renal fibrosis in MN mice by downregulating the TGFβ1/Smad pathway.
Collapse
Affiliation(s)
- Yongzhang Li
- Department of Urology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Suzhi Chen
- Department of Nephrology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Jinchuan Tan
- Department of Nephrology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Yan Zhou
- Department of Urology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Meifang Ren
- Department of Nephrology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Qian Zhang
- Department of Nephrology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Meijiao Zhao
- Department of Nephrology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Guodong Yuan
- Department of Nephrology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Wenxi Zhang
- Department of Pharmacy, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Fengwen Yang
- Department of Nephrology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China,CONTACT Fengwen Yang Department of Nephrology, Hebei Hospital of Traditional Chinese Medicine, No. 368 Zhongshan East Road, Shijiazhuang City, Hebei Province050011, China
| |
Collapse
|
6
|
Xu C, Ha X, Yang S, Tian X, Jiang H. Advances in understanding and treating diabetic kidney disease: focus on tubulointerstitial inflammation mechanisms. Front Endocrinol (Lausanne) 2023; 14:1232790. [PMID: 37859992 PMCID: PMC10583558 DOI: 10.3389/fendo.2023.1232790] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes that can lead to end-stage kidney disease. Despite its significant impact, most research has concentrated on the glomerulus, with little attention paid to the tubulointerstitial region, which accounts for the majority of the kidney volume. DKD's tubulointerstitial lesions are characterized by inflammation, fibrosis, and loss of kidney function, and recent studies indicate that these lesions may occur earlier than glomerular lesions. Evidence has shown that inflammatory mechanisms in the tubulointerstitium play a critical role in the development and progression of these lesions. Apart from the renin-angiotensin-aldosterone blockade, Sodium-Glucose Linked Transporter-2(SGLT-2) inhibitors and new types of mineralocorticoid receptor antagonists have emerged as effective ways to treat DKD. Moreover, researchers have proposed potential targeted therapies, such as inhibiting pro-inflammatory cytokines and modulating T cells and macrophages, among others. These therapies have demonstrated promising results in preclinical studies and clinical trials, suggesting their potential to treat DKD-induced tubulointerstitial lesions effectively. Understanding the immune-inflammatory mechanisms underlying DKD-induced tubulointerstitial lesions and developing targeted therapies could significantly improve the treatment and management of DKD. This review summarizes the latest advances in this field, highlighting the importance of focusing on tubulointerstitial inflammation mechanisms to improve DKD outcomes.
Collapse
Affiliation(s)
- Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaowen Ha
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
7
|
Gui Y, Palanza Z, Fu H, Zhou D. Acute kidney injury in diabetes mellitus: Epidemiology, diagnostic, and therapeutic concepts. FASEB J 2023; 37:e22884. [PMID: 36943403 PMCID: PMC10602403 DOI: 10.1096/fj.202201340rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Acute kidney injury (AKI) and diabetes mellitus (DM) are public health problems that cause a high socioeconomic burden worldwide. In recent years, the landscape of AKI etiology has shifted: Emerging evidence has demonstrated that DM is an independent risk factor for the onset of AKI, while an alternative perspective considers AKI as a bona fide complication of DM. Therefore, it is necessary to systematically characterize the features of AKI in DM. In this review, we summarized the epidemiology of AKI in DM. While focusing on circulation- and tissue-specific microenvironment changes after DM, we described the active cellular and molecular mechanisms of increased kidney susceptibility to AKI under DM stress. We also reviewed the current diagnostic and therapeutic strategies for AKI in DM recommended in the clinic. Updated recognition of the epidemiology, pathophysiology, diagnosis, and medications of AKI in DM is believed to reveal a path to mitigate the frequency of AKI and DM comorbidity that will ultimately improve the quality of life in DM patients.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Zachary Palanza
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
8
|
Zhou H, Mu L, Yang Z, Shi Y. Identification of a novel immune landscape signature as effective diagnostic markers related to immune cell infiltration in diabetic nephropathy. Front Immunol 2023; 14:1113212. [PMID: 36969169 PMCID: PMC10030848 DOI: 10.3389/fimmu.2023.1113212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/22/2023] [Indexed: 03/10/2023] Open
Abstract
Background The study aimed to identify core biomarkers related to diagnosis and immune microenvironment regulation and explore the immune molecular mechanism of diabetic nephropathy (DN) through bioinformatics analysis. Methods GSE30529, GSE99325, and GSE104954 were merged with removing batch effects, and different expression genes (DEGs) were screened at a criterion |log2FC| >0.5 and adjusted P <0.05. KEGG, GO, and GSEA analyses were performed. Hub genes were screened by conducting PPI networks and calculating node genes using five algorithms with CytoHubba, followed by LASSO and ROC analysis to accurately identify diagnostic biomarkers. In addition, two different GEO datasets, GSE175759 and GSE47184, and an experiment cohort with 30 controls and 40 DN patients detected by IHC, were used to validate the biomarkers. Moreover, ssGSEA was performed to analyze the immune microenvironment in DN. Wilcoxon test and LASSO regression were used to determine the core immune signatures. The correlation between biomarkers and crucial immune signatures was calculated by Spearman analysis. Finally, cMap was used to explore potential drugs treating renal tubule injury in DN patients. Results A total of 509 DEGs, including 338 upregulated and 171 downregulated genes, were screened out. "chemokine signaling pathway" and "cell adhesion molecules" were enriched in both GSEA and KEGG analysis. CCR2, CX3CR1, and SELP, especially for the combination model of the three genes, were identified as core biomarkers with high diagnostic capabilities with striking AUC, sensitivity, and specificity in both merged and validated datasets and IHC validation. Immune infiltration analysis showed a notable infiltration advantage for APC co-stimulation, CD8+ T cells, checkpoint, cytolytic activity, macrophages, MHC class I, and parainflammation in the DN group. In addition, the correlation analysis showed that CCR2, CX3CR1, and SELP were strongly and positively correlated with checkpoint, cytolytic activity, macrophages, MHC class I, and parainflammation in the DN group. Finally, dilazep was screened out as an underlying compound for DN analyzed by CMap. Conclusions CCR2, CX3CR1, and SELP are underlying diagnostic biomarkers for DN, especially in their combination. APC co-stimulation, CD8+ T cells, checkpoint, cytolytic activity, macrophages, MHC class I, and parainflammation may participate in the occurrence and development of DN. At last, dilazep may be a promising drug for treating DN.
Collapse
Affiliation(s)
- Huandi Zhou
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Mu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Nephrology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhifen Yang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Hebei Medical University, Shijiazhuang, Hebei, China
- Gynecology and Obstetrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Peng Z, Wang H, Zheng J, Wang J, Xiang Y, Liu C, Ji M, Liu H, Pan L, Qin X, Qu X. Is the proximal tubule the focus of tubulointerstitial fibrosis? Heliyon 2023; 9:e13508. [PMID: 36846656 PMCID: PMC9950842 DOI: 10.1016/j.heliyon.2023.e13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Tubulointerstitial fibrosis (TIF), a common end result of almost all progressive chronic kidney diseases (CKD), is also the best predictor of kidney survival. Almost all cells in the kidney are involved in the progression of TIF. Myofibroblasts, the primary producers of extracellular matrix, have previously received a great deal of attention; however, a large body of emerging evidence reveals that proximal tubule (PT) plays a central role in TIF progression. In response to injury, renal tubular epithelial cells (TECs) transform into inflammatory and fibroblastic cells, producing various bioactive molecules that drive interstitial inflammation and fibrosis. Here we reviewed the increasing evidence for the key role of the PT in promoting TIF in tubulointerstitial and glomerular injury and discussed the therapeutic targets and carrier systems involving the PT that holds particular promise for treating patients with fibrotic nephropathy.
Collapse
Affiliation(s)
- Zhi Peng
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Hui Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Jiaoyun Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Chi Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Ming Ji
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Lang Pan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
10
|
Li F, Zhang J, Luo L, Hu J. Protective Effects of Xanthohumol against Diabetic Nephropathy in a Mouse Model. Kidney Blood Press Res 2023; 48:92-101. [PMID: 36592619 DOI: 10.1159/000528650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/05/2022] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) is a long-term loss of renal function occurring in the diabetic patients, leading to 5 million deaths in 2015, and this number is dramatically growing annually. Due to unsatisfied outcome of current treatment, there is urgent need to develop more effective therapeutic drugs for DN. METHODS Approximately 150 kinds of natural small molecule drugs that have been used on the market or in the clinical trials in the presence of high glucose were tested individually on the same batch of human renal glomerular endothelial cells (GECs) and human kidney 2 (HK-2) cells with triplicated wells by using a robotic pipetting workstation to screen for the potential drug candidate. Cell viability and oxidative stress were examined in the GECs and HK-2 cells. DN mouse model was established and treated with 25 mg/kg xanthohumol. RESULTS By measuring cell viability, xanthohumol was selected as our predicted drug candidate for DN because it could mostly protect renal cells from high glucose with about 90% survived GECs and HK-2 cells, about 2.12- and 2.37-fold increase compared to glucose group which was with 42.78% and 37.69% survived GECs and HK-2 cells, respectively. Then, xanthohumol inhibited high glucose-induced oxidative stress through nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in vitro. Moreover, xanthohumol (25 mg/kg) significantly decreased the levels of serum creatinine, blood urea nitrogen, urea protein, and kidney weight/body weight ratio in DN mice. In addition, the increase of reactive oxygen species production and the decrease of superoxide dismutase and catalase activities in DN mice were partially reversed by xanthohumol. mRNA levels of Nrf2, Hmox1, and Nqol genes were all decreased by xanthohumol DN mice. CONCLUSION Xanthohumol could ameliorate DN-related impairments via Nrf2 signaling pathway, which might serve as a promising drug candidate for treatment of DN.
Collapse
Affiliation(s)
- Fenglin Li
- Department of Pharmacy, Daqing Longnan Hospital, Daqing, China
| | - Jinling Zhang
- Department of Nephrology, Daqing Longnan Hospital, Daqing, China
| | - Le Luo
- Anhui Isotex Biotech Co. Ltd, Xuancheng, China
| | - Jing Hu
- Department of Endocrine, Daqing Longnan Hospital, Daqing, China
| |
Collapse
|
11
|
Shi J, Hu Y, Shao G, Zhu Y, Zhao Z, Xu Y, Zhang Z, Wu H. Quantifying Podocyte Number in a Small Sample Size of Glomeruli with CUBIC to Evaluate Podocyte Depletion of db/db Mice. J Diabetes Res 2023; 2023:1901105. [PMID: 36776229 PMCID: PMC9908347 DOI: 10.1155/2023/1901105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
The loss of podocyte is crucial for diagnosis and prognosis of diabetic kidney disease, whereas commonly two-dimensional methods for quantifying podocyte number existed with issues of low fidelity and accuracy. In this study, clear, unobstructed brain imaging cocktails and computational analysis (CUBIC), one of three-dimensional optical clearing approaches, was used which combines tissue clearing, immunolabeling, and a light-sheet microscope to image and evaluate podocytes in C57BL/6 (C57) and db/db mice. We discovered that 77 podocytes per glomerulus were in C57 mice. On the subject of db/db mice, there were 74 podocytes by the age of 8 w, 72 podocytes by the age of 12 w, and 66 podocytes by the age of 16 w, compared with 76 podocytes in the control group, suggesting that there was a significant decrease in podocyte number in db/db mice with the age of 16 w, showing a trend which positively correlated to the deterioration of kidney function. Sample size estimation using the PASS software revealed that taking 5%, 7.5%, and 10% of the mean podocyte number per glomerulus as the statistical allowable error and 95% as total confidence interval, 33, 15, and 9 glomeruli were independently needed to be sampled in C57 mice to represent the overall glomeruli to calculate podocyte number. Furthermore, in the control group of db/db mice, 36, 18, and 11 glomeruli were needed, compared with 46, 24, and 14 glomeruli in db/db mice by the age of 8 w, 43, 21, and 12 glomeruli by the age of 12 w, and 52, 27, and 16 by the age of 16 w. These findings indicated that precise quantification of podocyte number could judge the progression of diabetic kidney disease. In addition, a small number of glomeruli could be actually representative of the whole sample size, which indicated apparent practicability of CUBIC for clinical use.
Collapse
Affiliation(s)
- Jiaoyu Shi
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuan Hu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guangze Shao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yanyong Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Chang TT, Chiang CH, Chen C, Lin SC, Lee HJ, Chen JW. Antioxidation and Nrf2-mediated heme oxygenase-1 activation contribute to renal protective effects of hydralazine in diabetic nephropathy. Biomed Pharmacother 2022; 151:113139. [PMID: 35623171 DOI: 10.1016/j.biopha.2022.113139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and oxidative stress are associated with the progression of diabetic nephropathy (DN). Hydralazine is an antihypertensive agent and may act as a xanthine oxidase (XO) inhibitor to reduce uric acid levels in a mouse renal injury model. This study aimed to investigate the potential mechanisms of hydralazine in experimental DN. Streptozotocin-induced diabetic mice were fed a high-fat diet to generate DN. Human renal proximal tubular epithelial cells were used in vitro. Nitrendipine and allopurinol which can reduce blood pressure or XO activity levels, were used as two positive controls. Hydralazine downregulated NF-κB/p38 signaling pathways and reduced TNF-α/IL-6 expressions in high glucose-stimulated renal proximal tubular epithelial cells. Hydralazine reduced in vitro ROS production via XO inhibition and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated heme oxygenase (HO)-1 activation. Furthermore, hydralazine reduced high glucose-induced apoptosis by downregulating PARP/caspase-3 signaling. Hydralazine and allopurinol but not nitrendipine reduced serum uric acid levels and systemic inflammation. Hydralazine and allopurinol treatment improved renal function with decreased urinary albumin-to-creatinine ratios, glomerular hypertrophy, glomerulosclerosis, and fibrosis in the kidney of DN mice. While both hydralazine and allopurinol downregulated XO and NADPH oxidase expression, only hydralazine upregulated Nrf2/HO-1 renal expression, suggesting the additional effects of hydralazine independent of XO/ NADPH oxidase inhibition. In conclusion, hydralazine protected renal proximal tubular epithelial cells against the insults of high glucose and prevented renal damage via XO/NADPH oxidase inhibition and Nrf-2/HO-1 activation, suggesting the comprehensive antioxidation and anti-inflammation mechanisms for the management of DN.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chih-Hung Chiang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan; Department of Urology/Medical Research and Education, Taipei Veterans General Hospital, Yuan-Shan/Su-Ao Branch, Yi-Lan, Taiwan
| | - Ching Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Su-Chu Lin
- Department of Urology/Medical Research and Education, Taipei Veterans General Hospital, Yuan-Shan/Su-Ao Branch, Yi-Lan, Taiwan
| | - Hsin-Jou Lee
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
13
|
Husain-Syed F, Emlet DR, Wilhelm J, Danesi TH, Ferrari F, Bezerra P, Lopez-Giacoman S, Villa G, Tello K, Birk HW, Seeger W, Giavarina D, Salvador L, Fuhrman DY, Kellum JA, Ronco C. Effects of preoperative high-oral protein loading on short- and long-term renal outcomes following cardiac surgery: a cohort study. J Transl Med 2022; 20:204. [PMID: 35538495 PMCID: PMC9092825 DOI: 10.1186/s12967-022-03410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/24/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Post-cardiac surgery acute kidney injury (AKI) is associated with increased mortality. A high-protein meal enhances the renal blood flow and glomerular filtration rate (GFR) and might protect the kidneys from acute ischemic insults. Hence, we assessed the effect of a preoperative high-oral protein load on post-cardiac surgery renal function and used experimental models to elucidate mechanisms by which protein might stimulate kidney-protective effects. METHODS The prospective "Preoperative Renal Functional Reserve Predicts Risk of AKI after Cardiac Operation" study follow-up was extended to postoperative 12 months for 109 patients. A 1:2 ratio propensity score matching method was used to identify a control group (n = 214) to comparatively evaluate the effects of a preoperative protein load and standard care. The primary endpoints were AKI development and postoperative estimated GFR (eGFR) loss at 3 and 12 months. We also assessed the secretion of tissue inhibitor of metalloproteases-2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7), biomarkers implicated in mediating kidney-protective mechanisms in human kidney tubular cells that we exposed to varying protein concentrations. RESULTS The AKI rate did not differ between the protein loading and control groups (13.6 vs. 12.3%; p = 0.5). However, the mean eGFR loss was lower in the former after 3 months (0.1 [95% CI - 1.4, - 1.7] vs. - 3.3 [95% CI - 4.4, - 2.2] ml/min/1.73 m2) and 12 months (- 2.7 [95% CI - 4.2, - 1.2] vs - 10.2 [95% CI - 11.3, - 9.1] ml/min/1.73 m2; p < 0.001 for both). On stratification based on AKI development, the eGFR loss after 12 months was also found to be lower in the former (- 8.0 [95% CI - 14.1, - 1.9] vs. - 18.6 [95% CI - 23.3, - 14.0] ml/min/1.73 m2; p = 0.008). A dose-response analysis of the protein treatment of the primary human proximal and distal tubule epithelial cells in culture showed significantly increased IGFBP7 and TIMP-2 expression. CONCLUSIONS A preoperative high-oral protein load did not reduce AKI development but was associated with greater renal function preservation in patients with and without AKI at 12 months post-cardiac surgery. The potential mechanisms of action by which protein loading may induce a kidney-protective response might include cell cycle inhibition of renal tubular epithelial cells. Clinical trial registration ClinicalTrials.gov: NCT03102541 (retrospectively registered on April 5, 2017) and ClinicalTrials.gov: NCT03092947 (retrospectively registered on March 28, 2017).
Collapse
Affiliation(s)
- Faeq Husain-Syed
- grid.416303.30000 0004 1758 2035Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza, San Bortolo Hospital, Via Rodolfi, 37, 36100 Vicenza, Italy ,grid.411067.50000 0000 8584 9230Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392 Giessen, Germany
| | - David R. Emlet
- grid.21925.3d0000 0004 1936 9000Center for Critical Care Nephrology, CRISMA, Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261 USA
| | - Jochen Wilhelm
- grid.8664.c0000 0001 2165 8627Institute for Lung Health, Justus-Liebig-University Giessen, Ludwigstrasse 23, 35390 Giessen, Germany
| | - Tommaso Hinna Danesi
- grid.416303.30000 0004 1758 2035Department of Cardiac Surgery, San Bortolo Hospital, Via Rodolfi, 37, 36100 Vicenza, Italy ,grid.24827.3b0000 0001 2179 9593Division of Cardiac Surgery, Department of Surgery, College of Medicine, University of Cincinnaci, 231 Albert Sabin Way, Cincinnati, OH 45267-0558 USA
| | - Fiorenza Ferrari
- grid.416303.30000 0004 1758 2035Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza, San Bortolo Hospital, Via Rodolfi, 37, 36100 Vicenza, Italy ,grid.419425.f0000 0004 1760 3027Intensive Care Unit, I.R.C.C.S. Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Pércia Bezerra
- grid.416303.30000 0004 1758 2035Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza, San Bortolo Hospital, Via Rodolfi, 37, 36100 Vicenza, Italy
| | - Salvador Lopez-Giacoman
- grid.416303.30000 0004 1758 2035Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza, San Bortolo Hospital, Via Rodolfi, 37, 36100 Vicenza, Italy
| | - Gianluca Villa
- grid.416303.30000 0004 1758 2035Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza, San Bortolo Hospital, Via Rodolfi, 37, 36100 Vicenza, Italy ,grid.8404.80000 0004 1757 2304Department of Health Science, Section of Anesthesiology and Intensive Care, University of Florence, Piazza San Marco, 4, 50121 Florence, Italy
| | - Khodr Tello
- grid.411067.50000 0000 8584 9230Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392 Giessen, Germany ,grid.8664.c0000 0001 2165 8627Member of the German Centre for Lung Research, Universities of Giessen and Marburg Lung Centre, Klinikstrasse 33, 35392 Giessen, Germany
| | - Horst-Walter Birk
- grid.411067.50000 0000 8584 9230Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392 Giessen, Germany
| | - Werner Seeger
- grid.411067.50000 0000 8584 9230Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392 Giessen, Germany ,grid.8664.c0000 0001 2165 8627Member of the German Centre for Lung Research, Universities of Giessen and Marburg Lung Centre, Klinikstrasse 33, 35392 Giessen, Germany ,grid.418032.c0000 0004 0491 220XDepartment of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Davide Giavarina
- grid.416303.30000 0004 1758 2035Department of Clinical Chemistry and Hematology Laboratory, San Bortolo Hospital, Via Rodolfi, 37, 36100 Vicenza, Italy
| | - Loris Salvador
- grid.416303.30000 0004 1758 2035Department of Cardiac Surgery, San Bortolo Hospital, Via Rodolfi, 37, 36100 Vicenza, Italy
| | - Dana Y. Fuhrman
- grid.21925.3d0000 0004 1936 9000Center for Critical Care Nephrology, CRISMA, Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261 USA ,grid.412689.00000 0001 0650 7433Departments of Critical Care Medicine and Pediatrics, Children’s Hospital of University of Pittsburgh Medical Center, One Children’s Hospital Way, 4401 Penn Ave, Pittsburgh, PA 15224 USA
| | - John A. Kellum
- grid.21925.3d0000 0004 1936 9000Center for Critical Care Nephrology, CRISMA, Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261 USA
| | - Claudio Ronco
- grid.416303.30000 0004 1758 2035Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza, San Bortolo Hospital, Via Rodolfi, 37, 36100 Vicenza, Italy ,grid.5608.b0000 0004 1757 3470Department of Medicine (DIMED), Università di Padova, Via Giustiniani, 2, 35128 Padua, Italy
| | | |
Collapse
|
14
|
Yoo SK, Chowell D, Valero C, Morris LGT, Chan TA. Pre-treatment serum albumin and mutational burden as biomarkers of response to immune checkpoint blockade. NPJ Precis Oncol 2022; 6:23. [PMID: 35393553 PMCID: PMC8990074 DOI: 10.1038/s41698-022-00267-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
The effects of cytokine and protein stabilizing carriers, such as serum albumin, on tumor response to immune checkpoint blockade (ICB) is not well understood. By examining 1714 patients across 16 cancer types, we found that high pretreatment serum albumin level predicts favorable tumor radiographic response following ICB treatment in a dose-dependent fashion. Serum albumin is a candidate biomarker that can be combined with tumor mutational burden (TMB) for additional predictive capacity, and the tumor response rate to ICB was ~49% in the albumin-high/TMB-high group.
Collapse
Affiliation(s)
- Seong-Keun Yoo
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, 44195, USA.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Diego Chowell
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cristina Valero
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Luc G T Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
15
|
Ayoub I, Nagaraja HN, Kang R, Rovin B, Bhatt U. Which Is a Better Predictor of GFR Decline: 24-h Urine Protein or 24-h Protein-Creatinine Ratio? An Exploration of the MDRD Study Data. FRONTIERS IN NEPHROLOGY 2022; 1:797431. [PMID: 37674815 PMCID: PMC10479620 DOI: 10.3389/fneph.2021.797431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 09/08/2023]
Abstract
Background Proteinuria is a known risk factor for progression of chronic kidney disease. Proteinuria magnitude can be estimated by measuring spot urine protein-to-creatinine ratio (least accurate), 24-h urine collection for protein (24 P), or 24-h protein-creatinine ratio (24 PCR). The MDRD study found that 24 P measured at baseline was the strongest single predictor of the rate of GFR decline during study follow-up. However, predictive powers of 24 P and 24 PCR have not been compared in the literature. The current study addresses this question using the MDRD cohort data. Methods The study is a retrospective analysis of prospectively collected data from the MDRD cohort using simple and multiple regression models. Slope of measured GFR (mGFR) over time was used as the response and models that included baseline 24 PCR or 24 P were compared for the entire sample and for subgroups formed by restricting the values of 24-h creatinine and 24 P. Results Log 24 P and Log 24 PCR correlated almost equally with mGFR slope. However, in simple linear regression models and multivariable linear regression models adjusting for age and sex, the model with 24 PCR had a higher R 2 than the corresponding one that had 24 P except for the subgroup 24 P < 1 g. Conclusion We observe that 24 PCR may be a better marker of proteinuria magnitude in predicting decline in kidney function compared to 24 P in particular for patients with 24 P ≥ 1. This finding needs validation in prospective clinical trials.
Collapse
Affiliation(s)
- Isabelle Ayoub
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Haikady N. Nagaraja
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Rima Kang
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Brad Rovin
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Udayan Bhatt
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
16
|
Bignon Y, Rinaldi A, Nadour Z, Poindessous V, Nemazanyy I, Lenoir O, Fohlen B, Weill-Raynal P, Hertig A, Karras A, Galichon P, Naesens M, Anglicheau D, Cippà PE, Pallet N. Cell stress response impairs de novo NAD+ biosynthesis in the kidney. JCI Insight 2021; 7:153019. [PMID: 34793337 PMCID: PMC8765040 DOI: 10.1172/jci.insight.153019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
The biosynthetic routes leading to de novo nicotinamide adenine dinucleotide (NAD+) production are involved in acute kidney injury (AKI), with a critical role for quinolinate phosphoribosyl transferase (QPRT), a bottleneck enzyme of de novo NAD+ biosynthesis. The molecular mechanisms determining reduced QPRT in AKI, and the role of impaired NAD+ biosynthesis in the progression to chronic kidney disease (CKD), are unknown. We demonstrate that a high urinary quinolinate-to-tryptophan ratio, an indirect indicator of impaired QPRT activity and reduced de novo NAD+ biosynthesis in the kidney, is a clinically applicable early marker of AKI after cardiac surgery and is predictive of progression to CKD in kidney transplant recipients. We also provide evidence that the endoplasmic reticulum (ER) stress response may impair de novo NAD+ biosynthesis by repressing QPRT transcription. In conclusion, NAD+ biosynthesis impairment is an early event in AKI embedded with the ER stress response, and persistent reduction of QPRT expression is associated with AKI to CKD progression. This finding may lead to identification of noninvasive metabolic biomarkers of kidney injury with prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Yohan Bignon
- Centre de Recherche des Cordeliers, Université de Paris, INSERM UMRS1138, Paris, France
| | - Anna Rinaldi
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Zahia Nadour
- Service de Biochimie, AP-HP Hôpital Européen Georges Pompidou, Paris, France
| | | | - Ivan Nemazanyy
- Plateforme d'analyses du métabolisme, INSERM US24/CNRS UMS3633, Paris, France
| | - Olivia Lenoir
- Department of Renal, Paris Cardiovascular Research Centre, Inserm UMRS970, Paris, France
| | - Baptiste Fohlen
- Service d'Anesthésie Réanimation Chrirugicale, AP-HP Hôpital Européen Georges Pompidou, Paris, France
| | - Pierre Weill-Raynal
- Service d'Anesthésie Réanimation Chrirugicale, AP-HP Hôpital Européen Georges Pompidou, Paris, France
| | | | - Alexandre Karras
- Service de Néphrologie, AP-HP Hôpital Européen Georges Pompidou, Paris, France
| | - Pierre Galichon
- Maladies Rénales Fréquentes et Rares, Sorbonne Universités, INSERM UMRS1155, Paris, France
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Pietro E Cippà
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Nicolas Pallet
- Centre de Recherche des Cordeliers, Université de Paris, INSERM UMRS1138, Paris, France
| |
Collapse
|
17
|
Uchida Y, Torisu K, Ueki K, Tsuruya K, Nakano T, Kitazono T. Autophagy gene ATG7 regulates albumin transcytosis in renal tubule epithelial cells. Am J Physiol Renal Physiol 2021; 321:F572-F586. [PMID: 34541900 DOI: 10.1152/ajprenal.00172.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/13/2021] [Indexed: 01/03/2023] Open
Abstract
Receptor-mediated albumin transport in proximal tubule epithelial cells (PTECs) is important to control proteinuria. Autophagy is an evolutionarily conserved degradation pathway, and its role in intracellular trafficking through interactions with the endocytic pathway has recently been highlighted. Here, we determined whether autophagy regulates albumin transcytosis in PTECs and suppresses albumin-induced cytotoxicity using human proximal tubule (HK-2) cells. The neonatal Fc receptor (FcRn), a receptor for albumin transcytosis, is partially colocalized with autophagosomes. Recycling of FcRn was attenuated, and FcRn accumulated in autophagy-related 7 (ATG7) knockdown HK-2 cells. Colocalization of FcRn with RAB7-positive late endosomes and RAB11-positive recycling endosomes was reduced in ATG7 knockdown cells, which decreased recycling of FcRn to the plasma membrane. In ATG7 or autophagy-related 5 (ATG5) knockdown cells and Atg5 or Atg7 knockout mouse embryonic fibroblasts, albumin transcytosis was significantly reduced and intracellular albumin accumulation was increased. Finally, the release of kidney injury molecule-1, a marker of tubule injury, from ATG7 or ATG5 knockdown cells was increased in response to excess albumin. In conclusion, suppression of autophagy in tubules impairs FcRn transport, thereby inhibiting albumin transcytosis. The resulting accumulation of albumin induces cytotoxicity in tubules.NEW & NOTEWORTHY Albumin transport in proximal tubule epithelial cells (PTECs) is important to control proteinuria. The neonatal Fc receptor (FcRn), a receptor for albumin transcytosis, is partially colocalized with autophagosomes. Recycling of FcRn to the plasma membrane was decreased in autophagy-related 7 (ATG7) knockdown cells. In addition, albumin transcytosis was decreased in ATG7 or autophagy-related 5 (ATG5) knockdown PTECs. Finally, release of kidney injury molecule-1 from ATG7 or ATG5 knockdown cells was increased in response to excess albumin.
Collapse
Affiliation(s)
- Yushi Uchida
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Ueki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
18
|
miR-23a-3p regulates the inflammatory response and fibrosis in diabetic kidney disease by targeting early growth response 1. In Vitro Cell Dev Biol Anim 2021; 57:763-774. [PMID: 34608568 PMCID: PMC8585819 DOI: 10.1007/s11626-021-00606-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022]
Abstract
Diabetic kidney disease (DKD) has become the most common cause of chronic kidney disease. Proteinuria is generally considered one of the clinical indicators of renal damage, and it is also closely related to the progression of DKD. Accumulating evidence indicates that proteinuria induces an upregulation of the expression levels of inflammatory cytokines and fibrosis markers in renal tubular epithelial cells, but the mechanism remains unclear. Previously, we showed that early growth response 1 (Egr1) played a key role in renal tubular injury. However, the upstream mechanism of Egr1 in the development of DKD is poorly understood. In this study, we found that albumin stimulation significantly increased the expression levels of Egr1, interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and fibronectin (FN) in HK-2 cells but decreased miR-23a-3p levels. We then identified that miR-23a-3p targeted the 3′ untranslated region (UTR) of Egr1 and directly suppressed the expression of Egr1. Moreover, we found that overexpression and inhibition of miR-23a-3p in HK-2 cells attenuated and promoted the expression of IL-6, TNF-α, and FN, respectively. Additionally, Egr1 silencing reversed the inflammation and fibrosis caused by the miR-23a-3p inhibitor. Thus, we conclude that miR-23a-3p attenuates the development of DKD through Egr1, suggesting that targeting miR-23a-3p may be a novel therapeutic approach for DKD.
Collapse
|
19
|
Lin H, Fan Y, Wieser A, Zhang J, Regel I, Nieß H, Mayerle J, Gerbes AL, Steib CJ. Albumin Might Attenuate Bacteria-Induced Damage on Kupffer Cells for Patients with Chronic Liver Disease. Cells 2021; 10:cells10092298. [PMID: 34571946 PMCID: PMC8469739 DOI: 10.3390/cells10092298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic liver diseases (CLDs) are complex diseases that cause long-term inflammation and infection, which in turn accelerate their development. The usage of albumin in patients with CLDs has been debated for years. Human serum albumin (HSA) plays a key role in immunomodulation during the process of CLDs. The correlation between albumin and C-reactive protein (CRP) in CLD patients was analyzed by linear regression with the Pearson statistic. The damage of THP-1 and primary cells was evaluated by measuring the lactate dehydrogenase (LDH) in the supernatant. Immunofluorescence staining was performed to determine underlying pathways in Kupffer cells (KCs). Albumin negatively correlated with infection in patients with CLDs. In vitro experiments with THP-1 cells and KCs showed that albumin reduced LDH release after stimulation with bacterial products, while no differences in hepatic stellate cells (HSCs) and sinusoidal endothelial cells (SECs) were detected. Moreover, immunofluorescence staining revealed an increase of p-ERK and p-NF-kB p65 density after albumin treatment of KCs stimulated by bacterial products. In conclusion, albumin could assist CLD patients in alleviating inflammation caused by bacterial products and might be beneficial to patients with CLDs by securing KCs from bacteria-induced damage, providing a compelling rationale for albumin therapy in patients with CLDs.
Collapse
Affiliation(s)
- Hao Lin
- Liver Center Munich, Department of Medicine II, University Hospital, 81377 Munich, Germany; (H.L.); (Y.F.); (I.R.); (J.M.); (A.L.G.)
| | - Yuhui Fan
- Liver Center Munich, Department of Medicine II, University Hospital, 81377 Munich, Germany; (H.L.); (Y.F.); (I.R.); (J.M.); (A.L.G.)
| | - Andreas Wieser
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, 80336 Munich, Germany;
- Division of Infectious Diseases and Tropical Medicine, University Hospital, 80802 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 80802 Munich, Germany
| | - Jiang Zhang
- Liver Transplantation Center, Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Ivonne Regel
- Liver Center Munich, Department of Medicine II, University Hospital, 81377 Munich, Germany; (H.L.); (Y.F.); (I.R.); (J.M.); (A.L.G.)
| | - Hanno Nieß
- Biobank of the Department of General, Visceral and Transplant Surgery, University Hospital, 80802 Munich, Germany;
| | - Julia Mayerle
- Liver Center Munich, Department of Medicine II, University Hospital, 81377 Munich, Germany; (H.L.); (Y.F.); (I.R.); (J.M.); (A.L.G.)
| | - Alexander L. Gerbes
- Liver Center Munich, Department of Medicine II, University Hospital, 81377 Munich, Germany; (H.L.); (Y.F.); (I.R.); (J.M.); (A.L.G.)
| | - Christian J. Steib
- Liver Center Munich, Department of Medicine II, University Hospital, 81377 Munich, Germany; (H.L.); (Y.F.); (I.R.); (J.M.); (A.L.G.)
- Correspondence: ; Tel.: +49-89-4400-72298; Fax: +49-89-4400-75299
| |
Collapse
|
20
|
Sethi SK, Rana A, Adnani H, McCulloch M, Alhasan K, Sultana A, Safadi R, Agrawal N, Raina R. Kidney involvement in multisystem inflammatory syndrome in children: a pediatric nephrologist's perspective. Clin Kidney J 2021; 14:2000-2011. [PMID: 34471522 PMCID: PMC8083308 DOI: 10.1093/ckj/sfab073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Indexed: 12/28/2022] Open
Abstract
The initial report of the multisystem inflammatory syndrome in children (MIS-C) was from the UK in April 2020; since then, cases have been reported worldwide. Renal involvement has been seen commonly, ranging from 10% to 46%. Kidney involvement following severe acute respiratory syndrome coronavirus 2 infection in children with MIS-C is more common than initially thought and is associated with higher morbidity and mortality. There are several reports of a direct viral tropism of coronavirus disease 2019 and MIS-C-associated renal damage. This study’s objective was to systematically review the current understanding of kidney involvement in children suffering from MIS-C. Based on our systemic literature search, 19 studies have either partially or fully discussed kidney involvement in MIS-C patients. Furthermore, we discuss the multifactorial pathogenesis contributing to acute kidney injury (AKI) development in MIS-C. The current review gives a pediatric nephrologist’s perspective of the renal involvement in MIS-C, the incidence of AKI, the pathophysiology of AKI in MIS-C and the proposed therapeutic regimens available, including the need for kidney replacement therapy for a child with AKI associated with MIS-C. As the disease is rapidly evolving, more detailed clinical prospective studies are required to understand MIS-C and its role in AKI better.
Collapse
Affiliation(s)
- Sidharth Kumar Sethi
- Division of Pediatric Nephrology, Kidney Institute, Medanta, The Medicity, Gurgaon, Haryana, India
| | - Abhyuday Rana
- Kidney Institute, Medanta, The Medicity, Gurgaon, Haryana, India
| | - Harsha Adnani
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Mignon McCulloch
- Department of Renal and Organ Transplant, Red Cross War Memorial Children's Hospital, Rondebosch, Cape Town, South Africa
| | - Khalid Alhasan
- Pediatric Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Azmeri Sultana
- Pediatric Nephrology, M R Khan Children Hospital, and Institute of Child Health, Dhaka, Bangladesh
| | - Rama Safadi
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
| | - Nirav Agrawal
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Rupesh Raina
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA.,Department of Nephrology, Akron Children's Hospital, Akron, OH, USA
| |
Collapse
|
21
|
Shi S, Xing F, Lin W. Informatics Analysis of Health Indicators and Pathological Manifestations of Foot-Process in Patients with Primary IgA Nephropathy. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 2021. [DOI: 10.1166/jmihi.2021.3557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: This paper focuses on the foot-process in renal biopsies of patients with lgA, and examines their correlation with baseline clinical indicators and pathological manifestations in patients with lgA. Method: A retrospective data of patients who performed renal
biopsy proven IgA nephropathy was selected. The patients who reached the agreed standard were grouped based on the degree of foot-process. There were three groups (ABC Groups) (Du, Y. and Huang, C, 2009. The value of proteinuria and foot process fusion in the onset of prognosis of acute kidney
disease. Chinese Journal of Integrated Traditional and Western Medicine, 10(1), pp.44-45): group A for patients with no obvious foot-process lesion; group B for patients with segmental foot-process; group C for patients with massive foot-process. The three groups were reviewed in the
aspects of baseline clinical indicators and Oxford classification, so as to discover foot-process’ effect on patients with IgA nephropathy. Results: A total of 129 patients with IgA nephropathy were included in the study. Concerning about the clinical baseline indicators related
to the degree of foot-process, the 24-hour proteinuria level at admission was statistically significant and positively correlated (r = 0.324, P = 0.000). The comparison between groups showed there was statistically significant difference between group C and group A and group
B (P = 0.001, P = 0.035). According to the Oxford Classification, only the differences of mesangial hypercellularity (M) and segmental sclerosis/adhesion (S) were statistically significant (r = 0.239, P = 0.006; r = 0.257, P = 0.003) and were positively
correlated. In terms of mesangial hypercellularity (M), the differences between group A and B, group A and C were statistically significant (P = 0.01, P = 0.003). The comparison between group B and group C showed statistical difference (P = −0.031) in segmental sclerosis/adhesion
(S). Among the 76 patients with S0 revealed by the Oxford classification, there were 55 patients of glomerulosclerosis, which was positively correlated with the degree of foot process (r = 0.211, P = 0.016). The comparison between group A and group C showed statistical difference
(P = 0.014). Conclusion: The severity foot-process was positively correlated with the level of proteinuria. Foot-process is positively related with mesangial hypercellularity, segmental sclerosis and glomerulosclerosis. With more severe the foot-process, there will be more serious
mesangial hypercellularity and irreversible glomerular injury. Foot-process is positively correlated with Lee’s Pathological Grading.
Collapse
Affiliation(s)
- Shanhong Shi
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Fang Xing
- Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Weiyuan Lin
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
22
|
Chang CY, Chien YJ, Kao MC, Lin HY, Chen YL, Wu MY. Pre-operative proteinuria, postoperative acute kidney injury and mortality: A systematic review and meta-analysis. Eur J Anaesthesiol 2021; 38:702-714. [PMID: 34101638 DOI: 10.1097/eja.0000000000001542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate the association of pre-operative proteinuria with postoperative acute kidney injury (AKI) development as well as the requirement for a renal replacement therapy (RRT) and mortality at short-term and long-term follow-up. BACKGROUND Postoperative AKI is associated with surgical morbidity and mortality. Pre-operative proteinuria is potentially a risk factor for postoperative AKI and mortality. However, the results in literature are conflicting. METHODS We searched PubMed, Embase, Scopus, Web of Science and Cochrane Library from the inception through to 3 June 2020. Observational cohort studies investigating the association of pre-operative proteinuria with postoperative AKI development, requirement for RRT, and all-cause mortality at short-term and long-term follow-up were considered eligible. Using inverse variance method with a random-effects model, the pooled effect estimates and 95% confidence interval (CI) were calculated. RESULTS Twenty-eight studies were included. Pre-operative proteinuria was associated with postoperative AKI development [odds ratio (OR) 1.74, 95% CI, 1.45 to 2.09], in-hospital RRT (OR 1.70, 95% CI, 1.25 to 2.32), requirement for RRT at long-term follow-up [hazard ratio (HR) 3.72, 95% CI, 2.03 to 6.82], and long-term all-cause mortality (hazard ratio 1.50, 95% CI, 1.30 to 1.73). In the subgroup analysis, pre-operative proteinuria was associated with increased odds of postoperative AKI in both cardiovascular (OR 1.77, 95% CI, 1.47 to 2.14) and noncardiovascular surgery (OR 1.63, 95% CI, 1.01 to 2.63). Moreover, there is a stepwise increase in OR of postoperative AKI development when the quantity of proteinuria increases from trace to 3+. CONCLUSION Pre-operative proteinuria is significantly associated with postoperative AKI and long-term mortality. Pre-operative anaesthetic assessment should take into account the presence of proteinuria to identify high-risk patients. PROSPERO REGISTRATION CRD42020190065.
Collapse
Affiliation(s)
- Chun-Yu Chang
- From the Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City (C-YC, M-CK, H-YL), Department of Anesthesiology, School of Medicine, Tzu Chi University, Hualien (C-YC, M-CK, H-YL), Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City (Y-JC), Department of Physical Medicine and Rehabilitation, School of Medicine, Tzu Chi University, Hualien (Y-JC), Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City (Y-LC, M-YW) and Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan (Y-LC, M-YW)
| | | | | | | | | | | |
Collapse
|
23
|
Tian J, Huang Y, Wu T, Huang HD, Ko KM, Zhu BT, Chen J. The Use of Chinese Yang/Qi-Invigorating Tonic Botanical Drugs/Herbal Formulations in Ameliorating Chronic Kidney Disease by Enhancing Mitochondrial Function. Front Pharmacol 2021; 12:622498. [PMID: 34248614 PMCID: PMC8264145 DOI: 10.3389/fphar.2021.622498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/11/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Chronic kidney disease (CKD) is a leading cause of morbidity and mortality. Mitochondrial dysfunction has been implicated as a key factor in the development of CKD. According to traditional Chinese medicine (TCM) theory, many Chinese Yang/Qi-invigorating botanical drugs/herbal formulations have been shown to produce promising outcomes in the clinical management of CKD. Experimental studies have indicated that the health-promoting action of Yang/Qi invigoration in TCM is related to the up-regulation of mitochondrial energy generation and antioxidant status. Objective: In this review, we aim to test whether Chinese Yang/Qi-invigorating tonic botanical drugs/herbal formulations can provide medical benefits in CKD and its complications. And we also explore the possible involvement of mitochondrial-associated signaling pathway underlying the beneficial effects of Yang/Qi invigoration in TCM. Methods: A systematic search of "PubMed", "China National Knowledge Infrastructure (CNKI)" and "Google Scholar" was carried out to collect all the available articles in English or Chinese related to Chinese Yang/Qi-invigorating tonic botanical drugs/herbal formulations and their effects on mitochondrial function and chronic kidney disease. Result and Discussion: The relationship between the progression of CKD and mitochondrial function is discussed. The effects of Chinese Yang/Qi-invigorating tonic botanical drugs/herbal formulations and their active ingredients, including phytosterols/triterpenes, flavonoids, and dibenzocyclooctadiene lignans, on CKD and related alterations in mitochondrial signaling pathways are also presented in this review. In the future, exploration of the possible beneficial effects and clinical studies of more Yang- and Qi-invigorating botanical drugs/herbal formulations in the prevention and/or/treatment of CKD and the molecular mechanisms relating to the enhancement of mitochondrial functions warrants further investigation. Conclusion: Given the critical role of mitochondrial function in safeguarding renal functional integrity, the enhancement of mitochondrial energy metabolism and antioxidant status in kidney tissue is likely involved in renal protection. Future studies on the biochemical and chemical basis underlying the effects of Chinese Yang/Qi-invigorating tonic botanical drugs/herbal formulations from a mitochondrial perspective will hopefully provide novel insights into the rational development of new drugs for the prevention and/or treatment of CKD.
Collapse
Affiliation(s)
- Jiayi Tian
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yuqi Huang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Tong Wu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China
| | - Kam Ming Ko
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Jihang Chen
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
24
|
Megalin-mediated albumin endocytosis in renal proximal tubules is involved in the antiproteinuric effect of angiotensin II type 1 receptor blocker in a subclinical acute kidney injury animal model. Biochim Biophys Acta Gen Subj 2021; 1865:129950. [PMID: 34144121 DOI: 10.1016/j.bbagen.2021.129950] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Tubule-interstitial injury (TII) is one of the mechanisms involved in the progression of renal diseases with progressive proteinuria. Angiotensin II (Ang II) type 1 receptor blockers (ARBs) have been successfully used to treat renal diseases. However, the mechanism correlating treatment with ARBs and proteinuria is not completely understood. The hypothesis that the anti-proteinuric effect of losartan is associated with the modulation of albumin endocytosis in PT epithelial cells (PTECs) was assessed. METHODS We used a subclinical acute kidney injury animal model (subAKI) and LLC-PK1 cells, a model of PTECs. RESULTS In subAKI, PT albumin overload induced TII development, measured by: (1) increase in urinary lactate dehydrogenase and γ-glutamyltranspeptidase activity; (2) proteinuria associated with impairment in megalin-mediated albumin reabsorption; (3) increase in luminal and interstitial space in tubular cortical segments. These effects were avoided by treating the animals with losartan, an ARB. Using LLC-PK1 cells, we observed that: (1) 20 mg/mL albumin increased the secretion of Ang II and decreased megalin-mediated albumin endocytosis; (2) the effects of Ang II and albumin were abolished by 10-8 M losartan; (3) MEK/ERK pathway is the molecular mechanism underlying the Ang II-mediated inhibitory effect of albumin on PT albumin endocytosis. CONCLUSION Our results show that PT megalin-mediated albumin endocytosis is a possible target during the treatment of renal diseases patients with ARB. GENERAL SIGNIFICANCE The findings obtained in the present work represents a step forward to the current knowledge on about the role of ARBs in the treatment of renal disease.
Collapse
|
25
|
Wang Y, He W. Improving the Dysregulation of FoxO1 Activity Is a Potential Therapy for Alleviating Diabetic Kidney Disease. Front Pharmacol 2021; 12:630617. [PMID: 33859563 PMCID: PMC8042272 DOI: 10.3389/fphar.2021.630617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
A substantial proportion of patients with diabetes will develop kidney disease. Diabetic kidney disease (DKD) is one of the most serious complications in diabetic patients and the leading cause of end-stage kidney disease worldwide. Although some mechanisms have been revealed to contribute to the understanding of the pathogenesis of DKD and some drugs currently in use have been shown to be beneficial, prevention and management of DKD remain tricky and challenging. FoxO1 transcriptional factor is a crucial regulator of cellular homeostasis and posttranslational modification is a major mechanism to alter FoxO1 activity. There is increasing evidence that FoxO1 is involved in the regulation of various cellular processes such as stress resistance, autophagy, cell cycle arrest, and apoptosis, thereby playing an important role in the pathogenesis of DKD. Improving the dysregulation of FoxO1 activity by natural compounds, synthetic drugs, or manipulation of gene expression may attenuate renal cell injury and kidney lesion in the cells cultured under a high-glucose environment and in diabetic animal models. The available data imply that FoxO1 may be a potential clinical target for the prevention and treatment of DKD.
Collapse
Affiliation(s)
- Yan Wang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
The PAR-1 antagonist vorapaxar ameliorates kidney injury and tubulointerstitial fibrosis. Clin Sci (Lond) 2021; 134:2873-2891. [PMID: 33078834 DOI: 10.1042/cs20200923] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022]
Abstract
Protease-activated receptor (PAR)-1 has emerged as a key profibrotic player in various organs including kidney. PAR-1 activation leads to deposition of extracellular matrix (ECM) proteins in the tubulointerstitium and induction of epithelial-mesenchymal transition (EMT) during renal fibrosis. We tested the anti-fibrotic potential of vorapaxar, a clinically approved PAR-1 antagonist for cardiovascular protection, in an experimental kidney fibrosis model of unilateral ureteral obstruction (UUO) and an AKI-to-chronic kidney disease (CKD) transition model of unilateral ischemia-reperfusion injury (UIRI), and dissected the underlying renoprotective mechanisms using rat tubular epithelial cells. PAR-1 is activated mostly in the renal tubules in both the UUO and UIRI models of renal fibrosis. Vorapaxar significantly reduced kidney injury and ameliorated morphologic changes in both models. Amelioration of kidney fibrosis was evident from down-regulation of fibronectin (Fn), collagen and α-smooth muscle actin (αSMA) in the injured kidney. Mechanistically, inhibition of PAR-1 inhibited MAPK ERK1/2 and transforming growth factor-β (TGF-β)-mediated Smad signaling, and suppressed oxidative stress, overexpression of pro-inflammatory cytokines and macrophage infiltration into the kidney. These beneficial effects were recapitulated in cultured tubular epithelial cells in which vorapaxar ameliorated thrombin- and hypoxia-induced TGF-β expression and ECM accumulation. In addition, vorapaxar mitigated capillary loss and the expression of adhesion molecules on the vascular endothelium during AKI-to-CKD transition. The PAR-1 antagonist vorapaxar protects against kidney fibrosis during UUO and UIRI. Its efficacy in human CKD in addition to CV protection warrants further investigation.
Collapse
|
27
|
Moraes ACN, Freire DS, Habibi H, Lowe J, Magalhães VF. Cylindrospermopsin impairs tubular transport function in kidney cells LLC-PK1. Toxicol Lett 2021; 344:26-33. [PMID: 33689780 DOI: 10.1016/j.toxlet.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/03/2023]
Abstract
Cylindrospermopsin (CYN) has been involved in cases of poisoning in humans following ingestion. Studies have demonstrated that the kidney is the most affected organ. CYN exposure leads to low-molecular-weight proteinuria and increased excretions of the tubular enzymes in mice, suggesting the damage caused by CYN is mainly tubular. However, the mechanism involved in CYN nephrotoxicity remains unknown. Thus, in order to evaluate the effects of CYN exposure (0.1, 0.5 and 1.0 μg/mL) on tubular renal cells LLC-PK1 distinct mechanisms were analyzed by assessing cell death using flow cytometry, albumin uptake by fluorescence analysis, Na+/K+-ATPase activity by a colorimetric method, RT-qPCR of genes related to tubular transport and function as well as internalization of CYN by ELISA. In this study, CYN was found to induce necrosis in all concentrations. CYN also decreased albumin uptake as well as downregulated megalin and dab2 expression, both proteins involved in albumin endocytosis process. Moreover, CYN appears to be internalized by renal tubular cells through a receptor-mediated endocytosis. Finally, the present study demonstrates that CYN is responsible for disrupting tubular cell transport and function in LLC-PK1 cells.
Collapse
Affiliation(s)
- A C N Moraes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - D S Freire
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - H Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - J Lowe
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - V F Magalhães
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Wang X, Wilkinson R, Kildey K, Ungerer JPJ, Hill MM, Shah AK, Mohamed A, Dutt M, Molendijk J, Healy H, Kassianos AJ. Molecular and functional profiling of apical versus basolateral small extracellular vesicles derived from primary human proximal tubular epithelial cells under inflammatory conditions. J Extracell Vesicles 2021; 10:e12064. [PMID: 33643548 PMCID: PMC7886702 DOI: 10.1002/jev2.12064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Proximal tubular epithelial cells (PTEC) are central players in inflammatory kidney diseases. However, the complex signalling mechanism/s via which polarized PTEC mediate disease progression are poorly understood. Small extracellular vesicles (sEV), including exosomes, are recognized as fundamental components of cellular communication and signalling courtesy of their molecular cargo (lipids, microRNA, proteins). In this study, we examined the molecular content and function of sEV secreted from the apical versus basolateral surfaces of polarized human primary PTEC under inflammatory diseased conditions. PTEC were cultured under normal and inflammatory conditions on Transwell inserts to enable separate collection and isolation of apical/basolateral sEV. Significantly increased numbers of apical and basolateral sEV were secreted under inflammatory conditions compared with equivalent normal conditions. Multi‐omics analysis revealed distinct molecular profiles (lipids, microRNA, proteins) between inflammatory and normal conditions for both apical and basolateral sEV. Biological pathway analyses of significantly differentially expressed molecules associated apical inflammatory sEV with processes of cell survival and immunological disease, while basolateral inflammatory sEV were linked to pathways of immune cell trafficking and cell‐to‐cell signalling. In line with this mechanistic concept, functional assays demonstrated significantly increased production of chemokines (monocyte chemoattractant protein‐1, interleukin‐8) and immuno‐regulatory cytokine interleukin‐10 by peripheral blood mononuclear cells activated with basolateral sEV derived from inflammatory PTEC. We propose that the distinct molecular composition of sEV released from the apical versus basolateral membranes of human inflammatory PTEC may reflect specialized functional roles, with basolateral‐derived sEV pivotal in modulating tubulointerstitial inflammatory responses observed in many immune‐mediated kidney diseases. These findings provide a rationale to further evaluate these sEV‐mediated inflammatory pathways as targets for biomarker and therapeutic development.
Collapse
Affiliation(s)
- Xiangju Wang
- Conjoint Internal Medicine Laboratory, Chemical Pathology Pathology Queensland Brisbane Queensland Australia.,Kidney Health Service Royal Brisbane and Women's Hospital Brisbane Queensland Australia
| | - Ray Wilkinson
- Conjoint Internal Medicine Laboratory, Chemical Pathology Pathology Queensland Brisbane Queensland Australia.,Kidney Health Service Royal Brisbane and Women's Hospital Brisbane Queensland Australia.,Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Queensland Australia.,Faculty of Medicine University of Queensland Brisbane Queensland Australia
| | - Katrina Kildey
- Conjoint Internal Medicine Laboratory, Chemical Pathology Pathology Queensland Brisbane Queensland Australia.,Kidney Health Service Royal Brisbane and Women's Hospital Brisbane Queensland Australia
| | - Jacobus P J Ungerer
- Conjoint Internal Medicine Laboratory, Chemical Pathology Pathology Queensland Brisbane Queensland Australia.,Faculty of Medicine University of Queensland Brisbane Queensland Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute Brisbane Queensland Australia
| | - Alok K Shah
- QIMR Berghofer Medical Research Institute Brisbane Queensland Australia
| | - Ahmed Mohamed
- QIMR Berghofer Medical Research Institute Brisbane Queensland Australia
| | - Mriga Dutt
- QIMR Berghofer Medical Research Institute Brisbane Queensland Australia
| | - Jeffrey Molendijk
- QIMR Berghofer Medical Research Institute Brisbane Queensland Australia
| | - Helen Healy
- Conjoint Internal Medicine Laboratory, Chemical Pathology Pathology Queensland Brisbane Queensland Australia.,Kidney Health Service Royal Brisbane and Women's Hospital Brisbane Queensland Australia.,Faculty of Medicine University of Queensland Brisbane Queensland Australia
| | - Andrew J Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology Pathology Queensland Brisbane Queensland Australia.,Kidney Health Service Royal Brisbane and Women's Hospital Brisbane Queensland Australia.,Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Queensland Australia.,Faculty of Medicine University of Queensland Brisbane Queensland Australia
| |
Collapse
|
29
|
Li X, Zou T, Wang S, Wu H, Wu M, Liu Z, Liu H. Mechanism and restoration strategy of lysosomal abnormalities induced by urinary protein overload in proximal tubule epithelial cells. Dev Dyn 2021; 250:943-954. [PMID: 33410225 DOI: 10.1002/dvdy.297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Persistent elevated concentrations of urinary protein can destroy proximal tubule epithelial cells (PTECs) by inducing lysosomal abnormalities, thereby aggravating PTEC damage and renal fibrosis. However, the specific mechanisms of these serial biochemical events and methods for treating or preventing PTEC damage upon proteinuria need further investigation. RESULTS In this study, electron microscopy and dual-labeled immunofluorescence analysis for identifying lysosome type revealed inadequate primary lysosome biogenesis and secondary lysosome accumulation in the PTECs of patients with minimal change nephrotic syndrome or membranous nephropathy who suffered from proteinuria. In vitro studies on HK-2 cells indicated that this abnormality was associated with decreased expression of transcription factor EB (TFEB). In contrast, TFEB overexpressing HK-2 cells under urinary protein overload exhibited significantly reduced accumulation of secondary lysosomes and increased proportion and quantity of primary lysosomes as indicated by dual-labeled immunofluorescence. Further, these cells could upregulate lysosomal degradation functions, as determined using Cathepsin L activity assays and flow cytometry for dye quenched-albumin. CONCLUSIONS These results indicate that abnormal TFEB expression is a key mechanism of lysosomal dyshomeostasis caused by protein overload in PTECs. TFEB is thus a potential therapeutic target for the treatment of urinary protein-related kidney disease.
Collapse
Affiliation(s)
- Xiaoyu Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ting Zou
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shujun Wang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hongluan Wu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Man Wu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zejian Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huafeng Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
30
|
Stasi A, Castellano G, Ranieri E, Infante B, Stallone G, Gesualdo L, Netti GS. SARS-CoV-2 and Viral Sepsis: Immune Dysfunction and Implications in Kidney Failure. J Clin Med 2020; 9:E4057. [PMID: 33334050 PMCID: PMC7765555 DOI: 10.3390/jcm9124057] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19), first emerged in Wuhan, China. The clinical manifestations of patients infected with COVID-19 include fever, cough, and dyspnea, up to acute respiratory distress syndrome (ARDS) and acute cardiac injury. Thus, a lot of severe patients had to be admitted to intensive care units (ICU). The pathogenic mechanisms of SARS-CoV-2 infection are mediated by the binding of SARS-CoV-2 spikes to the human angiotensin-converting enzyme 2 (ACE-2) receptor. The overexpression of human ACE-2 is associated with the disease severity in SARS-CoV-2 infection, demonstrating that viral entry into cells is a pivotal step. Although the lung is the organ that is most commonly affected by SARS-CoV-2 infection, acute kidney injury (AKI), heart dysfunction and abdominal pain are the most commonly reported co-morbidities of COVID-19. The occurrence of AKI in COVID-19 patients might be explained by several mechanisms that include viral cytopathic effects in renal cells and the host hyperinflammatory response. In addition, kidney dysfunction could exacerbate the inflammatory response started in the lungs and might cause further renal impairment and multi-organ failure. Mounting recent evidence supports the involvement of cardiovascular complications and endothelial dysfunction in COVID-19 syndrome, in addition to respiratory disease. To date, there is no vaccine, and no specific antiviral medicine has been shown to be effective in preventing or treating COVID-19. The removal of pro-inflammatory cytokines and the shutdown of the cytokine storm could ameliorate the clinical outcome in severe COVID-19 cases. Therefore, several interventions that inhibit viral replication and the systemic inflammatory response could modulate the severity of the renal dysfunction and increase the probability of a favorable outcome.
Collapse
Affiliation(s)
- Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (A.S.); (L.G.)
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (G.C.); (B.I.); (G.S.)
| | - Elena Ranieri
- Clinical Pathology, Department of Surgical and Medical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy;
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (G.C.); (B.I.); (G.S.)
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (G.C.); (B.I.); (G.S.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (A.S.); (L.G.)
| | - Giuseppe Stefano Netti
- Clinical Pathology, Department of Surgical and Medical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy;
| |
Collapse
|
31
|
Effects of Albumin Infusion on Serum Levels of Albumin, Proinflammatory Cytokines (TNF- α, IL-1, and IL-6), CRP, and MMP-8; Tissue Expression of EGRF, ERK1, ERK2, TGF- β, Collagen, and MMP-8; and Wound Healing in Sprague Dawley Rats. Int J Inflam 2020; 2020:3254017. [PMID: 32518615 PMCID: PMC7256723 DOI: 10.1155/2020/3254017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, we sought to determine the roles of albumin in wound healing, which is infused both pre- and postoperatively in malnourished patients presenting with hypoalbuminemia. For the purposes of the study, we used 25 male Sprague Dawley rats of predetermined weight and age, which were initially maintained in a standard environment and fed the same diet for 7 days prior to being segregated into one of the following five groups: A, control, normal protein feed (20% casein); B, hypoalbuminemia, 25% rat albumin infusion prior to surgery; C, hypoalbuminemia, normal protein feed (20% casein); D, hypoalbuminemia, 25% rat albumin infusion after surgery; and E, hypoalbuminemia, low-protein feed (casein 2%). The animals in all five groups were subjected to four deep incisions in their dorsal muscle fascia. On days 1, 3, 5, and 7 after surgery, ELISA was used to determine serum levels of TNF-α, IL-1, IL-6, CRP, and MMP-8, whereas immunohistochemistry was used to determine the tissue expression of EGFR, ERK1, ERK2, TGF-β, collagen, and MMP-8. Significant reductions in serum levels of TNF-α, IL-1, and CRP were detected in the groups receiving albumin infusion and the high-casein diet (P < 0.05). The administration of albumin and a high-casein diet also increased the tissue expression of EGFR, ERK1, ERK2, TGF-β, and collagen and decreased that of MMP-8 relative to the hypoalbuminemia control (P < 0.05). We propose that the administration of albumin promoted NF-κB signaling which, in turn, induced the transduction and transcription of factors involved in wound healing. Albumin infusion and dietary proteins play vital roles in accelerating the wound healing process, as they can contribute to correcting the hypoalbuminemic state. These findings provide insights that will contribute to our understanding of wound healing, particularly in malnourished patients.
Collapse
|
32
|
de Seigneux S, Delitsikou V, Martin PY. The KNOW-CKD study: evidence for a link between proteinuria and alterations of mineral metabolism. Nephrol Dial Transplant 2020; 35:382-385. [PMID: 31039254 DOI: 10.1093/ndt/gfz083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Sophie de Seigneux
- Laboratory and Service of Nephrology, Department of Internal Medicine, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University Hospital of Geneva, Geneva, Switzerland
| | - Vasiliki Delitsikou
- Laboratory and Service of Nephrology, Department of Internal Medicine, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University Hospital of Geneva, Geneva, Switzerland
| | - Pierre-Yves Martin
- Laboratory and Service of Nephrology, Department of Internal Medicine, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
33
|
Peruchetti DB, Silva-Filho JL, Silva-Aguiar RP, Teixeira DE, Takiya CM, Souza MC, Henriques MDG, Pinheiro AAS, Caruso-Neves C. IL-4 Receptor α Chain Protects the Kidney Against Tubule-Interstitial Injury Induced by Albumin Overload. Front Physiol 2020; 11:172. [PMID: 32174845 PMCID: PMC7056741 DOI: 10.3389/fphys.2020.00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence has highlighted the role of tubule-interstitial injury (TII) as a vital step in the pathogenesis of acute kidney injury (AKI). Incomplete repair of TII during AKI could lead to the development of chronic kidney disease. Changes in albumin endocytosis in proximal tubule epithelial cells (PTECs) is linked to the development of TII. In this context, interleukin (IL)-4 has been shown to be an important factor in modulating recovery of TII. We have studied the possible role of IL-4 in TII induced by albumin overload. A subclinical AKI model characterized by albumin overload in the proximal tubule was used, without changing glomerular function. Four groups were generated: (1) CONT, wild-type mice treated with saline; (2) BSA, wild-type mice treated with 10 g/kg/day bovine serum albumin (BSA); (3) KO, IL4Rα–/– mice treated with saline; and (4) KO + BSA, IL4Rα–/– mice treated with BSA. As reported previously, mice in the BSA group developed TII without changes in glomerular function. The following parameters were increased in the KO + BSA group compared with the BSA group: (1) tubular injury score; (2) urinary γ-glutamyltransferase; (3) CD4+ T cells, dendritic cells, macrophages, and neutrophils are associated with increases in renal IL-6, IL-17, and transforming growth factor β. A decrease in M2-subtype macrophages associated with a decrease in collagen deposition was observed. Using LLC-PK1 cells, a model of PTECs, we observed that (1) these cells express IL-4 receptor α chain associated with activation of the JAK3/STAT6 pathway; (2) IL-4 alone did not change albumin endocytosis but did reverse the inhibitory effect of higher albumin concentration. This effect was abolished by JAK3 inhibitor. A further increase in urinary protein and creatinine levels was observed in the KO + BSA group compared with the BSA group, but not compared with the CONT group. These observations indicate that IL-4 has a protective role in the development of TII induced by albumin overload that is correlated with modulation of the pro-inflammatory response. We propose that megalin-mediated albumin endocytosis in PTECs could work as a sensor, transducer, and target during the genesis of TII.
Collapse
Affiliation(s)
- Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Luiz Silva-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina M Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana C Souza
- Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUìDE/FAPERJ, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUìDE/FAPERJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTIC, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Abstract
Increasing evidence suggests that renal inflammation contributes to the pathogenesis and progression of diabetic kidney disease (DKD) and that anti-inflammatory therapies might have renoprotective effects in DKD. Immune cells and resident renal cells that activate innate immunity have critical roles in triggering and sustaining inflammation in this setting. Evidence from clinical and experimental studies suggests that several innate immune pathways have potential roles in the pathogenesis and progression of DKD. Toll-like receptors detect endogenous danger-associated molecular patterns generated during diabetes and induce a sterile tubulointerstitial inflammatory response via the NF-κB signalling pathway. The NLRP3 inflammasome links sensing of metabolic stress in the diabetic kidney to activation of pro-inflammatory cascades via the induction of IL-1β and IL-18. The kallikrein-kinin system promotes inflammatory processes via the generation of bradykinins and the activation of bradykinin receptors, and activation of protease-activated receptors on kidney cells by coagulation enzymes contributes to renal inflammation and fibrosis in DKD. In addition, hyperglycaemia leads to protein glycation and activation of the complement cascade via recognition of glycated proteins by mannan-binding lectin and/or dysfunction of glycated complement regulatory proteins. Data from preclinical studies suggest that targeting these innate immune pathways could lead to novel therapies for DKD.
Collapse
|
35
|
Su WY, Wu PY, Huang JC, Chen SC, Chang JM. Increased Proteinuria is Associated with Increased Aortic Arch Calcification, Cardio-Thoracic Ratio, Rapid Renal Progression and Increased Overall and Cardiovascular Mortality in Chronic Kidney Disease. Int J Med Sci 2020; 17:1102-1111. [PMID: 32410840 PMCID: PMC7211152 DOI: 10.7150/ijms.45470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/14/2020] [Indexed: 01/13/2023] Open
Abstract
Background: Patients with chronic kidney disease (CKD) are associated with high prevalence rates of proteinuria, vascular calcification and cardiomegaly. In this study, we investigated relationships among proteinuria, aortic arch calcification (AoAC) and cardio-thoracic ratio (CTR) in patients with CKD stage 3A-5. In addition, we investigated correlations among proteinuria and decline in renal function, overall and cardiovascular (CV) mortality. Methods: We enrolled 482 pre-dialysis patients with CKD stage 3A-5, and determined AoAC and CTR using chest radiography at enrollment. The patients were stratified into four groups according to quartiles of urine protein-to-creatinine ratio (UPCR). Results: The patients in quartile 4 had a lower estimated glomerular filtration rate (eGFR) slope, and higher prevalence rates of rapid renal progression, progression to commencement of dialysis, overall and CV mortality. Multivariable analysis showed that a high UPCR was associated with high AoAC (unstandardized coefficient β: 0.315; p = 0.002), high CTR (unstandardized coefficient β: 1.186; p = 0.028) and larger negative eGFR slope (unstandardized coefficient β: -2.398; p < 0.001). With regards to clinical outcomes, a high UPCR was significantly correlated with progression to dialysis (log per 1 mg/g; hazard ratio [HR], 2.538; p = 0.003), increased overall mortality (log per 1 mg/g; HR, 2.292; p = 0.003) and increased CV mortality (log per 1 mg/g; HR, 3.195; p = 0.006). Conclusions: Assessing proteinuria may allow for the early identification of high-risk patients and initiate interventions to prevent vascular calcification, cardiomegaly, and poor clinical outcomes.
Collapse
Affiliation(s)
- Wei-Yu Su
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Pei-Yu Wu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiun-Chi Huang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jer-Ming Chang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
36
|
Medina S, De Las Heras-Gómez I, Casas-Pina T, Bultel-Poncé V, Galano JM, Durand T, Martínez-Hernández P, Ferreres F, Jimeno L, Llorente S, Gil-Izquierdo Á. Urinary oxylipin signature as biomarkers to monitor the allograft function during the first six months post-renal transplantation. Free Radic Biol Med 2020; 146:340-349. [PMID: 31734358 DOI: 10.1016/j.freeradbiomed.2019.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Oxylipins such as isoprostanes (IsoPs), prostaglandins (PGs) and thromboxanes (TXs) are lipid mediators derived from the oxidation of polyunsaturated fatty acids, which regulate the magnitude of oxidative stress and inflammation processes and play an important role in pathophysiological processes in the kidney. A total of 36 oxylipins were analyzed by UHPLC-QqQ-MS/MS in the urine of 41 renal recipients from cadaveric donors of the Nephrology Unit of the University Hospital Virgen de la Arrixaca during the first six months after renal transplantation, in order to investigate several candidate oxylipins as more accurate and predictive biomarkers in renal transplantation than classical biological variables. A decrease in nine PGs, mostly from the AA-D pathway (p < 0.05) and one IsoP: 15-keto-15-F2t-IsoP (p < 0.001) was observed. Moreover, two PGs (2,3-dinor-11β-PGF2α and 17-trans-PGF3α) increased between five days and six months after renal transplantation (p < 0.05). In addition, when kidney function improved, a positive correlation between oxylipin levels and the excretion of urine proteins was observed. These results suggest that oxylipins could be useful markers for monitoring renal function in the post-renal transplantation period. These findings could be of utility not only for the development of strategies for long-term preservation of graft function, but also for innovative and alternative therapies -using oxylipins as predictive markers-to avoid organ rejection.
Collapse
Affiliation(s)
- Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100, Campus University Espinardo, Murcia, Spain.
| | - Ignacio De Las Heras-Gómez
- Clinical Analysis Service, University Hospital Virgen de la Arrixaca, Murcia, Ctra. Madrid-Cartagena, S/n, 30120, El Palmar, Spain
| | - Teresa Casas-Pina
- Clinical Analysis Service, University Hospital Virgen de la Arrixaca, Murcia, Ctra. Madrid-Cartagena, S/n, 30120, El Palmar, Spain
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Pedro Martínez-Hernández
- Clinical Analysis Service, University Hospital Virgen de la Arrixaca, Murcia, Ctra. Madrid-Cartagena, S/n, 30120, El Palmar, Spain
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100, Campus University Espinardo, Murcia, Spain
| | - Luisa Jimeno
- Nephrology Service, University Hospital Virgen de la Arrixaca, Murcia, Ctra. Madrid-Cartagena, S/n, 30120, El Palmar, Spain
| | - Santiago Llorente
- Nephrology Service, University Hospital Virgen de la Arrixaca, Murcia, Ctra. Madrid-Cartagena, S/n, 30120, El Palmar, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100, Campus University Espinardo, Murcia, Spain.
| |
Collapse
|
37
|
Feng Y, Wang G, Chang Y, Cheng Y, Sun B, Wang L, Chen C, Zhang H. Electron Compensation Effect Suppressed Silver Ion Release and Contributed Safety of Au@Ag Core-Shell Nanoparticles. NANO LETTERS 2019; 19:4478-4489. [PMID: 31244230 DOI: 10.1021/acs.nanolett.9b01293] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Silver nanoparticles (Ag NPs) have promising plasmonic properties, however, they are rarely used in biomedical applications because of their potent toxicity. Herein, an electron compensation effect from Au to Ag was applied to design safe Au@Ag core-shell NPs. The Ag shell thickness was precisely regulated to enable the most efficient electron enrichment in Ag shell of Au@Ag2.4 NPs, preventing Ag oxidation and subsequent Ag+ ion release. X-ray photoelectron spectroscopy and X-ray absorption near-edge structure analysis revealed the electron transfer process from Au core to Ag shell, and inductively coupled plasma optical emission spectroscopy analysis confirmed the low Ag+ ion release from Au@Ag2.4 NPs. Bare Au@Ag2.4 NPs showed much lower toxicological responses than Ag NPs in BEAS-2B and Raw 264.7 cells and acute lung inflammation mouse models, and PEGylation of Au@Ag2.4 NPs could further improve their safety to L02 and HEK293T cells as well as mice through intravenous injection. Further, diethylthiatri carbocyanine iodide attached pAu@Ag2.4 NPs exhibited intense surface-enhanced Raman scattering signals and were used for Raman imaging of MCF7 cells and Raman biosensing in MCF7 tumor-bearing mice. This electron compensation effect opens up new opportunity for broadening biomedical application of Ag-based NPs.
Collapse
Affiliation(s)
- Yanlin Feng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Guorui Wang
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education , Northeast Normal University , Changchun 130024 , P.R. China
| | - Yun Chang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
| | - Yan Cheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
| | - Bingbing Sun
- School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , P.R. China
| | - Liming Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, Institute of High Energy Physics, and National Center for Nanoscience and Technology of China , Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Chunying Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, Institute of High Energy Physics, and National Center for Nanoscience and Technology of China , Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| |
Collapse
|
38
|
Cold Storage Increases Albumin and Advanced Glycation-End Product-Albumin Levels in Kidney Transplants: A Possible Cause for Exacerbated Renal Damage. Transplant Direct 2019; 5:e454. [PMID: 31723591 PMCID: PMC6791592 DOI: 10.1097/txd.0000000000000897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/01/2023] Open
Abstract
Prolonged cold storage (CS) of kidneys is associated with poor renal outcome after transplantation (Tx). We recently showed that in rats (Lewis), proteasome and renal function were severely compromised in kidney transplants subjected to CS (CS/Tx) as compared with those without CS exposure (autotransplanted [ATx]).
Collapse
|
39
|
Effect of bardoxolone methyl on the urine albumin-to-creatinine ratio in patients with type 2 diabetes and stage 4 chronic kidney disease. Kidney Int 2019; 96:1030-1036. [PMID: 31377056 DOI: 10.1016/j.kint.2019.04.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/01/2019] [Accepted: 04/19/2019] [Indexed: 12/29/2022]
Abstract
Bardoxolone methyl attenuates inflammation by inducing nuclear factor erythroid-derived 2-related factor 2 and suppressing nuclear factor κB. The Bardoxolone Methyl Evaluation in Patients With Chronic Kidney Disease and Type 2 Diabetes (BEACON) trial was a phase 3 placebo-controlled, randomized, double-blind, parallel-group, international, multicenter trial in 2185 patients with type 2 diabetes mellitus and stage 4 chronic kidney disease. BEACON was terminated because of safety concerns, largely related to a significant increase in early heart failure events in patients randomized to bardoxolone methyl. Bardoxolone methyl resulted in increased estimated glomerular filtration rate (eGFR) and urine albumin-to-creatinine ratio. Herein, we present post hoc analyses characterizing the relation between the urine albumin-to-creatinine ratio and eGFR. The urine albumin-to-creatinine ratio and eGFR were assessed every four weeks through Week 12, followed by assessments every eight weeks thereafter, and 4 weeks after the last dose of bardoxolone methyl was administered. The initial increases in urine albumin-to-creatinine ratio observed in patients randomized to bardoxolone methyl were attenuated after six months. Multivariable regression analysis identified baseline eGFR and eGFR over time as the dominant factors associated with change in the urine albumin-to-creatinine ratio. Relative to placebo, bardoxolone methyl resulted in a significant decrease in albuminuria when indexed to eGFR (least-squared means: -0.035 [95% confidence interval -0.031 to -0.039]). Thus, among patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl, changes in albuminuria are directly related to changes in eGFR, challenging the conventional construct that increases in albuminuria universally reflect kidney injury and denote harm.
Collapse
|
40
|
Abstract
IgA nephropathy (IgAN), a common primary glomerulonephritis worldwide, is associated with a substantial risk of progression to end-stage renal failure. The disease runs a highly variable clinical course with frequent involvement of tubulointerstitial damage. A subgroup of IgAN with proximal tubular epithelial cells (PTECs) and tubulointerstitial damage often is associated with rapid progression to end-stage renal failure. Human mesangial cell-derived mediators lead to podocyte and tubulointerstitial injury via mesangial-podocytic-tubular cross-talk. Although mesangial-podocytic communication plays a pathogenic role in podocytic injury, the implication of a podocyte-PTEC cross-talk pathway in the progression of tubulointerstitial injury in IgAN should not be underscored. We review the role of mesangial-podocytic-tubular cross-talk in the progression of IgAN. We discuss how podocytopathy in IgAN promotes subsequent PTEC dysfunction and whether tubulointerstitial injury affects the propagation of podocytic injury in IgAN. A thorough understanding of the cross-talk mechanisms among mesangial cells, podocytes, and PTECs may lead to better design of potential therapeutic options for IgAN.
Collapse
Affiliation(s)
- Joseph C K Leung
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong..
| | - Kar Neng Lai
- Nephrology Center, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong
| | - Sydney C W Tang
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
41
|
Soliman AR, Ahmed RM, Soliman M, Abdallah A, Zayed B. The effect of co-infection with hepatitis B and hepatitis C viruses on the prevalence of proteinuria and loss of renal function: a single-center experience. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2018. [DOI: 10.4103/ejim.ejim_51_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
42
|
Elenkova M, Tipton DA, Karydis A, Stein SH. Vitamin D attenuates human gingival fibroblast inflammatory cytokine production following advanced glycation end product interaction with receptors for AGE. J Periodontal Res 2018; 54:154-163. [PMID: 30295316 DOI: 10.1111/jre.12613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/18/2018] [Accepted: 08/26/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Vitamin D [1,25(OH)2 D3 or 1,25D3] is critical in musculoskeletal health, inflammation, immune response, and glucose metabolism. Patients with vitamin D deficiency may be at higher risk of diabetes and periodontitis. Diabetic patients exhibit exacerbated inflammation and more periodontal destruction. Advanced glycation end products (AGEs), formed during diabetic hyperglycemia, activate inflammatory pathways in periodontitis. Human gingival fibroblasts (HGFs) express receptors for AGEs (RAGEs) and can contribute to inflammation. OBJECTIVES Determine whether glycated human serum albumin (G-HSA) augments HGF IL-6 and IL-8 production, and whether treatment with 1,25D3 attenuates cytokine production following stimulation with G-HSA + IL-1β and/or IL-17. MATERIAL AND METHODS HGFs were incubated ±G-HSA or normal human serum albumin (HSA), ±IL-1β and/or IL-17, ±1,25D3. Cytokines were measured by ELISA. Neutralizing anti-RAGE was used to assess AGE-RAGE interaction. Endotoxin was measured using the ToxinSensor™ System. Data were expressed as mean ± standard deviation and analyzed using a one-way analysis of variance (ANOVA) and Scheffe's F procedure for post hoc comparisons. RESULTS G-HSA or IL-1β, but not HSA, significantly stimulated IL-6 and IL-8 production. G-HSA or HSA when combined with IL-1β or IL-1β + IL-17 synergistically stimulated IL-6 and IL-8. Neutralizing anti-RAGE inhibited IL-6 and IL-8 produced by cells stimulated with IL-1β + G-HSA but not (+HSA). Synergism caused by HSA did not appear to be mediated by endotoxin since its levels in G-HSA and HSA were not sufficient to stimulate fibroblasts. Vitamin D inhibited IL-6 and IL-8 production stimulated by G-HSA or HSA + IL-1β or IL-1β + IL-17. CONCLUSIONS Results suggest that the "perioprotective" effects of vitamin D are related to its ability to regulate inflammatory cytokine production by HGFs following AGE-RAGE interaction.
Collapse
Affiliation(s)
- Martina Elenkova
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Periodontology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - David A Tipton
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Anastasios Karydis
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Periodontology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Sidney H Stein
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Periodontology, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
43
|
Fang H, Deng M, Zhang L, Lu A, Su J, Xu C, Zhou L, Wang L, Ou JS, Wang W, Yang T. Role of (pro)renin receptor in albumin overload-induced nephropathy in rats. Am J Physiol Renal Physiol 2018; 315:F1759-F1768. [PMID: 29846109 DOI: 10.1152/ajprenal.00071.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proteinuria is not only a common feature of chronic kidney diseases (CKD) but also an independent risk factor promoting CKD progression to end-stage renal failure. However, the underlying molecular mechanisms for protein overload-induced renal injury remain elusive. The present study examined the role of (pro)renin receptor (PRR) in pathogenesis of albumin overload (AO)-induced nephropathy and activation of the intrarenal renin-angiotensin system (RAS) in rats. Wistar rats underwent unilateral nephrectomy and were treated for 7 wk with vehicle, bovine serum albumin (5 g·kg-1·day-1 via a single ip injection), alone or in conjunction with the PRR decoy inhibitor PRO20 (500 μg·kg-1·day-1 via 3 sc injections). The AO rat model exhibited severe proteinuria, tubular necrosis, and interstitial fibrosis, oxidative stress, and inflammation, accompanied by elevated urinary N-acetyl-β-d-glucosaminidase activity and urinary β2-microglobulin secretion, all of which were significantly attenuated by PRO20. Urinary and renal levels of renin, angiotensinogen, and ANG II were elevated by AO and suppressed by PRO20, contrasting to largely unaltered plasma levels of the RAS parameters. The AO model also showed increased renal expression of full-length PRR and soluble PRR (sPRR) and urinary excretion of sPRR. Taken together, we conclude that PRR antagonism with PRO20 alleviates AO-induced nephropathy via inhibition of intrarenal RAS.
Collapse
Affiliation(s)
- Hui Fang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Mokan Deng
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Linlin Zhang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Aihua Lu
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Jiahui Su
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Chuanming Xu
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China.,Internal Medicine, University of Utah and Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Li Zhou
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Lei Wang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Weidong Wang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China.,Internal Medicine, University of Utah and Veterans Affairs Medical Center , Salt Lake City, Utah
| |
Collapse
|
44
|
Activated renal tubular Wnt/β-catenin signaling triggers renal inflammation during overload proteinuria. Kidney Int 2018; 93:1367-1383. [PMID: 29605095 DOI: 10.1016/j.kint.2017.12.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 01/27/2023]
Abstract
Imbalance of Wnt/β-catenin signaling in renal cells is associated with renal dysfunction, yet the precise mechanism is poorly understood. Previously we observed activated Wnt/β-catenin signaling in renal tubules during proteinuric nephropathy with an unknown net effect. Therefore, to identify the definitive role of tubular Wnt/β-catenin, we generated a novel transgenic "Tubcat" mouse conditionally expressing stabilized β-catenin specifically in renal tubules following tamoxifen administration. Four weeks after tamoxifen injection, uninephrectomized Tubcat mice displayed proteinuria and elevated blood urea nitrogen levels compared to non-transgenic mice, implying a detrimental effect of the activated signaling. This was associated with infiltration of the tubulointerstitium predominantly by M1 macrophages and overexpression of the inflammatory chemocytokines CCL-2 and RANTES. Induction of overload proteinuria by intraperitoneal injection of low-endotoxin bovine serum albumin following uninephrectomy for four weeks aggravated proteinuria and increased blood urea nitrogen levels to a significantly greater extent in Tubcat mice. Renal dysfunction correlated with the degree of M1 macrophage infiltration in the tubulointerstitium and renal cortical up-regulation of CCL-2, IL-17A, IL-1β, CXCL1, and ICAM-1. There was overexpression of cortical TLR-4 and NLRP-3 in Tubcat mice, independent of bovine serum albumin injection. Finally, there was no fibrosis, activation of epithelial-mesenchymal transition or non-canonical Wnt pathways observed in the kidneys of Tubcat mice. Thus, conditional activation of renal tubular Wnt/β-catenin signaling in a novel transgenic mouse model demonstrates that this pathway enhances intrarenal inflammation via the TLR-4/NLRP-3 inflammasome axis in overload proteinuria.
Collapse
|
45
|
Nakatani S, Nakatani A, Ishimura E, Toi N, Tsuda A, Mori K, Emoto M, Hirayama Y, Saito A, Inaba M. Urinary Iron Excretion is Associated with Urinary Full-Length Megalin and Renal Oxidative Stress in Chronic Kidney Disease. Kidney Blood Press Res 2018; 43:458-470. [PMID: 29590662 DOI: 10.1159/000488470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/16/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Megalin mediates the uptake of glomerular-filtered iron in the proximal tubules. Urinary full length megalin (C-megalin) excretion has been found to be increased in association with megalin-mediated metabolic load to the endo-lysosomal system in proximal tubular epithelial cells (PTECs) of residual nephrons. In the present study, we investigated the association between urinary iron and C-megalin in chronic kidney disease (CKD) patients, and the possible harmful effect of iron in renal tubules. METHODS Urinary levels of iron and C-megalin were measured in 63 CKD patients using automatic absorption spectrometry and a recently-established sandwich ELISA, respectively. RESULTS Although both urinary C-megalin and urinary total protein levels were correlated with urinary iron (C-megalin: ρ = 0.574, p <0.001; total protein: ρ = 0.500, p <0.001, respectively), urinary C-megalin alone emerged as an independent factor positively associated with urinary iron (β = 0.520, p <0.001) (R2 = 0.75, p <0.001). Furthermore, urinary iron was significantly and positively associated with urinary 8-hydroxydeoxyguanosine, an oxidative stress marker, while no association with other markers of renal tubular injury, i.e., β2-microglobulin and N-acetyl-β-D-glucosaminidase, was noted. CONCLUSIONS Our findings suggest that renal iron handling may be associated with megalin-mediated endo-lysosomal metabolic load in PTECs of residual nephrons and oxidative stress in renal tubules.
Collapse
Affiliation(s)
- Shinya Nakatani
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ayumi Nakatani
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Eiji Ishimura
- Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Norikazu Toi
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akihiro Tsuda
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Katsuhito Mori
- Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshiaki Hirayama
- Reagent Research and Development Department, Denka Seiken Co., Ltd., Gosen, Japan
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
46
|
Jourdan T, Park JK, Varga ZV, Pálóczi J, Coffey NJ, Rosenberg AZ, Godlewski G, Cinar R, Mackie K, Pacher P, Kunos G. Cannabinoid-1 receptor deletion in podocytes mitigates both glomerular and tubular dysfunction in a mouse model of diabetic nephropathy. Diabetes Obes Metab 2018; 20:698-708. [PMID: 29106063 DOI: 10.1111/dom.13150] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022]
Abstract
AIMS To determine the specific role of podocyte-expressed cannabinoid-1 receptor (CB1 R) in the development of diabetic nephropathy (DN), relative to CB1 R in other renal cell types. MATERIAL AND METHODS We developed a mouse model with a podocyte-specific deletion of CB1 R (pCB1Rko) and challenged this model with streptozotocin (STZ)-induced type-1 DN. We also assessed the podocyte response to high glucose in vitro and its effects on CB1 R activation. RESULTS High glucose exposure for 48 hours led to an increase in CB1 R gene expression (CNR1) and endocannabinoid production in cultured human podocytes. This was associated with podocyte injury, reflected by decreased podocin and nephrin expression. These changes could be prevented by Cnr1-silencing, thus identifying CB1R as a key player in podocyte injury. After 12 weeks of chronic hyperglycaemia, STZ-treated pCB1Rko mice showed elevated blood glucose similar to that of their wild-type littermates. However, they displayed less albuminuria and less podocyte loss than STZ-treated wild-type mice. Unexpectedly, pCB1Rko mice also have milder tubular dysfunction, fibrosis and reduction of cortical microcirculation compared to wild-type controls, which is mediated, in part, by podocyte-derived endocannabinoids acting via CB1 R on proximal tubular cells. CONCLUSIONS Activation of CB1 R in podocytes contributes to both glomerular and tubular dysfunction in type-1 DN, which highlights the therapeutic potential of peripheral CB1 R blockade.
Collapse
Affiliation(s)
- Tony Jourdan
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - Joshua K Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - Zoltán V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIH/NIAAA, Bethesda, Maryland
| | - János Pálóczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIH/NIAAA, Bethesda, Maryland
| | - Nathan J Coffey
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
- Kidney Diseases Section, National Institute on Diabetes, Digestive, and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIH/NIAAA, Bethesda, Maryland
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
47
|
Yu SMW, Bonventre JV. Acute Kidney Injury and Progression of Diabetic Kidney Disease. Adv Chronic Kidney Dis 2018; 25:166-180. [PMID: 29580581 DOI: 10.1053/j.ackd.2017.12.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/23/2022]
Abstract
Diabetic kidney disease, commonly termed diabetic nephropathy (DN), is the most common cause of end-stage kidney disease (ESKD) worldwide. The characteristic histopathology of DN includes glomerular basement membrane thickening, mesangial expansion, nodular glomerular sclerosis, and tubulointerstitial fibrosis. Diabetes is associated with a number of metabolic derangements, such as reactive oxygen species overproduction, hypoxic state, mitochondrial dysfunction, and inflammation. In the past few decades, our knowledge of DN has advanced considerably although much needs to be learned. The traditional paradigm of glomerulus-centered pathophysiology has expanded to the tubule-interstitium, the immune response and inflammation. Biomarkers of proximal tubule injury have been shown to correlate with DN progression, independent of traditional glomerular injury biomarkers such as albuminuria. In this review, we summarize mechanisms of increased susceptibility to acute kidney injury in diabetes mellitus and the roles played by many kidney cell types to facilitate maladaptive responses leading to chronic and end-stage kidney disease.
Collapse
|
48
|
Chang Y, Cheng Y, Feng Y, Jian H, Wang L, Ma X, Li X, Zhang H. Resonance Energy Transfer-Promoted Photothermal and Photodynamic Performance of Gold-Copper Sulfide Yolk-Shell Nanoparticles for Chemophototherapy of Cancer. NANO LETTERS 2018; 18:886-897. [PMID: 29323915 DOI: 10.1021/acs.nanolett.7b04162] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gold (Au) core@void@copper sulfide (CuS) shell (Au-CuS) yolk-shell nanoparticles (YSNPs) were prepared in the present study for potential chemo-, photothermal, and photodynamic combination therapy, so-called "chemophototherapy". The resonance energy transfer (RET) process was utilized in Au-CuS YSNPs to achieve both enhanced photothermal and photodynamic performance compared with those of CuS hollow nanoparticles (HNPs). A series of Au nanomaterials as cores that had different localized surface plasmon resonance (LSPR) absorption peaks at 520, 700, 808, 860, and 980 nm were embedded in CuS HNPs to screen the most effective Au-CuS YSNPs according to the RET process. Thermoresponsive polymer was fabricated on these YSNPs' surface to allow for controlled drug release. Au808-CuS and Au980-CuS YSNPs were found capable of inducing the largest temperature elevation and producing the most significant hydroxyl radicals under 808 and 980 nm laser irradiation, respectively, which could accordingly cause the most severe 4T1 cell injury through oxidative stress mechanism. Moreover, doxorubicin-loaded (Dox-loaded) P(NIPAM-co-AM)-coated Au980-CuS (p-Au980-CuS@Dox) YSNPs could more efficiently kill cells than unloaded particles upon 980 nm laser irradiation. After intravenous administration to 4T1 tumor-bearing mice, p-Au980-CuS YSNPs could significantly accumulate in the tumor and effectively inhibit the tumor growth after 980 nm laser irradiation, and p-Au980-CuS@Dox YSNPs could further potentiate the inhibition efficiency and exhibit excellent in vivo biocompatibility. Taken together, this study sheds light on the rational design of Au-CuS YSNPs to offer a promising candidate for chemophototherapy.
Collapse
Affiliation(s)
- Yun Chang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yan Cheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Yanlin Feng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, China
- University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Hui Jian
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Li Wang
- School of Chemistry and Life Science, Changchun University of Technology , Changchun, Jilin 130012, China
| | - Xiaomin Ma
- School of Chemistry and Life Science, Changchun University of Technology , Changchun, Jilin 130012, China
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology , Changchun, Jilin 130012, China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
- University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
49
|
Cheng YC, Chen CA, Chen HC. Endoplasmic reticulum stress-induced cell death in podocytes. Nephrology (Carlton) 2017; 22 Suppl 4:43-49. [DOI: 10.1111/nep.13145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Yu-Chi Cheng
- Division of Nephrology, Department of Internal Medicine; Kaohsiung Medical University Hospital, Kaohsiung Medical University; Kaohsiung Taiwan
| | - Chien-An Chen
- Division of Nephrology; Sinlau Hospital; Tainan Taiwan
| | - Hung-Chun Chen
- Division of Nephrology, Department of Internal Medicine; Kaohsiung Medical University Hospital, Kaohsiung Medical University; Kaohsiung Taiwan
| |
Collapse
|
50
|
Yin W, Xu S, Wang Z, Liu H, Peng L, Fang Q, Deng T, Zhang W, Lou J. Recombinant human GLP-1(rhGLP-1) alleviating renal tubulointestitial injury in diabetic STZ-induced rats. Biochem Biophys Res Commun 2017; 495:793-800. [PMID: 29137984 DOI: 10.1016/j.bbrc.2017.11.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 11/29/2022]
Abstract
GLP-1-based treatment improves glycemia through stimulation of insulin secretion and inhibition of glucagon secretion. Recently, more and more findings showed that GLP-1 could also protect kidney from diabetic nephropathy. Most of these studies focused on glomeruli, but the effect of GLP-1 on tubulointerstitial and tubule is not clear yet. In this study, we examined the renoprotective effect of recombinant human GLP-1 (rhGLP-1), and investigated the influence of GLP-1 on inflammation and tubulointerstitial injury using diabetic nephropathy rats model of STZ-induced. The results showed that rhGLP-1 reduced urinary albumin without influencing the body weight and food intake. rhGLP-1 could increased the serum C-peptide slightly but not lower fasting blood glucose significantly. In diabetic nephropathy rats, beside glomerular sclerosis, tubulointerstitial fibrosis was very serious. These lesions could be alleviated by rhGLP-1. rhGLP-1 decreased the expression of profibrotic factors collagen I, α-SMA, fibronectin, and inflammation factors MCP-1 and TNFα in tubular tissue and human proximal tubular cells (HK-2 cells). Furthermore, rhGLP-1 significantly inhibited the phosphorylation of NF-κB, MAPK in both diabetic tubular tissue and HK-2 cells. The inhibition of the expression of TNFα, MCP-1, collagen I and α-SMA in HK-2 cells by GLP-1 could be mimicked by blocking NF-κB or MAPK. These results indicate that rhGLP-1 exhibit renoprotective effect by alleviation of tubulointerstitial injury via inhibiting phosphorylation of MAPK and NF-κB. Therefore, rhGLP-1 may be a potential drug for treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Weiqin Yin
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Shiqing Xu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Honglin Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Qing Fang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Tingting Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Wenjian Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Jinning Lou
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China.
| |
Collapse
|